Internet Engineering Task Force (IETF)                 F. Brockners, Ed.
Request for Comments: 9452                                         Cisco
Category: Standards Track                               S. Bhandari, Ed.
ISSN: 2070-1721                                              Thoughtspot
                                                            August 2023


Network Service Header (NSH) Encapsulation for In Situ OAM (IOAM) Data

Abstract

  In situ Operations, Administration, and Maintenance (IOAM) is used
  for recording and collecting operational and telemetry information
  while the packet traverses a path between two points in the network.
  This document outlines how IOAM-Data-Fields are encapsulated with the
  Network Service Header (NSH).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9452.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions
  3.  IOAM Encapsulation with NSH
  4.  IANA Considerations
  5.  Security Considerations
  6.  References
    6.1.  Normative References
    6.2.  Informative References
  Appendix A.  Discussion of the IOAM-Encapsulation Approach
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  IOAM, as defined in [RFC9197], is used to record and collect OAM
  information while the packet traverses a particular network domain.
  The term "in situ" refers to the fact that the OAM data is added to
  the data packets rather than what is being sent within packets
  specifically dedicated to OAM.  This document defines how IOAM-Data-
  Fields are transported as part of the Network Service Header (NSH)
  encapsulation [RFC8300] for the Service Function Chaining (SFC)
  Architecture [RFC7665].  The IOAM-Data-Fields are defined in
  [RFC9197].

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Abbreviations used in this document:

  IOAM:  In situ Operations, Administration, and Maintenance

  MD:  NSH Metadata, see [RFC7665]

  NSH:  Network Service Header

  OAM:  Operations, Administration, and Maintenance

  SFC:  Service Function Chaining

  TLV:  Type, Length, Value

3.  IOAM Encapsulation with NSH

  The NSH is defined in [RFC8300].  IOAM-Data-Fields are carried as NSH
  payload using a Next Protocol header that follows the NSH headers.
  An IOAM header containing the IOAM-Data-Fields is added.  The IOAM-
  Data-Fields MUST follow the definitions corresponding to IOAM Option-
  Types (e.g., see Section 4 of [RFC9197] and Section 3.2 of
  [RFC9326]).  In an administrative domain where IOAM is used,
  insertion of the IOAM header in NSH is enabled at the NSH tunnel
  endpoints, which are also configured to serve as encapsulating and
  decapsulating nodes for IOAM.  The operator MUST ensure that SFC-
  aware nodes along the Service Function Path support IOAM; otherwise,
  packets might be dropped (see the last paragraph of this section as
  well as Section 2.2 of [RFC8300]).  The IOAM transit nodes (e.g., a
  Service Function Forwarder (SFF)) MUST process all the IOAM headers
  that are relevant based on its configuration.  See [RFC9378] for a
  discussion of deployment-related aspects of IOAM-Data-Fields.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| NP = 0x06  |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  N
  |          Service Path Identifier              | Service Index |  S
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  H
  |                            ...                                |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |  IOAM-Type    | IOAM HDR Len  |    Reserved   | Next Protocol |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  I
  !                                                               |  O
  !                                                               |  A
  ~                 IOAM Option and Optional Data Space           ~  M
  |                                                               |  |
  |                                                               |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |                                                               |
  |                                                               |
  |                 Payload + Padding (L2/L3/...)                 |
  |                                                               |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 1

  The NSH header and fields are defined in [RFC8300].  The O bit MUST
  be handled following the rules in [RFC9451].  The "NSH Next Protocol"
  value (referred to as "NP" in the diagram above) is 0x06.

  The IOAM-related fields in NSH are defined as follows:

  IOAM-Type:
     8-bit field defining the IOAM Option-Type, as defined in the "IOAM
     Option-Type" registry specified in [RFC9197].

  IOAM HDR Len:
     8-bit field that contains the length of the IOAM header in
     multiples of 4-octets, including the "IOAM-Type" and "IOAM HDR
     Len" fields.

  Reserved bits:
     Reserved bits are present for future use.  The reserved bits MUST
     be set to 0x0 upon transmission and ignored upon receipt.

  Next Protocol:
     8-bit unsigned integer that determines the type of header
     following IOAM.  The semantics of this field are identical to the
     Next Protocol field in [RFC8300].

