Internet Engineering Task Force (IETF)                         J. Uberti
Request for Comments: 9335
Updates: 3711                                                C. Jennings
Category: Standards Track                                          Cisco
ISSN: 2070-1721                                        S. Garcia Murillo
                                                              Millicast
                                                           January 2023


 Completely Encrypting RTP Header Extensions and Contributing Sources

Abstract

  While the Secure Real-time Transport Protocol (SRTP) provides
  confidentiality for the contents of a media packet, a significant
  amount of metadata is left unprotected, including RTP header
  extensions and contributing sources (CSRCs).  However, this data can
  be moderately sensitive in many applications.  While there have been
  previous attempts to protect this data, they have had limited
  deployment, due to complexity as well as technical limitations.

  This document updates RFC 3711, the SRTP specification, and defines
  Cryptex as a new mechanism that completely encrypts header extensions
  and CSRCs and uses simpler Session Description Protocol (SDP)
  signaling with the goal of facilitating deployment.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9335.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Problem Statement
    1.2.  Previous Solutions
    1.3.  Goals
  2.  Terminology
  3.  Design
  4.  SDP Considerations
  5.  RTP Header Processing
    5.1.  Sending
    5.2.  Receiving
  6.  Encryption and Decryption
    6.1.  Packet Structure
    6.2.  Encryption Procedure
    6.3.  Decryption Procedure
  7.  Backward Compatibility
  8.  Security Considerations
  9.  IANA Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Appendix A.  Test Vectors
    A.1.  AES-CTR
      A.1.1.  RTP Packet with One-Byte Header Extension
      A.1.2.  RTP Packet with Two-Byte Header Extension
      A.1.3.  RTP Packet with One-Byte Header Extension and CSRC
              Fields
      A.1.4.  RTP Packet with Two-Byte Header Extension and CSRC
              Fields
      A.1.5.  RTP Packet with Empty One-Byte Header Extension and
              CSRC Fields
      A.1.6.  RTP Packet with Empty Two-Byte Header Extension and
              CSRC Fields
    A.2.  AES-GCM
      A.2.1.  RTP Packet with One-Byte Header Extension
      A.2.2.  RTP Packet with Two-Byte Header Extension
      A.2.3.  RTP Packet with One-Byte Header Extension and CSRC
              Fields
      A.2.4.  RTP Packet with Two-Byte Header Extension and CSRC
              Fields
      A.2.5.  RTP Packet with Empty One-Byte Header Extension and
              CSRC Fields
      A.2.6.  RTP Packet with Empty Two-Byte Header Extension and
              CSRC Fields
  Acknowledgements
  Authors' Addresses

1.  Introduction

1.1.  Problem Statement

  The Secure Real-time Transport Protocol (SRTP) [RFC3711] mechanism
  provides message authentication for the entire RTP packet but only
  encrypts the RTP payload.  This has not historically been a problem,
  as much of the information carried in the header has minimal
  sensitivity (e.g., RTP timestamp); in addition, certain fields need
  to remain as cleartext because they are used for key scheduling
  (e.g., RTP synchronization source (SSRC) and sequence number).

  However, as noted in [RFC6904], the security requirements can be
  different for information carried in RTP header extensions, including
  the per-packet sound levels defined in [RFC6464] and [RFC6465], which
  are specifically noted as being sensitive in the Security
  Considerations sections of those RFCs.

  In addition to the contents of the header extensions, there are now
  enough header extensions in active use that the header extension
  identifiers themselves can provide meaningful information in terms of
  determining the identity of the endpoint and/or application.
  Accordingly, these identifiers can be considered a fingerprinting
  issue.

  Finally, the CSRCs included in RTP packets can also be sensitive,
  potentially allowing a network eavesdropper to determine who was
  speaking and when during an otherwise secure conference call.

1.2.  Previous Solutions

  Encryption of Header Extensions in SRTP [RFC6904] was proposed in
  2013 as a solution to the problem of unprotected header extension
  values.  However, it has not seen significant adoption and has a few
  technical shortcomings.

