Internet Engineering Task Force (IETF)                            X. Min
Request for Comments: 9359                                     ZTE Corp.
Category: Standards Track                                      G. Mirsky
ISSN: 2070-1721                                                 Ericsson
                                                                  L. Bo
                                                          China Telecom
                                                             April 2023


    Echo Request/Reply for Enabled In Situ OAM (IOAM) Capabilities

Abstract

  This document describes a generic format for use in echo request/
  reply mechanisms, which can be used within an IOAM-Domain, allowing
  the IOAM encapsulating node to discover the enabled IOAM capabilities
  of each IOAM transit and IOAM decapsulating node.  The generic format
  is intended to be used with a variety of data planes such as IPv6,
  MPLS, Service Function Chain (SFC), and Bit Index Explicit
  Replication (BIER).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9359.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions
    2.1.  Requirements Language
    2.2.  Abbreviations
  3.  IOAM Capabilities Formats
    3.1.  IOAM Capabilities Query Container
    3.2.  IOAM Capabilities Response Container
      3.2.1.  IOAM Pre-allocated Tracing Capabilities Object
      3.2.2.  IOAM Incremental Tracing Capabilities Object
      3.2.3.  IOAM Proof of Transit Capabilities Object
      3.2.4.  IOAM Edge-to-Edge Capabilities Object
      3.2.5.  IOAM DEX Capabilities Object
      3.2.6.  IOAM End-of-Domain Object
  4.  Operational Guide
  5.  IANA Considerations
    5.1.  IOAM SoP Capability Registry
    5.2.  IOAM TSF Capability Registry
  6.  Security Considerations
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Acknowledgements
  Authors' Addresses

1.  Introduction

  In situ Operations, Administration, and Maintenance (IOAM) ([RFC9197]
  [RFC9326]) defines data fields that record OAM information within the
  packet while the packet traverses a particular network domain, called
  an "IOAM-Domain".  IOAM can complement or replace other OAM
  mechanisms, such as ICMP or other types of probe packets.

  As specified in [RFC9197], within the IOAM-Domain, the IOAM data may
  be updated by network nodes that the packet traverses.  The device
  that adds an IOAM header to the packet is called an "IOAM
  encapsulating node".  In contrast, the device that removes an IOAM
  header is referred to as an "IOAM decapsulating node".  Nodes within
  the domain that are aware of IOAM data and that read, write, and/or
  process IOAM data are called "IOAM transit nodes".  IOAM
  encapsulating or decapsulating nodes can also serve as IOAM transit
  nodes at the same time.  IOAM encapsulating or decapsulating nodes
  are also referred to as IOAM-Domain "edge devices", which can be
  hosts or network devices.  [RFC9197] defines four IOAM option types,
  and [RFC9326] introduces a new IOAM option type called the "Direct
  Export (DEX) Option-Type", which is different from the other four
  IOAM option types defined in [RFC9197] regarding how to collect the
  operational and telemetry information defined in [RFC9197].

  As specified in [RFC9197], IOAM is focused on "limited domains" as
  defined in [RFC8799].  In a limited domain, a control entity that has
  control over every IOAM device may be deployed.  If that's the case,
  the control entity can provision both the explicit transport path and
  the IOAM header applied to the data packet at every IOAM
  encapsulating node.

  In a case when a control entity that has control over every IOAM
  device is not deployed in the IOAM-Domain, the IOAM encapsulating
  node needs to discover the enabled IOAM capabilities at the IOAM
  transit and decapsulating nodes: for example, what types of IOAM
  tracing data can be added or exported by the transit nodes along the
  transport path of the data packet IOAM is applied to.  The IOAM
  encapsulating node can then add the correct IOAM header to the data
  packet according to the discovered IOAM capabilities.  Specifically,
  the IOAM encapsulating node first identifies the types and lengths of
  IOAM options included in the IOAM data fields according to the
  discovered IOAM capabilities.  Then the IOAM encapsulating node can
  add the IOAM header to the data packet based on the identified types
  and lengths of IOAM options included in the IOAM data fields.  The
  IOAM encapsulating node may use NETCONF/YANG or IGP to discover these
  IOAM capabilities.  However, NETCONF/YANG or IGP has some
  limitations:

  *  When NETCONF/YANG is used in this scenario, each IOAM
     encapsulating node (including the host when it takes the role of
     an IOAM encapsulating node) needs to implement a NETCONF Client,
     and each IOAM transit and IOAM decapsulating node (including the
     host when it takes the role of an IOAM decapsulating node) needs
     to implement a NETCONF Server, so complexity can be an issue.
     Furthermore, each IOAM encapsulating node needs to establish a
     NETCONF Connection with each IOAM transit and IOAM decapsulating
     node, so scalability can be an issue.

