Internet Engineering Task Force (IETF)                        JC. Zúñiga
Request for Comments: 9441                                         Cisco
Updates: 8724, 9363                                             C. Gomez
Category: Standards Track                                     S. Aguilar
ISSN: 2070-1721                     Universitat Politècnica de Catalunya
                                                             L. Toutain
                                                         IMT-Atlantique
                                                            S. Céspedes
                                                   Concordia University
                                                             D. Wistuba
                                         NIC Labs, Universidad de Chile
                                                              July 2023


Static Context Header Compression (SCHC) Compound Acknowledgement (ACK)

Abstract

  This document updates the Static Context Header Compression (SCHC)
  and fragmentation protocol (RFC 8724) and the corresponding YANG
  module (RFC 9363).  It defines a SCHC Compound Acknowledgement (ACK)
  message format and procedure, which are intended to reduce the number
  of response transmissions (i.e., SCHC ACKs) in the ACK-on-Error Mode,
  by accumulating bitmaps of several windows in a single SCHC message
  (i.e., the SCHC Compound ACK).

  Both the message format and procedure are generic, so they can be
  used, for instance, by any of the four Low-Power Wide Area Network
  (LPWAN) technologies defined in RFC 8376, which are Sigfox, Long
  Range Wide Area Network (LoRaWAN), Narrowband Internet of Things (NB-
  IoT), and IEEE 802.15.4w.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9441.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  SCHC Compound ACK
    3.1.  SCHC Compound ACK Message Format
    3.2.  SCHC Compound ACK Behavior
      3.2.1.  ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)
  4.  SCHC Compound ACK Example
  5.  SCHC Compound ACK YANG Data Model
    5.1.  SCHC YANG Data Model Extension
    5.2.  SCHC YANG Tree Extension
  6.  SCHC Compound ACK Parameters
  7.  Security Considerations
  8.  IANA Considerations
    8.1.  URI Registration
    8.2.  YANG Module Name Registration
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Acknowledgements
  Authors' Addresses

1.  Introduction

  The Generic Framework for Static Context Header Compression (SCHC)
  and Fragmentation specification [RFC8724] describes two mechanisms:
  i) a protocol header compression scheme and ii) a frame fragmentation
  and loss recovery functionality.  Either can be used on top of radio
  technologies, such as the four Low-Power Wide Area Networks (LPWANs)
  listed in [RFC8376], which are Sigfox, LoRaWAN, NB-IoT, and IEEE
  802.15.4w.  These LPWANs have similar characteristics, such as star-
  oriented topologies, network architecture, and connected devices with
  built-in applications.

  SCHC offers a great level of flexibility to accommodate all these
  LPWAN technologies.  Even though there are a number of similarities
  between them, some differences exist with respect to the transmission
  characteristics, payload sizes, etc.  Hence, there are optimal
  parameters and modes of operation that can be used when SCHC is used
  on top of a specific LPWAN technology.

  In ACK-on-Error mode in [RFC8724], the SCHC Packet is fragmented into
  pieces called tiles, where all tiles are the same size except for the
  last one, which can be smaller.  Successive tiles are grouped in
  windows of fixed size.  A SCHC Fragment carries one or several
  contiguous tiles, which may span multiple windows.  When sending all
  tiles from all windows, the last tile is sent in an All-1 SCHC
  Fragment.  The SCHC receiver will send a SCHC ACK reporting on the
  reception of exactly one window of tiles after receiving the All-1
  SCHC Fragment.  In case of SCHC Fragment losses, a bitmap is added to
  the failure SCHC ACK, where each bit in the bitmap corresponds to a
  tile in the window.  If SCHC Fragment losses span multiple windows,
  the SCHC receiver will send one failure SCHC ACK per window with
  losses.

  This document updates the SCHC protocol for frame fragmentation and
  loss recovery.  It defines a SCHC Compound ACK format and procedure,
  which are intended to reduce the number of response transmissions
  (i.e., SCHC ACKs) in the ACK-on-Error mode of SCHC.  The SCHC
  Compound ACK extends the failure SCHC ACK message format so that it
  can contain several bitmaps, with each bitmap being identified by its
  corresponding window number.  The SCHC Compound ACK is backwards
  compatible with the SCHC ACK as defined in [RFC8724], and introduces
  flexibility, as the receiver has the capability to respond to the
  All-0 SCHC Fragment, providing more Downlink opportunities and
  therefore adjusting to the delay requirements of the application.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  It is assumed that the reader is familiar with the terms and
  mechanisms defined in [RFC8376] and [RFC8724].

3.  SCHC Compound ACK

  The SCHC Compound ACK is a failure SCHC ACK message that can contain
  several bitmaps, with each bitmap being identified by its
  corresponding window number.  In [RFC8724], the failure SCHC ACK
  message only contains one bitmap corresponding to one window.  The
  SCHC Compound ACK extends this format, allowing more windows to be
  acknowledged in a single ACK and reducing the total number of failure
  SCHC ACK messages, especially when fragment losses are present in
  intermediate windows.