  First, the mechanism is complicated.  Since it allows encryption to
  be negotiated on a per-extension basis, a fair amount of signaling
  logic is required.  And in the SRTP layer, a somewhat complex
  transform is required to allow only the selected header extension
  values to be encrypted.  One of the most popular SRTP implementations
  had a significant bug in this area that was not detected for five
  years.

  Second, the mechanism only protects the header extension values and
  not their identifiers or lengths.  It also does not protect the
  CSRCs.  As noted above, this leaves a fair amount of potentially
  sensitive information exposed.

  Third, the mechanism bloats the header extension space.  Because each
  extension must be offered in both unencrypted and encrypted forms,
  twice as many header extensions must be offered, which will in many
  cases push implementations past the 14-extension limit for the use of
  one-byte extension headers defined in [RFC8285].  Accordingly, in
  many cases, implementations will need to use two-byte headers, which
  are not supported well by some existing implementations.

  Finally, the header extension bloat combined with the need for
  backward compatibility results in additional wire overhead.  Because
  two-byte extension headers may not be handled well by existing
  implementations, one-byte extension identifiers will need to be used
  for the unencrypted (backward-compatible) forms, and two-byte for the
  encrypted forms.  Thus, deployment of encryption for header
  extensions [RFC6904] will typically result in multiple extra bytes in
  each RTP packet, compared to the present situation.

1.3.  Goals

  From the previous analysis, the desired properties of a solution are:

  *  Built on the existing SRTP framework [RFC3711] (simple to
     understand)

  *  Built on the existing header extension framework [RFC8285] (simple
     to implement)

  *  Protection of header extension identifiers, lengths, and values

  *  Protection of CSRCs when present

  *  Simple signaling

  *  Simple crypto transform and SRTP interactions

  *  Backward compatibility with unencrypted endpoints, if desired

  *  Backward compatibility with existing RTP tooling

  The last point deserves further discussion.  While other possible
  solutions that would have encrypted more of the RTP header (e.g., the
  number of CSRCs) were considered, the inability to parse the
  resultant packets with current tools and a generally higher level of
  complexity outweighed the slight improvement in confidentiality in
  these solutions.  Hence, a more pragmatic approach was taken to solve
  the problem described in Section 1.1.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Design

  This specification proposes a mechanism to negotiate encryption of
  all RTP header extensions (ids, lengths, and values) as well as CSRC
  values.  It reuses the existing SRTP framework, is accordingly simple
  to implement, and is backward compatible with existing RTP packet
  parsing code, even when support for the mechanism has been
  negotiated.

  Except when explicitly stated otherwise, Cryptex reuses all the
  framework procedures, transforms, and considerations described in
  [RFC3711].

4.  SDP Considerations

  Cryptex support is indicated via a new "a=cryptex" SDP attribute
  defined in this specification.

  The new "a=cryptex" attribute is a property attribute as defined in
  Section 5.13 of [RFC8866]; it therefore takes no value and can be
  used at the session level or media level.

  The presence of the "a=cryptex" attribute in the SDP (in either an
  offer or an answer) indicates that the endpoint is capable of
  receiving RTP packets encrypted with Cryptex, as defined below.

  Once each peer has verified that the other party supports receiving
  RTP packets encrypted with Cryptex, senders can unilaterally decide
  whether or not to use the Cryptex mechanism on a per-packet basis.

  If BUNDLE is in use as per [RFC9143] and the "a=cryptex" attribute is
  present for a media line, it MUST be present for all RTP-based "m="
  sections belonging to the same bundle group.  This ensures that the
  encrypted Media Identifier (MID) header extensions can be processed,
  allowing RTP streams to be associated with the correct "m=" section
  in each BUNDLE group as specified in Section 9.2 of [RFC9143].  When
  used with BUNDLE, this attribute is assigned to the TRANSPORT
  category [RFC8859].

  Both endpoints can change the Cryptex support status by modifying the
  session as specified in Section 8 of [RFC3264].  Generating
  subsequent SDP offers and answers MUST use the same procedures for
  including the "a=cryptex" attribute as the ones on the initial offer
  and answer.

