Internet Engineering Task Force (IETF)                  S. Bhandari, Ed.
Request for Comments: 9486                                   Thoughtspot
Category: Standards Track                              F. Brockners, Ed.
ISSN: 2070-1721                                                    Cisco
                                                         September 2023


 IPv6 Options for In Situ Operations, Administration, and Maintenance
                                (IOAM)

Abstract

  In situ Operations, Administration, and Maintenance (IOAM) records
  operational and telemetry information in the packet while the packet
  traverses a path between two points in the network.  This document
  outlines how IOAM Data-Fields are encapsulated in IPv6.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9486.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions
    2.1.  Requirements Language
    2.2.  Abbreviations
  3.  In situ OAM Metadata Transport in IPv6
  4.  IOAM Deployment in IPv6 Networks
    4.1.  Considerations for IOAM Deployment and Implementation in
          IPv6 Networks
    4.2.  IOAM-Domains Bounded by Hosts
    4.3.  IOAM-Domains Bounded by Network Devices
  5.  Security Considerations
    5.1.  Applicability of Authentication Header (AH)
  6.  IANA Considerations
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  In situ Operations, Administration, and Maintenance (IOAM) records
  operational and telemetry information in the packet while the packet
  traverses a path between two points in the network.  IOAM concepts
  and associated nomenclature as well as IOAM Data-Fields are defined
  in [RFC9197].  This document outlines how IOAM Data-Fields are
  encapsulated in IPv6 [RFC8200] and discusses deployment requirements
  for networks that use IPv6-encapsulated IOAM Data-Fields.

  The terms "encapsulation" and "decapsulation" are used in this
  document in the same way as in [RFC9197]: An IOAM encapsulating node
  incorporates one or more IOAM Option-Types into packets that IOAM is
  enabled for.

2.  Conventions

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Abbreviations

  Abbreviations used in this document:

  E2E:       Edge-to-Edge

  IOAM:      In situ Operations, Administration, and Maintenance as
             defined in [RFC9197]

  OAM:       Operations, Administration, and Maintenance

  POT:       Proof of Transit

3.  In situ OAM Metadata Transport in IPv6

  IOAM in IPv6 is used to enhance diagnostics of IPv6 networks.  It
  complements other mechanisms designed to enhance diagnostics of IPv6
  networks, such as the "IPv6 Performance and Diagnostic Metrics (PDM)
  Destination Option" described in [RFC8250].

  At the time this document was written, several implementations of
  IOAM for IPv6 exist, e.g., IOAM for IPv6 in the Linux Kernel
  (supported from Kernel version 5.15 onward, IPv6 IOAM in Linux Kernel
  (https://github.com/torvalds/linux/
  commit/7c804e91df523a37c29e183ea2b10ac73c3a4f3d)) and IOAM for IPv6
  in Vector Packet Processing (VPP) (https://docs.fd.io/vpp/17.04/
  ioam_ipv6_doc.html).

  IOAM Data-Fields can be encapsulated with two types of extension
  headers in IPv6 packets -- either the hop-by-hop options header or
  the destination options header.  Multiple options with the same
  option type MAY appear in the same hop-by-hop options or destination
  options header with distinct content.

  An IPv6 packet carrying IOAM data in an extension header can have
  other extension headers, compliant with [RFC8200].

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Option-Type  |  Opt Data Len |   Reserved    | IOAM Opt-Type |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |                                                               |  |
  .                                                               .  I
  .                                                               .  O
  .                                                               .  A
  .                                                               .  M
  .                                                               .  .
  .                          Option Data                          .  O
  .                                                               .  P
  .                                                               .  T
  .                                                               .  I
  .                                                               .  O
  .                                                               .  N
  |                                                               |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+

       Figure 1: IPv6 Hop-by-Hop and Destination Option Format for
                        Carrying IOAM Data- Fields

  Option-Type:  8-bit option type identifier as defined in Section 6.

  Opt Data Len:  8-bit unsigned integer.  Length of this option, in
     octets, not including the first 2 octets.

  Reserved:  8-bit field MUST be set to zero by the source.

  IOAM Option-Type:  Abbreviated to "IOAM Opt-Type" in the diagram
     above: 8-bit field as defined in Section 4.1 of [RFC9197].

  Option Data:  Variable-length field.  The data is specific to the
     Option-Type, as detailed below.