  *  When IGP is used in this scenario, the IGP and IOAM-Domains don't
     always have the same coverage.  For example, when the IOAM
     encapsulating node or the IOAM decapsulating node is a host, the
     availability can be an issue.  Furthermore, it might be too
     challenging to reflect enabled IOAM capabilities at the IOAM
     transit and IOAM decapsulating node if these are controlled by a
     local policy depending on the identity of the IOAM encapsulating
     node.

  This document specifies formats and objects that can be used in the
  extension of echo request/reply mechanisms used in IPv6 (including
  Segment Routing over IPv6 (SRv6) data plane), MPLS (including Segment
  Routing over MPLS (SR-MPLS) data plane), Service Function Chain
  (SFC), and Bit Index Explicit Replication (BIER) environments, which
  can be used within the IOAM-Domain, allowing the IOAM encapsulating
  node to discover the enabled IOAM capabilities of each IOAM transit
  and IOAM decapsulating node.

  The following documents contain references to the echo request/reply
  mechanisms used in IPv6 (including SRv6), MPLS (including SR-MPLS),
  SFC, and BIER environments:

  *  "Internet Control Message Protocol (ICMPv6) for the Internet
     Protocol Version 6 (IPv6) Specification" [RFC4443]

  *  "IPv6 Node Information Queries" [RFC4620]

  *  "Extended ICMP to Support Multi-Part Messages" [RFC4884]

  *  "PROBE: A Utility for Probing Interfaces" [RFC8335]

  *  "Detecting Multiprotocol Label Switched (MPLS) Data-Plane
     Failures" [RFC8029]

  *  "Active OAM for Service Function Chaining (SFC)" [OAM-for-SFC]

  *  "BIER Ping and Trace" [BIER-PING]

  It is expected that the specification of the instantiation of each of
  these extensions will be done in the form of an RFC jointly designed
  by the working group that develops or maintains the echo request/
  reply protocol and the IETF IP Performance Measurement (IPPM) Working
  Group.

  In this document, note that the echo request/reply mechanism used in
  IPv6 does not mean ICMPv6 Echo Request/Reply [RFC4443] but does mean
  IPv6 Node Information Query/Reply [RFC4620].

  Fate sharing is a common requirement for all kinds of active OAM
  packets, including echo requests.  In this document, that means an
  echo request is required to traverse the path of an IOAM data packet.
  This requirement can be achieved by, e.g., applying the same explicit
  path or ECMP processing to both echo request and IOAM data packets.
  Specifically, the same ECMP processing can be applied to both echo
  request and IOAM data packets, by populating the same value or values
  in any ECMP affecting fields of the packets.

2.  Conventions

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Abbreviations

  BIER:  Bit Index Explicit Replication

  BGP:  Border Gateway Protocol

  DEX:  Direct Export

  ECMP:  Equal-Cost Multipath

  E2E:  Edge to Edge

  ICMP:  Internet Control Message Protocol

  IGP:  Interior Gateway Protocol

  IOAM:  In situ Operations, Administration, and Maintenance

  LSP:  Label Switched Path

  MPLS:  Multiprotocol Label Switching

  MTU:  Maximum Transmission Unit

  NETCONF:  Network Configuration Protocol

  NTP:  Network Time Protocol

  OAM:  Operations, Administration, and Maintenance

  PCEP:  Path Computation Element Communication Protocol

  POSIX:  Portable Operating System Interface

  POT:  Proof of Transit

  PTP:  Precision Time Protocol

  SoP:  Size of POT

  SR-MPLS:  Segment Routing over MPLS

  SRv6:  Segment Routing over IPv6

  SFC:  Service Function Chain

  TTL:  Time to Live (this is also the Hop Limit field in the IPv6
     header)

