Internet Research Task Force (IRTF)                              W. Ladd
Request for Comments: 9382                                        Akamai
Category: Informational                                   September 2023
ISSN: 2070-1721


            SPAKE2, a Password-Authenticated Key Exchange

Abstract

  This document describes SPAKE2, which is a protocol for two parties
  that share a password to derive a strong shared key without
  disclosing the password.  This method is compatible with any group,
  is computationally efficient, and has a security proof.  This
  document predated the Crypto Forum Research Group (CFRG) password-
  authenticated key exchange (PAKE) competition, and it was not
  selected; however, given existing use of variants in Kerberos and
  other applications, it was felt that publication was beneficial.
  Applications that need a symmetric PAKE, but are unable to hash onto
  an elliptic curve at execution time, can use SPAKE2.  This document
  is a product of the Crypto Forum Research Group in the Internet
  Research Task Force (IRTF).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Research Task Force
  (IRTF).  The IRTF publishes the results of Internet-related research
  and development activities.  These results might not be suitable for
  deployment.  This RFC represents the individual opinion(s) of one or
  more members of the Crypto Forum Research Group of the Internet
  Research Task Force (IRTF).  Documents approved for publication by
  the IRSG are not candidates for any level of Internet Standard; see
  Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9382.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
  2.  Requirements Notation
  3.  Definition of SPAKE2
    3.1.  Protocol Flow
    3.2.  Setup
    3.3.  SPAKE2
  4.  Key Schedule and Key Confirmation
  5.  Per-User M and N and M=N
  6.  Ciphersuites
  7.  Security Considerations
  8.  IANA Considerations
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Appendix A.  Algorithm Used for Point Generation
  Appendix B.  SPAKE2 Test Vectors
  Acknowledgements
  Contributors
  Author's Address

1.  Introduction

  This document describes SPAKE2, which is a means for two parties that
  share a password to derive a strong shared key without disclosing the
  password.  This password-based key exchange protocol is compatible
  with any group (requiring only a scheme to map a random input of a
  fixed length per group to a random group element), is computationally
  efficient, and has a security proof.  Predetermined parameters for a
  selection of commonly used groups are also provided for use by other
  protocols.

  SPAKE2 was not selected as the result of the CFRG PAKE selection
  competition.  However, given existing use of variants in Kerberos and
  other applications, it was felt that publication was beneficial.
  This RFC represents the individual opinion(s) of one or more members
  of the Crypto Forum Research Group of the IRTF.

  Many of these applications predated methods to hash to elliptic
  curves being available or predated the publication of the PAKEs that
  were chosen as an outcome of the PAKE selection competition.  In
  cases where a symmetric PAKE is needed and hashing onto an elliptic
  curve at protocol execution time is not available, SPAKE2 is useful.

2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Definition of SPAKE2

3.1.  Protocol Flow

  SPAKE2 is a two-round protocol, wherein the first round establishes a
  shared secret between A and B, and the second round serves as key
  confirmation.  Prior to invocation, A and B are provisioned with
  information, such as the input password needed to run the protocol.
  We assume that the roles of A and B are agreed upon by both sides: A
  goes first and uses M, and B goes second and uses N.  If this
  assignment of roles is not possible, a symmetric variant MUST be
  used, as described later Section 5.  For instance, A may be the
  client when using TCP or TLS as an underlying protocol, and B may be
  the server.  Most protocols have such a distinction.  During the
  first round, A sends a public value pA to B, and B responds with its
  own public value pB.  Both A and B then derive a shared secret used
  to produce encryption and authentication keys.  The latter are used
  during the second round for key confirmation.  (Section 4 details the
  key derivation and confirmation steps.)  In particular, A sends a key
  confirmation message cA to B, and B responds with its own key
  confirmation message cB.  A MUST NOT consider the protocol complete
  until it receives and verifies cB.  Likewise, B MUST NOT consider the
  protocol complete until it receives and verifies cA.

  This sample flow is shown below.

