Internet Engineering Task Force (IETF)                          E. Ramos
Request for Comments: 9391                                      Ericsson
Category: Standards Track                                    A. Minaburo
ISSN: 2070-1721                                                   Acklio
                                                             April 2023


 Static Context Header Compression over Narrowband Internet of Things

Abstract

  This document describes Static Context Header Compression and
  fragmentation (SCHC) specifications, RFCs 8724 and 8824, in
  combination with the 3rd Generation Partnership Project (3GPP) and
  the Narrowband Internet of Things (NB-IoT).

  This document has two parts: one normative part that specifies the
  use of SCHC over NB-IoT and one informational part that recommends
  some values if 3GPP wants to use SCHC inside their architectures.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9391.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions and Definitions
  3.  Terminology
  4.  NB-IoT Architecture
  5.  Data Transmission in the 3GPP Architecture
    5.1.  Normative Scenarios
      5.1.1.  SCHC over Non-IP Data Delivery (NIDD)
    5.2.  Informational Scenarios
      5.2.1.  Use of SCHC over the Radio Link
      5.2.2.  Use of SCHC over the Non-Access Stratum (NAS)
      5.2.3.  Parameters for Static Context Header Compression and
              Fragmentation (SCHC) for the Radio Link and DoNAS Use
              Cases
  6.  Padding
  7.  IANA Considerations
  8.  Security Considerations
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Appendix A.  NB-IoT User Plane Protocol Architecture
    A.1.  Packet Data Convergence Protocol (PDCP)
    A.2.  Radio Link Protocol (RLC)
    A.3.  Medium Access Control (MAC)
  Appendix B.  NB-IoT Data over NAS (DoNAS)
  Acknowledgements
  Authors' Addresses

1.  Introduction

  This document defines scenarios where Static Context Header
  Compression and fragmentation (SCHC) [RFC8724] [RFC8824] are suitable
  for 3rd Generation Partnership Project (3GPP) and Narrowband Internet
  of Things (NB-IoT) protocol stacks.

  In the 3GPP and the NB-IoT networks, header compression efficiently
  brings Internet connectivity to the Device UE (Dev-UE), the radio
  (RGW-eNB) and network (NGW-MME) gateways, and the Application Server.
  This document describes the SCHC parameters supporting SCHC over the
  NB-IoT architecture.

  This document assumes functionality for NB-IoT of 3GPP release 15
  [R15-3GPP].  Otherwise, the text explicitly mentions other versions'
  functionality.

  This document has two parts: normative end-to-end scenarios
  describing how any application must use SCHC over the 3GPP public
  service and informational scenarios about how 3GPP could use SCHC in
  their protocol stack network.

2.  Conventions and Definitions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Terminology

  This document will follow the terms defined in [RFC8724], [RFC8376],
  and [TR23720].

  Capillary Gateway:  Facilitates seamless integration because it has
     wide-area connectivity through cellular and provides wide-area
     access as a proxy to other devices using LAN technologies (BT, Wi-
     Fi, Zigbee, or others).

  Cellular IoT Evolved Packet System (CIoT EPS):  A functionality to
     improve the support of small data transfers.

  Device UE (Dev-UE):  As defined in [RFC8376], Section 3.

  Data over Non-Access Stratum (DoNAS):  Sending user data within
     signaling messages over the NAS functional layer.

  Evolved Packet Connectivity (EPC):  Core network of 3GPP LTE systems.

  Evolved Universal Terrestrial Radio Access Network (EUTRAN):  Radio
     access network of LTE-based systems.

  Hybrid Automatic Repeat reQuest (HARQ):  A combination of high-rate
     Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ)
     error control.

  Home Subscriber Server (HSS):  A database that contains users'
     subscription data, including data needed for mobility management.

  IP address:  IPv6 or IPv4 address used.

  InterWorking Service Capabilities Exposure Function (IWK-SCEF):  Used
     in roaming scenarios, is located in the Visited PLMN, and serves
     for interconnection with the Service Capabilities Exposure
     Function (SCEF) of the Home PLMN.

  Layer 2 (L2):  L2 in the 3GPP architectures includes MAC, RLC, and
     PDCP layers; see Appendix A.

  Logical Channel ID (LCID):  The logical channel instance of the
     corresponding MAC SDU.

  Medium Access Control (MAC) protocol:  Part of L2.

  Non-Access Stratum (NAS):  Functional layer for signaling messages
     that establishes communication sessions and maintains the
     communication while the user moves.

  Narrowband IoT (NB-IoT):  A 3GPP Low-Power WAN (LPWAN) technology
     based on the LTE architecture but with additional optimization for
     IoT and using a Narrowband spectrum frequency.

  Network Gateway - CIoT Serving Gateway Node (NGW-CSGN):  As defined
     in [RFC8376], Section 3.

  Network Gateway - Cellular Serving Gateway (NGW-CSGW):  Routes and
     forwards the user data packets through the access network.

  Network Gateway - Mobility Management Entity (NGW-MME):  An entity in
     charge of handling mobility of the Dev-UE.

  Network Gateway - Packet Data Network Gateway (NGW-PGW):  An
     interface between the internal and external network.

  Network Gateway - Service Capability Exposure Function (NGW-SCEF):  E
     PC node for exposure of 3GPP network service capabilities to third
     party applications.

  Non-IP Data Delivery (NIDD):  End-to-end communication between the UE
     and the Application Server.

  Packet Data Convergence Protocol (PDCP):  Part of L2.

  Public Land-based Mobile Network (PLMN):  A combination of wireless
     communication services offered by a specific operator.

  Protocol Data Unit (PDU):  A data packet including headers that are
     transmitted between entities through a protocol.

  Radio Link Protocol (RLC):  Part of L2.

  Radio Gateway - evolved Node B (RGW-eNB):  Base Station that controls
     the UE.