  The SCHC Compound ACK MAY be used in fragmentation modes that use
  windows and that allow reporting the bitmaps of multiple windows at
  the same time; otherwise, the SCHC Compound ACK MUST NOT be used.

  The SCHC Compound ACK:

  *  provides feedback only for windows with fragment losses,

  *  has a variable size that depends on the number of windows with
     fragment losses being reported in the single SCHC Compound ACK,

  *  includes the window number (i.e., W) of each bitmap,

  *  might not cover all windows with fragment losses of a SCHC Packet,
     and

  *  is distinguishable from the SCHC Receiver-Abort.

3.1.  SCHC Compound ACK Message Format

  Figure 1 shows the success SCHC ACK format, i.e., when all fragments
  have been correctly received (C=1), as defined in [RFC8724].

                 |--- SCHC ACK Header ---|
                 |        |--T-|--M--| 1 |
                 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~
                 | RuleID |DTag|  W  |C=1| padding as needed
                 +--------+----+-----+---+~~~~~~~~~~~~~~~~~~

    Figure 1: SCHC Success ACK Message Format, as Defined in RFC 8724

  In case SCHC Fragment losses are found in any of the windows of the
  SCHC Packet, the SCHC Compound ACK MAY be used.  The SCHC Compound
  ACK message format is shown in Figures 2 and 3.

    |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
           |--T-|---M--|-1-|        |...|---M--|        |---M--|
    +------+----+------+---+--------+...+------+--------+------+~~~~~+
    |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |00..00| pad |
    +------+----+------+---+--------+...+------+--------+------+~~~~~+
                              next L2 Word boundary ->|<-- L2 Word ->|

     Figure 2: SCHC Compound ACK Message Format.  Losses are found in
              windows W = w1,...,wi, where w1 < w2 <...< wi.

  The SCHC Compound ACK groups the window number (W) with its
  corresponding bitmap.  Window numbers do not need to be contiguous.
  However, the window numbers and their corresponding bitmaps included
  in the SCHC Compound ACK message MUST be ordered from the lowest-
  numbered to the highest-numbered window.  Hence, if the bitmap of
  window number zero is present in the SCHC Compound ACK message, it
  MUST always be the first one in order and its window number MUST be
  placed in the SCHC ACK Header.

  If M or more padding bits would be needed after the last bitmap in
  the message to fill the last layer two (L2) Word, M bits at 0 MUST be
  appended after the last bitmap, and then padding is applied as needed
  (see Figure 2).  Since window number 0 (if present in the message) is
  placed as w1, the M bits set to zero can't be confused with window
  number 0; therefore, they signal the end of the SCHC Compound ACK
  message.

  Figure 3 shows the case when the required padding bits are strictly
  less than M bits.  In this case, the L2 Maximum Transmission Unit
  (MTU) does not leave room for any extra window value, let alone any
  bitmap, thereby signaling the end of the SCHC Compound ACK message.

    |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
           |--T-|---M--|-1-|        |...|---M--|        |---M--|
    +------+----+------+---+--------+...+------+--------+~~~+
    |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |pad|
    +------+----+------+---+--------+...+------+--------+~~~+
                                    next L2 Word boundary ->|

       Figure 3: SCHC Compound ACK Message Format with Less than M
     Padding Bits.  Losses are found in windows W = w1,...,wi, where
                            w1 < w2 <...< wi.

  The SCHC Compound ACK MUST NOT use the Compressed Bitmap format for
  intermediate windows/bitmaps (i.e., bitmaps that are not the last one
  of the SCHC Compound ACK message); therefore, intermediate bitmap
  fields MUST be of size WINDOW_SIZE.  Hence, the SCHC Compound ACK MAY
  use a Compressed Bitmap format only for the last bitmap in the
  message.  The optional usage of this Compressed Bitmap for the last
  bitmap MUST be specified by the technology-specific SCHC Profile.

  The case where the last bitmap is effectively compressed corresponds
  to Figure 3, with the last bitmap ending (by construction) on an L2
  Word boundary, therefore resulting in no padding at all.

  Figure 4 illustrates a bitmap compression example of a SCHC Compound
  ACK, where the bitmap of the last window (wi) indicates that the
  first tile has not been correctly received.  Because the compression
  algorithm resulted in effective compression, no padding is needed.

    |--- SCHC ACK Header --|- W=w1 -|...|-------- W=wi -------|
           |--T-|---M--|-1-|        |...|---M--|
    +------+----+------+---+--------+...+------+--------------+
    |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1 1 1 1 1 1 |
    +------+----+------+---+--------+...+------+--------------+
                           next L2 Word boundary ->|

                   SCHC Compound ACK with Uncompressed Bitmap

    |--- SCHC ACK Header --|- W=w1 -|...|-- W=wi --|
           |--T-|---M--|-1-|        |...|---M--|
    +------+----+------+---+--------+...+------+---+
    |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1|
    +------+----+------+---+--------+...+------+---+
                           next L2 Word boundary ->|

          Transmitted SCHC Compound ACK with Compressed Bitmap

    Figure 4: SCHC Compound ACK Message Format with Compressed Bitmap
    and No Padding Added.  Losses are found in windows W = w1,...,wi,
                         where w1 < w2 <...< wi.

