Internet Engineering Task Force (IETF)                     F. Maino, Ed.
Request for Comments: 9305                                         Cisco
Category: Standards Track                                       J. Lemon
ISSN: 2070-1721
                                                             P. Agarwal
                                                               Innovium
                                                               D. Lewis
                                                               M. Smith
                                                                  Cisco
                                                           October 2022


   Locator/ID Separation Protocol (LISP) Generic Protocol Extension

Abstract

  This document describes extensions to the Locator/ID Separation
  Protocol (LISP) data plane, via changes to the LISP header, to
  support multiprotocol encapsulation and allow the introduction of new
  protocol capabilities.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9305.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Conventions
    1.2.  Definitions of Terms
  2.  LISP Header without Protocol Extensions
  3.  LISP Generic Protocol Extension (LISP-GPE)
  4.  Implementation and Deployment Considerations
    4.1.  Applicability Statement
    4.2.  Congestion-Control Functionality
    4.3.  UDP Checksum
      4.3.1.  UDP Zero Checksum Handling with IPv6
    4.4.  DSCP, ECN, TTL, and 802.1Q
  5.  Backward Compatibility
    5.1.  Detection of ETR Capabilities
  6.  IANA Considerations
    6.1.  LISP-GPE Next Protocol Registry
  7.  Security Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  The LISP data plane is defined in [RFC9300].  It specifies an
  encapsulation format that carries IPv4 or IPv6 packets (henceforth
  jointly referred to as IP) in a LISP header and outer UDP/IP
  transport.

  The LISP data plane header does not specify the protocol being
  encapsulated and, therefore, is currently limited to encapsulating
  only IP packet payloads.  Other protocols, most notably the Virtual
  eXtensible Local Area Network (VXLAN) protocol [RFC7348] (which
  defines a header format similar to LISP), are used to encapsulate
  Layer 2 (L2) protocols, such as Ethernet.

  This document defines an extension for the LISP header, as defined in
  [RFC9300], to indicate the inner protocol, enabling the encapsulation
  of Ethernet, IP, or any other desired protocol, all the while
  ensuring compatibility with existing LISP deployments.

  A flag in the LISP header -- the P-bit -- is used to signal the
  presence of the 8-bit 'Next Protocol' field.  The 'Next Protocol'
  field, when present, uses 8 bits of the field that was allocated to
  the Echo-Noncing and Map-Versioning features in [RFC9300].  Those two
  features are no longer available when the P-bit is used.  However,
  appropriate LISP Generic Protocol Extension (LISP-GPE) shim headers
  can be defined to specify capabilities that are equivalent to Echo-
  Noncing and/or Map-Versioning.

  Since all of the reserved bits of the LISP data plane header have
  been allocated, LISP-GPE can also be used to extend the LISP data
  plane header by defining Next Protocol shim headers that implement
  new data plane functions not supported in the LISP header.  For
  example, the use of the Group-Based Policy (GBP) header [VXLAN-LISP]
  or of the In situ Operations, Administration, and Maintenance (IOAM)
  header [VXLAN-GPE] with LISP-GPE can be considered an extension to
  add support in the data plane for GBP functionalities or IOAM
  metadata.

1.1.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.2.  Definitions of Terms

  This document uses terms already defined in [RFC9300].

2.  LISP Header without Protocol Extensions

  As described in Section 1, the LISP header has no protocol identifier
  that indicates the type of payload being carried.  Because of this,
  LISP is limited to carrying IP payloads.

  The LISP header [RFC9300] contains a series of flags (some defined,
  some reserved), a 'Nonce/Map-Version' field, and an 'Instance ID/
  Locator-Status-Bits' field.  The flags provide flexibility to define
  how the various fields are encoded.  Notably, Flag bit 5 is the last
  reserved bit in the LISP header.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |N|L|E|V|I|R|K|K|            Nonce/Map-Version                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Instance ID/Locator-Status-Bits               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 1: LISP Header

3.  LISP Generic Protocol Extension (LISP-GPE)

  This document defines two changes to the LISP header in order to
  support multiprotocol encapsulation: the introduction of the P-bit
  and the definition of a 'Next Protocol' field.  This document
  specifies the protocol behavior when the P-bit is set to 1; no
  changes are introduced when the P-bit is set to 0.  The LISP-GPE
  header is shown in Figure 2 and described below.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |N|L|E|V|I|P|K|K|        Nonce/Map-Version/Next Protocol        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Instance ID/Locator-Status-Bits               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 2: LISP-GPE Header

  P-Bit:  Flag bit 5 is defined as the Next Protocol bit.  The P-bit is
     set to 1 to indicate the presence of the 8-bit 'Next Protocol'
     field.