     Pre-allocated Trace Option:  The IOAM Pre-allocated Trace Option-
        Type, defined in Section 4.4 of [RFC9197], is represented as an
        IPv6 option in the hop-by-hop extension header:

        Option-Type:  0x31 (8-bit identifier of the IPv6 Option-Type
           for IOAM).

        IOAM Type:  IOAM Pre-allocated Trace Option-Type.

     Proof of Transit Option-Type:  The IOAM POT Option-Type, defined
        in Section 4.5 of [RFC9197], is represented as an IPv6 option
        in the hop-by-hop extension header:

        Option-Type:  0x31 (8-bit identifier of the IPv6 Option-Type
           for IOAM).

        IOAM Type:  IOAM POT Option-Type.

     Edge-to-Edge Option:  The IOAM E2E Option, defined in Section 4.6
        of [RFC9197], is represented as an IPv6 option in destination
        extension header:

        Option-Type:  0x11 (8-bit identifier of the IPv6 Option-Type
           for IOAM).

        IOAM Type:  IOAM E2E Option-Type.

     Direct Export (DEX) Option:  The IOAM Direct Export Option-Type,
        defined in Section 3.2 of [RFC9326], is represented as an IPv6
        option in the hop-by-hop extension header:

        Option-Type:  0x11 (8-bit identifier of the IPv6 Option-Type
           for IOAM).

        IOAM Type:  IOAM Direct Export (DEX) Option-Type.

  All the IOAM IPv6 options defined here have alignment requirements.
  Specifically, they all require alignment on multiples of 4 bytes.
  This ensures that fields specified in [RFC9197] are aligned at a
  multiple-of-4 offset from the start of the hop-by-hop and destination
  options header.

  IPv6 options can have a maximum length of 255 octets.  Consequently,
  the total length of IOAM Option-Types including all data fields is
  also limited to 255 octets when encapsulated into IPv6.

4.  IOAM Deployment in IPv6 Networks

4.1.  Considerations for IOAM Deployment and Implementation in IPv6
     Networks

  IOAM deployments in IPv6 networks MUST take the following
  considerations and requirements into account.

  C1:  IOAM MUST be deployed in an IOAM-Domain.  An IOAM-Domain is a
       set of nodes that use IOAM.  An IOAM-Domain is bounded by its
       perimeter or edge.  The set of nodes forming an IOAM-Domain may
       be connected to the same physical infrastructure (e.g., a
       service provider's network).  They may also be remotely
       connected to each other (e.g., an enterprise VPN or an overlay).
       It is expected that all nodes in an IOAM-Domain are managed by
       the same administrative entity.  Please refer to [RFC9197] for
       more details on IOAM-Domains.

  C2:  Implementations of IOAM MUST ensure that the addition of IOAM
       Data-Fields does not alter the way routers forward packets or
       the forwarding decisions they make.  Packets with added IOAM
       information must follow the same path within the domain as an
       identical packet without IOAM information would, even in the
       presence of Equal-Cost Multipath (ECMP).  This behavior is
       important for deployments where IOAM Data-Fields are only added
       "on-demand".  Implementations of IOAM MUST ensure that ECMP
       behavior for packets with and without IOAM Data-Fields is the
       same.  In order for IOAM to work in IPv6 networks, IOAM MUST be
       explicitly enabled per interface on every node within the IOAM-
       Domain.  Unless a particular interface is explicitly enabled
       (i.e., explicitly configured) for IOAM, a router MUST ignore
       IOAM Options.

  C3:  In order to maintain the integrity of packets in an IOAM-Domain,
       the Maximum Transmission Unit (MTU) of transit routers and
       switches must be configured to a value that does not lead to an
       "ICMP Packet Too Big" error message being sent to the originator
       and the packet being dropped.  The PMTU tolerance range must be
       identified, and IOAM encapsulation operations or data field
       insertion must not exceed this range.  Control of the MTU is
       critical to the proper operation of IOAM.  The PMTU tolerance
       must be identified through configuration, and IOAM operations
       must not exceed the packet size beyond PMTU.

  C4:  [RFC8200] precludes insertion of IOAM data directly into the
       original IPv6 header of in-flight packets.  IOAM deployments
       that do not encapsulate/decapsulate IOAM on the host but desire
       to encapsulate/decapsulate IOAM on transit nodes MUST add an
       additional IPv6 header to the original packet.  IOAM data is
       added to this additional IPv6 header.

