Internet Engineering Task Force (IETF)                       Y. Wei, Ed.
Request for Comments: 9263                               ZTE Corporation
Category: Standards Track                                       U. Elzur
ISSN: 2070-1721                                                    Intel
                                                               S. Majee
                                                 Individual Contributor
                                                           C. Pignataro
                                                                  Cisco
                                                        D. Eastlake 3rd
                                                 Futurewei Technologies
                                                            August 2022


 Network Service Header (NSH) Metadata Type 2 Variable-Length Context
                               Headers

Abstract

  Service Function Chaining (SFC) uses the Network Service Header (NSH)
  (RFC 8300) to steer and provide context metadata (MD) with each
  packet.  Such metadata can be of various types, including MD Type 2,
  consisting of Variable-Length Context Headers.  This document
  specifies several such Context Headers that can be used within a
  Service Function Path (SFP).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9263.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions Used in This Document
    2.1.  Terminology
    2.2.  Requirements Language
  3.  NSH MD Type 2 Format
  4.  NSH MD Type 2 Context Headers
    4.1.  Forwarding Context
    4.2.  Tenant ID
    4.3.  Ingress Network Node Information
    4.4.  Ingress Network Source Interface
    4.5.  Flow ID
    4.6.  Source and/or Destination Groups
    4.7.  Policy ID
  5.  Security Considerations
    5.1.  Forwarding Context
    5.2.  Tenant ID
    5.3.  Ingress Network Node Information
    5.4.  Ingress Node Source Interface
    5.5.  Flow ID
    5.6.  Source and/or Destination Groups
    5.7.  Policy ID
  6.  IANA Considerations
    6.1.  MD Type 2 Context Types
    6.2.  Forwarding Context Types
    6.3.  Flow ID Context Types
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Acknowledgments
  Authors' Addresses

1.  Introduction

  The Network Service Header (NSH) [RFC8300] is the Service Function
  Chaining (SFC) encapsulation that supports the SFC architecture
  [RFC7665].  As such, the NSH provides the following key elements:

  1.  Service Function Path (SFP) identification

  2.  indication of location within an SFP

  3.  optional, per-packet metadata (fixed-length or variable-length)

  [RFC8300] further defines two metadata formats (MD Types): 1 and 2.
  MD Type 1 defines the fixed-length, 16-octet metadata, whereas MD
  Type 2 defines a variable-length context format for metadata.  This
  document defines several common metadata Context Headers for use
  within NSH MD Type 2.  These supplement the Subscriber Identifier and
  Performance Policy MD Type 2 metadata Context Headers specified in
  [RFC8979].

  This document does not address metadata usage, updating/chaining of
  metadata, or other SFP functions.  Those topics are described in
  [RFC8300].

2.  Conventions Used in This Document

2.1.  Terminology

  This document uses the terminology defined in the SFC architecture
  [RFC7665] and the NSH [RFC8300].

2.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  NSH MD Type 2 Format

  An NSH is composed of a 4-octet Base Header, a 4-octet Service Path
  Header, and optional Context Headers.  The Base Header identifies the
  MD Type in use:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 1: NSH Base Header

  Please refer to the NSH [RFC8300] for a detailed header description.

  When the Base Header specifies MD Type = 0x2, zero or more Variable-
  Length Context Headers MAY be added, immediately following the
  Service Path Header.  Figure 2 below depicts the format of the
  Context Header as defined in Section 2.5.1 of [RFC8300].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Metadata Class       |      Type     |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Variable-Length Metadata                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 2: NSH Variable-Length Context Headers

4.  NSH MD Type 2 Context Headers

  [RFC8300] specifies Metadata Class 0x0000 as IETF Base NSH MD Class.
  In this document, metadata types are defined for the IETF Base NSH MD
  Class.  The Context Headers specified in the subsections below are as
  follows:

  1.  Forwarding Context

  2.  Tenant ID

  3.  Ingress Network Node Information

  4.  Ingress Node Source Interface

  5.  Flow ID

  6.  Source and/or Destination Groups

  7.  Policy ID

4.1.  Forwarding Context

  This metadata context carries a network forwarding context, used for
  segregation and forwarding scope.  Forwarding context can take
  several forms depending on the network environment, for example,
  Virtual eXtensible Local Area Network (VXLAN) / Generic Protocol
  Extension for VXLAN (VXLAN-GPE) Virtual Network Identifier (VNID),
  VPN Routing and Forwarding (VRF) identification, or VLAN.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x04  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x0 |             Reserved          |        VLAN ID        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 3: VLAN Forwarding Context