                  A                       B
                  |                       |
                  |                       |
    (compute pA)  |          pA           |
                  |---------------------->|
                  |          pB           | (compute pB)
                  |<----------------------|
                  |                       |
                  |   (derive secrets)    |
                  |                       |
    (compute cA)  |          cA           |
                  |---------------------->|
                  |          cB           | (compute cB)
                  |                       | (check cA)
                  |<----------------------|
    (check cB)    |                       |

3.2.  Setup

  Let G be a group in which the gap Diffie-Hellman (GDH) problem is
  hard.  Suppose G has order p*h, where p is a large prime and h will
  be called the cofactor.  Let I be the unit element in G, e.g., the
  point at infinity if G is an elliptic curve group.  We denote the
  operations in the group additively.  We assume there is a
  representation of elements of G as byte strings: common choices would
  be SEC1 [SEC1] uncompressed or compressed for elliptic curve groups
  or big-endian integers of a fixed (per-group) length for prime field
  DH.  Applications MUST specify this encoding, typically by referring
  to the document defining the group.  We fix two elements, M and N, in
  the prime-order subgroup of G, as defined in Table 1 of this document
  for common groups, as well as generator P of the (large) prime-order
  subgroup of G.  In the case of a composite order group, we will work
  in the quotient group.  For common groups used in this document, P is
  specified in the document defining the group, so we do not repeat it
  here.

  For elliptic curves other than the ones in this document, the methods
  described in [RFC9380] SHOULD be used to generate M and N, e.g., via
  M = hash_to_curve("M SPAKE2 seed OID x") and N = hash_to_curve("N
  SPAKE2 seed OID x"), where x is an OID for the curve.  Applications
  MAY include a domain separation tag (DST) in this step, as specified
  in [RFC9380], though this is not required.

  || denotes concatenation of byte strings.  We also let len(S) denote
  the length of a string in bytes, represented as an eight-byte little-
  endian number.  Finally, let nil represent an empty string, i.e.,
  len(nil) = 0.  Text strings in double quotes are treated as their
  ASCII encodings throughout this document.

  KDF(ikm, salt, info, L) is a key-derivation function that takes as
  input a salt, input keying material (IKM), an info string, and
  derived key length L to derive a cryptographic key of length L.
  MAC(key, message) is a Message Authentication Code algorithm that
  takes a secret key and message as input to produce an output.  Let
  Hash be a hash function from arbitrary strings to bit strings of a
  fixed length that is at least 256 bits long.  Common choices for Hash
  are SHA-256 or SHA-512 [RFC6234].  Let MHF be a memory-hard hash
  function designed to slow down brute-force attackers.  Scrypt
  [RFC7914] is a common example of this function.  The output length of
  MHF matches that of Hash.  Parameter selection for MHF is out of
  scope for this document.  Section 6 specifies variants of KDF, MAC,
  and Hash that are suitable for use with the protocols contained
  herein.

  Let A and B be two parties.  A and B may also have digital
  representations of the parties' identities, such as Media Access
  Control addresses or other names (hostnames, usernames, etc.).  A and
  B may share additional authenticated data (AAD) of a length that is
  at most 2^16 - 128 bits and separate from their identities, which
  they may want to include in the protocol execution.  One example of
  AAD is a list of supported protocol versions if SPAKE2 were used in a
  higher-level protocol that negotiates use of a particular PAKE.
  Including this list would ensure that both parties agree upon the
  same set of supported protocols and therefore prevents downgrade
  attacks.  We also assume A and B share integer w; typically, w =
  MHF(pw) mod p for a user-supplied password, pw.  Standards, such as
  [NIST.SP.800-56Ar3], suggest taking mod p of a hash value that is 64
  bits longer than that needed to represent p to remove statistical
  bias introduced by the modulation.  Protocols using this
  specification MUST define the method used to compute w.  In some
  cases, it may be necessary to carry out various forms of
  normalization of the password before hashing [RFC8265].  The hashing
  algorithm SHOULD be an MHF so as to slow down brute-force attackers.

3.3.  SPAKE2

  To begin, A picks x randomly and uniformly from the integers in [0,p)
  and calculates X=x*P and pA=w*M+X.  Then, it transmits pA to B.

  B selects y randomly and uniformly from the integers in [0,p) and
  calculates Y=y*P and pB=w*N+Y.  Then, it transmits pB to A.

  Both A and B calculate group element K.  A calculates it as h*x*(pB-
  w*N), while B calculates it as h*y*(pA-w*M).  A knows pB because it
  has received it, and likewise B knows pA.  The multiplication by h
  prevents small subgroup confinement attacks by computing a unique
  value in the quotient group.

  K is a shared value, though it MUST NOT be used or output as a shared
  secret from the protocol.  Both A and B must derive two additional
  shared secrets from the protocol transcript, which includes K.  This
  use of the transcript ensures any manipulation of the messages sent
  is reflected in the keys.  The transcript TT is encoded as follows:

          TT = len(A)  || A
            || len(B)  || B
            || len(pA) || pA
            || len(pB) || pB
            || len(K)  || K
            || len(w)  || w

  Here, w is encoded as a big-endian number padded to the length of p.
  This representation prevents timing attacks that otherwise would
  reveal the length of w.  len(w) is thus a constant for a given group.
  We include it for consistency.