  IOAM Option and Optional Data Space:
     IOAM-Data-Fields as specified by the IOAM-Type field.  IOAM-Data-
     Fields are defined corresponding to the IOAM Option-Type (e.g.,
     see Section 4 of [RFC9197] and Section 3.2 of [RFC9326]) and are
     always aligned by 4 octets.  Thus, there is no padding field.

  Multiple IOAM Option-Types MAY be included within the NSH
  encapsulation.  For example, if an NSH encapsulation contains two
  IOAM Option-Types before a data payload, the Next Protocol field of
  the first IOAM option will contain the value 0x06, while the Next
  Protocol field of the second IOAM Option-Type will contain the "NSH
  Next Protocol" number indicating the type of the data payload.  The
  applicability of the IOAM Active and Loopback flags [RFC9322] is
  outside the scope of this document and may be specified in the
  future.

  In case the IOAM Incremental Trace Option-Type is used, an SFC-aware
  node that serves as an IOAM transit node needs to adjust the "IOAM
  HDR Len" field accordingly.  See Section 4.4 of [RFC9197].

  Per Section 2.2 of [RFC8300], packets with unsupported Next Protocol
  values SHOULD be silently dropped by default.  Thus, when a packet
  with IOAM is received at an NSH-based forwarding node (such as an
  SFF) that does not support the IOAM header, it SHOULD drop the
  packet.  The mechanisms to maintain and notify of such events are
  outside the scope of this document.

4.  IANA Considerations

  IANA has allocated the following code point for IOAM in the "NSH Next
  Protocol" registry (https://www.iana.org/assignments/nsh):

           +===============+=====================+===========+
           | Next Protocol | Description         | Reference |
           +===============+=====================+===========+
           | 0x06          | IOAM (Next Protocol | RFC 9452  |
           |               | is an IOAM header)  |           |
           +---------------+---------------------+-----------+

                                 Table 1

5.  Security Considerations

  IOAM is considered a "per domain" feature, where the operator decides
  how to leverage and configure IOAM according to the operator's needs.
  The operator needs to properly secure the IOAM domain to avoid
  malicious configuration and use, which could include injecting
  malicious IOAM packets into a domain.  For additional IOAM-related
  security considerations, see Section 9 of [RFC9197].  For additional
  OAM- and NSH-related security considerations, see Section 5 of
  [RFC9451].

6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

  [RFC9197]  Brockners, F., Ed., Bhandari, S., Ed., and T. Mizrahi,
             Ed., "Data Fields for In Situ Operations, Administration,
             and Maintenance (IOAM)", RFC 9197, DOI 10.17487/RFC9197,
             May 2022, <https://www.rfc-editor.org/info/rfc9197>.

  [RFC9451]  Boucadair, M., "Operations, Administration, and
             Maintenance (OAM) Packet and Behavior in the Network
             Service Header (NSH)", RFC 9451, DOI 10.17487/RFC9451,
             August 2023, <https://www.rfc-editor.org/info/rfc9451>.

6.2.  Informative References

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC9322]  Mizrahi, T., Brockners, F., Bhandari, S., Gafni, B., and
             M. Spiegel, "In Situ Operations, Administration, and
             Maintenance (IOAM) Loopback and Active Flags", RFC 9322,
             DOI 10.17487/RFC9322, November 2022,
             <https://www.rfc-editor.org/info/rfc9322>.

  [RFC9326]  Song, H., Gafni, B., Brockners, F., Bhandari, S., and T.
             Mizrahi, "In Situ Operations, Administration, and
             Maintenance (IOAM) Direct Exporting", RFC 9326,
             DOI 10.17487/RFC9326, November 2022,
             <https://www.rfc-editor.org/info/rfc9326>.

  [RFC9378]  Brockners, F., Ed., Bhandari, S., Ed., Bernier, D., and T.
             Mizrahi, Ed., "In Situ Operations, Administration, and
             Maintenance (IOAM) Deployment", RFC 9378,
             DOI 10.17487/RFC9378, April 2023,
             <https://www.rfc-editor.org/info/rfc9378>.

Appendix A.  Discussion of the IOAM-Encapsulation Approach

  This section lists several approaches considered for encapsulating
  IOAM with NSH and presents the rationale for the approach chosen in
  this document.

  An encapsulation of IOAM-Data-Fields in NSH should be friendly to an
  implementation in both hardware as well as software forwarders and
  support a wide range of deployment cases, including large networks
  that desire to leverage multiple IOAM-Data-Fields at the same time.