  If the P-bit is clear (0), the LISP header is bit-by-bit equivalent
  to the definition in [RFC9300].

  When the P-bit is set to 1, bits N, E, and V, and bits 8-23 of the
  'Nonce/Map-Version/Next Protocol' field MUST be set to zero on
  transmission and MUST be ignored on receipt.  Features equivalent to
  those that were implemented with bits N, E, and V in [RFC9300], such
  as Echo-Noncing and Map-Versioning, can be implemented by defining
  appropriate LISP-GPE shim headers.

  When the P-bit is set to 1, the LISP-GPE header is encoded as:


   0 x 0 0 x 1 x x
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |N|L|E|V|I|P|K|K|             0x0000            | Next Protocol |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Instance ID/Locator-Status-Bits               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: LISP-GPE with P-bit Set to 1

  Next Protocol:  When the P-bit is set to 1, the lower 8 bits of the
     first 32-bit word are used to carry a Next Protocol.  This 'Next
     Protocol' field contains the protocol of the encapsulated payload
     packet.

  This document defines the following Next Protocol values:

  0x00:  Reserved

  0x01:  IPv4

  0x02:  IPv6

  0x03:  Ethernet

  0x04:  Network Service Header (NSH) [RFC8300]

  0x05 to 0x7D:  Unassigned

  0x7E and 0x7F:  Experimentation and testing

  0x80 to 0xFD:  Unassigned (shim headers)

  0xFE, 0xFF:  Experimentation and testing (shim headers)

  The values are tracked in the IANA "LISP-GPE Next Protocol" registry,
  as described in Section 6.1.

  Next Protocol values 0x7E, 0x7F, 0xFE, and 0xFF are assigned for
  experimentation and testing, as per [RFC3692].

  Next Protocol values from 0x80 to 0xFD are assigned to protocols
  encoded as generic shim headers.  All shim protocols MUST use the
  header structure in Figure 4, which includes a 'Next Protocol' field.
  When shim headers are used with other protocols identified by Next
  Protocol values from 0x00 to 0x7F, all the shim headers MUST come
  first.

  Shim headers can be used to incrementally deploy new GPE features,
  keeping the processing of shim headers known to a given Tunnel Router
  (xTR) implementation in the 'fast' path (typically an Application-
  Specific Integrated Circuit (ASIC)) while punting the processing of
  the remaining new GPE features to the 'slow' path.

  Shim protocols MUST have the first 32 bits defined as:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |   Reserved    | Next Protocol |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                    Protocol-Specific Fields                   ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 4: Shim Header


  Where:

  Type:  This field identifies the different messages of this protocol.

  Length:  This field indicates the length, in 4-octet units, of this
     protocol message, not including the first 4 octets.

  Reserved:  The use of this field is reserved to the protocol defined
     in this message.

  Next Protocol:  This field contains the protocol of the encapsulated
     payload.  The values are tracked in the IANA "LISP-GPE Next
     Protocol" registry, as described in Section 6.1.

4.  Implementation and Deployment Considerations

4.1.  Applicability Statement

  LISP-GPE conforms, as a UDP-based encapsulation protocol, to the UDP
  usage guidelines specified in [RFC8085].  The applicability of these
  guidelines is dependent on the underlay IP network and the nature of
  the encapsulated payload.

  [RFC8085] outlines two applicability scenarios for UDP applications:
  1) the general Internet and 2) a controlled environment.  A
  controlled environment means a single administrative domain or
  adjacent set of cooperating domains.  A network in a controlled
  environment can be managed to operate under certain conditions,
  whereas, in the general Internet, this cannot be done.  Hence,
  requirements for a tunnel protocol operating under a controlled
  environment can be less restrictive than the requirements of the
  general Internet.

  The LISP-GPE scope of applicability is the same set of use cases
  covered by [RFC9300] for the LISP data plane protocol.  The common
  property of these use cases is a large set of cooperating entities
  seeking to communicate over the public Internet or other large
  underlay IP infrastructures while keeping the addressing and topology
  of the cooperating entities separate from the underlay and Internet
  topology, routing, and addressing.