  If an identity is absent, it is encoded as a zero-length string.
  This MUST only be done for applications in which identities are
  implicit.  Otherwise, the protocol risks unknown key-share attacks,
  where both sides of a connection disagree over who is authenticated.

  Upon completion of this protocol, A and B compute shared secrets Ke,
  KcA, and KcB, as specified in Section 4.  A MUST send B a key
  confirmation message so that both parties agree upon these shared
  secrets.  The confirmation message cA is computed as a MAC over the
  protocol transcript TT, using KcA as follows: cA = MAC(KcA, TT).
  Similarly, B MUST send A a confirmation message using a MAC that is
  computed equivalently, except with the use of KcB.  Key confirmation
  verification requires computing cA (or cB, respectively) and checking
  for equality against that which was received.

4.  Key Schedule and Key Confirmation

  The protocol transcript TT, as defined in Section 3.3, is unique and
  secret to A and B (though it contains some substrings that are not
  secret).  Both parties use TT to derive shared symmetric secrets Ke
  and Ka as Ke || Ka = Hash(TT), with |Ke| = |Ka|.  The length of each
  key is equal to half of the digest output, e.g., 128 bits for SHA-
  256.  Keys MUST be at least 128 bits in length.

  Both endpoints use Ka to derive subsequent MAC keys for key
  confirmation messages.  Specifically, KcA and KcB are the MAC keys
  used by A and B, respectively.  A and B compute them as KcA || KcB =
  KDF(Ka, nil, "ConfirmationKeys" || AAD, L), where AAD is the
  associated data given to each endpoint or AAD is nil if none was
  provided.  The length of each of KcA and KcB is equal to half of the
  underlying hash output length, e.g., |KcA| = |KcB| = 128 bits for
  HKDF(SHA256), with L=256 bits.

  The resulting key schedule for this protocol, given transcript TT and
  AAD, is as follows.

      TT  -> Hash(TT) = Ke || Ka
      AAD -> KDF(Ka, nil, "ConfirmationKeys" || AAD) = KcA || KcB

  A and B output Ke as the shared secret from the protocol.  Ka and its
  derived keys are not used for anything except key confirmation.

5.  Per-User M and N and M=N

  To avoid concerns that an attacker needs to solve a single Elliptic
  Curve Diffie-Hellman (ECDH) instance to break the authentication of
  SPAKE2, it is possible to vary M and N using [RFC9380] as follows:

      M = hash_to_curve(Hash("M SPAKE2" || len(A) || A || len(B) || B))
      N = hash_to_curve(Hash("N SPAKE2" || len(A) || A || len(B) || B))

  There is also a symmetric variant where M=N.  For this variant, we
  set:

      M = hash_to_curve(Hash("M AND N SPAKE2"))

  This variant MUST be used when it is not possible to determine
  whether A or B should use M (or N), due to asymmetries in the
  protocol flows or the desire to use only a single shared secret with
  nil identities for authentication.  The security of these variants is
  examined in [MNVAR].  The variant with per-user M and N may not be
  suitable for protocols that require the initial messages to be
  generated by each party at the same time and that do not know the
  exact identity of the parties before the flow begins.

6.  Ciphersuites

  This section documents SPAKE2 ciphersuite configurations.  A
  ciphersuite indicates a group, cryptographic hash function, and pair
  of KDF and MAC functions, e.g., SPAKE2-P256-SHA256-HKDF-HMAC.  This
  ciphersuite indicates a SPAKE2 protocol instance over P-256 that uses
  SHA-256, along with HMAC-based Key Derivation Function (HKDF)
  [RFC5869] and Hashed Message Authentication Code (HMAC) [RFC2104] for
  G, Hash, KDF, and MAC functions, respectively.  For Ed25519, the
  compressed encoding is used [RFC8032]; all others use the
  uncompressed SEC1 encoding.