5.  RTP Header Processing

  A General Mechanism for RTP Header Extensions [RFC8285] defines two
  values for the "defined by profile" field for carrying one-byte and
  two-byte header extensions.  In order to allow a receiver to
  determine if an incoming RTP packet is using the encryption scheme in
  this specification, two new values are defined:

  *  0xC0DE for the encrypted version of the one-byte header extensions
     (instead of 0xBEDE).

  *  0xC2DE for the encrypted versions of the two-byte header
     extensions (instead of 0x100).

  In the case of using two-byte header extensions, the extension
  identifier with value 256 MUST NOT be negotiated, as the value of
  this identifier is meant to be contained in the "appbits" of the
  "defined by profile" field, which are not available when using the
  values above.

  Note that as per [RFC8285], it is not possible to mix one-byte and
  two-byte headers on the same RTP packet.  Mixing one-byte and two-
  byte headers on the same RTP stream requires negotiation of the
  "extmap-allow-mixed" SDP attribute as defined in Section 6 of
  [RFC8285].

  Peers MAY negotiate both Cryptex and the Encryption of Header
  Extensions mechanism defined in [RFC6904] via SDP offer/answer as
  described in Section 4, and if both mechanisms are supported, either
  one can be used for any given packet.  However, if a packet is
  encrypted with Cryptex, it MUST NOT also use header extension
  encryption [RFC6904], and vice versa.

  If one of the peers has advertised the ability to receive both
  Cryptex and header extensions encrypted as per [RFC6904] in the SDP
  exchange, it is RECOMMENDED that the other peer use Cryptex rather
  than the mechanism in [RFC6904] when sending RTP packets so that all
  the header extensions and CSRCS are encrypted.  However, if there is
  a compelling reason to use the mechanism in [RFC6904] (e.g., a need
  for some header extensions to be sent in the clear so that so they
  are processable by RTP middleboxes), the other peer SHOULD use the
  mechanism in [RFC6904] instead.

5.1.  Sending

  When the mechanism defined by this specification has been negotiated,
  sending an RTP packet that has any CSRCs or contains any header
  extensions [RFC8285] follows the steps below.  This mechanism MUST
  NOT be used with header extensions other than the variety described
  in [RFC8285].

  If the RTP packet contains one-byte headers, the 16-bit RTP header
  extension tag MUST be set to 0xC0DE to indicate that the encryption
  has been applied and the one-byte framing is being used.  If the RTP
  packet contains two-byte headers, the header extension tag MUST be
  set to 0xC2DE to indicate encryption has been applied and the two-
  byte framing is being used.

  If the packet contains CSRCs but no header extensions, an empty
  extension block consisting of the 0xC0DE tag and a 16-bit length
  field set to zero (explicitly permitted by [RFC3550]) MUST be
  appended, and the X bit MUST be set to 1 to indicate an extension
  block is present.  This is necessary to provide the receiver an
  indication that the CSRCs in the packet are encrypted.

  The RTP packet MUST then be encrypted as described in Section 6.2
  ("Encryption Procedure").

5.2.  Receiving

  When receiving an RTP packet that contains header extensions, the
  "defined by profile" field MUST be checked to ensure the payload is
  formatted according to this specification.  If the field does not
  match one of the values defined above, the implementation MUST
  instead handle it according to the specification that defines that
  value.

  Alternatively, if the implementation considers the use of this
  specification mandatory and the "defined by profile" field does not
  match one of the values defined above, it MUST stop the processing of
  the RTP packet and report an error for the RTP stream.

  If the RTP packet passes this check, it is then decrypted as
  described in Section 6.3 ("Decryption Procedure") and passed to the
  next layer to process the packet and its extensions.  In the event
  that a zero-length extension block was added as indicated above, it
  can be left as is and will be processed normally.