  LISP-GPE is meant to be deployed in network environments operated by
  a single operator or adjacent set of cooperating network operators
  that fit with the definition of controlled environments in [RFC8085].

  For the purpose of this document, a Traffic-Managed Controlled
  Environment (TMCE), outlined in [RFC8086], is defined as an IP
  network that is traffic-engineered and/or otherwise managed (e.g.,
  via the use of traffic rate limiters) to avoid congestion.
  Significant portions of the text in this section are based on
  [RFC8086].

  It is the responsibility of the network operators to ensure that the
  guidelines/requirements in this section are followed as applicable to
  their LISP-GPE deployments.

4.2.  Congestion-Control Functionality

  LISP-GPE does not provide congestion-control functionality and relies
  on the payload protocol traffic for congestion control.  As such,
  LISP-GPE MUST be used with congestion-controlled traffic or within a
  network that is traffic managed to avoid congestion (TMCE).  An
  operator of a traffic-managed network (TMCE) may avoid congestion by
  careful provisioning of their networks, rate limiting of user data
  traffic, and traffic engineering according to path capacity.

  Keeping in mind the recommendation above, new encapsulated payloads,
  when registered with LISP-GPE, MUST be accompanied by a set of
  guidelines derived from Section 5 of [RFC9300].  Such new protocols
  should be designed for explicit congestion signals to propagate
  consistently from lower-layer protocols into IP.  Then, the IP
  internetwork layer can act as a portability layer to carry congestion
  notifications from non-IP-aware congested nodes up to the transport
  layer (L4).  By following the guidelines in [ENCAP-GUIDE], subnetwork
  designers can enable a Layer 2 protocol to participate in congestion
  control without dropping packets, via propagation of Explicit
  Congestion Notification (ECN) data [RFC3168] to receivers.

4.3.  UDP Checksum

  For IP payloads, Section 5.3 of [RFC9300] specifies how to handle UDP
  checksums, encouraging implementors to consider UDP checksum usage
  guidelines in Section 3.4 of [RFC8085] when it is desirable to
  protect UDP and LISP headers against corruption.

  In order to protect the integrity of LISP-GPE headers, options, and
  payloads (for example, to avoid misdelivery of payloads to different
  tenant systems in the case of data corruption), the outer UDP
  checksum SHOULD be used with LISP-GPE when transported over IPv4.
  The UDP checksum provides a statistical guarantee that a payload was
  not corrupted in transit.  These integrity checks are not strong from
  a coding or cryptographic perspective and are not designed to detect
  physical-layer errors or malicious modifications of the datagram (see
  Section 3.4 of [RFC8085]).  In deployments where such a risk exists,
  an operator SHOULD use additional data integrity mechanisms, such as
  those offered by IPsec.

  An operator MAY choose to disable a UDP checksum and use a zero
  checksum if LISP-GPE packet integrity is provided by other data
  integrity mechanisms, such as IPsec or additional checksums, or if
  one of the conditions in Section 4.3.1 (a, b, or c) is met.

4.3.1.  UDP Zero Checksum Handling with IPv6

  By default, a UDP checksum MUST be used when LISP-GPE is transported
  over IPv6.  A tunnel endpoint MAY be configured for use with a zero
  UDP checksum if additional requirements described in this section are
  met.

  When LISP-GPE is used over IPv6, a UDP checksum is used to protect
  IPv6 headers, UDP headers, and LISP-GPE headers and payloads from
  potential data corruption.  As such, by default, LISP-GPE MUST use a
  UDP checksum when transported over IPv6.  An operator MAY choose to
  configure to operate with a zero UDP checksum if operating in a
  traffic-managed controlled environment, as stated in Section 4.1, if
  one of the following conditions is met:

  a.  It is known that packet corruption is exceptionally unlikely
      (perhaps based on an operator's knowledge of equipment types in
      their underlay network), and the operator is willing to take the
      risk of undetected packet corruption.

  b.  It is determined through observational measurements (perhaps
      through historic or current traffic flows that use a non-zero
      checksum) that the level of packet corruption is tolerably low,
      and the operator is willing to take the risk of undetected
      corruption.

  c.  LISP-GPE payloads are carrying applications that are tolerant of
      misdelivered or corrupted packets (perhaps through higher-layer
      checksum validation and/or reliability through retransmission).

