Internet Engineering Task Force (IETF)                 M. Boucadair, Ed.
Request for Comments: 9463                                        Orange
Category: Standards Track                                T. Reddy.K, Ed.
ISSN: 2070-1721                                                    Nokia
                                                                D. Wing
                                                   Cloud Software Group
                                                                N. Cook
                                                           Open-Xchange
                                                              T. Jensen
                                                              Microsoft
                                                          November 2023


 DHCP and Router Advertisement Options for the Discovery of Network-
                      designated Resolvers (DNR)

Abstract

  This document specifies new DHCP and IPv6 Router Advertisement
  options to discover encrypted DNS resolvers (e.g., DNS over HTTPS,
  DNS over TLS, and DNS over QUIC).  Particularly, it allows a host to
  learn an Authentication Domain Name together with a list of IP
  addresses and a set of service parameters to reach such encrypted DNS
  resolvers.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9463.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  Overview
    3.1.  Configuration Data for Encrypted DNS
      3.1.1.  ADN as Reference Identifier for DNS Authentication
      3.1.2.  Avoiding Dependency on External Resolvers
      3.1.3.  Single vs. Multiple IP Addresses
      3.1.4.  Why Not Separate Options for the ADN and IP Addresses?
      3.1.5.  Service Parameters
      3.1.6.  ADN-Only Mode
      3.1.7.  Ordering of Encrypted DNS Options
      3.1.8.  DNR Validation Checks
      3.1.9.  DNR Information Using Other Provisioning Mechanisms
    3.2.  Handling Configuration Data Conflicts
    3.3.  Validating Discovered Resolvers
    3.4.  Multihoming Considerations
  4.  DHCPv6 Encrypted DNS Option
    4.1.  Option Format
    4.2.  DHCPv6 Client Behavior
  5.  DHCPv4 Encrypted DNS Option
    5.1.  Option Format
    5.2.  DHCPv4 Client Behavior
  6.  IPv6 RA Encrypted DNS Option
    6.1.  Option Format
    6.2.  IPv6 Host Behavior
  7.  Security Considerations
    7.1.  Spoofing Attacks
    7.2.  Deletion Attacks
    7.3.  Passive Attacks
    7.4.  Wireless Security - Authentication Attacks
  8.  Privacy Considerations
  9.  IANA Considerations
    9.1.  DHCPv6 Option
    9.2.  DHCPv4 Option
    9.3.  Neighbor Discovery Option
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  This document focuses on the discovery of encrypted DNS resolvers
  that are using protocols such as DNS over HTTPS (DoH) [RFC8484], DNS
  over TLS (DoT) [RFC7858], or DNS over QUIC (DoQ) [RFC9250] in local
  networks.

  In particular, this document specifies how a local encrypted DNS
  resolver can be discovered by connected hosts by means of DHCPv4
  [RFC2132], DHCPv6 [RFC8415], and IPv6 Router Advertisement (RA)
  options [RFC4861].  These options are designed to convey the
  following information: the DNS Authentication Domain Name (ADN), a
  list of IP addresses, and a set of service parameters.  This
  procedure is called Discovery of Network-designated Resolvers (DNR).

  The options defined in this document can be deployed in a variety of
  deployments (e.g., local networks with Customer Premises Equipment
  (CPEs) that may or may not be managed by an Internet Service Provider
  (ISP), or local networks with or without DNS forwarders).  Providing
  an inventory of such deployments is beyond the scope of this
  document.

  Resolver selection considerations are out of scope.  Likewise,
  policies (including any interactions with users) are out of scope.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This document makes use of the terms defined in [RFC8499].  The
  following additional terms are used:

  Authentication Domain Name (ADN):  Refers to a domain name that is
     used by a DNS client to authenticate a DNS resolver.

  ADN-only mode:  Refers to a DNS discovery mode where only the ADN of
     the DNS resolver is retrieved.  See Section 3.1.6.

  Do53:  Refers to unencrypted DNS.

  DNR:  Refers to the procedure called Discovery of Network-designated
     Resolvers.

  Encrypted DNS:  Refers to a scheme where DNS exchanges are
     transported over an encrypted channel.  Examples include DoT, DoH,
     and DoQ.

  Encrypted DNS resolver:  Refers to a DNS resolver that supports any
     encrypted DNS scheme.

  Encrypted DNS options:  Refers to the options defined in Sections 4,
     5, and 6.

  DHCP:  Refers to both DHCPv4 and DHCPv6.

3.  Overview

  This document describes how a DNS client can discover local encrypted
  DNS resolvers using DHCP (Sections 4 and 5) and Neighbor Discovery
  protocol (Section 6) Encrypted DNS options.

  These options configure an ADN, a list of IP addresses, and a set of
  service parameters of the encrypted DNS resolver.  More information
  about the design of these options is provided in the following
  subsections.

3.1.  Configuration Data for Encrypted DNS

3.1.1.  ADN as Reference Identifier for DNS Authentication

  In order to allow for a PKIX-based authentication of the encrypted
  DNS resolver to the DNS client, the Encrypted DNS options are
  designed to always include an ADN.  This ADN is presented as a
  reference identifier for DNS authentication purposes.  This design
  accommodates the current best practices for issuing certificates as
  per Section 1.7.2 of [RFC6125]:

     |  Some certification authorities issue server certificates based
     |  on IP addresses, but preliminary evidence indicates that such
     |  certificates are a very small percentage (less than 1%) of
     |  issued certificates.

3.1.2.  Avoiding Dependency on External Resolvers

  To avoid adding a dependency on another server to resolve the ADN,
  the Encrypted DNS options return the IP address(es) to locate an
  encrypted DNS resolver.  These encrypted DNS resolvers may be hosted
  on the same IP address or distinct IP addresses.  Such a decision is
  deployment specific.