  Service Data Unit (SDU):  A data packet (PDU) from higher-layer
     protocols used by lower-layer protocols as a payload of their own
     PDUs.

4.  NB-IoT Architecture

  The NB-IoT architecture has a complex structure.  It relies on
  different Network Gateways (NGWs) from different providers.  It can
  send data via different paths, each with different characteristics in
  terms of bandwidth, acknowledgments, and L2 reliability and
  segmentation.

  Figure 1 shows this architecture, where the Network Gateway -
  Cellular IoT Serving Gateway Node (NGW-CSGN) optimizes co-locating
  entities in different paths.  For example, a Dev-UE using the path
  formed by the Network Gateway - Mobility Management Entity (NGW-MME),
  the NGW-CSGW, and the Network Gateway - Packet Data Network Gateway
  (NGW-PGW) may get a limited bandwidth transmission from a few bytes/s
  to one thousand bytes/s only.

  Another node introduced in the NB-IoT architecture is the Network
  Gateway - Service Capability Exposure Function (NGW-SCEF), which
  securely exposes service and network capabilities to entities
  external to the network operator.  The Open Mobile Alliance (OMA)
  [OMA0116] and the One Machine to Machine (OneM2M) [TR-0024] define
  the northbound APIs.  [TS23222] defines architecture for the common
  API framework for 3GPP northbound APIs.  [TS33122] defines security
  aspects for a common API framework for 3GPP northbound APIs.  In this
  case, the path is small for data transmission.  The main functions of
  the NGW-SCEF are path connectivity and device monitoring.

  +---+              +---------+    +------+
  |Dev| \            | +-----+ | ---| HSS  |
  |-UE|  \           | | NGW | |    +------+
  +---+  |           | |-MME |\__
          \          / +-----+ | \
  +---+    \+-----+ /|   |     | +------+
  |Dev| ----| RGW |- |   |     | | NGW- |
  |-UE|     |-eNB |  |   |     | | SCEF |---------+
  +---+    /+-----+ \|   |     | +------+         |
          /          \ +------+|                  |
         /           |\| NGW- || +-----+   +-----------+
  +---+ /            | | CSGW |--| NGW-|---|Application|
  |Dev|              | |      || | PGW |   |   Server  |
  |-UE|              | +------+| +-----+   +-----------+
  +---+              |         |
                     |NGW-CSGN |
                     +---------+

                   Figure 1: 3GPP Network Architecture

5.  Data Transmission in the 3GPP Architecture

  NB-IoT networks deal with end-to-end user data and in-band signaling
  between the nodes and functions to configure, control, and monitor
  the system functions and behaviors.  The signaling uses a different
  path with specific protocols, handling processes, and entities but
  can transport end-to-end user data for IoT services.  In contrast,
  the end-to-end application only transports end-to-end data.

  The recommended 3GPP MTU size is 1358 bytes.  The radio network
  protocols limit the packet sizes over the air, including radio
  protocol overhead, to 1600 bytes; see Section 5.2.3.  However, the
  recommended 3GPP MTU is smaller to avoid fragmentation in the network
  backbone due to the payload encryption size (multiple of 16) and the
  additional core transport overhead handling.

  3GPP standardizes NB-IoT and, in general, the interfaces and
  functions of cellular technologies.  Therefore, the introduction of
  SCHC entities to Dev-UE, RGW-eNB, and NGW-CSGN needs to be specified
  in the NB-IoT standard.

  This document identifies the use cases of SCHC over the NB-IoT
  architecture.

  The first use case is of the radio transmission (see Section 5.2.1)
  where the Dev-UE and the RGW-eNB can use the SCHC functionalities.

  The second is where the packets transmitted over the control path can
  also use SCHC when the transmission goes over the NGW-MME or NGW-SCEF
  (see Section 5.2.2).

  These two use cases are also valid for any 3GPP architecture and not
  only for NB-IoT.  And as the 3GPP internal network is involved, they
  have been put in the informational part of this section.

  And the third covers the SCHC over Non-IP Data Delivery (NIDD)
  connection or at least up to the operator network edge (see
  Section 5.1.1).  In this case, SCHC functionalities are available in
  the application layer of the Dev-UE and the Application Servers or a
  broker function at the edge of the operator network.  NGW-PGW or NGW-
  SCEF transmit the packets that are Non-IP traffic, using IP tunneling
  or API calls.  It is also possible to benefit legacy devices with
  SCHC by using the Non-IP transmission features of the operator
  network.

  A Non-IP transmission refers to an L2 transport that is different
  from NB-IoT.

5.1.  Normative Scenarios

  These scenarios do not modify the 3GPP architecture or any of its
  components.  They only use the architecture as an L2 transmission.

5.1.1.  SCHC over Non-IP Data Delivery (NIDD)

  This section specifies the use of SCHC over NIDD services of 3GPP.
  The NIDD services of 3GPP enable the transmission of SCHC packets
  compressed by the application layer.  The packets can be delivered
  between the NGW-PGW and the Application Server or between the NGW-
  SCEF and the Application Server, using IP-tunnels or API calls.  In
  both cases, as compression occurs before transmission, the network
  will not understand the packet, and the network does not have context
  information of this compression.  Therefore, the network will treat
  the packet as Non-IP traffic and deliver it to the other side without
  any other protocol stack element, directly over L2.

5.1.1.1.  SCHC Entities Placing over NIDD

  In the two scenarios using NIDD compression, SCHC entities are
  located almost on top of the stack.  The NB-IoT connectivity services
  implement SCHC in the Dev-UE, an in the Application Server.  The IP
  tunneling scenario requires that the Application Server send the
  compressed packet over an IP connection terminated by the 3GPP core
  network.  If the transmission uses the NGW-SCEF services, it is
  possible to utilize an API call to transfer the SCHC packets between
  the core network and the Application Server.  Also, an IP tunnel
  could be established by the Application Server if negotiated with the
  NGW-SCEF.