  +==============+==================+================+================+
  |      G       |       Hash       |      KDF       |      MAC       |
  +==============+==================+================+================+
  |    P-256     | SHA256 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |              |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |    P-256     | SHA512 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |              |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |    P-384     | SHA256 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |              |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |    P-384     | SHA512 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |              |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |    P-521     | SHA512 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |              |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  | edwards25519 | SHA256 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |  [RFC8032]   |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |  edwards448  | SHA512 [RFC6234] | HKDF [RFC5869] |      HMAC      |
  |  [RFC8032]   |                  |                |   [RFC2104]    |
  +--------------+------------------+----------------+----------------+
  |    P-256     | SHA256 [RFC6234] | HKDF [RFC5869] |  CMAC-AES-128  |
  |              |                  |                |   [RFC4493]    |
  +--------------+------------------+----------------+----------------+
  |    P-256     | SHA512 [RFC6234] | HKDF [RFC5869] |  CMAC-AES-128  |
  |              |                  |                |   [RFC4493]    |
  +--------------+------------------+----------------+----------------+

                       Table 1: SPAKE2 Ciphersuites

  The following points represent permissible point generation seeds for
  the groups listed in Table 1, using the algorithm presented in
  Appendix A.  These byte strings are compressed points, as in [SEC1],
  for curves from [SEC1].

  For P-256:

  M =
  02886e2f97ace46e55ba9dd7242579f2993b64e16ef3dcab95afd497333d8fa12f
  seed: 1.2.840.10045.3.1.7 point generation seed (M)

  N =
  03d8bbd6c639c62937b04d997f38c3770719c629d7014d49a24b4f98baa1292b49
  seed: 1.2.840.10045.3.1.7 point generation seed (N)

  For P-384:

  M =
  030ff0895ae5ebf6187080a82d82b42e2765e3b2f8749c7e05eba366434b363d3dc
  36f15314739074d2eb8613fceec2853
  seed: 1.3.132.0.34 point generation seed (M)

  N =
  02c72cf2e390853a1c1c4ad816a62fd15824f56078918f43f922ca21518f9c543bb
  252c5490214cf9aa3f0baab4b665c10
  seed: 1.3.132.0.34 point generation seed (N)

  For P-521:

  M =
  02003f06f38131b2ba2600791e82488e8d20ab889af753a41806c5db18d37d85608
  cfae06b82e4a72cd744c719193562a653ea1f119eef9356907edc9b56979962d7aa
  seed: 1.3.132.0.35 point generation seed (M)

  N =
  0200c7924b9ec017f3094562894336a53c50167ba8c5963876880542bc669e494b25
  32d76c5b53dfb349fdf69154b9e0048c58a42e8ed04cef052a3bc349d95575cd25
  seed: 1.3.132.0.35 point generation seed (N)

  For edwards25519:

  M =
  d048032c6ea0b6d697ddc2e86bda85a33adac920f1bf18e1b0c6d166a5cecdaf
  seed: edwards25519 point generation seed (M)

  N =
  d3bfb518f44f3430f29d0c92af503865a1ed3281dc69b35dd868ba85f886c4ab
  seed: edwards25519 point generation seed (N)

  For edwards448:

  M =
  b6221038a775ecd007a4e4dde39fd76ae91d3cf0cc92be8f0c2fa6d6b66f9a12
  942f5a92646109152292464f3e63d354701c7848d9fc3b8880
  seed: edwards448 point generation seed (M)

  N =
  6034c65b66e4cd7a49b0edec3e3c9ccc4588afd8cf324e29f0a84a072531c4db
  f97ff9af195ed714a689251f08f8e06e2d1f24a0ffc0146600
  seed: edwards448 point generation seed (N)

7.  Security Considerations

  A security proof of SPAKE2 for prime order groups is found in [REF],
  reducing the security of SPAKE2 to the GDH assumption.  Note that the
  choice of M and N is critical for the security proof.  The generation
  methods specified in this document are designed to eliminate concerns
  related to knowing discrete logs of M and N.

  Elements received from a peer MUST be checked for group membership.
  Failure to properly deserialize and validate group elements can lead
  to attacks.  An endpoint MUST abort the protocol if any received
  public value is not a member of G.

  The choices of random numbers MUST be uniform.  Randomly generated
  values, e.g., x and y, MUST NOT be reused; such reuse violates the
  security assumptions of the protocol and results in significant
  insecurity.  It is RECOMMENDED to generate these uniform numbers
  using rejection sampling.

  Some implementations of elliptic curve multiplication may leak
  information about the length of the scalar.  These MUST NOT be used.
  All operations on elliptic curve points must take time independent of
  the inputs.  Hashing of the transcript may take time depending only
  on the length of the transcript but not the contents.

  SPAKE2 does not support augmentation.  As a result, the server has to
  store a password equivalent.  This is considered a significant
  drawback in some use cases.  Applications that need augmented PAKEs
  should use [CFRG-OPAQUE].