  In addition, LISP-GPE tunnel implementations using a zero UDP
  checksum MUST meet the following requirements:

  1.  Use of a UDP checksum over IPv6 MUST be the default configuration
      for all LISP-GPE tunnels.

  2.  If LISP-GPE is used with a zero UDP checksum over IPv6, then such
      xTR implementations MUST meet all the requirements specified in
      Section 4 of [RFC6936] and requirement 1 specified in Section 5
      of [RFC6936].

  3.  The Egress Tunnel Router (ETR) that decapsulates the packet
      SHOULD check that the source and destination IPv6 addresses are
      valid for the LISP-GPE tunnel that is configured to receive a
      zero UDP checksum and discard other packets that fail such
      checks.

  4.  The Ingress Tunnel Router (ITR) that encapsulates the packet MAY
      use different IPv6 source addresses for each LISP-GPE tunnel that
      uses zero UDP checksum mode in order to strengthen the
      decapsulator's check of the IPv6 source address (i.e., the same
      IPv6 source address is not to be used with more than one IPv6
      destination address, irrespective of whether that destination
      address is a unicast or multicast address).  When this is not
      possible, it is RECOMMENDED to use each source address for as few
      LISP-GPE tunnels that use a zero UDP checksum as is feasible.

  5.  Measures SHOULD be taken to prevent LISP-GPE traffic over IPv6
      with a zero UDP checksum from escaping into the general Internet.
      Examples of such measures include employing packet filters at the
      Proxy Egress Tunnel Router (PETR) and/or keeping logical or
      physical separation of the LISP network from networks in the
      general Internet.

  The above requirements do not change the requirements specified in
  [RFC6935], [RFC6936], or [RFC8200].

  The requirement to check the source IPv6 address in addition to the
  destination IPv6 address, plus the recommendation against the reuse
  of source IPv6 addresses among LISP-GPE tunnels, collectively provide
  some mitigation for the absence of UDP checksum coverage of the IPv6
  header.  A traffic-managed controlled environment that satisfies at
  least one of the three conditions listed at the beginning of this
  section provides additional assurance.

4.4.  DSCP, ECN, TTL, and 802.1Q

  When encapsulating IP (including over Ethernet) packets, [RFC2983]
  provides guidance for mapping packets that contain Differentiated
  Services Code Point (DSCP) information between inner and outer IP
  headers.  The Pipe model typically fits better with network
  virtualization.  The DSCP value on the tunnel header is set based on
  a policy (which may be a fixed value, one based on the inner traffic
  class, or some other mechanism for grouping traffic).  Some aspects
  of the Uniform model (which treats the inner and outer DSCP value as
  a single field by copying on ingress and egress) may also apply, such
  as the ability to remark the inner header on tunnel egress based on
  transit marking.  However, the Uniform model is not conceptually
  consistent with network virtualization, which seeks to provide strong
  isolation between encapsulated traffic and the physical network.

  [RFC6040] describes the mechanism for exposing ECN capabilities on IP
  tunnels and propagating congestion markers to the inner packets.
  This behavior MUST be followed for IP packets encapsulated in LISP-
  GPE.

  Though the Uniform model or the Pipe model could be used for TTL (or
  Hop Limit in the case of IPv6) handling when tunneling IP packets,
  the Pipe model is more aligned with network virtualization.
  [RFC2003] provides guidance on handling TTL between inner IP headers
  and outer IP tunnels; this model is more aligned with the Pipe model
  and is recommended for use with LISP-GPE for network-virtualization
  applications.

  When a LISP-GPE router performs Ethernet encapsulation, the inner
  802.1Q 3-bit Priority Code Point ('PCP') field [IEEE.802.1Q_2014] MAY
  be mapped from the encapsulated frame to the DSCP codepoint of the
  Differentiated Services ('DS') field defined in [RFC2474].

  When a LISP-GPE router performs Ethernet encapsulation, the inner-
  header 802.1Q VLAN Identifier (VID) [IEEE.802.1Q_2014] MAY be mapped
  to, or used to determine, the LISP 'Instance ID' (IID) field.

  Refer to Section 7 for considerations about the use of integrity
  protection for deployments, such as the public Internet, concerned
  with on-path attackers.