  Figure 5 illustrates another bitmap compression example of a SCHC
  Compound ACK, where the bitmap of the last window (wi) indicates that
  the second and the fourth tiles have not been correctly received.  In
  this example, the compression algorithm does not result in effective
  compression of the last bitmap.  Besides, because more than M bits of
  padding would be needed to fill the last L2 Word, M bits at 0 are
  appended to the message before padding is applied.

   |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
          |--T-|---M--|-1-|      |...|---M--|
   +------+----+------+---+------+...+------+--------------+
   |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |
   +------+----+------+---+------+...+------+--------------+
                      next L2 Word boundary ->|

                   SCHC Compound ACK with Uncompressed Bitmap

   |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
          |--T-|---M--|-1-|      |...|---M--|              |---M--|
   +------+----+------+---+------+...+------+--------------+------+~~~+
   |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |00..00|pad|
   +------+----+------+---+------+...+------+--------------+------+~~~+
                      next L2 Word boundary ->|<------ L2 Word ------>|

                    Transmitted SCHC Compound ACK

    Figure 5: SCHC Compound ACK Message Format with Compressed Bitmap
     and Padding Added to Reach the L2 Boundary.  Losses are found in
              windows W = w1,...,wi, where w1 < w2 <...<wi.

  If a SCHC sender gets a SCHC Compound ACK with invalid window
  numbers, such as duplicate W values or W values not sent yet, it MUST
  discard the whole SCHC Compound ACK message.

     |  Note that SCHC Compound ACKs are distinguishable from the
     |  Receiver-Abort message in the same way that regular SCHC ACKs
     |  are distinguishable, since the Receiver-Abort pattern never
     |  occurs in a legitimate SCHC Compound ACK [RFC8724].

3.2.  SCHC Compound ACK Behavior

  The SCHC ACK-on-Error behavior is described in Section 8.4.3 of
  [RFC8724].  The present document slightly modifies this behavior.  In
  the baseline SCHC specification, a SCHC ACK reports only one bitmap
  for the reception of exactly one window of tiles.  The present SCHC
  Compound ACK specification extends the SCHC ACK message format so
  that it can contain several bitmaps, with each bitmap being
  identified by its corresponding window number.

  As presented in [RFC8724], the SCHC ACK format can be considered a
  special SCHC Compound ACK case in which it reports only the tiles of
  one window.  Therefore, the SCHC Compound ACK is backwards compatible
  with the SCHC ACK format presented in [RFC8724].  The receiver can
  assume that the sender does not support the SCHC Compound ACK if,
  although the SCHC Compound ACK sent by the receiver reports losses in
  more than one window, the sender does not resend any tiles from
  windows other than the first window reported in the SCHC Compound
  ACK.  In that case, the receiver can send SCHC Compound ACKs with
  only one window of tiles.

  Also, some flexibility is introduced with respect to [RFC8724] in
  that the receiver has the capability to respond (or not) to the All-0
  with a SCHC Compound ACK, depending on certain parameters, like
  network conditions, sender buffer/cache size, and supported
  application delay.  Note that even though the protocol allows for
  such flexibility, the actual decision criteria is not specified in
  this document.  The application MUST set expiration timer values
  according to when the feedback is expected to be received, e.g.,
  after the All-0 or after the All-1.

  Section 3.2.1 (and its subsections) replaces the complete
  Section 8.4.3 (and its subsections) of [RFC8724].

3.2.1.  ACK-on-Error Mode (Replaces Section 8.4.3, RFC 8724)

  The ACK-on-Error mode supports L2 technologies that have variable MTU
  and out-of-order delivery.  It requires an L2 that provides a
  feedback path from the reassembler to the fragmenter.  See Appendix F
  for a discussion on using ACK-on-Error mode on quasi-bidirectional
  links.

  In ACK-on-Error mode, windows are used.

  All tiles except the last one and the penultimate one MUST be of
  equal size, hereafter called "regular".  The size of the last tile
  MUST be smaller than or equal to the regular tile size.  Regarding
  the penultimate tile, a Profile MUST pick one of the following two
  options:

  *  The penultimate tile size MUST be the regular tile size, or

  *  the penultimate tile size MUST be either the regular tile size or
     the regular tile size minus one L2 Word.