  The HMAC keys in this document are shorter than recommended in
  [RFC8032].  This is appropriate, as the difficulty of the discrete
  logarithm problem is comparable with the difficulty of brute forcing
  the keys.

8.  IANA Considerations

  This document has no IANA actions.

9.  References

9.1.  Normative References

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <https://www.rfc-editor.org/info/rfc2104>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
             AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
             2006, <https://www.rfc-editor.org/info/rfc4493>.

  [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
             "Elliptic Curve Cryptography Subject Public Key
             Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
             <https://www.rfc-editor.org/info/rfc5480>.

  [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
             Key Derivation Function (HKDF)", RFC 5869,
             DOI 10.17487/RFC5869, May 2010,
             <https://www.rfc-editor.org/info/rfc5869>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <https://www.rfc-editor.org/info/rfc6234>.

  [RFC7914]  Percival, C. and S. Josefsson, "The scrypt Password-Based
             Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
             August 2016, <https://www.rfc-editor.org/info/rfc7914>.

  [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
             Signature Algorithm (EdDSA)", RFC 8032,
             DOI 10.17487/RFC8032, January 2017,
             <https://www.rfc-editor.org/info/rfc8032>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC9380]  Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S.,
             and C. A. Wood, "Hashing to Elliptic Curves", RFC 9380,
             DOI 10.17487/RFC9380, August 2023,
             <https://www.rfc-editor.org/info/rfc9380>.

9.2.  Informative References

  [CFRG-OPAQUE]
             Bourdrez, D., Krawczyk, H., Lewi, K., and C. A. Wood, "The
             OPAQUE Asymmetric PAKE Protocol", Work in Progress,
             Internet-Draft, draft-irtf-cfrg-opaque-11, 8 June 2023,
             <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
             opaque-11>.

  [MNVAR]    Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz,
             J., and J. Xu, "Universally Composable Relaxed Password
             Authenticated Key Exchange", in Advances in Cryptology -
             CRYPTO 2020, Lecture Notes in Computer Science, Volume
             12170, Springer, DOI 10.1007/978-3-030-56784-2_10, August
             2020, <https://doi.org/10.1007/978-3-030-56784-2_10>.

  [NIST.SP.800-56Ar3]
             National Institute of Standards and Technology,
             "Recommendation for Pair-Wise Key-Establishment Schemes
             Using Discrete Logarithm Cryptography", Revision 3, NIST
             Special Publication 800-56A,
             DOI 10.6028/NIST.SP.800-56Ar3, April 2018,
             <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

  [REF]      Abdalla, M. and D. Pointcheval, "Simple Password-Based
             Encrypted Key Exchange Protocols", Cryptography-CT-RSA
             2005, Lecture Notes in Computer Science, Volume 3376,
             pages 191-208, Springer, DOI 10.1007/978-3-540-30574-3_14,
             February 2005,
             <https://doi.org/10.1007/978-3-540-30574-3_14>.

  [RFC8265]  Saint-Andre, P. and A. Melnikov, "Preparation,
             Enforcement, and Comparison of Internationalized Strings
             Representing Usernames and Passwords", RFC 8265,
             DOI 10.17487/RFC8265, October 2017,
             <https://www.rfc-editor.org/info/rfc8265>.

  [SEC1]     Standards for Efficient Cryptography Group, "SEC 1:
             Elliptic Curve Cryptography", May 2009.

Appendix A.  Algorithm Used for Point Generation

  This section describes the algorithm that was used to generate points
  M and N in Table 1.

  For each curve in Table 1, we construct a string using the curve OID
  from [RFC5480] (as an ASCII string) or its name, combined with the
  needed constant, e.g., "1.3.132.0.35 point generation seed (M)" for
  P-521.  This string is turned into a series of blocks by hashing with
  SHA-256 and hashing that output again to generate the next 32 bytes
  and so on.  This pattern is repeated for each group and value, with
  the string modified appropriately.

  A byte string of a length equal to that of an encoded group element
  is constructed by concatenating as many blocks as are required,
  starting from the first block and truncating to the desired length.
  The byte string is then formatted as required for the group.  In the
  case of Weierstrass curves, we take the desired length as the length
  for representing a compressed point (Section 2.3.4 of [SEC1]) and use
  the low-order bit of the first byte as the sign bit.  In order to
  obtain the correct format, the value of the first byte is set to 0x02
  or 0x03 (clearing the first six bits and setting the seventh bit),
  leaving the sign bit as it was in the byte string constructed by
  concatenating hash blocks.  For the curves in [RFC8032], a different
  procedure is used.  For edwards448, the 57-byte input has the least-
  significant 7 bits of the last byte set to zero, and for
  edwards25519, the 32-byte input is not modified.  For both the curves
  in [RFC8032], the (modified) input is then interpreted as the
  representation of the group element.  If this interpretation yields a
  valid group element with the correct order (p), the (modified) byte
  string is the output.  Otherwise, the initial hash block is discarded
  and a new byte string is constructed from the remaining hash blocks.
  The procedure of constructing a byte string of the appropriate
  length, formatting it as required for the curve, and checking if it
  is a valid point of the correct order is repeated until a valid
  element is found.