  In order to optimize the size of discovery messages when all DNS
  resolvers terminate on the same IP address, early draft versions of
  this document considered relying upon the discovery mechanisms
  specified in [RFC2132], [RFC3646], and [RFC8106] to retrieve a list
  of IP addresses to reach their DNS resolvers.  Nevertheless, this
  approach requires a client that supports more than one encrypted DNS
  protocol (e.g., DoH and DoT) to probe that list of IP addresses.  To
  avoid such probing, the options defined in Sections 4, 5, and 6
  associate an encrypted DNS protocol with an IP address.  No probing
  is required in such a design.

3.1.3.  Single vs. Multiple IP Addresses

  A list of IP addresses to reach an encrypted DNS resolver may be
  returned in an Encrypted DNS option to accommodate current
  deployments relying upon primary and backup resolvers.  Also, DNR can
  be used in contexts where other DNS redundancy schemes (e.g., anycast
  as discussed in BCP 126 [RFC4786]) are used.

  Whether one or more IP addresses are returned in an Encrypted DNS
  option is deployment specific.  For example, a router embedding a
  recursive server or a forwarder has to include one single IP address
  pointing to one of its LAN-facing interfaces.  Typically, this IP
  address can be a private IPv4 address, a Link-Local address, an IPv6
  Unique Local Address (ULA), or a Global Unicast Address (GUA).

  If multiple IP addresses are to be returned in an Encrypted DNS
  option, these addresses are returned, ordered by preference, for use
  by the client.

3.1.4.  Why Not Separate Options for the ADN and IP Addresses?

  A single option is used to convey both the ADN and IP addresses.
  Otherwise, a means to correlate an IP address conveyed in an option
  with an ADN conveyed in another option will be required if, for
  example, more than one ADN is supported by the network.

3.1.5.  Service Parameters

  Because distinct encrypted DNS protocols (e.g., DoT, DoH, and DoQ)
  may be provisioned by a network and some of these protocols may make
  use of customized port numbers instead of default port numbers, the
  Encrypted DNS options are designed to return a set of service
  parameters.  These parameters are encoded following the same rules
  for encoding SvcParams using the wire format specified in Section 2.2
  of [RFC9460].  This encoding approach may increase the size of the
  options, but it has the merit of relying upon an existing IANA
  registry and, thus, accommodating new encrypted DNS protocols and
  service parameters that may be defined in the future.

  The following service parameters MUST be supported by a DNR
  implementation:

  alpn:  Used to indicate the set of supported protocols (Section 7.1
     of [RFC9460]).

  port:  Used to indicate the target port number for the encrypted DNS
     connection (Section 7.2 of [RFC9460]).

  In addition, the following service parameter is RECOMMENDED to be
  supported by a DNR implementation:

  dohpath:  Used to supply a relative DoH URI Template (Section 5.1 of
     [RFC9461]).

3.1.6.  ADN-Only Mode

  The provisioning mode in which an ADN, a list of IP addresses, and a
  set of service parameters of the encrypted DNS resolver are supplied
  to a host SHOULD be used because the Encrypted DNS options are self-
  contained and do not require any additional DNS queries.  The reader
  may refer to [RFC7969] for an overview of advanced capabilities that
  are supported by DHCP servers to populate configuration data (e.g.,
  issue DNS queries).

  In contexts where putting additional complexity on requesting hosts
  is acceptable, returning an ADN only can be considered.  The supplied
  ADN will be passed to a local resolution library (a DNS client,
  typically), which will then issue Service Binding (SVCB) queries
  [RFC9461].  These SVCB queries can be sent to the discovered
  encrypted DNS resolver itself or to the network-designated Do53
  resolver.  Note that this mode may be subject to active attacks,
  which can be mitigated by DNSSEC.

     |  How an ADN is passed to a local resolution library is
     |  implementation specific.

3.1.7.  Ordering of Encrypted DNS Options

  The DHCP options defined in Sections 4 and 5 follow the option
  ordering guidelines in Section 17 of [RFC7227].

  Likewise, the RA option (Section 6) adheres to the recommendations in
  Section 9 of [RFC4861].

3.1.8.  DNR Validation Checks

  On receipt of an Encrypted DNS option, the DHCP client (or IPv6 host)
  makes the following validation checks:

  *  The ADN is present and encoded as per Section 10 of [RFC8415].

  *  If additional data is supplied:

     -  The service parameters are encoded following the rules
        specified in Section 2.2 of [RFC9460].

     -  The option includes at least one valid IP address.

     -  The service parameters do not include "ipv4hint" or "ipv6hint"
        parameters.

  If any of the checks fail, the receiver discards the received
  Encrypted DNS option.

3.1.9.  DNR Information Using Other Provisioning Mechanisms

  The provisioning mechanisms specified in this document may not be
  available in specific networks (e.g., some cellular networks
  exclusively use Protocol Configuration Options (PCOs) [TS.24008]) or
  may not be suitable in some contexts (e.g., where secure discovery is
  needed).  Other mechanisms may be considered in these contexts for
  the provisioning of encrypted DNS resolvers.  It is RECOMMENDED that
  at least the following DNR information be made available to a
  requesting host:

  *  A service priority whenever the discovery mechanism does not rely
     on implicit ordering if multiple instances of the encrypted DNS
     are used.

  *  An ADN.  This parameter is mandatory.

  *  A list of IP addresses to locate the encrypted DNS resolver.

  *  A set of service parameters.

3.2.  Handling Configuration Data Conflicts

  If encrypted DNS resolvers are discovered by a host using both RA and
  DHCP, the rules discussed in Section 5.3.1 of [RFC8106] MUST be
  followed.