6.  Encryption and Decryption

6.1.  Packet Structure

  When this mechanism is active, the SRTP packet is protected as
  follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+
    |V=2|P|X|  CC   |M|     PT      |       sequence number         | |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    |                           timestamp                           | |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    |           synchronization source (SSRC) identifier            | |
  +>+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ |
  | |            contributing source (CSRC) identifiers             | |
  | |                               ....                            | |
  +>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  X |  0xC0 or 0xC2 |    0xDE       |           length              | |
  +>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  | |                  RFC 8285 header extensions                   | |
  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  | |                          payload  ...                         | |
  | |                               +-------------------------------+ |
  | |                               | RTP padding   | RTP pad count | |
  +>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+
  | ~          SRTP Master Key Identifier (MKI) (OPTIONAL)          ~ |
  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  | :                 authentication tag (RECOMMENDED)              : |
  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  |                                                                   |
  +- Encrypted Portion                       Authenticated Portion ---+

                    Figure 1: A Protected SRTP Packet

  Note that, as required by [RFC8285], the 4 bytes at the start of the
  extension block are not encrypted.

  Specifically, the Encrypted Portion MUST include any CSRC
  identifiers, any RTP header extension (except for the first 4 bytes),
  and the RTP payload.

6.2.  Encryption Procedure

  The encryption procedure is identical to that of [RFC3711] except for
  the Encrypted Portion of the SRTP packet.  The plaintext input to the
  cipher is as follows:

  Plaintext = CSRC identifiers (if used) || header extension data ||
       RTP payload || RTP padding (if used) || RTP pad count (if used)

  Here "header extension data" refers to the content of the RTP
  extension field, excluding the first four bytes (the extension header
  [RFC8285]).  The first 4 * CSRC count (CC) bytes of the ciphertext
  are placed in the CSRC field of the RTP header.  The remainder of the
  ciphertext is the RTP payload of the encrypted packet.

  To minimize changes to surrounding code, the encryption mechanism can
  choose to replace a "defined by profile" field from [RFC8285] with
  its counterpart defined in Section 5 ("RTP Header Processing") and
  encrypt at the same time.

  For Authenticated Encryption with Associated Data (AEAD) ciphers
  (e.g., AES-GCM), the 12-byte fixed header and the four-byte header
  extension header (the "defined by profile" field and the length) are
  considered additional authenticated data (AAD), even though they are
  non-contiguous in the packet if CSRCs are present.

  Associated Data: fixed header || extension header (if X=1)

  Here "fixed header" refers to the 12-byte fixed portion of the RTP
  header, and "extension header" refers to the four-byte extension
  header [RFC8285] ("defined by profile" and extension length).

  Implementations can rearrange a packet so that the AAD and plaintext
  are contiguous by swapping the order of the extension header and the
  CSRC identifiers, resulting in an intermediate representation of the
  form shown in Figure 2.  After encryption, the CSRCs (now encrypted)
  and extension header would need to be swapped back to their original
  positions.  A similar operation can be done when decrypting to create
  contiguous ciphertext and AAD inputs.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+
    |V=2|P|X|  CC   |M|     PT      |       sequence number         | |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    |                           timestamp                           | |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    |           synchronization source (SSRC) identifier            | |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
    |  0xC0 or 0xC2 |    0xDE       |           length              | |
  +>+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+<+
  | |            contributing source (CSRC) identifiers             | |
  | |                               ....                            | |
  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  | |                  RFC 8285 header extensions                   | |
  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  | |                          payload  ...                         | |
  | |                               +-------------------------------+ |
  | |                               | RTP padding   | RTP pad count | |
  +>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
  |                                                                   |
  +- Plaintext Input                                     AAD Input ---+

    Figure 2: An RTP Packet Transformed to Make Cryptex Cipher Inputs
                                Contiguous

  Note that this intermediate representation is only displayed as
  reference for implementations and is not meant to be sent on the
  wire.

6.3.  Decryption Procedure

  The decryption procedure is identical to that of [RFC3711] except for
  the Encrypted Portion of the SRTP packet, which is as shown in the
  section above.