  The following Python snippet generates the above points, assuming an
  elliptic curve implementation follows the interface of
  Edwards25519Point.stdbase() and Edwards448Point.stdbase() in
  Appendix A of [RFC8032]:

  def iterated_hash(seed, n):
      h = seed
      for i in range(n):
          h = hashlib.sha256(h).digest()
      return h

  def bighash(seed, start, sz):
      n = -(-sz // 32)
      hashes = [iterated_hash(seed, i)
                for i in range(start, start + n)]
      return b''.join(hashes)[:sz]

  def canon_pointstr(ecname, s):
      if ecname == 'edwards25519':
          return s
      elif ecname == 'edwards448':
          return s[:-1] + bytes([s[-1] & 0x80])
      else:
          return bytes([(s[0] & 1) | 2]) + s[1:]

  def gen_point(seed, ecname, ec):
      for i in range(1, 1000):
          hval = bighash(seed, i, len(ec.encode()))
          pointstr = canon_pointstr(ecname, hval)
          try:
              p = ec.decode(pointstr)
              if p != ec.zero_elem() and p * p.l() == ec.zero_elem():
                  return pointstr, i
          except Exception:
              pass

Appendix B.  SPAKE2 Test Vectors

  This section contains test vectors for SPAKE2, using the P256-SHA256-
  HKDF-HMAC ciphersuite.  (The choice of MHF is omitted, and the values
  for w, x, and y are provided directly.)  All points are encoded using
  the uncompressed format, i.e., with a 0x04 octet prefix, specified in
  [SEC1].  A and B identity strings are provided in the protocol
  invocation.

  Line breaks have been added due to line-length limitations.

spake2: A='server', B='client'
w = 0x2ee57912099d31560b3a44b1184b9b4866e904c49d12ac5042c97dca461b1a5f
x = 0x43dd0fd7215bdcb482879fca3220c6a968e66d70b1356cac18bb26c84a78d729
pA = 0x04a56fa807caaa53a4d28dbb9853b9815c61a411118a6fe516a8798434751470
f9010153ac33d0d5f2047ffdb1a3e42c9b4e6be662766e1eeb4116988ede5f912c
y = 0xdcb60106f276b02606d8ef0a328c02e4b629f84f89786af5befb0bc75b6e66be
pB = 0x0406557e482bd03097ad0cbaa5df82115460d951e3451962f1eaf4367a420676
d09857ccbc522686c83d1852abfa8ed6e4a1155cf8f1543ceca528afb591a1e0b7
K = 0x0412af7e89717850671913e6b469ace67bd90a4df8ce45c2af19010175e37eed
69f75897996d539356e2fa6a406d528501f907e04d97515fbe83db277b715d3325
TT = 0x06000000000000007365727665720600000000000000636c69656e744100000
00000000004a56fa807caaa53a4d28dbb9853b9815c61a411118a6fe516a8798434751
470f9010153ac33d0d5f2047ffdb1a3e42c9b4e6be662766e1eeb4116988ede5f912c4
1000000000000000406557e482bd03097ad0cbaa5df82115460d951e3451962f1eaf43
67a420676d09857ccbc522686c83d1852abfa8ed6e4a1155cf8f1543ceca528afb591a
1e0b741000000000000000412af7e89717850671913e6b469ace67bd90a4df8ce45c2a
f19010175e37eed69f75897996d539356e2fa6a406d528501f907e04d97515fbe83db2
77b715d332520000000000000002ee57912099d31560b3a44b1184b9b4866e904c49d1
2ac5042c97dca461b1a5f
HASH(TT) = 0x0e0672dc86f8e45565d338b0540abe6915bdf72e2b35b5c9e5663168e9
60a91b
Ke = 0x0e0672dc86f8e45565d338b0540abe69
Ka = 0x15bdf72e2b35b5c9e5663168e960a91b
KcA = 0x00c12546835755c86d8c0db7851ae86f
KcB = 0xa9fa3406c3b781b93d804485430ca27a
A conf = 0x58ad4aa88e0b60d5061eb6b5dd93e80d9c4f00d127c65b3b35b1b5281f
ee38f0
B conf = 0xd3e2e547f1ae04f2dbdbf0fc4b79f8ecff2dff314b5d32fe9fcef2fb26
dc459b