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x04  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x1 |Resv   |     Service VLAN ID   |    Customer VLAN ID   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 4: QinQ Forwarding Context

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x04  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x2 |   Reserved    |              MPLS VPN Label           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 5: MPLS VPN Forwarding Context

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x04  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x3 | Resv  |            Virtual Network Identifier         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 6: VNI Forwarding Context

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x04  |U|  Length = 8 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x4 |             Reserved                                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Session ID                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 7: Session ID Forwarding Context

  The fields are described as follows:

  Context Type (CT):  This 4-bit field that defines the interpretation
     of the Forwarding Context field.  Please see the IANA
     considerations in Section 6.2.  This document defines these CT
     values:

     0x0:  12-bit VLAN identifier [IEEE.802.1Q_2018].  See Figure 3.

     0x1:  24-bit double tagging identifiers.  A service VLAN tag
           followed by a customer VLAN tag [IEEE.802.1Q_2018].  The two
           VLAN IDs are concatenated and appear in the same order that
           they appeared in the payload.  See Figure 4.

     0x2:  20-bit MPLS VPN label [RFC3032] [RFC4364].  See Figure 5.

     0x3:  24-bit virtual network identifier (VNI) [RFC8926].  See
           Figure 6.

     0x4:  32-bit Session ID [RFC3931].  This is called Key in GRE
           [RFC2890].  See Figure 7.

  Reserved (Resv):  These bits in the context fields MUST be sent as
     zero and ignored on receipt.

4.2.  Tenant ID

  Tenant identification is often used for segregation within a multi-
  tenant environment.  Orchestration system-generated Tenant IDs are an
  example of such data.  This Context Header carries the value of the
  Tenant ID.  Virtual Tenant Network (VTN) [OpenDaylight-VTN] is an
  application that provides multi-tenant virtual networks on a
  Software-Defined Networking (SDN) controller.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x05  |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                         Tenant ID                             ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 8: Tenant ID List

  The fields are described as follows:

  Length:  Indicates the length of the Tenant ID in octets (see
     Section 2.5.1 of [RFC8300]).

  Tenant ID:  Represents an opaque value pointing to orchestration
     system-generated Tenant ID.  The structure and semantics of this
     field are specific to the operator's deployment across its
     operational domain and are specified and assigned by an
     orchestration function.  The specifics of that orchestration-based
     assignment are outside the scope of this document.

4.3.  Ingress Network Node Information

  This Context Header carries a Node ID of the network node at which
  the packet entered the SFC-enabled domain.  This node will
  necessarily be a classifier [RFC7665].  In cases where the Service
  Path Identifier (SPI) identifies the ingress node, this Context
  Header is superfluous.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x06  |U|   Length    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                        Node ID                                ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 9: Ingress Network Node ID

  The fields are described as follows:

  Length:  Indicates the length of the Node ID in octets (see
     Section 2.5.1 of [RFC8300]).

  Node ID:  Represents an opaque value of the ingress network Node ID.
     The structure and semantics of this field are deployment specific.
     For example, Node ID may be a 4-octet IPv4 address Node ID, a
     16-octet IPv6 address Node ID, a 6-octet MAC address, an 8-octet
     MAC address (64-bit Extended Unique Identifier (EUI-64)), etc.

4.4.  Ingress Network Source Interface

  This context identifies the ingress interface of the ingress network
  node.  The l2vlan (135), l3ipvlan (136), ipForward (142), and mpls
  (166) in [IANAifType] are examples of source interfaces.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x07  |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                     Source Interface                          ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 10: Ingress Network Source Interface

  The fields are described as follows:

  Length:  Indicates the length of the Source Interface in octets (see
     Section 2.5.1 of [RFC8300]).

  Source Interface:  Represents an opaque value of the identifier of
     the ingress interface of the ingress network node.

4.5.  Flow ID

  Flow ID provides a field in NSH MD Type 2 to label packets belonging
  to the same flow.  For example, [RFC8200] defines IPv6 Flow Label as
  Flow ID.  Another example of Flow ID is how [RFC6790] defines an
  entropy label that is generated based on flow information in the MPLS
  network.  Absence of this field or a value of zero denotes that
  packets have not been labeled with a Flow ID.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x08  |U| Length = 4  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x0 |   Reserved    |           IPv6 Flow ID                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 11: IPv6 Flow ID

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x08  |U| Length = 4  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x1 |   Reserved    |        MPLS entropy label             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 12: MPLS Entropy Label

  The fields are described as follows:

  Length:  Indicates the length of the Flow ID in octets (see
     Section 2.5.1 of [RFC8300]).  For example, the IPv6 Flow Label in
     [RFC8200] is 20 bits long.  An entropy label in the MPLS network
     in [RFC6790] is also 20 bits long.