  DHCP/RA options to discover encrypted DNS resolvers (including DoH
  URI Templates) takes precedence over Discovery of Designated
  Resolvers (DDR) [RFC9462], since DDR uses Do53 to an external DNS
  resolver, which is susceptible to both internal and external attacks
  whereas DHCP/RA is typically protected using the mechanisms discussed
  in Section 7.1.

  If a client learns both Do53 and encrypted DNS resolvers from the
  same network, and absent explicit configuration otherwise, it is
  RECOMMENDED that the client use the encrypted DNS resolvers for that
  network.  If the client cannot establish an authenticated and
  encrypted connection with the encrypted DNS resolver, it may fall
  back to using the Do53 resolver.

3.3.  Validating Discovered Resolvers

  This section describes a set of validation checks to confirm that an
  encrypted DNS resolver matches what is provided using DNR (e.g., DHCP
  or RA).  Such validation checks do not intend to validate the
  security of the DNR provisioning mechanisms or the user's trust
  relationship to the network.

  If the local DNS client supports one of the discovered encrypted DNS
  protocols identified by Application-Layer Protocol Negotiation (ALPN)
  protocol identifiers (or another service parameter that indicates
  some other protocol disambiguation mechanism), the DNS client
  establishes an encrypted DNS session following the service priority
  of the discovered encrypted resolvers.

  The DNS client verifies the connection based on PKIX validation
  [RFC5280] of the DNS resolver certificate and uses the validation
  techniques as described in [RFC6125] to compare the ADN conveyed in
  the Encrypted DNS options to the certificate provided (see
  Section 8.1 of [RFC8310] for more details).  The DNS client uses the
  default system or application PKI trust anchors unless configured
  otherwise to use explicit trust anchors.  ALPN-related considerations
  can be found in Section 7.1 of [RFC9460].  Operational considerations
  related to checking the revocation status of the certificate of an
  encrypted DNS resolver are discussed in Section 10 of [RFC8484].

3.4.  Multihoming Considerations

  Devices may be connected to multiple networks, each providing their
  own DNS configuration using the discovery mechanisms specified in
  this document.  Nevertheless, discussing DNS selection of multi-
  interfaced devices is beyond the scope of this specification.  Such
  considerations fall under the generic issue of handling multiple
  provisioning sources and should not be processed in each option
  separately, as per the recommendation in Section 12 of [RFC7227].

  The reader may refer to [RFC6731] for a discussion of DNS selection
  issues and an example of DNS resolver selection for multi-interfaced
  devices.  Also, the reader may refer to [Local-DNS-Authority] for a
  discussion on how DNR and Provisioning Domain (PvD) key "dnsZones"
  (Section 4.3 of [RFC8801]) can be used in "split DNS" environments
  (Section 6 of [RFC8499]).

4.  DHCPv6 Encrypted DNS Option

4.1.  Option Format

  The format of the DHCPv6 Encrypted DNS option is shown in Figure 1.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       OPTION_V6_DNR           |         Option-length         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       Service Priority        |         ADN Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                   authentication-domain-name                  ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Addr Length           |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    ~                        ipv6-address(es)                       ~
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    ~                 Service Parameters (SvcParams)                ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 1: DHCPv6 Encrypted DNS Option

  The fields of the option shown in Figure 1 are as follows:

  Option-code:  OPTION_V6_DNR (144; see Section 9.1).

  Option-length:  Length of the enclosed data in octets.  The option
     length is ('ADN Length' + 4) when only an ADN is included in the
     option.

  Service Priority:  The priority of this OPTION_V6_DNR instance
     compared to other instances.  This 16-bit unsigned integer is
     interpreted following the rules specified in Section 2.4.1 of
     [RFC9460].

  ADN Length:  Length of the authentication-domain-name field in
     octets.

  authentication-domain-name (variable length):  A Fully Qualified
     Domain Name (FQDN) of the encrypted DNS resolver.  This field is
     formatted as specified in Section 10 of [RFC8415].

     An example of the authentication-domain-name encoding is shown in
     Figure 2.  This example conveys the FQDN "doh1.example.com.", and
     the resulting ADN Length field is 18.

      +------+------+------+------+------+------+------+------+------+
      | 0x04 |   d  |   o  |   h  |  1   | 0x07 |   e  |   x  |   a  |
      +------+------+------+------+------+------+------+------+------+
      |   m  |   p  |   l  |   e  | 0x03 |   c  |   o  |   m  | 0x00 |
      +------+------+------+------+------+------+------+------+------+

         Figure 2: An Example of the DNS authentication-domain-name
                                  Encoding

  Addr Length:  Length of enclosed IPv6 addresses in octets.  When
     present, it MUST be a multiple of 16.

  ipv6-address(es) (variable length):  Indicates one or more IPv6
     addresses to reach the encrypted DNS resolver.  An address can be
     a Link-Local address, a ULA, or a GUA.  The format of this field
     is shown in Figure 3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                         ipv6-address                          |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              ...                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 3: Format of the ipv6-address(es) Field

  Service Parameters (SvcParams) (variable length):  Specifies a set of
     service parameters that are encoded following the rules in
     Section 2.2 of [RFC9460].  Service parameters may include, for
     example, a list of ALPN protocol identifiers or alternate port
     numbers.  This field SHOULD include at least the "alpn" SvcParam.
     The "alpn" SvcParam may not be required in contexts such as a
     variant of DNS over the Constrained Application Protocol (CoAP)
     where messages are encrypted using Object Security for Constrained
     RESTful Environments (OSCORE) [RFC8613].  The service parameters
     MUST NOT include "ipv4hint" or "ipv6hint" SvcParams, as they are
     superseded by the included IP addresses.