  +---------+       XXXXXXXXXXXXXXXXXXXXXXXX             +--------+
  | SCHC    |      XXX                    XXX            | SCHC   |
  |(Non-IP) +-----XX........................XX....+--*---+(Non-IP)|
  +---------+    XX                  +----+  XX   |  |   +--------+
  |         |    XX                  |SCEF+-------+  |   |        |
  |         |   XXX     3GPP RAN &   +----+  XXX     +---+  UDP   |
  |         |   XXX    CORE NETWORK          XXX     |   |        |
  |  L2     +---+XX                  +------------+  |   +--------+
  |         |     XX                 |IP TUNNELING+--+   |        |
  |         |      XXX               +------------+  +---+  IP    |
  +---------+       XXXX                 XXXX        |   +--------+
  | PHY     +------+ XXXXXXXXXXXXXXXXXXXXXXX         +---+  PHY   |
  +---------+                                            +--------+
    Dev-UE                                              Application
                                                           Server

    Figure 2: End-to-End Compression: SCHC Entities Placed when Using
                   Non-IP Delivery (NIDD) 3GPP Services

5.1.1.2.  Parameters for Static Context Header Compression and
         Fragmentation (SCHC)

  These scenarios MAY use the SCHC header compression capability to
  improve the transmission of IPv6 packets.

  *  SCHC Context Initialization

     The application layer handles the static context.  Consequently,
     the context distribution MUST be according to the application's
     capabilities, perhaps utilizing IP data transmissions up to
     context initialization.  Also, the static context delivery may use
     the same IP tunneling or NGW-SCEF services used later for the
     transport of SCHC packets.

  *  SCHC Rules

     For devices acting as a capillary gateway, several rules match the
     diversity of devices and protocols used by the devices associated
     with the gateway.  Meanwhile, simpler devices may have
     predetermined protocols and fixed parameters.

  *  RuleID

     This scenario can dynamically set the RuleID size before the
     context delivery, for example, by negotiating between the
     applications when choosing a profile according to the type of
     traffic and application deployed.  Transmission optimization may
     require only one Physical Layer transmission.  SCHC overhead
     SHOULD NOT exceed the available number of effective bits of the
     smallest physical Transport Block (TB) available to optimize the
     transmission.  The packets handled by 3GPP networks are byte-
     aligned.  Thus, to use the smallest TB, the maximum SCHC header
     size is 12 bits.  On the other hand, more complex NB-IoT devices
     (such as a capillary gateway) might require additional bits to
     handle the variety and multiple parameters of higher-layer
     protocols deployed.  The configuration may be part of the agreed
     operation profile and content distribution.  The RuleID field size
     may range from 2 bits, resulting in 4 rules, to an 8-bit value,
     yielding up to 256 rules for use by operators.  A 256-rule maximum
     limit seems to be quite reasonable, even for a device acting as a
     NAT.  An application may use a larger RuleID, but it should
     consider the byte alignment of the expected Compression Residue.
     In the minimum TB size case, 2 bits of RuleID leave only 6 bits
     available for Compression Residue.

  *  SCHC MAX_PACKET_SIZE

     In these scenarios, the maximum RECOMMENDED MTU size is 1358 bytes
     since the SCHC packets (and fragments) are traversing the whole
     3GPP network infrastructure (core and radio), not only the radio
     as in the IP transmissions case.

  *  Fragmentation

     Packets larger than 1358 bytes need the SCHC fragmentation
     function.  Since the 3GPP uses reliability functions, the No-ACK
     fragmentation mode MAY be enough in point-to-point connections.
     Nevertheless, additional considerations are described below for
     more complex cases.

  *  Fragmentation Modes

     A global service assigns a QoS to the packets, e.g., depending on
     the billing.  Packets with very low QoS may get lost before
     arriving in the 3GPP radio network transmission, e.g., in between
     the links of a capillary gateway or due to buffer overflow
     handling in a backhaul connection.  The use of SCHC fragmentation
     with the ACK-on-Error mode is RECOMMENDED to secure additional
     reliability on the packets transmitted with a small trade-off on
     further transmissions to signal the end-to-end arrival of the
     packets if no transport protocol takes care of retransmission.
     Also, the ACK-on-Error mode could be desirable to keep track of
     all the SCHC packets delivered.  In that case, the fragmentation
     function could be activated for all packets transmitted by the
     applications.  SCHC ACK-on-Error fragmentation MAY be activated in
     transmitting Non-IP packets on the NGW-MME.  A Non-IP packet will
     use SCHC reserved RuleID for non-compressing packets as [RFC8724]
     allows it.

  *  Fragmentation Parameters

     SCHC profile will have specific Rules for the fragmentation modes.
     The rule will identify which fragmentation mode is in use, and
     Section 5.2.3 defines the RuleID size.

  SCHC parametrization considers that NB-IoT aligns the bit and uses
  padding and the size of the Transfer Block.  SCHC will try to reduce
  padding to optimize the compression of the information.  The header
  size needs to be a multiple of 4.  The Tiles MAY keep a fixed value
  of 4 or 8 bits to avoid padding, except for when the transfer block
  equals 16 bits as the Tiles may be 2 bits.  The transfer block size
  has a wide range of values.  Two configurations are RECOMMENDED for
  the fragmentation parameters.

  *  For Transfer Blocks smaller than or equal to 304 bits using an
     8-bit Header_size configuration, with the size of the header
     fields as follows:

     -  RuleID from 1 - 3 bits

     -  DTag 1 bit

     -  FCN 3 bits

     -  W 1 bits

  *  For Transfer Blocks bigger than 304 bits using a 16-bit
     Header_size configuration, with the size of the header fields as
     follows:

     -  RulesID from 8 - 10 bits

     -  DTag 1 or 2 bits

     -  FCN 3 bits

     -  W 2 or 3 bits

  *  WINDOW_SIZE of (2^N)-1 is RECOMMENDED.