  Context Type (CT):  This 4-bit field that defines the interpretation
     of the Flow ID field.  Please see the IANA considerations in
     Section 6.3.  This document defines these CT values:

     0x0:  20-bit IPv6 Flow Label in [RFC8200].  See Figure 11.

     0x1:  20-bit entropy label in the MPLS network in [RFC6790].  See
           Figure 12.

  Reserved:  These bits in the context fields MUST be sent as zero and
     ignored on receipt.

4.6.  Source and/or Destination Groups

  Intent-based systems can use this data to express the logical
  grouping of source and/or destination objects.  [OpenStack] and
  [OpenDaylight] provide examples of such a system.  Each is expressed
  as a 32-bit opaque object.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x09  |U|  Length=8   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Source Group                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Destination Group                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 13: Source/Destination Groups

  If there is no group information specified for the Source Group or
  Destination Group field, the field MUST be sent as zero and ignored
  on receipt.

4.7.  Policy ID

  Traffic handling policies are often referred to by a system-generated
  identifier, which is then used by the devices to look up the policy's
  content locally.  For example, this identifier could be an index to
  an array, a lookup key, or a database ID.  The identifier allows
  enforcement agents or services to look up the content of their part
  of the policy.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = 0x0A  |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                           Policy ID                           ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 14: Policy ID

  The fields are described as follows:

  Length:  Indicates the length of the Policy ID in octets (see
     Section 2.5.1 of [RFC8300]).

  Policy ID:  Represents an opaque value of the Policy ID.

  This Policy ID is a general Policy ID, essentially a key to allow
  Service Functions (SFs) to know which policies to apply to packets.
  Those policies generally will not have much to do with performance
  but rather with what specific treatment to apply.  It may, for
  example, select a URL filter data set for a URL filter or select a
  video transcoding policy in a transcoding SF.  The Performance Policy
  ID in [RFC8979] is described there as having very specific use and,
  for example, says that fully controlled SFPs would not use it.  The
  Policy ID in this document is for cases not covered by [RFC8979].

5.  Security Considerations

  A misbehaving node from within the SFC-enabled domain may alter the
  content of the Context Headers, which may lead to service disruption.
  Such an attack is not unique to the Context Headers defined in this
  document.  Measures discussed in Section 8 of [RFC8300] describes the
  general security considerations for protecting the NSH.  [RFC9145]
  specifies methods of protecting the integrity of the NSH metadata.
  If the NSH includes the Message Authentication Code (MAC) and
  Encrypted Metadata Context Header [RFC9145], the authentication of
  the packet MUST be verified before using any data.  If the
  verification fails, the receiver MUST stop processing the Variable-
  Length Context Headers and notify an operator.

  The security and privacy considerations for the 7 types of Context
  Headers specified above are discussed below.  Since NSH-ignorant SFs
  will never see the NSH, then even if they are malign, they cannot
  compromise security or privacy based on the NSH or any of these
  Context Headers; however, they could cause compromise based on the
  rest of the packet.  To the extent that any of these headers are
  included when they would be unneeded or have no effect, they provide
  a covert channel for the entity adding the Context Header to
  communicate a limited amount of arbitrary information to downstream
  entities within the SFC-enabled domain.

5.1.  Forwarding Context

  All of the Forwarding Context variants specified in this document
  (those with CT values between 0 and 4) merely repeat a field that is
  available in the packet encapsulated by the NSH.  These variants
  repeat that field in the NSH for convenience.  Thus, there are no
  special security or privacy considerations in these cases.  Any
  future new values of CT for the Forwarding Context must specify the
  security and privacy considerations for those extensions.

5.2.  Tenant ID

  The Tenant ID indicates the tenant to which traffic belongs and might
  be used to tie together and correlate packets for a tenant that some
  monitoring function could not otherwise group, especially if other
  possible identifiers were being randomized.  As such, it may reduce
  security by facilitating traffic analysis but only within the SFC-
  enabled domain where this Context Header is present in packets.