     If no port service parameter is included, this indicates that
     default port numbers should be used.  As a reminder, the default
     port number is 853 for DoT, 443 for DoH, and 853 for DoQ.

     The length of this field is ('Option-length' - 6 - 'ADN Length' -
     'Addr Length').

  Note that the "Addr Length", "ipv6-address(es)", and "Service
  Parameters (SvcParams)" fields are not present if the ADN-only mode
  is used (Section 3.1.6).

4.2.  DHCPv6 Client Behavior

  To discover an encrypted DNS resolver, the DHCPv6 client MUST include
  OPTION_V6_DNR in an Option Request Option (ORO), per Sections 18.2.1,
  18.2.2, 18.2.4, 18.2.5, 18.2.6, and 21.7 of [RFC8415].

  The DHCPv6 client MUST be prepared to receive multiple instances of
  the OPTION_V6_DNR option; each option is to be treated as a separate
  encrypted DNS resolver.  These instances MUST be processed following
  their service priority (i.e., a smaller service priority value
  indicates a higher preference).

  The DHCPv6 client MUST silently discard any OPTION_V6_DNR that fails
  to pass the validation steps defined in Section 3.1.8.

  The DHCPv6 client MUST silently discard multicast and host loopback
  addresses conveyed in OPTION_V6_DNR.

5.  DHCPv4 Encrypted DNS Option

5.1.  Option Format

  The format of the DHCPv4 Encrypted DNS option is illustrated in
  Figure 4.

                0                   1
                0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               | OPTION_V4_DNR |     Length    |
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               ~      DNR Instance Data #1     ~
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ---
               .              ...              .    |
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ optional
               ~      DNR Instance Data #n     ~    |
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ---

                  Figure 4: DHCPv4 Encrypted DNS Option

  The fields of the option shown in Figure 4 are as follows:

  Code:  OPTION_V4_DNR (162; see Section 9.2).

  Length:  Indicates the length of the enclosed data in octets.

  DNR Instance Data:  Includes the configuration data of an encrypted
     DNS resolver.  The format of this field is shown in Figure 5.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |    DNR Instance Data Length   |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |       Service Priority        |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |   ADN Length  |               |
                     +-+-+-+-+-+-+-+-+               |
                     ~  authentication-domain-name   ~
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |  Addr Length  |               |
                     +-+-+-+-+-+-+-+-+               |
                     ~        IPv4 Address(es)       ~
                     |               +-+-+-+-+-+-+-+-+
                     |               |               |
                     +-+-+-+-+-+-+-+-+               |
                     ~Service Parameters (SvcParams) ~
                     |                               |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 5: DNR Instance Data Format

     When several encrypted DNS resolvers are to be included, the "DNR
     Instance Data" field is repeated.

  The fields shown in Figure 5 are as follows:

  DNR Instance Data Length:  Length of all following data in octets.
     This field is set to ('ADN Length' + 3) when only an ADN is
     provided for a DNR instance.

  Service Priority:  The priority of this instance compared to other
     DNR instances.  This 16-bit unsigned integer is interpreted
     following the rules specified in Section 2.4.1 of [RFC9460].

  ADN Length:  Length of the authentication-domain-name field in
     octets.

  authentication-domain-name (variable length):  The ADN of the
     encrypted DNS resolver.  This field is formatted as specified in
     Section 10 of [RFC8415].  An example is provided in Figure 2.

  Addr Length:  Length of included IPv4 addresses in octets.  When
     present, it MUST be a multiple of 4.

  IPv4 Address(es) (variable length):  Indicates one or more IPv4
     addresses to reach the encrypted DNS resolver.  Both private and
     public IPv4 addresses can be included in this field.  The format
     of this field is shown in Figure 6.  This format assumes that an
     IPv4 address is encoded as a1.a2.a3.a4.

                0     8     16    24    32    40    48
                +-----+-----+-----+-----+-----+-----+--
                |  a1 |  a2 |  a3 |  a4 |  a1 |  a2 | ...
                +-----+-----+-----+-----+-----+-----+--
                  IPv4 Address 1          IPv4 Address 2 ...

               Figure 6: Format of the IPv4 Address(es) Field

  Service Parameters (SvcParams) (variable length):  Specifies a set of
     service parameters that are encoded following the rules in
     Section 2.2 of [RFC9460].  Service parameters may include, for
     example, a list of ALPN protocol identifiers or alternate port
     numbers.  This field SHOULD include at least the "alpn" SvcParam.
     The "alpn" SvcParam may not be required in contexts such as a
     variant of DNS over CoAP where messages are encrypted using
     OSCORE.  The service parameters MUST NOT include "ipv4hint" or
     "ipv6hint" SvcParams, as they are superseded by the included IP
     addresses.

     If no port service parameter is included, this indicates that
     default port numbers should be used.

     The length of this field is ('DNR Instance Data Length' - 4 - 'ADN
     Length' - 'Addr Length').

  Note that the "Addr Length", "IPv4 Address(es)", and "Service
  Parameters (SvcParams)" fields are not present if the ADN-only mode
  is used (Section 3.1.6).

  OPTION_V4_DNR is a concatenation-requiring option.  As such, the
  mechanism specified in [RFC3396] MUST be used if OPTION_V4_DNR
  exceeds the maximum DHCPv4 option size of 255 octets.

5.2.  DHCPv4 Client Behavior

  To discover an encrypted DNS resolver, the DHCPv4 client requests the
  encrypted DNS resolver by including OPTION_V4_DNR in a Parameter
  Request List option [RFC2132].

  The DHCPv4 client MUST be prepared to receive multiple "DNR Instance
  Data" field entries in the OPTION_V4_DNR option; each instance is to
  be treated as a separate encrypted DNS resolver.  These instances
  MUST be processed following their service priority (i.e., a smaller
  service priority value indicates a higher preference).