  *  Reassembly Check Sequence (RCS) will follow the default size
     defined in Section 8.2.3 of [RFC8724], with a length equal to the
     L2 Word.

  *  MAX_ACK_REQ is RECOMMENDED to be 2, but applications MAY change
     this value based on transmission conditions.

  The IoT devices communicate with small data transfers and use the
  Power Save Mode and the Idle Mode Discontinuous Reception (DRX),
  which govern how often the device wakes up, stays up, and is
  reachable.  The use of the different modes allows the battery to last
  ten years.  Table 10.5.163a in [TS24008] defines the radio timer
  values with units incrementing by N.  The units of N can be 1 hour or
  10 hours.  The range used for IoT is of N to 3N, where N increments
  by one.  The Inactivity Timer and the Retransmission Timer can be set
  based on these limits.

5.2.  Informational Scenarios

  These scenarios show how 3GPP could use SCHC for their transmissions.

5.2.1.  Use of SCHC over the Radio Link

  Deploying SCHC over the Radio Link only would require placing it as
  part of the protocol stack for data transfer between the Dev-UE and
  the RGW-eNB.  This stack is the functional layer responsible for
  transporting data over the wireless connection and managing radio
  resources.  There is support for features such as reliability,
  segmentation, and concatenation.  The transmissions use link
  adaptation, meaning that the system will optimize the transport
  format used according to the radio conditions, the number of bits to
  transmit, and the power and interference constraints.  That means
  that the number of bits transmitted over the air depends on the
  selected Modulation and Coding Schemes (MCSs).  Transport Block (TB)
  transmissions happen in the Physical Layer at network-synchronized
  intervals called Transmission Time Interval (TTI).  Each TB has a
  different MCS and number of bits available to transmit.  The MAC
  layer [TR36321] defines the characteristics of the TBs.  The Radio
  Link stack shown in Figure 3 comprises the Packet Data Convergence
  Protocol (PDCP) [TS36323], the Radio Link Protocol (RLC) [TS36322],
  the Medium Access Control protocol (MAC) [TR36321], and the Physical
  Layer [TS36201].  Appendix A gives more details about these
  protocols.

  +---------+                              +---------+  |
  |IP/Non-IP+------------------------------+IP/Non-IP+->+
  +---------+   |   +---------------+   |  +---------+  |
  | PDCP    +-------+ PDCP  | GTP|U +------+ GTP-U   |->+
  | (SCHC)  +       + (SCHC)|       +      +         |  |
  +---------+   |   +---------------+   |  +---------+  |
  | RLC     +-------+ RLC   |UDP/IP +------+ UDP/IP  +->+
  +---------+   |   +---------------+   |  +---------+  |
  | MAC     +-------+ MAC   | L2    +------+ L2      +->+
  +---------+   |   +---------------+   |  +---------+  |
  | PHY     +-------+ PHY   | PHY   +------+ PHY     +->+
  +---------+       +---------------+      +---------+  |
             C-Uu/                    S1-U             SGi
    Dev-UE               RGW-eNB             NGW-CSGN
            Radio Link

                    Figure 3: SCHC over the Radio Link

5.2.1.1.  Placing SCHC Entities over the Radio Link

  The 3GPP architecture supports Robust Header Compression (ROHC)
  [RFC5795] in the PDCP layer.  Therefore, the architecture can deploy
  SCHC header compression entities similarly without the need for
  significant changes in the 3GPP specifications.

  The RLC layer has three functional modes: Transparent Mode (TM),
  Unacknowledged Mode (UM), and Acknowledged Mode (AM).  The mode of
  operation controls the functionalities of the RLC layer.  TM only
  applies to signaling packets, while AM or UM carry signaling and data
  packets.

  The RLC layer takes care of fragmentation except for the TM.  In AM
  or UM, the SCHC fragmentation is unnecessary and SHOULD NOT be used.
  While sending IP packets, the Radio Link does not commonly use the
  RLC TM.  However, if other protocol overhead optimizations are
  targeted for NB-IoT traffic, SCHC fragmentation may be used for TM
  transmission in the future.

5.2.2.  Use of SCHC over the Non-Access Stratum (NAS)

  This section consists of IETF suggestions to the 3GPP.  The NGW-MME
  conveys mainly signaling between the Dev-UE and the cellular network
  [TR24301].  The network transports this traffic on top of the Radio
  Link.

  This kind of flow supports data transmissions to reduce the overhead
  when transmitting infrequent small quantities of data.  This
  transmission is known as Data over Non-Access Stratum (DoNAS) or
  Control Plane CIoT EPS optimizations.  In DoNAS, the Dev-UE uses the
  pre-established security, can piggyback small uplink data into the
  initial uplink message, and uses an additional message to receive a
  downlink small data response.

  The NGW-MME performs the data encryption from the network side in a
  DoNAS PDU.  Depending on the data type signaled indication (IP or
  Non-IP data), the network allocates an IP address or establishes a
  direct forwarding path.  DoNAS is regulated under rate control upon
  previous agreement, meaning that a maximum number of bits per unit of
  time is agreed upon per device subscription beforehand and configured
  in the device.

  The system will use DoNAS when a terminal in a power-saving state
  requires a short transmission and receives an acknowledgment or short
  feedback from the network.  Depending on the size of the buffered
  data to be transmitted, the Dev-UE might deploy the connected mode
  transmission instead.  The connected mode would limit and control the
  DoNAS transmissions to predefined thresholds, and it would be a good
  resource optimization balance for the terminal and the network.  The
  support for mobility of DoNAS is present but produces additional
  overhead.  Appendix B gives additional details of DoNAS.