  TSF:  TimeStamp Format

3.  IOAM Capabilities Formats

3.1.  IOAM Capabilities Query Container

  For echo requests, the IOAM Capabilities Query uses a container that
  has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .            IOAM Capabilities Query Container Header           .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                   List of IOAM Namespace-IDs                  .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 1: IOAM Capabilities Query Container of an Echo Request

  When this container is present in the echo request sent by an IOAM
  encapsulating node, the IOAM encapsulating node requests that the
  receiving node reply with its enabled IOAM capabilities.  If there is
  no IOAM capability to be reported by the receiving node, then this
  container MUST be ignored by the receiving node.  This means the
  receiving node MUST send an echo reply without IOAM capabilities or
  no echo reply, in the light of whether the echo request includes
  containers other than the IOAM Capabilities Query Container.  A list
  of IOAM Namespace-IDs (one or more Namespace-IDs) MUST be included in
  this container in the echo request; if present, the Default-
  Namespace-ID 0x0000 MUST be placed at the beginning of the list of
  IOAM Namespace-IDs.  The IOAM encapsulating node requests only the
  enabled IOAM capabilities that match one of the Namespace-IDs.
  Inclusion of the Default-Namespace-ID 0x0000 elicits replies only for
  capabilities that are configured with the Default-Namespace-ID
  0x0000.  The Namespace-ID has the same definition as what's specified
  in Section 4.3 of [RFC9197].

  The IOAM Capabilities Query Container has a container header that is
  used to identify the type and, optionally, the length of the
  container payload.  The container payload (List of IOAM Namespace-
  IDs) is zero-padded to align with a 4-octet boundary.  Since the
  Default-Namespace-ID 0x0000 is mandated to appear first in the list,
  any other occurrences of 0x0000 MUST be disregarded.

  The length, structure, and definition of the IOAM Capabilities Query
  Container Header depend on the specific deployment environment.

3.2.  IOAM Capabilities Response Container

  For echo replies, the IOAM Capabilities Response uses a container
  that has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .          IOAM Capabilities Response Container Header          .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .               List of IOAM Capabilities Objects               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2: IOAM Capabilities Response Container for an Echo Reply

  When this container is present in the echo reply sent by an IOAM
  transit node or IOAM decapsulating node, the IOAM function is enabled
  at this node, and this container contains the enabled IOAM
  capabilities of the sender.  A list of IOAM capabilities objects (one
  or more objects) that contains the enabled IOAM capabilities MUST be
  included in this container of the echo reply unless the sender
  encounters an error (e.g., no matched Namespace-ID).

  The IOAM Capabilities Response Container has a container header that
  is used to identify the type and, optionally, the length of the
  container payload.  The container header MUST be defined such that it
  falls on a 4-octet boundary.

  The length, structure, and definition of the IOAM Capabilities
  Response Container Header depends on the specific deployment
  environment.

  Based on the IOAM data fields defined in [RFC9197] and [RFC9326], six
  types of objects are defined in this document.  The same type of
  object MAY be present in the IOAM Capabilities Response Container
  more than once, only if listed with a different Namespace-ID.

  Similar to the container, each object has an object header that is
  used to identify the type and length of the object payload.  The
  object payload MUST be defined such that it falls on a 4-octet
  boundary.

  The length, structure, and definition of the object header depends on
  the specific deployment environment.

3.2.1.  IOAM Pre-allocated Tracing Capabilities Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .     IOAM Pre-allocated Tracing Capabilities Object Header     .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               IOAM-Trace-Type                 |  Reserved   |W|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          |          Ingress_MTU          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Ingress_if_id (short or wide format)         ......          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 3: IOAM Pre-allocated Tracing Capabilities Object

  When the IOAM Pre-allocated Tracing Capabilities Object is present in
  the IOAM Capabilities Response Container, the sending node is an IOAM
  transit node, and the IOAM pre-allocated tracing function is enabled
  at this IOAM transit node.

  The IOAM-Trace-Type field has the same definition as what's specified
  in Section 4.4 of [RFC9197].