  The DHCPv4 client MUST silently discard any OPTION_V4_DNR that fails
  to pass the validation steps defined in Section 3.1.8.

  The DHCPv4 client MUST silently discard multicast and host loopback
  addresses conveyed in OPTION_V4_DNR.

6.  IPv6 RA Encrypted DNS Option

6.1.  Option Format

  This section defines a new Neighbor Discovery option [RFC4861]: the
  IPv6 RA Encrypted DNS option.  This option is useful in contexts
  similar to those discussed in Section 1.1 of [RFC8106].

  The format of the IPv6 RA Encrypted DNS option is illustrated in
  Figure 7.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Length    |        Service Priority       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Lifetime                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          ADN Length           |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    ~                   authentication-domain-name                  ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Addr Length           |                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    ~                        ipv6-address(es)                       ~
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |     SvcParams Length          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                 Service Parameters (SvcParams)                ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 7: RA Encrypted DNS Option

  The fields of the option shown in Figure 7 are as follows:

  Type:  8-bit identifier of the Encrypted DNS option as assigned by
     IANA (144; see Section 9.3).

  Length:  8-bit unsigned integer.  The length of the option (including
     the Type and Length fields) is in units of 8 octets.

  Service Priority:  16-bit unsigned integer.  The priority of this
     Encrypted DNS option instance compared to other instances.  This
     field is interpreted following the rules specified in
     Section 2.4.1 of [RFC9460].

  Lifetime:  32-bit unsigned integer.  This represents the maximum time
     in seconds (relative to the time the packet is received) over
     which the discovered ADN is valid.

     The value of Lifetime SHOULD by default be at least 3 *
     MaxRtrAdvInterval, where MaxRtrAdvInterval is the maximum RA
     interval as defined in [RFC4861].

     A value of all one bits (0xffffffff) represents infinity.

     A value of zero means that this ADN MUST no longer be used.

  ADN Length:  16-bit unsigned integer.  This field indicates the
     length of the authentication-domain-name field in octets.

  authentication-domain-name (variable length):  The ADN of the
     encrypted DNS resolver.  This field is formatted as specified in
     Section 10 of [RFC8415].

  Addr Length:  16-bit unsigned integer.  This field indicates the
     length of enclosed IPv6 addresses in octets.  When present, it
     MUST be a multiple of 16.

  ipv6-address(es) (variable length):  One or more IPv6 addresses of
     the encrypted DNS resolver.  An address can be a Link-Local
     address, a ULA, or a GUA.

     All of the addresses share the same Lifetime value.  As also
     discussed in [RFC8106], if it is desirable to have different
     Lifetime values per IP address, multiple Encrypted DNS options may
     be used.

     The format of this field is shown in Figure 3.

  SvcParams Length:  16-bit unsigned integer.  This field indicates the
     length of the "Service Parameters (SvcParams)" field in octets.

  Service Parameters (SvcParams) (variable length):  Specifies a set of
     service parameters that are encoded following the rules in
     Section 2.2 of [RFC9460].  Service parameters may include, for
     example, a list of ALPN protocol identifiers or alternate port
     numbers.  This field SHOULD include at least the "alpn" SvcParam.
     The "alpn" SvcParam may not be required in contexts such as a
     variant of DNS over CoAP where messages are encrypted using
     OSCORE.  The service parameters MUST NOT include "ipv4hint" or
     "ipv6hint" SvcParams, as they are superseded by the included IP
     addresses.

     If no port service parameter is included, this indicates that
     default port numbers should be used.

  Note that the "Addr Length", "ipv6-address(es)", and "Service
  Parameters (SvcParams)" fields are not present if the ADN-only mode
  is used (Section 3.1.6).

  The option MUST be padded with zeros so that the full enclosed data
  is a multiple of 8 octets (Section 4.6 of [RFC4861]).

6.2.  IPv6 Host Behavior

  The procedure for DNS configuration is the same as it is with any
  other Neighbor Discovery option [RFC4861].  In addition, the host
  follows the same procedure as the procedure described in
  Section 5.3.1 of [RFC8106] for processing received Encrypted DNS
  options, with the formatting requirements listed in Section 6.1 and
  the validation checks listed in Section 3.1.8 substituted for length
  and field validations.

  The host MUST be prepared to receive multiple Encrypted DNS options
  in RAs.  These instances MUST be processed following their service
  priority (i.e., a smaller service priority value indicates a higher
  preference).

  The host MUST silently discard multicast and host loopback addresses
  conveyed in the Encrypted DNS options.

7.  Security Considerations

7.1.  Spoofing Attacks

  DHCP/RA messages are not encrypted or protected against modification
  within the LAN.  Unless spoofing attacks are mitigated as described
  below, the content of DHCP and RA messages can be spoofed or modified
  by active attackers, such as compromised devices within the local
  network.  An active attacker (Section 3.3 of [RFC3552]) can spoof the
  DHCP/RA response to provide the attacker's encrypted DNS resolver.
  Note that such an attacker can launch other attacks as discussed in
  Section 22 of [RFC8415].  The attacker can get a domain name with a
  domain-validated public certificate from a Certificate Authority (CA)
  and host an encrypted DNS resolver.

  Attacks of spoofed or modified DHCP responses and RA messages by
  attackers within the local network may be mitigated by making use of
  the following mechanisms:

  DHCPv6-Shield [RFC7610]:  The network access node (e.g., a border
     router, a CPE, an Access Point (AP)) discards DHCP response
     messages received from any local endpoint.

  RA-Guard [RFC7113]:  The network access node discards RA messages
     received from any local endpoint.