  A SCHC Fragment message carries one or several contiguous tiles,
  which may span multiple windows.  A SCHC Compound ACK reports on the
  reception of one window of tiles or several windows of tiles, each
  one identified by its window number.

  See Figure 6 (see Figure 23 of RFC 8724 (https://www.rfc-
  editor.org/rfc/rfc8724.html#figure-23)) for an example.

          +---------------------------------------------...-----------+
          |                       SCHC Packet                         |
          +---------------------------------------------...-----------+

  Tile#   | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 |     | 0 | 4 |3|
  Window# |-------- 0 --------|-------- 1 --------|- 2  ... 27 -|- 28-|


  SCHC Fragment msg   |-----------|

       Figure 6: SCHC Packet Fragmented in Tiles, ACK-on-Error Mode
                         (Figure 23 in RFC 8724)

  The W field is wide enough that it unambiguously represents an
  absolute window number.  The fragment receiver sends SCHC Compound
  ACKs to the fragment sender about windows for which tiles are
  missing.  No SCHC Compound ACK is sent by the fragment receiver for
  windows that it knows have been fully received.

  The fragment sender retransmits SCHC Fragments for tiles that are
  reported missing.  It can advance to next windows even before it has
  ascertained that all tiles belonging to previous windows have been
  correctly received, and it can still later retransmit SCHC Fragments
  with tiles belonging to previous windows.  Therefore, the sender and
  the receiver may operate in a decoupled fashion.  The fragmented SCHC
  Packet transmission concludes when:

  *  integrity checking shows that the fragmented SCHC Packet has been
     correctly reassembled at the receive end, and this information has
     been conveyed back to the sender,

  *  too many retransmission attempts have been made, or

  *  the receiver determines that the transmission of this fragmented
     SCHC Packet has been inactive for too long.

  Each Profile MUST specify which RuleID value(s) corresponds to SCHC
  F/R messages operating in this mode.

  The W field MUST be present in the SCHC F/R messages.

  Each Profile, for each RuleID value, MUST define:

  *  the tile size (a tile does not need to be a duplicate of an L2
     Word, but it MUST be at least the size of an L2 Word),

  *  the value of M,

  *  the value of N,

  *  the value of WINDOW_SIZE, which MUST be strictly less than 2^N,

  *  the size and algorithm for the RCS field,

  *  the value of T,

  *  the value of MAX_ACK_REQUESTS,

  *  the expiration time of the Retransmission Timer,

  *  the expiration time of the Inactivity Timer,

  *  if the last tile is carried in a Regular SCHC Fragment or an All-1
     SCHC Fragment (see Section 3.2.1.1 (Section 8.4.3.1 in [RFC8724]),

  *  if the penultimate tile MAY be one L2 Word smaller than the
     regular tile size (in this case, the regular tile size MUST be at
     least twice the L2 Word size),

  *  usage or not of the SCHC Compound ACK message, and

  *  usage or not of the Compressed Bitmap format in the last window of
     the SCHC Compound ACK message.

  For each active pair of RuleID and DTag values, the sender MUST
  maintain:

  *  one Attempts counter and

  *  one Retransmission Timer.

  For each active pair of RuleID and DTag values, the receiver MUST
  maintain:

  *  one Attempts counter and

  *  one Inactivity Timer.

3.2.1.1.  Sender Behavior (Replaces Section 8.4.3.1, RFC 8724)

  At the beginning of the fragmentation of a new SCHC Packet:

  *  the fragment sender MUST select a RuleID and DTag value pair for
     this SCHC Packet.  A Rule MUST NOT be selected if the values of M
     and WINDOW_SIZE for that Rule are such that the SCHC Packet cannot
     be fragmented in (2^M) * WINDOW_SIZE tiles or less.

  *  the fragment sender MUST initialize the Attempts counter to 0 for
     that RuleID and DTag value pair.

  A Regular SCHC Fragment message carries in its payload one or more
  tiles.  If more than one tile is carried in one Regular SCHC
  Fragment:

  *  the selected tiles MUST be contiguous in the original SCHC Packet,
     and

  *  they MUST be placed in the SCHC Fragment Payload adjacent to one
     another, in the order they appear in the SCHC Packet, from the
     start of the SCHC Packet toward its end.

  Tiles that are not the last one MUST be sent in Regular SCHC
  Fragments as specified in Section 8.3.1.1.  The FCN field MUST
  contain the tile index of the first tile sent in that SCHC Fragment.

  In a Regular SCHC Fragment message, the sender MUST fill the W field
  with the window number of the first tile sent in that SCHC Fragment.

  A Profile MUST define if the last tile of a SCHC Packet is sent:

  *  in a Regular SCHC Fragment, alone or as part of a multi-tiles
     Payload,

  *  alone in an All-1 SCHC Fragment, or

  *  with either one of the above two methods.

  In an All-1 SCHC Fragment message, the sender MUST fill the W field
  with the window number of the last tile of the SCHC Packet.