  The Reserved field MUST be zeroed on transmission and ignored on
  receipt.

  The W flag indicates whether Ingress_if_id is in short or wide
  format.  The W-bit is set if the Ingress_if_id is in wide format.
  The W-bit is clear if the Ingress_if_id is in short format.

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Object of the echo request.

  The Ingress_MTU field has 16 bits and specifies the MTU (in octets)
  of the ingress interface from which the sending node received the
  echo request.

  The Ingress_if_id field has 16 bits (in short format) or 32 bits (in
  wide format) and specifies the identifier of the ingress interface
  from which the sending node received the echo request.  If the W-bit
  is cleared, the Ingress_if_id field has 16 bits; then the 16 bits
  following the Ingress_if_id field are reserved for future use, MUST
  be set to zero, and MUST be ignored when non-zero.

3.2.2.  IOAM Incremental Tracing Capabilities Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .      IOAM Incremental Tracing Capabilities Object Header      .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               IOAM-Trace-Type                 |  Reserved   |W|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          |          Ingress_MTU          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Ingress_if_id (short or wide format)         ......          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 4: IOAM Incremental Tracing Capabilities Object

  When the IOAM Incremental Tracing Capabilities Object is present in
  the IOAM Capabilities Response Container, the sending node is an IOAM
  transit node, and the IOAM incremental tracing function is enabled at
  this IOAM transit node.

  The IOAM-Trace-Type field has the same definition as what's specified
  in Section 4.4 of [RFC9197].

  The Reserved field MUST be zeroed on transmission and ignored on
  receipt.

  The W flag indicates whether Ingress_if_id is in short or wide
  format.  The W-bit is set if the Ingress_if_id is in wide format.
  The W-bit is clear if the Ingress_if_id is in short format.

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Object of the echo request.

  The Ingress_MTU field has 16 bits and specifies the MTU (in octets)
  of the ingress interface from which the sending node received the
  echo request.

  The Ingress_if_id field has 16 bits (in short format) or 32 bits (in
  wide format) and specifies the identifier of the ingress interface
  from which the sending node received the echo request.  If the W-bit
  is cleared, the Ingress_if_id field has 16 bits; then the 16 bits
  following the Ingress_if_id field are reserved for future use, MUST
  be set to zero, and MUST be ignored when non-zero.

3.2.3.  IOAM Proof of Transit Capabilities Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .       IOAM Proof of Transit Capabilities Object Header        .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          | IOAM-POT-Type |SoP| Reserved  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 5: IOAM Proof of Transit Capabilities Object

  When the IOAM Proof of Transit Capabilities Object is present in the
  IOAM Capabilities Response Container, the sending node is an IOAM
  transit node and the IOAM Proof of Transit function is enabled at
  this IOAM transit node.

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Object of the echo request.

  The IOAM-POT-Type field has the same definition as what's specified
  in Section 4.5 of [RFC9197].

  The SoP (Size of POT) field has two bits that indicate the size of
  "PktID" and "Cumulative" data, which are specified in Section 4.5 of
  [RFC9197].  This document defines SoP as follows:

  0b00:  64-bit "PktID" and 64-bit "Cumulative" data

  0b01~0b11:  reserved for future standardization

  The Reserved field MUST be zeroed on transmission and ignored on
  receipt.

3.2.4.  IOAM Edge-to-Edge Capabilities Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .          IOAM Edge-to-Edge Capabilities Object Header         .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          |         IOAM-E2E-Type         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |TSF|         Reserved          |           Reserved            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 6: IOAM Edge-to-Edge Capabilities Object

  When the IOAM Edge-to-Edge Capabilities Object is present in the IOAM
  Capabilities Response Container, the sending node is an IOAM
  decapsulating node and IOAM edge-to-edge function is enabled at this
  IOAM decapsulating node.

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Object of the echo request.

  The IOAM-E2E-Type field has the same definition as what's specified
  in Section 4.6 of [RFC9197].

  The TSF field specifies the timestamp format used by the sending
  node.  Aligned with three possible timestamp formats specified in
  Section 5 of [RFC9197], this document defines TSF as follows:

  0b00:  PTP truncated timestamp format

  0b01:  NTP 64-bit timestamp format

  0b10:  POSIX-based timestamp format

  0b11:  Reserved for future standardization

  The Reserved field MUST be zeroed on transmission and ignored on
  receipt.