5.3.  Ingress Network Node Information

  The SFC-enabled domain manager normally operates the initial ingress/
  classifier node and is thus potentially aware of the information
  provided by this Context Header.  Furthermore, in many cases, the SPI
  that will be present in the NSH identifies or closely constrains the
  ingress node.  Also, in most cases, it is anticipated that many
  entities will be sending packets into an SFC-enabled domain through
  the same ingress node.  Thus, under most circumstances, this Context
  Header is expected to weaken security and privacy to only a minor
  extent and only within the SFC-enabled domain.

5.4.  Ingress Node Source Interface

  This Context Header is likely to be meaningless unless the Ingress
  Network Node Information Context Header is also present.  When that
  node information header is present, this source interface header
  provides a more fine-grained view of the source by identifying not
  just the initial ingress/classifier node but also the port of that
  node on which the data arrived.  Thus, it is more likely to identify
  a specific source entity or at least to more tightly constrain the
  set of possible source entities than just the node information
  header.  As a result, inclusion of this Context Header with the node
  information Context Header is potentially a greater threat to
  security and privacy than the node information header alone, but this
  threat is still constrained to the SFC-enabled domain.

5.5.  Flow ID

  The variations of this Context Header specified in this document
  simply repeat fields already available in the packet and thus have no
  special security or privacy considerations.  Any future new values of
  CT for the Flow ID must specify the security and privacy
  considerations for those extensions.

5.6.  Source and/or Destination Groups

  This Context Header provides additional information that might help
  identify the source and/or destination of packets.  Depending on the
  granularity of the groups, it could either (1) distinguish packets as
  part of flows from and/or to objects where those flows could not
  otherwise be easily distinguished but appear to be part of one or
  fewer flows or (2) group packet flows that are from and/or to an
  object where those flows could not otherwise be easily grouped for
  analysis or another purpose.  Thus, the presence of this Context
  Header with non-zero source and/or destination groups can, within the
  SFC-enabled domain, erode security and privacy to an extent that
  depends on the details of the grouping.

5.7.  Policy ID

  This Context Header carries an identifier that nodes in the SFC-
  enabled domain can use to look up policy to potentially influence
  their actions with regard to the packet carrying this header.  If
  there are no such decisions regarding their actions, then the header
  should not be included.  If there are such decisions, the information
  on which they are to be based needs to be included somewhere in the
  packet.  There is no reason for inclusion in this Context Header to
  have any security or privacy considerations that would not apply to
  any other plaintext way of including such information.  It may
  provide additional information to help identify a flow of data for
  analysis.

6.  IANA Considerations

6.1.  MD Type 2 Context Types

  IANA has assigned the following types (Table 1) from the "NSH IETF-
  Assigned Optional Variable-Length Metadata Types" registry available
  at [IANA-NSH-MD2].

        +=======+==================================+===========+
        | Value |           Description            | Reference |
        +=======+==================================+===========+
        | 0x04  |        Forwarding Context        | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x05  |            Tenant ID             | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x06  |     Ingress Network Node ID      | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x07  |    Ingress Network Interface     | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x08  |             Flow ID              | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x09  | Source and/or Destination Groups | RFC 9263  |
        +-------+----------------------------------+-----------+
        | 0x0A  |            Policy ID             | RFC 9263  |
        +-------+----------------------------------+-----------+

                          Table 1: Type Values

6.2.  Forwarding Context Types

  IANA has created a new subregistry for "Forwarding Context Types" at
  [IANA-NSH-MD2] as follows.

  The registration policy is IETF Review.

    +=========+=========================================+===========+
    | Value   |               Description               | Reference |
    +=========+=========================================+===========+
    | 0x0     |          12-bit VLAN identifier         | RFC 9263  |
    +---------+-----------------------------------------+-----------+
    | 0x1     |    24-bit double tagging identifiers    | RFC 9263  |
    +---------+-----------------------------------------+-----------+
    | 0x2     |          20-bit MPLS VPN label          | RFC 9263  |
    +---------+-----------------------------------------+-----------+
    | 0x3     | 24-bit virtual network identifier (VNI) | RFC 9263  |
    +---------+-----------------------------------------+-----------+
    | 0x4     |            32-bit Session ID            | RFC 9263  |
    +---------+-----------------------------------------+-----------+
    | 0x5-0xE |                Unassigned               |           |
    +---------+-----------------------------------------+-----------+
    | 0xF     |                 Reserved                | RFC 9263  |
    +---------+-----------------------------------------+-----------+

                    Table 2: Forwarding Context Types

6.3.  Flow ID Context Types

  IANA has created a new subregistry for "Flow ID Context Types" at
  [IANA-NSH-MD2] as follows.