  To minimize changes to surrounding code, the decryption mechanism can
  choose to replace the "defined by profile" field with its no-
  encryption counterpart from [RFC8285] and decrypt at the same time.

7.  Backward Compatibility

  This specification attempts to encrypt as much as possible without
  interfering with backward compatibility for systems that expect a
  certain structure from an RTPv2 packet, including systems that
  perform demultiplexing based on packet headers.  Accordingly, the
  first two bytes of the RTP packet are not encrypted.

  This specification also attempts to reuse the key scheduling from
  SRTP, which depends on the RTP packet sequence number and SSRC
  identifier.  Accordingly, these values are also not encrypted.

8.  Security Considerations

  All security considerations in Section 9 of [RFC3711] are applicable
  to this specification; the exception is Section 9.4, because
  confidentiality of the RTP Header is the purpose of this
  specification.

  The risks of using weak or NULL authentication with SRTP, described
  in Section 9.5 of [RFC3711], apply to encrypted header extensions as
  well.

  This specification extends SRTP by expanding the Encrypted Portion of
  the RTP packet, as shown in Section 6.1 ("Packet Structure").  It
  does not change how SRTP authentication works in any way.  Given that
  more of the packet is being encrypted than before, this is
  necessarily an improvement.

  The RTP fields that are left unencrypted (see rationale above) are as
  follows:

  *  RTP version

  *  padding bit

  *  extension bit

  *  number of CSRCs

  *  marker bit

  *  payload type

  *  sequence number

  *  timestamp

  *  SSRC identifier

  *  number of header extensions [RFC8285]

  These values contain a fixed set (i.e., one that won't be changed by
  extensions) of information that, at present, is observed to have low
  sensitivity.  In the event any of these values need to be encrypted,
  SRTP is likely the wrong protocol to use and a fully encapsulating
  protocol such as DTLS is preferred (with its attendant per-packet
  overhead).

9.  IANA Considerations

  This document updates the "attribute-name (formerly "att-field")"
  subregistry of the "Session Description Protocol (SDP) Parameters"
  registry (see Section 8.2.4 of [RFC8866]).  Specifically, it adds the
  SDP "a=cryptex" attribute for use at both the media level and the
  session level.

  Contact name:  IETF AVT Working Group or IESG if the AVT Working
     Group is closed

  Contact email address:  [email protected]

  Attribute name:  cryptex

  Attribute syntax:  This attribute takes no values.

  Attribute semantics:  N/A

  Attribute value:  N/A

  Usage level:  session, media

  Charset dependent:  No

  Purpose:  The presence of this attribute in the SDP indicates that
     the endpoint is capable of receiving RTP packets encrypted with
     Cryptex as described in this document.

  O/A procedures:  SDP O/A procedures are described in Section 4 of
     this document.

  Mux Category:  TRANSPORT

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
             with Session Description Protocol (SDP)", RFC 3264,
             DOI 10.17487/RFC3264, June 2002,
             <https://www.rfc-editor.org/info/rfc3264>.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
             July 2003, <https://www.rfc-editor.org/info/rfc3550>.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, DOI 10.17487/RFC3711, March 2004,
             <https://www.rfc-editor.org/info/rfc3711>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8285]  Singer, D., Desineni, H., and R. Even, Ed., "A General
             Mechanism for RTP Header Extensions", RFC 8285,
             DOI 10.17487/RFC8285, October 2017,
             <https://www.rfc-editor.org/info/rfc8285>.

  [RFC8859]  Nandakumar, S., "A Framework for Session Description
             Protocol (SDP) Attributes When Multiplexing", RFC 8859,
             DOI 10.17487/RFC8859, January 2021,
             <https://www.rfc-editor.org/info/rfc8859>.

  [RFC8866]  Begen, A., Kyzivat, P., Perkins, C., and M. Handley, "SDP:
             Session Description Protocol", RFC 8866,
             DOI 10.17487/RFC8866, January 2021,
             <https://www.rfc-editor.org/info/rfc8866>.