3.2.5.  IOAM DEX Capabilities Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .              IOAM DEX Capabilities Object Header              .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |               IOAM-Trace-Type                 |    Reserved   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          |           Reserved            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 7: IOAM DEX Capabilities Object

  When the IOAM DEX Capabilities Object is present in the IOAM
  Capabilities Response Container, the sending node is an IOAM transit
  node and the IOAM direct exporting function is enabled at this IOAM
  transit node.

  The IOAM-Trace-Type field has the same definition as what's specified
  in Section 3.2 of [RFC9326].

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Object of the echo request.

  The Reserved field MUST be zeroed on transmission and ignored on
  receipt.

3.2.6.  IOAM End-of-Domain Object

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .               IOAM End-of-Domain Object Header                .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Namespace-ID          |            Reserved           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 8: IOAM End-of-Domain Object

  When the IOAM End-of-Domain Object is present in the IOAM
  Capabilities Response Container, the sending node is an IOAM
  decapsulating node.  Unless the IOAM Edge-to-Edge Capabilities Object
  is present, which also indicates that the sending node is an IOAM
  decapsulating node, the IOAM End-of-Domain Object MUST be present in
  the IOAM Capabilities Response Container sent by an IOAM
  decapsulating node.  When the IOAM edge-to-edge function is enabled
  at the IOAM decapsulating node, including only the IOAM Edge-to-Edge
  Capabilities Object, not the IOAM End-of-Domain Object, is
  RECOMMENDED.

  The Namespace-ID field has the same definition as what's specified in
  Section 4.3 of [RFC9197].  It MUST be one of the Namespace-IDs listed
  in the IOAM Capabilities Query Container.

  Reserved field MUST be zeroed on transmission and ignored on receipt.

4.  Operational Guide

  Once the IOAM encapsulating node is triggered to discover the enabled
  IOAM capabilities of each IOAM transit and IOAM decapsulating node,
  the IOAM encapsulating node will send echo requests that include the
  IOAM Capabilities Query Container as follows:

  *  First, with TTL equal to 1 to reach the closest node (which may or
     may not be an IOAM transit node).

  *  Then, with TTL equal to 2 to reach the second-nearest node (which
     also may or may not be an IOAM transit node).

  *  Then, further increasing by 1 the TTL every time the IOAM
     encapsulating node sends a new echo request, until the IOAM
     encapsulating node receives an echo reply sent by the IOAM
     decapsulating node (which contains the IOAM Capabilities Response
     Container including the IOAM Edge-to-Edge Capabilities Object or
     the IOAM End-of-Domain Object).

  As a result, the echo requests sent by the IOAM encapsulating node
  will reach all nodes one by one along the transport path of IOAM data
  packet.

  Alternatively, if the IOAM encapsulating node knows precisely all the
  IOAM transit and IOAM decapsulating nodes beforehand, once the IOAM
  encapsulating node is triggered to discover the enabled IOAM
  capabilities, it can send an echo request to each IOAM transit and
  IOAM decapsulating node directly, without TTL expiration.

  The IOAM encapsulating node may be triggered by the device
  administrator, the network management system, the network controller,
  or data traffic.  The specific triggering mechanisms are outside the
  scope of this document.

  Each IOAM transit and IOAM decapsulating node that receives an echo
  request containing the IOAM Capabilities Query Container will send an
  echo reply to the IOAM encapsulating node.  For the echo reply, there
  is an IOAM Capabilities Response Container containing one or more
  Objects.  The IOAM Capabilities Query Container of the echo request
  would be ignored by the receiving node unaware of IOAM.

  Note that the mechanism defined in this document applies to all kinds
  of IOAM option types, whether the four types of IOAM options defined
  in [RFC9197] or the DEX type of IOAM option defined in [RFC9326].
  Specifically, when applied to the IOAM DEX option, the mechanism
  allows the IOAM encapsulating node to discover which nodes along the
  transport path support IOAM direct exporting and which trace data
  types are supported to be directly exported at these nodes.