  The registration policy is IETF Review.

   +=========+==========================================+===========+
   | Value   |               Description                | Reference |
   +=========+==========================================+===========+
   | 0x0     |          20-bit IPv6 Flow Label          | RFC 9263  |
   +---------+------------------------------------------+-----------+
   | 0x1     | 20-bit entropy label in the MPLS network | RFC 9263  |
   +---------+------------------------------------------+-----------+
   | 0x2-0xE |                Unassigned                |           |
   +---------+------------------------------------------+-----------+
   | 0xF     |                 Reserved                 | RFC 9263  |
   +---------+------------------------------------------+-----------+

                     Table 3: Flow ID Context Types

7.  References

7.1.  Normative References

  [IANA-NSH-MD2]
             IANA, "Network Service Header (NSH) Parameters",
             <https://www.iana.org/assignments/nsh>.

  [IEEE.802.1Q_2018]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Network -- Bridges and Bridged Networks", July 2018,
             <https://ieeexplore.ieee.org/document/8403927>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3931]  Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
             "Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
             RFC 3931, DOI 10.17487/RFC3931, March 2005,
             <https://www.rfc-editor.org/info/rfc3931>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

  [RFC9145]  Boucadair, M., Reddy.K, T., and D. Wing, "Integrity
             Protection for the Network Service Header (NSH) and
             Encryption of Sensitive Context Headers", RFC 9145,
             DOI 10.17487/RFC9145, December 2021,
             <https://www.rfc-editor.org/info/rfc9145>.

7.2.  Informative References

  [IANAifType]
             IANA, "IANAifType-MIB DEFINITIONS", 2021,
             <https://www.iana.org/assignments/ianaiftype-mib>.

  [OpenDaylight]
             OpenDaylight, "Group Based Policy User Guide", 2021,
             <https://docs.opendaylight.org/en/stable-fluorine/user-
             guide/group-based-policy-user-
             guide.html?highlight=group%20policy#>.

  [OpenDaylight-VTN]
             OpenDaylight, "OpenDaylight VTN", 2021, <https://nexus.ope
             ndaylight.org/content/sites/site/org.opendaylight.docs/mas
             ter/userguide/manuals/userguide/bk-user-guide/
             content/_vtn.html>.

  [OpenStack]
             OpenStack, "GroupBasedPolicy", 2021,
             <https://wiki.openstack.org/wiki/GroupBasedPolicy>.

  [RFC2890]  Dommety, G., "Key and Sequence Number Extensions to GRE",
             RFC 2890, DOI 10.17487/RFC2890, September 2000,
             <https://www.rfc-editor.org/info/rfc2890>.

  [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
             Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
             Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
             <https://www.rfc-editor.org/info/rfc3032>.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
             2006, <https://www.rfc-editor.org/info/rfc4364>.

  [RFC6790]  Kompella, K., Drake, J., Amante, S., Henderickx, W., and
             L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
             RFC 6790, DOI 10.17487/RFC6790, November 2012,
             <https://www.rfc-editor.org/info/rfc6790>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

  [RFC8926]  Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed.,
             "Geneve: Generic Network Virtualization Encapsulation",
             RFC 8926, DOI 10.17487/RFC8926, November 2020,
             <https://www.rfc-editor.org/info/rfc8926>.

  [RFC8979]  Sarikaya, B., von Hugo, D., and M. Boucadair, "Subscriber
             and Performance Policy Identifier Context Headers in the
             Network Service Header (NSH)", RFC 8979,
             DOI 10.17487/RFC8979, February 2021,
             <https://www.rfc-editor.org/info/rfc8979>.

Acknowledgments

  The authors would like to thank Paul Quinn, Behcet Sarikaya, Dirk von
  Hugo, Mohamed Boucadair, Gregory Mirsky, and Joel Halpern for
  providing invaluable concepts and content for this document.

Authors' Addresses

  Yuehua Wei (editor)
  ZTE Corporation
  No.50, Software Avenue
  Nanjing
  210012
  China
  Email: [email protected]


  Uri Elzur
  Intel
  Email: [email protected]


  Sumandra Majee
  Individual Contributor
  Email: [email protected]


  Carlos Pignataro
  Cisco
  Email: [email protected]


  Donald E. Eastlake, 3rd
  Futurewei Technologies
  2386 Panoramic Circle
  Apopka, FL 32703
  United States of America
  Phone: +1-508-333-2270
  Email: [email protected]