4.2.  IOAM-Domains Bounded by Hosts

  For deployments where the IOAM-Domain is bounded by hosts, hosts will
  perform the operation of IOAM Data-Field encapsulation and
  decapsulation, i.e., hosts will place the IOAM Data-Fields directly
  in the IPv6 header or remove the IOAM Data-Fields directly from the
  IPv6 header.  IOAM data is carried in IPv6 packets as hop-by-hop or
  destination options as specified in this document.

4.3.  IOAM-Domains Bounded by Network Devices

  For deployments where the IOAM-Domain is bounded by network devices,
  network devices such as routers form the edge of an IOAM-Domain.
  Network devices will perform the operation of IOAM Data-Field
  encapsulation and decapsulation.  Network devices will encapsulate
  IOAM Data-Fields in an additional, outer, IPv6 header that carries
  the IOAM Data-Fields.

5.  Security Considerations

  This document describes the encapsulation of IOAM Data-Fields in
  IPv6.  For general IOAM security considerations, see [RFC9197].
  Security considerations of the specific IOAM Data-Fields for each
  case (i.e., Trace, POT, and E2E) are also described and defined in
  [RFC9197].

  As this document describes new options for IPv6, the security
  considerations of [RFC8200] and [RFC8250] apply.

  From a network-protection perspective, there is an assumed trust
  model such that any node that adds IOAM to a packet, removes IOAM
  from a packet, or modifies IOAM Data-Fields of a packet is assumed to
  be allowed to do so.  By default, packets that include IPv6 extension
  headers with IOAM information MUST NOT be leaked through the
  boundaries of the IOAM-Domain.

  IOAM-Domain boundary routers MUST filter any incoming traffic from
  outside the IOAM-Domain that contains IPv6 extension headers with
  IOAM information.  IOAM-Domain boundary routers MUST also filter any
  outgoing traffic leaving the IOAM-Domain that contains IPv6 extension
  headers with IOAM information.

  In the general case, an IOAM node only adds, removes, or modifies an
  IPv6 extension header with IOAM information, if the directive to do
  so comes from a trusted source and the directive is validated.

  Problems may occur if the above behaviors are not implemented or if
  the assumed trust model is violated (e.g., through a security
  breach).  In addition to the security considerations discussed in
  [RFC9197], the security considerations associated with IPv6 extension
  headers listed in [RFC9098] apply.

5.1.  Applicability of Authentication Header (AH)

  The network devices in an IOAM-Domain are trusted to add, update, and
  remove IOAM options according to the constraints specified in
  [RFC8200].  IOAM-Domain does not rely on the AH as defined in
  [RFC4302] to secure IOAM options.  The use of IOAM options with AH
  and its processing are not defined in this document.  Future
  documents may define the use of IOAM with AH and its processing.

6.  IANA Considerations

  IANA has assigned the IPv6 Option-Types from the "Destination Options
  and Hop-by-Hop Options" subregistry of "Internet Protocol Version 6
  (IPv6) Parameters" <https://www.iana.org/assignments/
  ipv6-parameters/>.

      +=======+===================+===================+===========+
      | Hex   | Binary Value      | Description       | Reference |
      | Value +=====+=====+=======+                   |           |
      |       | act | chg | rest  |                   |           |
      +=======+=====+=====+=======+===================+===========+
      | 0x11  | 00  | 0   | 10001 | IOAM Destination  | RFC 9486  |
      |       |     |     |       | Option and IOAM   |           |
      |       |     |     |       | Hop-by-Hop Option |           |
      +-------+-----+-----+-------+-------------------+-----------+
      | 0x31  | 00  | 1   | 10001 | IOAM Destination  | RFC 9486  |
      |       |     |     |       | Option and IOAM   |           |
      |       |     |     |       | Hop-by-Hop Option |           |
      +-------+-----+-----+-------+-------------------+-----------+

                                 Table 1

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC9197]  Brockners, F., Ed., Bhandari, S., Ed., and T. Mizrahi,
             Ed., "Data Fields for In Situ Operations, Administration,
             and Maintenance (IOAM)", RFC 9197, DOI 10.17487/RFC9197,
             May 2022, <https://www.rfc-editor.org/info/rfc9197>.