  [RFC9143]  Holmberg, C., Alvestrand, H., and C. Jennings,
             "Negotiating Media Multiplexing Using the Session
             Description Protocol (SDP)", RFC 9143,
             DOI 10.17487/RFC9143, February 2022,
             <https://www.rfc-editor.org/info/rfc9143>.

10.2.  Informative References

  [RFC6464]  Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time
             Transport Protocol (RTP) Header Extension for Client-to-
             Mixer Audio Level Indication", RFC 6464,
             DOI 10.17487/RFC6464, December 2011,
             <https://www.rfc-editor.org/info/rfc6464>.

  [RFC6465]  Ivov, E., Ed., Marocco, E., Ed., and J. Lennox, "A Real-
             time Transport Protocol (RTP) Header Extension for Mixer-
             to-Client Audio Level Indication", RFC 6465,
             DOI 10.17487/RFC6465, December 2011,
             <https://www.rfc-editor.org/info/rfc6465>.

  [RFC6904]  Lennox, J., "Encryption of Header Extensions in the Secure
             Real-time Transport Protocol (SRTP)", RFC 6904,
             DOI 10.17487/RFC6904, April 2013,
             <https://www.rfc-editor.org/info/rfc6904>.

  [RFC7714]  McGrew, D. and K. Igoe, "AES-GCM Authenticated Encryption
             in the Secure Real-time Transport Protocol (SRTP)",
             RFC 7714, DOI 10.17487/RFC7714, December 2015,
             <https://www.rfc-editor.org/info/rfc7714>.

Appendix A.  Test Vectors

  All values are in hexadecimal and represented in network order (big
  endian).

A.1.  AES-CTR

  The following subsections list the test vectors for using Cryptex
  with AES-CTR as per [RFC3711].

  Common values are organized as follows:

  Rollover Counter:          00000000
  Master Key:                e1f97a0d3e018be0d64fa32c06de4139
  Master Salt:               0ec675ad498afeebb6960b3aabe6
  Crypto Suite:              AES_CM_128_HMAC_SHA1_80
  Session Key:               c61e7a93744f39ee10734afe3ff7a087
  Session Salt:              30cbbc08863d8c85d49db34a9ae1
  Authentication Key:        cebe321f6ff7716b6fd4ab49af256a156d38baa4

A.1.1.  RTP Packet with One-Byte Header Extension

  RTP Packet:

      900f1235
      decafbad
      cafebabe
      bede0001
      51000200
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      900f1235
      decafbad
      cafebabe
      c0de0001
      eb923652
      51c3e036
      f8de27e9
      c27ee3e0
      b4651d9f
      bc4218a7
      0244522f
      34a5

A.1.2.  RTP Packet with Two-Byte Header Extension

  RTP Packet:

      900f1236
      decafbad
      cafebabe
      10000001
      05020002
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      900f1236
      decafbad
      cafebabe
      c2de0001
      4ed9cc4e
      6a712b30
      96c5ca77
      339d4204
      ce0d7739
      6cab6958
      5fbce381
      94a5

A.1.3.  RTP Packet with One-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f1238
      decafbad
      cafebabe
      0001e240
      0000b26e
      bede0001
      51000200
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f1238
      decafbad
      cafebabe
      8bb6e12b
      5cff16dd
      c0de0001
      92838c8c
      09e58393
      e1de3a9a
      74734d67
      45671338
      c3acf11d
      a2df8423
      bee0

A.1.4.  RTP Packet with Two-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f1239
      decafbad
      cafebabe
      0001e240
      0000b26e
      10000001
      05020002
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f1239
      decafbad
      cafebabe
      f70e513e
      b90b9b25
      c2de0001
      bbed4848
      faa64466
      5f3d7f34
      125914e9
      f4d0ae92
      3c6f479b
      95a0f7b5
      3133

A.1.5.  RTP Packet with Empty One-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f123a
      decafbad
      cafebabe
      0001e240
      0000b26e
      bede0000
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f123a
      decafbad
      cafebabe
      7130b6ab
      fe2ab0e3
      c0de0000
      e3d9f64b
      25c9e74c
      b4cf8e43
      fb92e378
      1c2c0cea
      b6b3a499
      a14c

A.1.6.  RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f123b
      decafbad
      cafebabe
      0001e240
      0000b26e
      10000000
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f123b
      decafbad
      cafebabe
      cbf24c12
      4330e1c8
      c2de0000
      599dd45b
      c9d687b6
      03e8b59d
      771fd38e
      88b170e0
      cd31e125
      eabe

A.2.  AES-GCM

  The following subsections list the test vectors for using Cryptex
  with AES-GCM as per [RFC7714].