  The fragment sender MUST send SCHC Fragments such that, all together,
  they contain all the tiles of the fragmented SCHC Packet.

  The fragment sender MUST send at least one All-1 SCHC Fragment.

  In doing the two items above, the sender MUST ascertain that the
  receiver will not receive the last tile through both a Regular SCHC
  Fragment and an All-1 SCHC Fragment.

  The fragment sender MUST listen for SCHC Compound ACK messages after
  having sent:

  *  an All-1 SCHC Fragment or

  *  a SCHC ACK REQ.

  A Profile MAY specify other times at which the fragment sender MUST
  listen for SCHC Compound ACK messages.  For example, this could be
  after sending a complete window of tiles.

  Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC
  ACK REQ:

  *  it MUST increment the Attempts counter, and

  *  it MUST reset the Retransmission Timer.

  On Retransmission Timer expiration:

  *  if the Attempts counter is strictly less than MAX_ACK_REQUESTS,
     the fragment sender MUST send either the All-1 SCHC Fragment or a
     SCHC ACK REQ with the W field corresponding to the last window,

  *  otherwise, the fragment sender MUST send a SCHC Sender-Abort, and
     it MAY exit with an error condition.

  All message receptions being discussed in the rest of this section
  are to be understood as "matching the RuleID and DTag pair being
  processed", even if not spelled out, for brevity.

  On receiving a SCHC Compound ACK:

  *  if one of the W fields in the SCHC Compound ACK corresponds to the
     last window of the SCHC Packet:

     -  if the C bit is set, the sender MAY exit successfully.

     -  otherwise:

        o  if the Profile mandates that the last tile be sent in an
           All-1 SCHC Fragment:

           +  if the SCHC Compound ACK shows no missing tile at the
              receiver, the sender:

              *  MUST send a SCHC Sender-Abort and

              *  MAY exit with an error condition.

           +  otherwise:

              *  the fragment sender MUST send SCHC Fragment messages
                 containing all the tiles of all the windows that are
                 reported missing in the SCHC Compound ACK.

              *  if the last of these SCHC Fragment messages is not an
                 All-1 SCHC Fragment, then the fragment sender MAY
                 either send, in addition, a SCHC ACK REQ with the W
                 field corresponding to the last window or repeat the
                 All-1 SCHC Fragment to ask the receiver to confirm
                 that all tiles have been correctly received.

              *  in doing the two items above, the sender MUST
                 ascertain that the receiver will not receive the last
                 tile through both a Regular SCHC Fragment and an All-1
                 SCHC Fragment.

        o  otherwise:

           +  if the SCHC Compound ACK shows no missing tile at the
              receiver, the sender MUST send the All-1 SCHC Fragment

           +  otherwise:

              *  the fragment sender MUST send SCHC Fragment messages
                 containing all the tiles that are reported missing in
                 the SCHC Compound ACK.

              *  the fragment sender MUST then send either the All-1
                 SCHC Fragment or a SCHC ACK REQ with the W field
                 corresponding to the last window.

  *  otherwise, the fragment sender:

     -  MUST send SCHC Fragment messages containing the tiles that are
        reported missing in the SCHC Compound ACK.

     -  then, it MAY send a SCHC ACK REQ with the W field corresponding
        to the last window.

  See Figure 43 (https://www.rfc-editor.org/rfc/rfc8724.html#figure-43)
  for one among several possible examples of a Finite State Machine
  implementing a sender behavior obeying this specification.

3.2.1.2.  Receiver Behavior (Replaces Section 8.4.3.2, RFC 8724)

  On receiving a SCHC Fragment with a RuleID and DTag pair not being
  processed at that time:

  *  the receiver SHOULD check that the DTag value has not recently
     been used for that RuleID value, thereby ensuring that the
     received SCHC Fragment is not a remnant of a prior fragmented SCHC
     Packet transmission.  The initial value of the Inactivity Timer is
     the RECOMMENDED lifetime for the DTag value at the receiver.  If
     the SCHC Fragment is determined to be such a remnant, the receiver
     MAY silently ignore it and discard it.

  *  the receiver MUST start a process to assemble a new SCHC Packet
     with that RuleID and DTag value pair.  The receiver MUST start an
     Inactivity Timer for that RuleID and DTag value pair.  It MUST
     initialize an Attempts counter to 0 for that RuleID and DTag value
     pair.  If the receiver is under-resourced to do this, it MUST
     respond to the sender with a SCHC Receiver-Abort.

  On reception of any SCHC F/R message for the RuleID and DTag pair
  being processed, the receiver MUST reset the Inactivity Timer
  pertaining to that RuleID and DTag pair.

  All message receptions being discussed in the rest of this section
  are to be understood as "matching the RuleID and DTag pair being
  processed", even if not spelled out, for brevity.

  On receiving a SCHC Fragment message, the receiver determines what
  tiles were received, based on the payload length and on the W and FCN
  fields of the SCHC Fragment.