5.2.2.1.  Placing SCHC Entities over DoNAS

  SCHC resides in this scenario's Non-Access Stratum (NAS) protocol
  layer.  The same principles as for Section 5.2.1 apply here as well.
  Because the NAS protocol already uses ROHC [RFC5795], it can also
  adapt SCHC for header compression.  The main difference compared to
  the Radio Link (Section 5.2.1) is the physical placing of the SCHC
  entities.  On the network side, the NGW-MME resides in the core
  network and is the terminating node for NAS instead of the RGW-eNB.

  +--------+                       +--------+--------+  +  +--------+
  | IP/    +--+-----------------+--+  IP/   |   IP/  +-----+   IP/  |
  | Non-IP |  |                 |  | Non-IP | Non-IP |  |  | Non-IP |
  +--------+  |                 |  +-----------------+  |  +--------+
  | NAS    +-----------------------+   NAS  |GTP-C/U +-----+GTP-C/U |
  |(SCHC)  |  |                 |  | (SCHC) |        |  |  |        |
  +--------+  |  +-----------+  |  +-----------------+  |  +--------+
  | RRC    +-----+RRC  |S1|AP+-----+ S1|AP  |        |  |  |        |
  +--------+  |  +-----------+  |  +--------+  UDP   +-----+  UDP   |
  | PDCP*  +-----+PDCP*|SCTP +-----+ SCTP   |        |  |  |        |
  +--------+  |  +-----------+  |  +-----------------+  |  +--------+
  | RLC    +-----+ RLC | IP  +-----+ IP     | IP     +-----+ IP     |
  +--------+  |  +-----------+  |  +-----------------+  |  +--------+
  | MAC    +-----+ MAC | L2  +-----+ L2     | L2     +-----+ L2     |
  +--------+  |  +-----------+  |  +-----------------+  |  +--------+
  | PHY    +--+--+ PHY | PHY +--+--+ PHY    | PHY    +-----+ PHY    |
  +--------+     +-----+-----+     +--------+--------+  |  +--------+
             C-Uu/             S1                   SGi
   Dev-UE           RGW-eNB               NGW-MME             NGW-PGW

      *PDCP is bypassed until AS security is activated TGPP36300.

    Figure 4: SCHC Entities Placement in the 3GPP CIOT Radio Protocol
                   Architecture for DoNAS Transmissions

5.2.3.  Parameters for Static Context Header Compression and
       Fragmentation (SCHC) for the Radio Link and DoNAS Use Cases

  If 3GPP incorporates SCHC, it is recommended that these scenarios use
  the SCHC header compression [RFC8724] capability to optimize the data
  transmission.

  *  SCHC Context Initialization

     The Radio Resource Control (RRC) protocol is the main tool used to
     configure the parameters of the Radio Link.  It will configure
     SCHC and the static context distribution as it has been made for
     ROHC operation [RFC5795] [TS36323].

  *  SCHC Rules

     The network operator defines the number of rules in these
     scenarios.  For this, the network operator must know the IP
     traffic the device will carry.  The operator might supply rules
     compatible with the device's use case.  For devices acting as a
     capillary gateway, several rules match the diversity of devices
     and protocols used by the devices associated with the gateway.
     Meanwhile, simpler devices may have predetermined protocols and
     fixed parameters.  The use of IPv6 and IPv4 may force the operator
     to develop more rules to deal with each case.

  *  RuleID

     There is a reasonable assumption of 9 bytes of radio protocol
     overhead for these transmission scenarios in NB-IoT, where PDCP
     uses 5 bytes due to header and integrity protection and where RLC
     and MAC use 4 bytes.  The minimum physical TBs that can withhold
     this overhead value, according to the 3GPP Release 15
     specification [R15-3GPP], are 88, 104, 120, and 144 bits.  As for
     Section 5.1.1.2, these scenarios must optimize the Physical Layer
     where the smallest TB is 12 bits.  These 12 bits must include the
     Compression Residue in addition to the RuleID.  On the other hand,
     more complex NB-IoT devices (such as a capillary gateway) might
     require additional bits to handle the variety and multiple
     parameters of higher-layer protocols deployed.  In that sense, the
     operator may want flexibility on the number and type of rules
     independently supported by each device; consequently, these
     scenarios require a configurable value.  The configuration may be
     part of the agreed operation profile with the content
     distribution.  The RuleID field size may range from 2 bits,
     resulting in 4 rules, to an 8-bit value, yielding up to 256 rules
     for use with the operators.  A 256-rule maximum limit seems to be
     quite reasonable, even for a device acting as a NAT.  An
     application may use a larger RuleID, but it should consider the
     byte alignment of the expected Compression Residue.  In the
     minimum TB size case, 2 bits of RuleID leave only 6 bits available
     for Compression Residue.

  *  SCHC MAX_PACKET_SIZE

     The Radio Link can handle the fragmentation of SCHC packets if
     needed, including reliability.  Hence, the packet size is limited
     by the MTU that is handled by the radio protocols, which
     corresponds to 1600 bytes for the 3GPP Release 15.

  *  Fragmentation

     For the Radio Link (Section 5.2.1) and DoNAS (Section 5.2.2)
     scenarios, the SCHC fragmentation functions are disabled.  The RLC
     layer of NB-IoT can segment packets into suitable units that fit
     the selected TB for transmissions of the Physical Layer.  The
     block selection is made according to the link adaptation input
     function in the MAC layer and the quantity of data in the buffer.
     The link adaptation layer may produce different results at each
     TTI, resulting in varying physical TBs that depend on the network
     load, interference, number of bits transmitted, and QoS.  Even if
     setting a value that allows the construction of data units
     following the SCHC tiles principle, the protocol overhead may be
     greater or equal to allowing the Radio Link protocols to take care
     of the fragmentation intrinsically.