spake2: A='', B='client'
w = 0x0548d8729f730589e579b0475a582c1608138ddf7054b73b5381c7e883e2efae
x = 0x403abbe3b1b4b9ba17e3032849759d723939a27a27b9d921c500edde18ed654b
pA = 0x04a897b769e681c62ac1c2357319a3d363f610839c4477720d24cbe32f5fd8
5f44fb92ba966578c1b712be6962498834078262caa5b441ecfa9d4a9485720e918a
y = 0x903023b6598908936ea7c929bd761af6039577a9c3f9581064187c3049d87065
pB = 0x04e0f816fd1c35e22065d5556215c097e799390d16661c386e0ecc84593974
a61b881a8c82327687d0501862970c64565560cb5671f696048050ca66ca5f8cc7fc
K = 0x048f83ec9f6e4f87cc6f9dc740bdc2769725f923364f01c84148c049a39a735e
bda82eac03e00112fd6a5710682767cff5361f7e819e53d8d3c3a2922e0d837aa6
TT = 0x00000000000000000600000000000000636c69656e74410000000000000004a
897b769e681c62ac1c2357319a3d363f610839c4477720d24cbe32f5fd85f44fb92ba9
66578c1b712be6962498834078262caa5b441ecfa9d4a9485720e918a4100000000000
00004e0f816fd1c35e22065d5556215c097e799390d16661c386e0ecc84593974a61b8
81a8c82327687d0501862970c64565560cb5671f696048050ca66ca5f8cc7fc4100000
000000000048f83ec9f6e4f87cc6f9dc740bdc2769725f923364f01c84148c049a39a7
35ebda82eac03e00112fd6a5710682767cff5361f7e819e53d8d3c3a2922e0d837aa62
0000000000000000548d8729f730589e579b0475a582c1608138ddf7054b73b5381c7e
883e2efae
Hash(TT) = 0x642f05c473c2cd79909f9a841e2f30a70bf89b18180af97353ba198789
c2b963
Ke = 0x642f05c473c2cd79909f9a841e2f30a7
Ka = 0x0bf89b18180af97353ba198789c2b963
KcA = 0xc6be376fc7cd1301fd0a13adf3e7bffd
KcB = 0xb7243f4ae60440a49b3f8cab3c1fba07
A conf = 0x47d29e6666af1b7dd450d571233085d7a9866e4d49d2645e2df9754895
21232b
B conf = 0x3313c5cefc361d27fb16847a91c2a73b766ffa90a4839122a9b70a2f6b
d1d6df

spake2: A='server', B=''
w = 0x626e0cdc7b14c9db3e52a0b1b3a768c98e37852d5db30febe0497b14eae8c254
x = 0x07adb3db6bc623d3399726bfdbfd3d15a58ea776ab8a308b00392621291f9633
pA = 0x04f88fb71c99bfffaea370966b7eb99cd4be0ff1a7d335caac4211c4afd855e2
e15a873b298503ad8ba1d9cbb9a392d2ba309b48bfd7879aefd0f2cea6009763b0
y = 0xb6a4fc8dbb629d4ba51d6f91ed1532cf87adec98f25dd153a75accafafedec16
pB = 0x040c269d6be017dccb15182ac6bfcd9e2a14de019dd587eaf4bdfd353f031101
e7cca177f8eb362a6e83e7d5e729c0732e1b528879c086f39ba0f31a9661bd34db
K = 0x0445ee233b8ecb51ebd6e7da3f307e88a1616bae2166121221fdc0dadb986afa
f3ec8a988dc9c626fa3b99f58a7ca7c9b844bb3e8dd9554aafc5b53813504c1cbe
TT = 0x06000000000000007365727665720000000000000000410000000000000004f
88fb71c99bfffaea370966b7eb99cd4be0ff1a7d335caac4211c4afd855e2e15a873b2
98503ad8ba1d9cbb9a392d2ba309b48bfd7879aefd0f2cea6009763b04100000000000
000040c269d6be017dccb15182ac6bfcd9e2a14de019dd587eaf4bdfd353f031101e7c
ca177f8eb362a6e83e7d5e729c0732e1b528879c086f39ba0f31a9661bd34db4100000
0000000000445ee233b8ecb51ebd6e7da3f307e88a1616bae2166121221fdc0dadb986
afaf3ec8a988dc9c626fa3b99f58a7ca7c9b844bb3e8dd9554aafc5b53813504c1cbe2
000000000000000626e0cdc7b14c9db3e52a0b1b3a768c98e37852d5db30febe0497b1
4eae8c254
Hash(TT) = 0x005184ff460da2ce59062c87733c299c3521297d736598fc0a1127600e
fa1afb
Ke = 0x005184ff460da2ce59062c87733c299c
Ka = 0x3521297d736598fc0a1127600efa1afb
KcA = 0xf3da53604f0aeecea5a33be7bddf6edf
KcB = 0x9e3f86848736f159bd92b6e107ec6799
A conf = 0xbc9f9bbe99f26d0b2260e6456e05a86196a3307ec6663a18bf6ac8257365
33b2
B conf = 0xc2370e1bf813b086dff0d834e74425a06e6390f48f5411900276dcccc5a2
97ec