  *  if the FCN is All-1 and if a Payload is present, the full SCHC
     Fragment Payload MUST be assembled including the padding bits.
     This is because the size of the last tile is not known by the
     receiver; therefore, padding bits are indistinguishable from the
     tile data bits, at this stage.  They will be removed by the SCHC
     C/D sublayer.  If the size of the SCHC Fragment Payload exceeds or
     equals the size of one regular tile plus the size of an L2 Word,
     this SHOULD raise an error flag.

  *  otherwise, tiles MUST be assembled based on the a priori known
     tile size.

     -  If allowed by the Profile, the end of the payload MAY contain
        the last tile, which may be shorter.  Padding bits are
        indistinguishable from the tile data bits, at this stage.

     -  The payload may contain the penultimate tile that, if allowed
        by the Profile, MAY be exactly one L2 Word shorter than the
        regular tile size.

     -  Otherwise, padding bits MUST be discarded.  This is possible
        because:

        o  the size of the tiles is known a priori,

        o  tiles are larger than an L2 Word, and

        o  padding bits are always strictly less than an L2 Word.

  On receiving a SCHC All-0 SCHC Fragment:

  *  if the receiver knows of any windows with missing tiles for the
     packet being reassembled (and depending on certain parameters,
     like network conditions, sender buffer/cache size, and supported
     application delay, among others), it MAY return a SCHC Compound
     ACK for the missing tiles, starting from the lowest-numbered
     window.

  On receiving a SCHC ACK REQ or an All-1 SCHC Fragment:

  *  if the receiver knows of any windows with missing tiles for the
     packet being reassembled, it MUST return a SCHC Compound ACK for
     the missing tiles, starting from the lowest-numbered window.

  *  otherwise:

     -  if it has received at least one tile, it MUST return a SCHC
        Compound ACK for the highest-numbered window it currently has
        tiles for,

     -  otherwise, it MUST return a SCHC Compound ACK for window number
        0.

  A Profile MAY specify other times and circumstances at which a
  receiver sends a SCHC Compound ACK and which window the SCHC Compound
  ACK reports about in these circumstances.

  Upon sending a SCHC Compound ACK, the receiver MUST increase the
  Attempts counter.

  After receiving an All-1 SCHC Fragment, a receiver MUST check the
  integrity of the reassembled SCHC Packet at least every time it
  prepares to send a SCHC Compound ACK for the last window.

  Upon receiving a SCHC Sender-Abort, the receiver MAY exit with an
  error condition.

  Upon expiration of the Inactivity Timer, the receiver MUST send a
  SCHC Receiver-Abort, and it MAY exit with an error condition.

  On the Attempts counter exceeding MAX_ACK_REQUESTS, the receiver MUST
  send a SCHC Receiver-Abort, and it MAY exit with an error condition.

  Reassembly of the SCHC Packet concludes when:

  *  a Sender-Abort has been received,

  *  the Inactivity Timer has expired,

  *  the Attempts counter has exceeded MAX_ACK_REQUESTS, or

  *  at least an All-1 SCHC Fragment has been received and integrity
     checking of the reassembled SCHC Packet is successful.

  See Figure 44 (https://www.rfc-editor.org/rfc/rfc8724.html#figure-44)
  for one among several possible examples of a Finite State Machine
  implementing a receiver behavior obeying this specification.  The
  example provided is meant to match the sender Finite State Machine of
  Figure 43 (https://www.rfc-editor.org/rfc/rfc8724.html#figure-43).

4.  SCHC Compound ACK Example

  Figure 7 shows an example transmission of a SCHC Packet in ACK-on-
  Error mode using the SCHC Compound ACK.  In the example, the SCHC
  Packet is fragmented in 14 tiles, with N=3, WINDOW_SIZE=7, M=2, and
  two lost SCHC fragments.  Only 1 SCHC Compound ACK is generated.

          Sender                Receiver
            |-----W=0, FCN=6 ----->|
            |-----W=0, FCN=5 ----->|
            |-----W=0, FCN=4 ----->|
            |-----W=0, FCN=3 ----->|
            |-----W=0, FCN=2 --X   |
            |-----W=0, FCN=1 ----->|
            |-----W=0, FCN=0 ----->| Bitmap: 1111011
        (no ACK)
            |-----W=1, FCN=6 ----->|
            |-----W=1, FCN=5 ----->|
            |-----W=1, FCN=4 ----->|
            |-----W=1, FCN=3 ----->|
            |-----W=1, FCN=2 ----->|
            |-----W=1, FCN=1 --X   |
            |-- W=1, FCN=7 + RCS ->| Integrity check: failure
            |<--- Compound ACK ----| [C=0, W=0 - Bitmap:1111011,
            |-----W=0, FCN=2 ----->|        W=1 - Bitmap:1111101]
            |-----W=1, FCN=1 ----->| Integrity check: success
            |<--- ACK, W=1, C=1 ---| C=1
          (End)