  *  Fragmentation in RLC TM

     The RLC TM mostly applies to control signaling transmissions.
     When RLC operates in TM, the MAC layer mechanisms ensure
     reliability and generate overhead.  This additional reliability
     implies sending repetitions or automatic retransmissions.

     The ACK-Always fragmentation mode of SCHC may reduce this overhead
     in future operations when data transmissions may use this mode.
     The ACK-Always mode may transmit compressed data with fewer
     possible transmissions by using fixed or limited TBs compatible
     with the tiling SCHC fragmentation handling.  For SCHC
     fragmentation parameters, see Section 5.1.1.2.

6.  Padding

  NB-IoT and 3GPP wireless access, in general, assumes a byte-aligned
  payload.  Therefore, the L2 Word for NB-IoT MUST be considered 8
  bits, and the padding treatment should use this value accordingly.

7.  IANA Considerations

  This document has no IANA actions.

8.  Security Considerations

  This document does not add any security considerations and follows
  [RFC8724] and the 3GPP access security document specified in
  [TS33122].

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
             Zuniga, "SCHC: Generic Framework for Static Context Header
             Compression and Fragmentation", RFC 8724,
             DOI 10.17487/RFC8724, April 2020,
             <https://www.rfc-editor.org/info/rfc8724>.

  [RFC8824]  Minaburo, A., Toutain, L., and R. Andreasen, "Static
             Context Header Compression (SCHC) for the Constrained
             Application Protocol (CoAP)", RFC 8824,
             DOI 10.17487/RFC8824, June 2021,
             <https://www.rfc-editor.org/info/rfc8824>.

9.2.  Informative References

  [OMA0116]  Open Mobile Alliance, "Common definitions for RESTful
             Network APIs", Version 1.0, January 2018,
             <https://www.openmobilealliance.org/release/
             REST_NetAPI_Common/V1_0-20180116-A/OMA-TS-
             REST_NetAPI_Common-V1_0-20180116-A.pdf>.

  [R15-3GPP] 3GPP, "Release 15", April 2019, <https://www.3gpp.org/
             specifications-technologies/releases/release-15>.

  [RFC5795]  Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
             Header Compression (ROHC) Framework", RFC 5795,
             DOI 10.17487/RFC5795, March 2010,
             <https://www.rfc-editor.org/info/rfc5795>.

  [RFC8376]  Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
             Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
             <https://www.rfc-editor.org/info/rfc8376>.

  [TR-0024]  OneM2M, "3GPP_Interworking", TR-0024-V4.3.0, March 2020,
             <https://ftp.onem2m.org/work%20programme/WI-0037/TR-0024-
             3GPP_Interworking-V4_3_0.DOCX>.

  [TR23720]  3GPP, "Study on architecture enhancements for Cellular
             Internet of Things", 3GPP TR 23.720 V13.0.0, March 2016,
             <https://www.3gpp.org/ftp/Specs/
             archive/23_series/23.720/23720-d00.zip>.

  [TR24301]  3GPP, "Non-Access-Stratum (NAS) protocol for Evolved
             Packet System (EPS); Stage 3", 3GPP TS 24.301 V15.8.0,
             December 2019, <https://www.3gpp.org/ftp//Specs/
             archive/24_series/24.301/24301-f80.zip>.

  [TR36321]  3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Medium Access Control (MAC) protocol
             specification", 3GPP TS 36.321 V13.2.0, June 2016,
             <https://www.3gpp.org/ftp/Specs/
             archive/36_series/36.321/36321-d20.zip>.

  [TS23222]  3GPP, "Functional architecture and information flows to
             support Common API Framework for 3GPP Northbound APIs;
             Stage 2", 3GPP TS 23.222 V15.6.0, September 2022,
             <https://www.3gpp.org/ftp/Specs/
             archive/23_series/23.222/23222-f60.zip>.

  [TS24008]  3GPP, "Mobile radio interface Layer 3 specification; Core
             network protocols; Stage 3", 3GPP TS 24.008 V15.5.0,
             December 2018, <https://www.3gpp.org/ftp//Specs/
             archive/24_series/24.008/24008-f50.zip>.

  [TS33122]  3GPP, "Security aspects of Common API Framework (CAPIF)
             for 3GPP northbound APIs", 3GPP TS 33.122 V15.3.0, March
             2019, <https://www.3gpp.org/ftp//Specs/
             archive/33_series/33.122/33122-f30.zip>.

  [TS36201]  3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); LTE physical layer; General description", 3GPP
             TS 36.201 V15.1.0, June 2018,
             <https://www.3gpp.org/ftp/Specs/
             archive/36_series/36.201/36201-f10.zip>.

  [TS36322]  3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Radio Link Control (RLC) protocol
             specification", 3GPP TS 36.322 V15.0.1, April 2018,
             <https://www.3gpp.org/ftp/Specs/
             archive/36_series/36.322/36322-f01.zip>.

  [TS36323]  3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Packet Data Convergence Protocol (PDCP)
             specification", 3GPP TS 36.323 V13.2.0, June 2016,
             <https://www.3gpp.org/ftp/Specs/
             archive/36_series/36.323/36323-d20.zip>.

  [TS36331]  3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Radio Resource Control (RRC); Protocol
             specification", 3GPP TS 36.331 V15.5.1, April 2019,
             <https://www.3gpp.org/ftp//Specs/
             archive/36_series/36.331/36331-f51.zip>.