  Source Address Validation Improvement (SAVI) solution for DHCP
  [RFC7513]:  The network access node filters packets with forged
     source IP addresses.

  The above mechanisms would ensure that the endpoint receives the
  correct configuration information of the encrypted DNS resolvers
  selected by the DHCP server (or RA sender), but these mechanisms
  cannot provide any information about the DHCP server or the entity
  hosting the DHCP server (or RA sender).

  Encrypted DNS sessions with rogue resolvers that spoof the IP address
  of a DNS resolver will fail because the DNS client will fail to
  authenticate that rogue resolver based upon PKIX authentication
  [RFC6125], particularly the ADN in the Encrypted DNS option.  DNS
  clients that ignore authentication failures and accept spoofed
  certificates will be subject to attacks (e.g., attacks that redirect
  to malicious resolvers or intercept sensitive data).

7.2.  Deletion Attacks

  If the DHCP responses or RAs are dropped by the attacker, the client
  can fall back to using a preconfigured encrypted DNS resolver.
  However, the use of policies to select resolvers is beyond the scope
  of this document.

  Note that deletion attacks are not specific to DHCP/RA.

7.3.  Passive Attacks

  A passive attacker (Section 3.2 of [RFC3552]) can determine that a
  host is using DHCP/RA to discover an encrypted DNS resolver and can
  infer that the host is capable of using DoH/DoT/DoQ to encrypt DNS
  messages.  However, a passive attacker cannot spoof or modify DHCP/RA
  messages.

7.4.  Wireless Security - Authentication Attacks

  Wireless LANs (WLANs), frequently deployed in local networks (e.g.,
  home networks), are vulnerable to various attacks (e.g., [Evil-Twin],
  [Krack], [Dragonblood]).  Because of these attacks, only
  cryptographically authenticated communications are trusted on WLANs.
  This means that any information (e.g., regarding NTP servers, DNS
  resolvers, or domain search lists) provided by such networks via
  DHCP, DHCPv6, or RA is untrusted because DHCP and RA messages are not
  authenticated.

  If the pre-shared key (PSK) is the same for all clients that connect
  to the same WLAN (e.g., Wi-Fi Protected Access Pre-Shared Key (WPA-
  PSK)), the shared key will be available to all nodes, including
  attackers.  As such, it is possible to mount an active on-path
  attack.  On-path attacks are possible within local networks because
  this form of WLAN authentication lacks peer entity authentication.

  This leads to the need for provisioning unique credentials for
  different clients.  Endpoints can be provisioned with unique
  credentials (username and password, typically) provided by the local
  network administrator to mutually authenticate to the local WLAN AP
  (e.g., 802.1x Wireless User Authentication on OpenWrt [dot1x], EAP-
  pwd [RFC8146] ("EAP" stands for "Extensible Authentication
  Protocol")).  Not all endpoint devices (e.g., Internet of Things
  (IoT) devices) support 802.1x supplicants and need an alternate
  mechanism to connect to the local network.  To address this
  limitation, unique PSKs can be created for each such device and WPA-
  PSK is used (e.g., [IPSK]).

8.  Privacy Considerations

  Privacy considerations that are also specific to DNR provisioning
  mechanisms are discussed in Section 23 of [RFC8415] and in [RFC7824].
  Anonymity profiles for DHCP clients are discussed in [RFC7844].  The
  mechanisms defined in this document can be used to infer that a DHCP
  client or IPv6 host supports Encrypted DNS options, but these
  mechanisms do not explicitly reveal whether local DNS clients are
  able to consume these options or infer their encryption capabilities.
  Other than that, this document does not expose more privacy
  information compared to Do53 discovery options.

  As discussed in [RFC9076], the use of encrypted DNS does not reduce
  the data available in the DNS resolver.  For example, the reader may
  refer to Section 8 of [RFC8484] or Section 7 of [RFC9250] for a
  discussion on specific privacy considerations for encrypted DNS.

9.  IANA Considerations

9.1.  DHCPv6 Option

  IANA has assigned the following new DHCPv6 Option Code in the "Option
  Codes" registry maintained at [DHCPV6].

  +=======+===============+============+==================+===========+
  | Value | Description   | Client ORO | Singleton        | Reference |
  |       |               |            | Option           |           |
  +=======+===============+============+==================+===========+
  | 144   | OPTION_V6_DNR | Yes        | No               | RFC 9463  |
  +-------+---------------+------------+------------------+-----------+

                   Table 1: DHCPv6 Encrypted DNS Option

9.2.  DHCPv4 Option

  IANA has assigned the following new DHCP Option Code in the "BOOTP
  Vendor Extensions and DHCP Options" registry maintained at [BOOTP].

     +=====+===============+=============+============+===========+
     | Tag | Name          | Data Length | Meaning    | Reference |
     +=====+===============+=============+============+===========+
     | 162 | OPTION_V4_DNR | N           | Encrypted  | RFC 9463  |
     |     |               |             | DNS Server |           |
     +-----+---------------+-------------+------------+-----------+

                  Table 2: DHCPv4 Encrypted DNS Option

9.3.  Neighbor Discovery Option

  IANA has assigned the following new IPv6 Neighbor Discovery Option
  type in the "IPv6 Neighbor Discovery Option Formats" subregistry
  under the "Internet Control Message Protocol version 6 (ICMPv6)
  Parameters" registry maintained at [ND].

               +======+======================+===========+
               | Type | Description          | Reference |
               +======+======================+===========+
               | 144  | Encrypted DNS Option | RFC 9463  |
               +------+----------------------+-----------+

                  Table 3: Neighbor Discovery Encrypted
                                DNS Option

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2132]  Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
             Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
             <https://www.rfc-editor.org/info/rfc2132>.