5.  IANA Considerations

  IANA has created a registry named "In Situ OAM (IOAM) Capabilities".

  This registry includes the following subregistries:

  *  IOAM SoP Capability

  *  IOAM TSF Capability

  The subsequent subsections detail the registries herein contained.

  Considering the Containers/Objects defined in this document that
  would be carried in different types of Echo Request/Reply messages,
  such as ICMPv6 or LSP Ping, it is intended that the registries for
  Container/Object Type would be requested in subsequent documents.

5.1.  IOAM SoP Capability Registry

  This registry defines four codepoints for the IOAM SoP Capability
  field for identifying the size of "PktID" and "Cumulative" data as
  explained in Section 4.5 of [RFC9197].

  A new entry in this registry requires the following fields:

  *  SoP (Size of POT): a 2-bit binary field as defined in
     Section 3.2.3.

  *  Description: a terse description of the meaning of this SoP value.

  The registry initially contains the following value:

         +======+=============================================+
         | SoP  | Description                                 |
         +======+=============================================+
         | 0b00 | 64-bit "PktID" and 64-bit "Cumulative" data |
         +------+---------------------------------------------+

                      Table 1: SoP and Description

  0b01 - 0b11 are available for assignment via the IETF Review process
  as per [RFC8126].

5.2.  IOAM TSF Capability Registry

  This registry defines four codepoints for the IOAM TSF Capability
  field for identifying the timestamp format as explained in Section 5
  of [RFC9197].

  A new entry in this registry requires the following fields:

  *  TSF (TimeStamp Format): a 2-bit binary field as defined in
     Section 3.2.4.

  *  Description: a terse description of the meaning of this TSF value.

  The registry initially contains the following values:

                +======+================================+
                | TSF  | Description                    |
                +======+================================+
                | 0b00 | PTP Truncated Timestamp Format |
                +------+--------------------------------+
                | 0b01 | NTP 64-bit Timestamp Format    |
                +------+--------------------------------+
                | 0b10 | POSIX-based Timestamp Format   |
                +------+--------------------------------+

                       Table 2: TSF and Description

  0b11 is available for assignment via the IETF Review process as per
  [RFC8126].

6.  Security Considerations

  Overall, the security needs for IOAM capabilities query mechanisms
  used in different environments are similar.

  To avoid potential Denial-of-Service (DoS) attacks, it is RECOMMENDED
  that implementations apply rate-limiting to incoming echo requests
  and replies.

  To protect against unauthorized sources using echo request messages
  to obtain IOAM Capabilities information, implementations MUST provide
  a means of checking the source addresses of echo request messages
  against an access list before accepting the message.

  A deployment MUST ensure that border-filtering drops inbound echo
  requests with an IOAM Capabilities Container Header from outside of
  the domain and that drops outbound echo requests or replies with IOAM
  Capabilities Headers leaving the domain.

  A deployment MUST support the configuration option to enable or
  disable the IOAM Capabilities Discovery feature defined in this
  document.  By default, the IOAM Capabilities Discovery feature MUST
  be disabled.

  The integrity protection on IOAM Capabilities information carried in
  echo reply messages can be achieved by the underlying transport.  For
  example, if the environment is an IPv6 network, the IP Authentication
  Header [RFC4302] or IP Encapsulating Security Payload Header
  [RFC4303] can be used.

  The collected IOAM Capabilities information by queries may be
  considered confidential.  An implementation can use secure underlying
  transport of echo requests or replies to provide privacy protection.
  For example, if the environment is an IPv6 network, confidentiality
  can be achieved by using the IP Encapsulating Security Payload Header
  [RFC4303].

  An implementation can also directly secure the data carried in echo
  requests and replies if needed, the specific mechanism on how to
  secure the data is beyond the scope of this document.

  An implementation can also check whether the fields in received echo
  requests and replies strictly conform to the specifications, e.g.,
  whether the list of IOAM Namespace-IDs includes duplicate entries and
  whether the received Namespace-ID is an operator-assigned or IANA-
  assigned one, once a check fails, an exception event indicating the
  checked field should be reported to the management.