spake2: A='', B=''
w = 0x7bf46c454b4c1b25799527d896508afd5fc62ef4ec59db1efb49113063d70cca
x = 0x8cef65df64bb2d0f83540c53632de911b5b24b3eab6cc74a97609fd659e95473
pA = 0x04a65b367a3f613cf9f0654b1b28a1e3a8a40387956c8ba6063e8658563890f4
6ca1ef6a676598889fc28de2950ab8120b79a5ef1ea4c9f44bc98f585634b46d66
y = 0xd7a66f64074a84652d8d623a92e20c9675c61cb5b4f6a0063e4648a2fdc02d53
pB = 0x04589f13218822710d98d8b2123a079041052d9941b9cf88c6617ddb2fcc0494
662eea8ba6b64692dc318250030c6af045cb738bc81ba35b043c3dcb46adf6f58d
K = 0x041a3c03d51b452537ca2a1fea6110353c6d5ed483c4f0f86f4492ca3f378d40
a994b4477f93c64d928edbbcd3e85a7c709b7ea73ee97986ce3d1438e135543772
TT = 0x00000000000000000000000000000000410000000000000004a65b367a3f613
cf9f0654b1b28a1e3a8a40387956c8ba6063e8658563890f46ca1ef6a676598889fc28
de2950ab8120b79a5ef1ea4c9f44bc98f585634b46d66410000000000000004589f132
18822710d98d8b2123a079041052d9941b9cf88c6617ddb2fcc0494662eea8ba6b6469
2dc318250030c6af045cb738bc81ba35b043c3dcb46adf6f58d4100000000000000041
a3c03d51b452537ca2a1fea6110353c6d5ed483c4f0f86f4492ca3f378d40a994b4477
f93c64d928edbbcd3e85a7c709b7ea73ee97986ce3d1438e1355437722000000000000
0007bf46c454b4c1b25799527d896508afd5fc62ef4ec59db1efb49113063d70cca
Hash(TT) = 0xfc6374762ba5cf11f4b2caa08b2cd1b9907ae0e26e8d6234318d91583c
d74c86
Ke = 0xfc6374762ba5cf11f4b2caa08b2cd1b9
Ka = 0x907ae0e26e8d6234318d91583cd74c86
KcA = 0x5dbd2f477166b7fb6d61febbd77a5563
KcB = 0x7689b4654407a5faeffdc8f18359d8a3
A conf = 0xdfb4db8d48ae5a675963ea5e6c19d98d4ea028d8e898dad96ea19a80ade9
5dca
B conf = 0xd0f0609d1613138d354f7e95f19fb556bf52d751947241e8c7118df5ef0a
e175

Acknowledgements

  Special thanks to Nathaniel McCallum and Greg Hudson for generating M
  and N and Chris Wood for generating test vectors.  Thanks to Mike
  Hamburg for advice on how to deal with cofactors.  Greg Hudson also
  suggested the addition of warnings on the reuse of x and y.  Thanks
  to Fedor Brunner, Adam Langley, Liliya Akhmetzyanova, and the members
  of the CFRG for comments and advice.  Thanks to Scott Fluhrer and
  those Crypto Panel experts involved in the PAKE selection process
  (https://github.com/cfrg/pake-selection) who have provided valuable
  comments.  Chris Wood contributed substantial text and reformatting
  to address the excellent review comments from Kenny Paterson.

Contributors

  Benjamin Kaduk
  Akamai Technologies
  Email: [email protected]


Author's Address

  Watson Ladd
  Akamai Technologies
  Email: [email protected]