  [RFC3396]  Lemon, T. and S. Cheshire, "Encoding Long Options in the
             Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
             DOI 10.17487/RFC3396, November 2002,
             <https://www.rfc-editor.org/info/rfc3396>.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             DOI 10.17487/RFC4861, September 2007,
             <https://www.rfc-editor.org/info/rfc4861>.

  [RFC8106]  Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
             "IPv6 Router Advertisement Options for DNS Configuration",
             RFC 8106, DOI 10.17487/RFC8106, March 2017,
             <https://www.rfc-editor.org/info/rfc8106>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8415]  Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
             Richardson, M., Jiang, S., Lemon, T., and T. Winters,
             "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
             RFC 8415, DOI 10.17487/RFC8415, November 2018,
             <https://www.rfc-editor.org/info/rfc8415>.

  [RFC9460]  Schwartz, B., Bishop, M., and E. Nygren, "Service Binding
             and Parameter Specification via the DNS (SVCB and HTTPS
             Resource Records)", RFC 9460, DOI 10.17487/RFC9460,
             November 2023, <https://www.rfc-editor.org/info/rfc9460>.

  [RFC9461]  Schwartz, B., "Service Binding Mapping for DNS Servers",
             RFC 9461, DOI 10.17487/RFC9461, November 2023,
             <https://www.rfc-editor.org/info/rfc9461>.

10.2.  Informative References

  [BOOTP]    IANA, "BOOTP Vendor Extensions and DHCP Options",
             <https://www.iana.org/assignments/bootp-dhcp-parameters/>.

  [DHCPV6]   IANA, "Option Codes",
             <https://www.iana.org/assignments/dhcpv6-parameters/>.

  [DNS-TLS-DHCPv6-Opt]
             Pusateri, T. and W. Toorop, "DHCPv6 Options for private
             DNS Discovery", Work in Progress, Internet-Draft, draft-
             pusateri-dhc-dns-driu-00, 2 July 2018,
             <https://datatracker.ietf.org/doc/html/draft-pusateri-dhc-
             dns-driu-00>.

  [dot1x]    OpenWrt, "Introduction to 802.1X", December 2021,
             <https://openwrt.org/docs/guide-user/network/wifi/
             wireless.security.8021x>.

  [Dragonblood]
             Vanhoef, M. and E. Ronen, "Dragonblood: Analyzing the
             Dragonfly Handshake of WPA3 and EAP-pwd", 2020 IEEE
             Symposium on Security and Privacy (SP), San Francisco, pp.
             517-533, DOI 10.1109/SP40000.2020.00031, May 2020,
             <https://ieeexplore.ieee.org/document/9152782>.

  [Evil-Twin]
             Wikipedia, "Evil twin (wireless networks)", November 2022,
             <https://en.wikipedia.org/wiki/
             Evil_twin_(wireless_networks)>.

  [IPSK]     Cisco, "8.5 Identity PSK Feature Deployment Guide",
             December 2021,
             <https://www.cisco.com/c/en/us/td/docs/wireless/
             controller/technotes/8-5/
             b_Identity_PSK_Feature_Deployment_Guide.html>.

  [Krack]    Vanhoef, M. and F. Piessens, "Key Reinstallation Attacks:
             Forcing Nonce Reuse in WPA2", CCS '17: Proceedings of the
             2017 ACM SIGSAC Conference on Computer and Communications
             Security, pp. 1313-1328, DOI 10.1145/3133956.3134027,
             October 2017,
             <https://dl.acm.org/doi/10.1145/3133956.3134027>.

  [Local-DNS-Authority]
             Reddy, T., Wing, D., Smith, K., and B. Schwartz,
             "Establishing Local DNS Authority in Validated Split-
             Horizon Environments", Work in Progress, Internet-Draft,
             draft-ietf-add-split-horizon-authority-04, 8 March 2023,
             <https://datatracker.ietf.org/doc/html/draft-ietf-add-
             split-horizon-authority-04>.

  [ND]       IANA, "IPv6 Neighbor Discovery Option Formats",
             <https://www.iana.org/assignments/icmpv6-parameters/>.

  [RFC3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
             Text on Security Considerations", BCP 72, RFC 3552,
             DOI 10.17487/RFC3552, July 2003,
             <https://www.rfc-editor.org/info/rfc3552>.

  [RFC3646]  Droms, R., Ed., "DNS Configuration options for Dynamic
             Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
             DOI 10.17487/RFC3646, December 2003,
             <https://www.rfc-editor.org/info/rfc3646>.

  [RFC4786]  Abley, J. and K. Lindqvist, "Operation of Anycast
             Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,
             December 2006, <https://www.rfc-editor.org/info/rfc4786>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
             Verification of Domain-Based Application Service Identity
             within Internet Public Key Infrastructure Using X.509
             (PKIX) Certificates in the Context of Transport Layer
             Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
             2011, <https://www.rfc-editor.org/info/rfc6125>.

  [RFC6731]  Savolainen, T., Kato, J., and T. Lemon, "Improved
             Recursive DNS Server Selection for Multi-Interfaced
             Nodes", RFC 6731, DOI 10.17487/RFC6731, December 2012,
             <https://www.rfc-editor.org/info/rfc6731>.

  [RFC7113]  Gont, F., "Implementation Advice for IPv6 Router
             Advertisement Guard (RA-Guard)", RFC 7113,
             DOI 10.17487/RFC7113, February 2014,
             <https://www.rfc-editor.org/info/rfc7113>.

  [RFC7227]  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
             S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
             BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
             <https://www.rfc-editor.org/info/rfc7227>.