  *  Hardware- and software-friendly implementation:

     Hardware forwarders benefit from an encapsulation that minimizes
     iterative lookups of fields within the packet.  Any operation that
     looks up the value of a field within the packet, based on which
     another lookup is performed, consumes additional gates and time in
     an implementation, both of which should be kept to a minimum.
     This means that flat TLV structures are preferred over nested TLV
     structures.  IOAM-Data-Fields are grouped into several categories,
     including trace, proof-of-transit, and edge-to-edge.  Each of
     these options defines a TLV structure.  A hardware-friendly
     encapsulation approach avoids grouping these three option
     categories into yet another TLV structure and would instead carry
     the options as a serial sequence.

  *  Total length of the IOAM-Data-Fields:

     The total length of IOAM-Data-Fields can grow quite large if
     multiple different IOAM-Data-Fields are used and large path-
     lengths need to be considered.  For example, if an operator would
     consider using the IOAM Trace Option-Type and capture node-id,
     app_data, egress and ingress interface-id, timestamp seconds, and
     timestamp nanoseconds at every hop, then a total of 20 octets
     would be added to the packet at every hop.  In this case, the
     particular deployment has a maximum path length of 15 hops in the
     IOAM domain, and a maximum of 300 octets would be encapsulated in
     the packet.

  Different approaches for encapsulating IOAM-Data-Fields in NSH could
  be considered:

  1.  Encapsulation of IOAM-Data-Fields as "NSH MD Type 2" (see
      [RFC8300], Section 2.5).

      Each IOAM Option-Type (e.g., trace, proof-of-transit, and edge-
      to-edge) would be specified by a type, with the different IOAM-
      Data-Fields being TLVs within this the particular option type.
      NSH MD Type 2 offers support for variable length metadata.  The
      length field is 6 bits, resulting in a maximum of 256 (2^6 x 4)
      octets.

  2.  Encapsulation of IOAM-Data-Fields using the "Next Protocol"
      field.

      Each IOAM Option-Type (e.g., trace, proof-of-transit, and edge-
      to-edge) would be specified by its own "next protocol".

  3.  Encapsulation of IOAM-Data-Fields using the "Next Protocol"
      field.

      A single NSH protocol type code point would be allocated for
      IOAM.  A "sub-type" field would then specify what IOAM options
      type (trace, proof-of-transit, edge-to-edge) is carried.

  The third option has been chosen here.  This option avoids the
  additional layer of TLV-nesting that the use of NSH MD Type 2 would
  result in.  In addition, this option does not constrain IOAM data to
  a maximum of 256 octets, thus allowing support for very large
  deployments.

Acknowledgments

  The authors would like to thank Éric Vyncke, Nalini Elkins, Srihari
  Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
  Nadahalli, Stefano Previdi, Hemant Singh, Erik Nordmark, LJ Wobker,
  Andrew Yourtchenko, Greg Mirsky, and Mohamed Boucadair for their
  comments and advice.

Contributors

  The following people contributed significantly to the content of this
  document and should be considered coauthors:

  Vengada Prasad Govindan
  Cisco Systems, Inc.
  Email: [email protected]


  Carlos Pignataro
  Cisco Systems, Inc.
  7200-11 Kit Creek Road
  Research Triangle Park, NC 27709
  United States of America
  Email: [email protected]


  Hannes Gredler
  RtBrick Inc.
  Email: [email protected]


  John Leddy
  Email: [email protected]


  Stephen Youell
  JP Morgan Chase
  25 Bank Street
  London
  E14 5JP
  United Kingdom
  Email: [email protected]


  Tal Mizrahi
  Huawei Network.IO Innovation Lab
  Israel
  Email: [email protected]


  David Mozes
  Email: [email protected]


  Petr Lapukhov
  Facebook
  1 Hacker Way
  Menlo Park, CA 94025
  United States of America
  Email: [email protected]


  Remy Chang
  Barefoot Networks
  2185 Park Boulevard
  Palo Alto, CA 94306
  United States of America


Authors' Addresses

  Frank Brockners (editor)
  Cisco Systems, Inc.
  3rd Floor
  Hansaallee 249
  40549 Duesseldorf
  Germany
  Email: [email protected]


  Shwetha Bhandari (editor)
  Thoughtspot
  3rd Floor, Indiqube Orion
  24th Main Rd, Garden Layout, HSR Layout
  Bangalore 560 102
  Karnataka
  India
  Email: [email protected]