Appendix A.  NB-IoT User Plane Protocol Architecture

A.1.  Packet Data Convergence Protocol (PDCP)

  Each of the Radio Bearers (RBs) is associated with one PDCP entity
  [TS36323].  Moreover, a PDCP entity is associated with one or two RLC
  entities, depending on the unidirectional or bidirectional
  characteristics of the RB and RLC mode used.  A PDCP entity is
  associated with either a control plane or a user plane with
  independent configuration and functions.  The maximum supported size
  for NB-IoT of a PDCP SDU is 1600 octets.  The primary services and
  functions of the PDCP sublayer for NB-IoT for the user plane include:

  *  Header compression and decompression using ROHC [RFC5795]

  *  Transfer of user and control data to higher and lower layers

  *  Duplicate detection of lower-layer SDUs when re-establishing
     connection (when RLC with Acknowledge Mode is in use for User
     Plane only)

  *  Ciphering and deciphering

  *  Timer-based SDU discard in uplink

A.2.  Radio Link Protocol (RLC)

  RLC [TS36322] is an L2 protocol that operates between the User
  Equipment (UE) and the base station (eNB).  It supports the packet
  delivery from higher layers to MAC, creating packets transmitted over
  the air, optimizing the TB utilization.  RLC flow of data packets is
  unidirectional, and it is composed of a transmitter located in the
  transmission device and a receiver located in the destination device.
  Therefore, to configure bidirectional flows, two sets of entities,
  one in each direction (downlink and uplink), must be configured and
  effectively peered to each other.  The peering allows the
  transmission of control packets (e.g., status reports) between
  entities.  RLC can be configured for a data transfer in one of the
  following modes:

  *  Transparent Mode (TM)

     RLC does not segment or concatenate SDUs from higher layers in
     this mode and does not include any header with the payload.  RLC
     receives SDUs from upper layers when acting as a transmitter and
     transmits directly to its flow RLC receiver via lower layers.
     Similarly, upon reception, a TM RLC receiver would not process the
     packets and only deliver them to higher layers.

  *  Unacknowledged Mode (UM)

     This mode provides support for segmentation and concatenation of
     payload.  The RLC packet's size depends on the indication given at
     a particular transmission opportunity by the lower layer (MAC) and
     is octet-aligned.  The packet delivery to the receiver does not
     include reliability support, and the loss of a segment from a
     packet means a complete packet loss.  Also, in lower-layer
     retransmissions, there is no support for re-segmentation in case
     the radio conditions change and trigger the selection of a smaller
     TB.  Additionally, it provides PDU duplication detection and
     discards, out-of-sequence reordering, and loss detection.

  *  Acknowledged Mode (AM)

     In addition to the same functions supported by UM, this mode also
     adds a moving windows-based reliability service on top of the
     lower-layer services.  It also supports re-segmentation, and it
     requires bidirectional communication to exchange acknowledgment
     reports, called RLC Status Reports, and to trigger
     retransmissions.  This model also supports protocol-error
     detection.  The mode used depends on the operator configuration
     for the type of data to be transmitted.  For example, data
     transmissions supporting mobility or requiring high reliability
     would be most likely configured using AM.  Meanwhile, streaming
     and real-time data would be mapped to a UM configuration.

A.3.  Medium Access Control (MAC)

  MAC [TR36321] provides a mapping between the higher layers
  abstraction called Logical Channels (which are comprised by the
  previously described protocols) and the Physical Layer channels
  (transport channels).  Additionally, MAC may multiplex packets from
  different Logical Channels and prioritize which ones to fit into one
  TB if there is data and space available to maximize data transmission
  efficiency.  MAC also provides error correction and reliability
  support through Hybrid Automatic Repeat reQuest (HARQ), transport
  format selection, and scheduling information reported from the
  terminal to the network.  MAC also adds the necessary padding and
  piggyback control elements, when possible, as well as the higher
  layers data.

                                              <Max. 1600 bytes>
                      +---+         +---+          +------+
  Application         |AP1|         |AP1|          |  AP2 |
  (IP/Non-IP)         |PDU|         |PDU|          |  PDU |
                      +---+         +---+          +------+
                      |   |         |  |           |      |
  PDCP           +--------+    +--------      +-----------+
                 |PDCP|AP1|    |PDCP|AP1|     |PDCP|  AP2 |
                 |Head|PDU|    |Head|PDU|     |Head|  PDU |
                 +--------+    +--------+     +--------+--\
                 |    |   |    |     |  |     |    |   |\  `--------\
           +---------------------------+      |    |(1)| `-------\(2)\
  RLC      |RLC |PDCP|AP1|RLC |PDCP|AP1| +-------------+    +----|---+
           |Head|Head|PDU|Head|Head|PDU| |RLC |PDCP|AP2|    |RLC |AP2|
           +-------------|-------------+ |Head|Head|PDU|    |Head|PDU|
           |         |   |         |   | +---------|---+    +--------+
           |         |   | LCID1   |   | /         /   /   /         /
          /         /   /        _/  _//        _/  _/    / LCID2   /
          |        |   |        |   | /       _/  _/     /      ___/
          |        |   |        |   ||       |   |      /      /
      +------------------------------------------+ +-----------+---+
  MAC |MAC|RLC|PDCP|AP1|RLC|PDCP|AP1|RLC|PDCP|AP2| |MAC|RLC|AP2|Pad|
      |Hea|Hea|Hea |PDU|Hea|Hea |PDU|Hea|Hea |PDU| |Hea|Hea|PDU|din|
      |der|der|der |   |der|der |   |der|der |   | |der|der|   |g  |
      +------------------------------------------+ +-----------+---+
                        TB1                               TB2

  (1) Segment One
  (2) Segment Two

       Figure 5: Example of User Plane Packet Encapsulation for Two
                             Transport Blocks

Appendix B.  NB-IoT Data over NAS (DoNAS)

  The Access Stratum (AS) protocol stack used by DoNAS is specific
  because the radio network still needs to establish the security
  associations and reduce the protocol overhead so that the PDCP is
  bypassed until the AS security is activated.  By default, RLC uses
  the AM.  However, depending on the network's features and the
  terminal, RLC may change to other modes by the network operator.  For
  example, the TM does not add any header nor process the payload to
  reduce the overhead, but the MTU would be limited by the TB used to
  transmit the data, which is a couple of thousand bits maximum.  If UM
  (only terminals compatible with 3GPP Release 15 [R15-3GPP]) is used,
  the RLC mechanisms of reliability are disabled, and only the
  reliability provided by the MAC layer by HARQ is available.  In this
  case, the protocol overhead might be smaller than the AM case because
  of the lack of status reporting, but the overhead would have the same
  support for segmentation up to 1600 bytes.  NAS packets are
  encapsulated within an RRC [TS36331] message.