  [RFC9326]  Song, H., Gafni, B., Brockners, F., Bhandari, S., and T.
             Mizrahi, "In Situ Operations, Administration, and
             Maintenance (IOAM) Direct Exporting", RFC 9326,
             DOI 10.17487/RFC9326, November 2022,
             <https://www.rfc-editor.org/info/rfc9326>.

7.2.  Informative References

  [IPV6-RECORD-ROUTE]
             Kitamura, H., "Record Route for IPv6 (RR6) Hop-by-Hop
             Option Extension", Work in Progress, Internet-Draft,
             draft-kitamura-ipv6-record-route-00, 17 November 2000,
             <https://datatracker.ietf.org/doc/html/draft-kitamura-
             ipv6-record-route-00>.

  [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302,
             DOI 10.17487/RFC4302, December 2005,
             <https://www.rfc-editor.org/info/rfc4302>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

  [RFC8250]  Elkins, N., Hamilton, R., and M. Ackermann, "IPv6
             Performance and Diagnostic Metrics (PDM) Destination
             Option", RFC 8250, DOI 10.17487/RFC8250, September 2017,
             <https://www.rfc-editor.org/info/rfc8250>.

  [RFC9098]  Gont, F., Hilliard, N., Doering, G., Kumari, W., Huston,
             G., and W. Liu, "Operational Implications of IPv6 Packets
             with Extension Headers", RFC 9098, DOI 10.17487/RFC9098,
             September 2021, <https://www.rfc-editor.org/info/rfc9098>.

Acknowledgements

  The authors would like to thank Tom Herbert, Éric Vyncke, Nalini
  Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra
  Babu, Akshaya Nadahalli, Stefano Previdi, Hemant Singh, Erik
  Nordmark, LJ Wobker, Mark Smith, Andrew Yourtchenko, and Justin
  Iurman for the comments and advice.  For the IPv6 encapsulation, this
  document leverages concepts described in [IPV6-RECORD-ROUTE].  The
  authors would like to acknowledge the work done by the author Hiroshi
  Kitamura and people involved in writing it.

Contributors

  This document was the collective effort of several authors.  The text
  and content were contributed by the editors and the coauthors listed
  below.

  Carlos Pignataro
  Cisco Systems, Inc.
  7200-11 Kit Creek Road
  Research Triangle Park, NC 27709
  United States of America
  Email: [email protected]


  Hannes Gredler
  RtBrick Inc.
  Email: [email protected]


  John Leddy
  Email: [email protected]


  Stephen Youell
  JP Morgan Chase
  25 Bank Street
  London
  E14 5JP
  United Kingdom
  Email: [email protected]


  Tal Mizrahi
  Huawei Network.IO Innovation Lab
  Israel
  Email: [email protected]


  Aviv Kfir
  Mellanox Technologies, Inc.
  350 Oakmead Parkway, Suite 100
  Sunnyvale, CA 94085
  United States of America
  Email: [email protected]


  Barak Gafni
  Mellanox Technologies, Inc.
  350 Oakmead Parkway, Suite 100
  Sunnyvale, CA 94085
  United States of America
  Email: [email protected]


  Petr Lapukhov
  Facebook
  1 Hacker Way
  Menlo Park, CA 94025
  United States of America
  Email: [email protected]


  Mickey Spiegel
  Barefoot Networks, an Intel company
  4750 Patrick Henry Drive
  Santa Clara, CA 95054
  United States of America
  Email: [email protected]


  Suresh Krishnan
  Kaloom
  Email: [email protected]


  Rajiv Asati
  Cisco Systems, Inc.
  7200 Kit Creek Road
  Research Triangle Park, NC 27709
  United States of America
  Email: [email protected]


  Mark Smith
  PO BOX 521
  Heidelberg VIC 3084
  Australia
  Email: [email protected]


Authors' Addresses

  Shwetha Bhandari (editor)
  Thoughtspot
  3rd Floor, Indiqube Orion
  24th Main Rd, Garden Layout, HSR Layout
  Bangalore 560 102
  Karnataka
  India
  Email: [email protected]


  Frank Brockners (editor)
  Cisco Systems, Inc.
  Hansaallee 249, 3rd Floor
  40549 Duesseldorf
  Germany
  Email: [email protected]