  Except for what's described above, the security issues discussed in
  [RFC9197] provide good guidance on implementation of this
  specification.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC9197]  Brockners, F., Ed., Bhandari, S., Ed., and T. Mizrahi,
             Ed., "Data Fields for In Situ Operations, Administration,
             and Maintenance (IOAM)", RFC 9197, DOI 10.17487/RFC9197,
             May 2022, <https://www.rfc-editor.org/info/rfc9197>.

  [RFC9326]  Song, H., Gafni, B., Brockners, F., Bhandari, S., and T.
             Mizrahi, "In Situ Operations, Administration, and
             Maintenance (IOAM) Direct Exporting", RFC 9326,
             DOI 10.17487/RFC9326, November 2022,
             <https://www.rfc-editor.org/info/rfc9326>.

7.2.  Informative References

  [BIER-PING]
             Nainar, N. K., Pignataro, C., Akiya, N., Zheng, L., Chen,
             M., and G. Mirsky, "BIER Ping and Trace", Work in
             Progress, Internet-Draft, draft-ietf-bier-ping-08, 6 March
             2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
             bier-ping-08>.

  [OAM-for-SFC]
             Mirsky, G., Meng, W., Ao, T., Khasnabish, B., Leung, K.,
             and G. Mishra, "Active OAM for Service Function Chaining
             (SFC)", Work in Progress, Internet-Draft, draft-ietf-sfc-
             multi-layer-oam-23, 23 March 2023,
             <https://datatracker.ietf.org/doc/html/draft-ietf-sfc-
             multi-layer-oam-23>.

  [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302,
             DOI 10.17487/RFC4302, December 2005,
             <https://www.rfc-editor.org/info/rfc4302>.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, DOI 10.17487/RFC4303, December 2005,
             <https://www.rfc-editor.org/info/rfc4303>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", STD 89,
             RFC 4443, DOI 10.17487/RFC4443, March 2006,
             <https://www.rfc-editor.org/info/rfc4443>.

  [RFC4620]  Crawford, M. and B. Haberman, Ed., "IPv6 Node Information
             Queries", RFC 4620, DOI 10.17487/RFC4620, August 2006,
             <https://www.rfc-editor.org/info/rfc4620>.

  [RFC4884]  Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
             "Extended ICMP to Support Multi-Part Messages", RFC 4884,
             DOI 10.17487/RFC4884, April 2007,
             <https://www.rfc-editor.org/info/rfc4884>.

  [RFC8029]  Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
             Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
             Switched (MPLS) Data-Plane Failures", RFC 8029,
             DOI 10.17487/RFC8029, March 2017,
             <https://www.rfc-editor.org/info/rfc8029>.

  [RFC8335]  Bonica, R., Thomas, R., Linkova, J., Lenart, C., and M.
             Boucadair, "PROBE: A Utility for Probing Interfaces",
             RFC 8335, DOI 10.17487/RFC8335, February 2018,
             <https://www.rfc-editor.org/info/rfc8335>.

  [RFC8799]  Carpenter, B. and B. Liu, "Limited Domains and Internet
             Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,
             <https://www.rfc-editor.org/info/rfc8799>.

Acknowledgements

  The authors would like to acknowledge Tianran Zhou, Dhruv Dhody,
  Frank Brockners, Cheng Li, Gyan Mishra, Marcus Ihlar, Martin Duke,
  Chris Lonvick, Éric Vyncke, Alvaro Retana, Paul Wouters, Roman
  Danyliw, Lars Eggert, Warren Kumari, John Scudder, Robert Wilton,
  Erik Kline, Zaheduzzaman Sarker, Murray Kucherawy, and Donald
  Eastlake 3rd for their careful review and helpful comments.

  The authors appreciate the f2f discussion with Frank Brockners on
  this document.

  The authors would like to acknowledge Tommy Pauly and Ian Swett for
  their good suggestion and guidance.

Authors' Addresses

  Xiao Min
  ZTE Corp.
  Nanjing
  China
  Phone: +86 25 88013062
  Email: [email protected]


  Greg Mirsky
  Ericsson
  United States of America
  Email: [email protected]


  Lei Bo
  China Telecom
  Beijing
  China
  Phone: +86 10 50902903
  Email: [email protected]