  [RFC7513]  Bi, J., Wu, J., Yao, G., and F. Baker, "Source Address
             Validation Improvement (SAVI) Solution for DHCP",
             RFC 7513, DOI 10.17487/RFC7513, May 2015,
             <https://www.rfc-editor.org/info/rfc7513>.

  [RFC7610]  Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield:
             Protecting against Rogue DHCPv6 Servers", BCP 199,
             RFC 7610, DOI 10.17487/RFC7610, August 2015,
             <https://www.rfc-editor.org/info/rfc7610>.

  [RFC7824]  Krishnan, S., Mrugalski, T., and S. Jiang, "Privacy
             Considerations for DHCPv6", RFC 7824,
             DOI 10.17487/RFC7824, May 2016,
             <https://www.rfc-editor.org/info/rfc7824>.

  [RFC7844]  Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
             Profiles for DHCP Clients", RFC 7844,
             DOI 10.17487/RFC7844, May 2016,
             <https://www.rfc-editor.org/info/rfc7844>.

  [RFC7858]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
             and P. Hoffman, "Specification for DNS over Transport
             Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
             2016, <https://www.rfc-editor.org/info/rfc7858>.

  [RFC7969]  Lemon, T. and T. Mrugalski, "Customizing DHCP
             Configuration on the Basis of Network Topology", RFC 7969,
             DOI 10.17487/RFC7969, October 2016,
             <https://www.rfc-editor.org/info/rfc7969>.

  [RFC8146]  Harkins, D., "Adding Support for Salted Password Databases
             to EAP-pwd", RFC 8146, DOI 10.17487/RFC8146, April 2017,
             <https://www.rfc-editor.org/info/rfc8146>.

  [RFC8310]  Dickinson, S., Gillmor, D., and T. Reddy, "Usage Profiles
             for DNS over TLS and DNS over DTLS", RFC 8310,
             DOI 10.17487/RFC8310, March 2018,
             <https://www.rfc-editor.org/info/rfc8310>.

  [RFC8484]  Hoffman, P. and P. McManus, "DNS Queries over HTTPS
             (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
             <https://www.rfc-editor.org/info/rfc8484>.

  [RFC8499]  Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
             Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
             January 2019, <https://www.rfc-editor.org/info/rfc8499>.

  [RFC8613]  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
             "Object Security for Constrained RESTful Environments
             (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
             <https://www.rfc-editor.org/info/rfc8613>.

  [RFC8801]  Pfister, P., Vyncke, É., Pauly, T., Schinazi, D., and W.
             Shao, "Discovering Provisioning Domain Names and Data",
             RFC 8801, DOI 10.17487/RFC8801, July 2020,
             <https://www.rfc-editor.org/info/rfc8801>.

  [RFC9076]  Wicinski, T., Ed., "DNS Privacy Considerations", RFC 9076,
             DOI 10.17487/RFC9076, July 2021,
             <https://www.rfc-editor.org/info/rfc9076>.

  [RFC9250]  Huitema, C., Dickinson, S., and A. Mankin, "DNS over
             Dedicated QUIC Connections", RFC 9250,
             DOI 10.17487/RFC9250, May 2022,
             <https://www.rfc-editor.org/info/rfc9250>.

  [RFC9462]  Pauly, T., Kinnear, E., Wood, C. A., McManus, P., and T.
             Jensen, "Discovery of Designated Resolvers", RFC 9462,
             DOI 10.17487/RFC9462, November 2023,
             <https://www.rfc-editor.org/info/rfc9462>.

  [TS.24008] 3GPP, "Technical Specification Group Core Network and
             Terminals; Mobile radio interface Layer 3 specification;
             Core network protocols; Stage 3 (Release 18)", version
             18.4.0, September 2023,
             <https://www.3gpp.org/DynaReport/24008.htm>.

Acknowledgments

  Many thanks to Christian Jacquenet and Michael Richardson for their
  reviews.

  Thanks to Stephen Farrell, Martin Thomson, Vittorio Bertola, Stéphane
  Bortzmeyer, Ben Schwartz, Iain Sharp, and Chris Box for their
  comments.

  Thanks to Mark Nottingham for the feedback on HTTP redirection that
  was discussed in previous draft versions of this specification.

  The use of DHCP as a candidate protocol to retrieve an ADN was
  mentioned in Section 7.3.1 of [RFC8310] and in an Internet-Draft
  authored by Tom Pusateri and Willem Toorop [DNS-TLS-DHCPv6-Opt].

  Thanks to Bernie Volz for the review of the DHCP part.

  Christian Amsüss reported a case where the ALPN service parameter
  cannot be used.

  Thanks to Andrew Campling for the Shepherd review and Éric Vyncke for
  the AD review.

  Thanks to Rich Salz for the secdir reviews, Joe Clarke for the opsdir
  review, Robert Sparks for the artart review, and David Blacka for the
  dnsdir review.

  Thanks to Lars Eggert, Roman Danyliw, Erik Kline, Martin Duke, Robert
  Wilton, Paul Wouters, and Zaheduzzaman Sarker for the IESG review.

Contributors

  Nicolai Leymann
  Deutsche Telekom
  Germany
  Email: [email protected]


  Zhiwei Yan
  CNNIC
  No.4 South 4th Street, Zhongguancun
  Beijing
  100190
  China
  Email: [email protected]


Authors' Addresses

  Mohamed Boucadair (editor)
  Orange
  35000 Rennes
  France
  Email: [email protected]


  Tirumaleswar Reddy.K (editor)
  Nokia
  India
  Email: [email protected]


  Dan Wing
  Cloud Software Group Holdings, Inc.
  United States of America
  Email: [email protected]


  Neil Cook
  Open-Xchange
  United Kingdom
  Email: [email protected]


  Tommy Jensen
  Microsoft
  United States of America
  Email: [email protected]