  Common values are organized as follows:

      Rollover Counter:          00000000
      Master Key:                000102030405060708090a0b0c0d0e0f
      Master Salt:               a0a1a2a3a4a5a6a7a8a9aaab
      Crypto Suite:              AEAD_AES_128_GCM
      Session Key:               077c6143cb221bc355ff23d5f984a16e
      Session Salt:              9af3e95364ebac9c99c5a7c4

A.2.1.  RTP Packet with One-Byte Header Extension

  RTP Packet:

      900f1235
      decafbad
      cafebabe
      bede0001
      51000200
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      900f1235
      decafbad
      cafebabe
      c0de0001
      39972dc9
      572c4d99
      e8fc355d
      e743fb2e
      94f9d8ff
      54e72f41
      93bbc5c7
      4ffab0fa
      9fa0fbeb

A.2.2.  RTP Packet with Two-Byte Header Extension

  RTP Packet:

      900f1236
      decafbad
      cafebabe
      10000001
      05020002
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      900f1236
      decafbad
      cafebabe
      c2de0001
      bb75a4c5
      45cd1f41
      3bdb7daa
      2b1e3263
      de313667
      c9632490
      81b35a65
      f5cb6c88
      b394235f

A.2.3.  RTP Packet with One-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f1238
      decafbad
      cafebabe
      0001e240
      0000b26e
      bede0001
      51000200
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f1238
      decafbad
      cafebabe
      63bbccc4
      a7f695c4
      c0de0001
      8ad7c71f
      ac70a80c
      92866b4c
      6ba98546
      ef913586
      e95ffaaf
      fe956885
      bb0647a8
      bc094ac8

A.2.4.  RTP Packet with Two-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f1239
      decafbad
      cafebabe
      0001e240
      0000b26e
      10000001
      05020002
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f1239
      decafbad
      cafebabe
      3680524f
      8d312b00
      c2de0001
      c78d1200
      38422bc1
      11a7187a
      18246f98
      0c059cc6
      bc9df8b6
      26394eca
      344e4b05
      d80fea83

A.2.5.  RTP Packet with Empty One-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f123a
      decafbad
      cafebabe
      0001e240
      0000b26e
      bede0000
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f123a
      decafbad
      cafebabe
      15b6bb43
      37906fff
      c0de0000
      b7b96453
      7a2b03ab
      7ba5389c
      e9331712
      6b5d974d
      f30c6884
      dcb651c5
      e120c1da

A.2.6.  RTP Packet with Empty Two-Byte Header Extension and CSRC Fields

  RTP Packet:

      920f123b
      decafbad
      cafebabe
      0001e240
      0000b26e
      10000000
      abababab
      abababab
      abababab
      abababab

  Encrypted RTP Packet:

      920f123b
      decafbad
      cafebabe
      dcb38c9e
      48bf95f4
      c2de0000
      61ee432c
      f9203170
      76613258
      d3ce4236
      c06ac429
      681ad084
      13512dc9
      8b5207d8

Acknowledgements

  The authors wish to thank Lennart Grahl for pointing out many of the
  issues with the existing header encryption mechanism, as well as
  suggestions for this proposal.  Thanks also to Jonathan Lennox, Inaki
  Castillo, and Bernard Aboba for their reviews and suggestions.

Authors' Addresses

  Justin Uberti
  Email: [email protected]


  Cullen Jennings
  Cisco
  Email: [email protected]


  Sergio Garcia Murillo
  Millicast
  Email: [email protected]