5.  Backward Compatibility

  LISP-GPE uses the same UDP destination port (4341) allocated to LISP.

  When encapsulating IP packets to a non-LISP-GPE-capable router, the
  P-bit MUST be set to 0.  That is, the encapsulation format defined in
  this document MUST NOT be sent to a router that has not indicated
  that it supports this specification, because such a router would
  ignore the P-bit (as described in [RFC9300]) and so would
  misinterpret the other LISP header fields, possibly causing
  significant errors.

5.1.  Detection of ETR Capabilities

  The discovery of xTR capabilities to support LISP-GPE is out of the
  scope of this document.  Given that the applicability domain of LISP-
  GPE is a traffic-managed controlled environment, ITR/ETR (xTR)
  configuration mechanisms may be used for this purpose.

6.  IANA Considerations


6.1.  LISP-GPE Next Protocol Registry

  IANA has created a registry called "LISP-GPE Next Protocol".  These
  are 8-bit values.  Next Protocol values in the table below are
  defined in this document.  New values are assigned under the
  Specification Required policy [RFC8126].  The protocols that are
  being assigned values do not themselves need to be IETF Standards
  Track protocols.

       +===============+=============================+===========+
       | Next Protocol | Description                 | Reference |
       +===============+=============================+===========+
       | 0x00          | Reserved                    | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x01          | IPv4                        | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x02          | IPv6                        | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x03          | Ethernet                    | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x04          | NSH                         | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x05-0x7D     | Unassigned                  |           |
       +---------------+-----------------------------+-----------+
       | 0x7E-0x7F     | Experimentation and testing | RFC 9305  |
       +---------------+-----------------------------+-----------+
       | 0x80-0xFD     | Unassigned (shim headers)   |           |
       +---------------+-----------------------------+-----------+
       | 0xFE-0xFF     | Experimentation and testing | RFC 9305  |
       |               | (shim headers)              |           |
       +---------------+-----------------------------+-----------+

                                 Table 1

7.  Security Considerations

  LISP-GPE security considerations are similar to the LISP security
  considerations and mitigation techniques documented in [RFC7835].

  As is the case for many encapsulations that use optional extensions,
  LISP-GPE is subject to on-path adversaries that can make arbitrary
  modifications to the packet (including the P-bit) to change or remove
  any part of the payload, or claim to encapsulate any protocol payload
  type.  Typical integrity protection mechanisms (such as IPsec) SHOULD
  be used in combination with LISP-GPE by those protocol extensions
  that want to protect against on-path attackers.

  With LISP-GPE, issues such as data plane spoofing, flooding, and
  traffic redirection may depend on the particular protocol payload
  encapsulated.

8.  References

8.1.  Normative References

  [IEEE.802.1Q_2014]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Bridges and Bridged Networks", IEEE Std 802.1Q-
             2014, December 2014,
             <https://ieeexplore.ieee.org/document/6991462>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC6040]  Briscoe, B., "Tunnelling of Explicit Congestion
             Notification", RFC 6040, DOI 10.17487/RFC6040, November
             2010, <https://www.rfc-editor.org/info/rfc6040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC9300]  Farinacci, D., Fuller, V., Meyer, D., Lewis, D., and A.
             Cabellos, Ed., "The Locator/ID Separation Protocol
             (LISP)", RFC 9300, DOI 10.17487/RFC9300, October 2022,
             <https://www.rfc-editor.org/info/rfc9300>.

8.2.  Informative References

  [ENCAP-GUIDE]
             Briscoe, B. and J. Kaippallimalil, "Guidelines for Adding
             Congestion Notification to Protocols that Encapsulate IP",
             Work in Progress, Internet-Draft, draft-ietf-tsvwg-ecn-
             encap-guidelines-17, 11 July 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-
             ecn-encap-guidelines-17>.

  [RFC2003]  Perkins, C., "IP Encapsulation within IP", RFC 2003,
             DOI 10.17487/RFC2003, October 1996,
             <https://www.rfc-editor.org/info/rfc2003>.

  [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,
             "Definition of the Differentiated Services Field (DS
             Field) in the IPv4 and IPv6 Headers", RFC 2474,
             DOI 10.17487/RFC2474, December 1998,
             <https://www.rfc-editor.org/info/rfc2474>.