           Figure 7: SCHC Compound ACK Message Sequence Example

   |--- SCHC ACK Header --|- W=00 --|----- W=01 -----|
          |--T-|---M--|-1-|         |---M--|         |---M--|
   +------+----+------+---+---------+------+---------+------+-----+
   |RuleID|DTag| W=00 |C=0| 1111011 | W=01 | 1111101 |  00  | pad |
   +------+----+------+---+---------+------+---------+------+-----+
                           next L2 Word boundary ->|<-- L2 Word ->|

      Figure 8: SCHC Compound ACK Message Format Example: Losses are
                        Found in Windows 00 and 01

5.  SCHC Compound ACK YANG Data Model

  This document also extends the SCHC YANG data model defined in
  [RFC9363] by including a new leaf in the Ack-on-Error fragmentation
  mode to describe both the option to use the SCHC Compound ACK, as
  well as its bitmap format.

5.1.  SCHC YANG Data Model Extension

  <CODE BEGINS> file "[email protected]"
  module ietf-schc-compound-ack {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack";
    prefix schc-compound-ack;

    import ietf-schc {
      prefix schc;
    }

    organization
      "IETF IPv6 over Low Power Wide-Area Networks (lpwan)
       Working Group";
    contact
      "WG Web:   <https://datatracker.ietf.org/wg/lpwan/about/>
       WG List:  <mailto:[email protected]>
       Editor:   Laurent Toutain
         <mailto:[email protected]>
       Editor:   Juan Carlos Zuniga
         <mailto:[email protected]>
       Editor:   Sergio Aguilar
         <mailto:[email protected]>";
    description
      "Copyright (c) 2023 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.
       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Revised BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).
       This version of this YANG module is part of RFC 9363
       (https://www.rfc-editor.org/info/rfc9363); see the RFC itself
       for full legal notices.
       ***************************************************************
       Generic data model for the Static Context Header Compression
       Rule for SCHC, based on RFCs 8724 and 8824.  Including
       compression, no-compression, and fragmentation Rules.";

    revision 2023-07-26 {
      description
        "Initial version for RFC 9441.";
      reference
        "RFC 9441 Static Context Header Compression (SCHC) Compound
                  Acknowledgement (ACK)";
    }

    identity bitmap-format-base-type {
      description
        "Define how the bitmap is formed in ACK messages.";
    }

    identity bitmap-RFC8724 {
      base bitmap-format-base-type;
      description
        "Bitmap by default as defined in RFC 8724.";
      reference
        "RFC 8724 SCHC: Generic Framework for Static Context Header
                  Compression and Fragmentation";
    }

    identity bitmap-compound-ack {
      base bitmap-format-base-type;
      description
        "Compound ACK allows several bitmaps in an ACK message.";
    }

    typedef bitmap-format-type {
      type identityref {
        base bitmap-format-base-type;
      }
      description
        "Type of bitmap used in Rules.";
    }

    augment "/schc:schc/schc:rule/schc:nature/"
          + "schc:fragmentation/schc:mode/schc:ack-on-error" {
      leaf bitmap-format {
        when "derived-from-or-self(../schc:fragmentation-mode,
                          'schc:fragmentation-mode-ack-on-error')";
        type schc-compound-ack:bitmap-format-type;
        default "schc-compound-ack:bitmap-RFC8724";
        description
          "How the bitmaps are included in the SCHC ACK message.";
      }
      leaf last-bitmap-compression {
        when "derived-from-or-self(../schc:fragmentation-mode,
                          'schc:fragmentation-mode-ack-on-error')";
        type boolean;
        default "true";
        description
          "When true, the ultimate bitmap in the SCHC ACK message
           can be compressed.  Default behavior from RFC 8724.";
        reference
          "RFC 8724 SCHC: Generic Framework for Static Context Header
                    Compression and Fragmentation";
      }
      description
        "Augment the SCHC Rules to manage Compound ACK.";
    }
  }
  <CODE ENDS>

         Figure 9: SCHC YANG Data Model - Compound ACK Extension

5.2.  SCHC YANG Tree Extension

  module: ietf-schc-compound-ack
    augment /schc:schc/schc:rule/schc:nature/schc:fragmentation/
          schc:mode/schc:ack-on-error:
      +--rw bitmap-format?        schc-compound-ack:bitmap-format-type
      +--rw last-bitmap-compression?   boolean

             Figure 10: Tree Diagram - Compound ACK Extension

6.  SCHC Compound ACK Parameters

  This section lists the parameters related to the SCHC Compound ACK
  usage that need to be defined in the Profile.  This list MUST be
  appended to the list of SCHC parameters under "Decision to use SCHC
  fragmentation mechanism or not.  If yes, the document must describe:"
  as defined in Appendix D of [RFC8724].