  Depending on the data type indication signaled (IP or Non-IP data),
  the network allocates an IP address or establishes a direct
  forwarding path.  DoNAS is regulated under rate control upon previous
  agreement, meaning that a maximum number of bits per unit of time is
  agreed upon per device subscription beforehand and configured in the
  device.  The use of DoNAS is typically expected when a terminal in a
  power-saving state requires a short transmission and is receiving an
  acknowledgment or short feedback from the network.  Depending on the
  size of buffered data to be transmitted, the UE might be instructed
  to deploy the connected mode transmissions instead, limiting and
  controlling the DoNAS transmissions to predefined thresholds and a
  good resource optimization balance for the terminal and the network.
  The support for mobility of DoNAS is present but produces additional
  overhead.

     +--------+   +--------+   +--------+
     |        |   |        |   |        |       +-----------------+
     |   UE   |   |  C-BS  |   |  C-SGN |       |Roaming Scenarios|
     +----|---+   +--------+   +--------+       |  +--------+     |
          |            |            |           |  |        |     |
      +----------------|------------|+          |  |  P-GW  |     |
      |        Attach                |          |  +--------+     |
      +------------------------------+          |       |         |
          |            |            |           |       |         |
   +------|------------|--------+   |           |       |         |
   |RRC connection establishment|   |           |       |         |
   |with NAS PDU transmission   |   |           |       |         |
   |& Ack Rsp                   |   |           |       |         |
   +----------------------------+   |           |       |         |
          |            |            |           |       |         |
          |            |Initial UE  |           |       |         |
          |            |message     |           |       |         |
          |            |----------->|           |       |         |
          |            |            |           |       |         |
          |            | +---------------------+|       |         |
          |            | |Checks Integrity     ||       |         |
          |            | |protection, decrypts ||       |         |
          |            | |data                 ||       |         |
          |            | +---------------------+|       |         |
          |            |            |       Small data packet     |
          |            |            |------------------------------->
          |            |            |       Small data packet     |
          |            |            |<-------------------------------
          |            | +----------|---------+ |       |         |
          |            | Integrity protection,| |       |         |
          |            | encrypts data        | |       |         |
          |            | +--------------------+ |       |         |
          |            |            |           |       |         |
          |            |Downlink NAS|           |       |         |
          |            |message     |           |       |         |
          |            |<-----------|           |       |         |
  +-----------------------+         |           |       |         |
  |Small data delivery,   |         |           |       |         |
  |RRC connection release |         |           |       |         |
  +-----------------------+         |           |       |         |
                                                |                 |
                                                |                 |
                                                +-----------------+

  Figure 6: DoNAS Transmission Sequence from an Uplink Initiated Access

                     +---+ +---+ +---+                  +----+
   Application       |AP1| |AP1| |AP2|                  |AP2 |
  (IP/Non-IP)        |PDU| |PDU| |PDU|  ............... |PDU |
                     +---+ +---+ +---+                  +----+
                     |   | |   | |   |                  |    |
                     |   | |   | |   |                  |    |
                     |   | |   | |   |                  |    |
                     |   | |   | |   |                  |    |
                     |   |/   /  |    \                 |    |
  NAS /RRC      +--------+---|---+----+            +---------+
                |NAS/|AP1|AP1|AP2|NAS/|            |NAS/|AP2 |
                |RRC |PDU|PDU|PDU|RRC |            |RRC |PDU |
                +--------+-|-+---+----+            +---------|
                |          |         |            |         |
                |          |\         |            |         |
                |<--Max. 1600 bytes-->|__          |_        |
                |          |  \__        \___        \_       \
                |          |     \           \         \__     \
                |          |      \          |           |      \_
           +---------------|+-----|----------+            \       \
  RLC      |RLC | NAS/RRC  ||RLC  | NAS/RRC  |       +----|-------+
           |Head|  PDU(1/2)||Head | PDU (2/2)|       |RLC |NAS/RRC|
           +---------------++----------------+       |Head|PDU    |
           |    |          | \               |       +------------+
           |    |    LCID1 |  \              |       |           /
           |    |          |   \              \      |           |
           |    |          |    \              \     |           |
           |    |          |     \              \     \          |
      +----+----+----------++-----|----+---------++----+---------|---+
  MAC |MAC |RLC |    RLC   ||MAC  |RLC |  RLC    ||MAC |  RLC    |Pad|
      |Head|Head|  PAYLOAD ||Head |Head| PAYLOAD ||Head|  PDU    |   |
      +----+----+----------++-----+----+---------++----+---------+---+
               TB1                   TB2                     TB3

      Figure 7: Example of User Plane Packet Encapsulation for Data
                                 over NAS

Acknowledgements

  The authors would like to thank (in alphabetic order): Carles Gomez,
  Antti Ratilainen, Pascal Thubert, Tuomas Tirronen, and Éric Vyncke.

Authors' Addresses

  Edgar Ramos
  Ericsson
  Hirsalantie 11
  FI-02420 Jorvas, Kirkkonummi
  Finland
  Email: [email protected]


  Ana Minaburo
  Acklio
  1137A Avenue des Champs Blancs
  35510 Cesson-Sevigne Cedex
  France
  Email: [email protected]