  [RFC2983]  Black, D., "Differentiated Services and Tunnels",
             RFC 2983, DOI 10.17487/RFC2983, October 2000,
             <https://www.rfc-editor.org/info/rfc2983>.

  [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
             of Explicit Congestion Notification (ECN) to IP",
             RFC 3168, DOI 10.17487/RFC3168, September 2001,
             <https://www.rfc-editor.org/info/rfc3168>.

  [RFC3692]  Narten, T., "Assigning Experimental and Testing Numbers
             Considered Useful", BCP 82, RFC 3692,
             DOI 10.17487/RFC3692, January 2004,
             <https://www.rfc-editor.org/info/rfc3692>.

  [RFC6935]  Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and
             UDP Checksums for Tunneled Packets", RFC 6935,
             DOI 10.17487/RFC6935, April 2013,
             <https://www.rfc-editor.org/info/rfc6935>.

  [RFC6936]  Fairhurst, G. and M. Westerlund, "Applicability Statement
             for the Use of IPv6 UDP Datagrams with Zero Checksums",
             RFC 6936, DOI 10.17487/RFC6936, April 2013,
             <https://www.rfc-editor.org/info/rfc6936>.

  [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
             L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
             eXtensible Local Area Network (VXLAN): A Framework for
             Overlaying Virtualized Layer 2 Networks over Layer 3
             Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
             <https://www.rfc-editor.org/info/rfc7348>.

  [RFC7835]  Saucez, D., Iannone, L., and O. Bonaventure, "Locator/ID
             Separation Protocol (LISP) Threat Analysis", RFC 7835,
             DOI 10.17487/RFC7835, April 2016,
             <https://www.rfc-editor.org/info/rfc7835>.

  [RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
             Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
             March 2017, <https://www.rfc-editor.org/info/rfc8085>.

  [RFC8086]  Yong, L., Ed., Crabbe, E., Xu, X., and T. Herbert, "GRE-
             in-UDP Encapsulation", RFC 8086, DOI 10.17487/RFC8086,
             March 2017, <https://www.rfc-editor.org/info/rfc8086>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

  [VXLAN-GPE]
             Brockners, F., Bhandari, S., Govindan, V., Pignataro, C.,
             Gredler, H., Leddy, J., Youell, S., Mizrahi, T., Kfir, A.,
             Gafni, B., Lapukhov, P., and M. Spiegel, "VXLAN-GPE
             Encapsulation for In-situ OAM Data", Work in Progress,
             Internet-Draft, draft-brockners-ippm-ioam-vxlan-gpe-03, 4
             November 2019, <https://datatracker.ietf.org/doc/html/
             draft-brockners-ippm-ioam-vxlan-gpe-03>.

  [VXLAN-LISP]
             Lemon, J., Ed., Maino, F., Smith, M., and A. Isaac, "Group
             Policy Encoding with VXLAN-GPE and LISP-GPE", Work in
             Progress, Internet-Draft, draft-lemon-vxlan-lisp-gpe-gbp-
             02, 30 April 2019, <https://datatracker.ietf.org/doc/html/
             draft-lemon-vxlan-lisp-gpe-gbp-02>.

Acknowledgments

  A special thank you goes to Dino Farinacci for his guidance and
  detailed review.  Thanks to Tom Herbert for the suggestion to assign
  codepoints for experimentations and testing.

Contributors

  The editor of this document would like to thank and recognize the
  following coauthors and contributors for their contributions.  These
  coauthors and contributors provided invaluable concepts and content
  for this document's creation.

  Darrel Lewis
  Cisco Systems, Inc.


  Fabio Maino
  Cisco Systems, Inc.


  Paul Quinn
  Cisco Systems, Inc.


  Michael Smith
  Cisco Systems, Inc.


  Navindra Yadav
  Cisco Systems, Inc.


  Larry Kreeger


  Jennifer Lemon
  Broadcom


  Puneet Agarwal
  Innovium


Authors' Addresses

  Fabio Maino (editor)
  Cisco Systems
  San Jose, CA
  United States of America
  Email: [email protected]


  Jennifer Lemon
  Email: [email protected]


  Puneet Agarwal
  Innovium
  United States of America
  Email: [email protected]


  Darrel Lewis
  Cisco Systems
  San Jose, CA
  United States of America
  Email: [email protected]


  Michael Smith
  Cisco Systems
  San Jose, CA 95134
  United States of America
  Email: [email protected]