  *  whether the SCHC Compound ACK message is used or not, and

  *  whether the compressed bitmap format in the last window of the
     SCHC Compound ACK message is used or not.

7.  Security Considerations

  This document specifies a message format extension for SCHC.  Hence,
  the same security considerations defined in [RFC8724] and [RFC9363]
  apply.

  The YANG module specified in this document defines a schema for data
  that is designed to be accessed via network management protocols such
  as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
  is the secure transport layer, and the mandatory-to-implement secure
  transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in this YANG module that are
  writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  These are the subtrees and data nodes
  and their sensitivity/vulnerability:

  /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/
  schc:ack-on-error:
     All the data nodes may be modified.  The Rule contains sensitive
     information, such as the SCHC F/R mode configuration and usage and
     SCHC Compound ACK configuration.  An attacker may try to modify
     other devices' Rules by changing the F/R mode or the usage of the
     SCHC Compound ACK and may block communication or create extra
     ACKs.  Therefore, a device must be allowed to modify only its own
     Rules on the remote SCHC instance.  The identity of the requester
     must be validated.  This can be done through certificates or
     access lists.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or
  notification) to these data nodes.  These are the subtrees and data
  nodes and their sensitivity/vulnerability:

  /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/
  schc:ack-on-error:
     By reading this module, an attacker may learn the F/R mode used by
     the device, how the device manages the bitmap creation, the buffer
     sizes, and when the device will request an ACK.

8.  IANA Considerations

  This document registers one URI and one YANG data model.

8.1.  URI Registration

  IANA registered the following URI in the "IETF XML Registry"
  [RFC3688]:

  URI:  urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack

  Registrant Contact:  The IESG.

  XML:  N/A; the requested URI is an XML namespace.

8.2.  YANG Module Name Registration

  IANA has registered the following YANG data model in the "YANG Module
  Names" registry [RFC6020].

  name:  ietf-schc-compound-ack

  namespace:  urn:ietf:params:xml:ns:yang:ietf-schc-compound-ack

  prefix:  schc-compound-ack

  reference:  RFC 9441

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
             Zuniga, "SCHC: Generic Framework for Static Context Header
             Compression and Fragmentation", RFC 8724,
             DOI 10.17487/RFC8724, April 2020,
             <https://www.rfc-editor.org/info/rfc8724>.

  [RFC9363]  Minaburo, A. and L. Toutain, "A YANG Data Model for Static
             Context Header Compression (SCHC)", RFC 9363,
             DOI 10.17487/RFC9363, March 2023,
             <https://www.rfc-editor.org/info/rfc9363>.

9.2.  Informative References

  [RFC8376]  Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
             Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
             <https://www.rfc-editor.org/info/rfc8376>.

Acknowledgements

  Carles Gomez has been funded in part by the Spanish Government
  through the TEC2016-79988-P grant and the PID2019-106808RA-I00 grant
  (funded by MCIN / AEI / 10.13039/501100011033) and by Secretaria
  d'Universitats i Recerca del Departament d'Empresa i Coneixement de
  la Generalitat de Catalunya through 2017 grant SGR 376 and 2021 grant
  SGR 00330.

  Sergio Aguilar has been funded by the ERDF and the Spanish Government
  through project TEC2016-79988-P and project PID2019-106808RA-I00,
  AEI/FEDER, EU (funded by MCIN / AEI / 10.13039/501100011033).

  Sandra Cespedes has been funded in part by the ANID Chile Project
  FONDECYT Regular 1201893 and Basal Project FB0008.

  Diego Wistuba has been funded by the ANID Chile Project FONDECYT
  Regular 1201893.

  The authors would like to thank Rafael Vidal, Julien Boite, Renaud
  Marty, Antonis Platis, Dominique Barthel, and Pascal Thubert for
  their very useful comments, reviews, and implementation design
  considerations.

Authors' Addresses

  Juan Carlos Zúñiga
  Cisco
  Montreal  QC
  Canada
  Email: [email protected]


  Carles Gomez
  Universitat Politècnica de Catalunya
  C/Esteve Terradas, 7
  08860 Castelldefels
  Spain
  Email: [email protected]


  Sergio Aguilar
  Universitat Politècnica de Catalunya
  C/Esteve Terradas, 7
  08860 Castelldefels
  Spain
  Email: [email protected]


  Laurent Toutain
  IMT-Atlantique
  2 rue de la Chataigneraie
  CS 17607
  35576 Cesson-Sevigne Cedex
  France
  Email: [email protected]


  Sandra Céspedes
  Concordia University
  1455 De Maisonneuve Blvd. W.
  Montreal QC, H3G 1M8
  Canada
  Email: [email protected]


  Diego Wistuba
  NIC Labs, Universidad de Chile
  Av. Almte. Blanco Encalada 1975
  Santiago
  Chile
  Email: [email protected]