Network Working Group                                                ISO
Request for Comments: 926                                  December 1984



   Protocol for Providing the Connectionless-Mode Network Services

                        (Informally - ISO IP)

                             ISO DIS 8473

Status of this Memo:

This document is distributed as an RFC for information only.  It does
not specify a standard for the ARPA-Internet.  Distribution of this
memo is unlimited.

Note:

This document has been prepared by retyping the text of ISO DIS 8473 of
May 1984, which is currently undergoing voting within ISO as a Draft
International Standard (DIS).  Although this RFC has been reviewed
after typing, and is believed to be substantially correct, it is
possible that typographic errors not present in the ISO document have
been overlooked.

Alex McKenzie
BBN





RFC 926                                                    December 1984





RFC 926                                                    December 1984


                          TABLE OF CONTENTS

1   SCOPE AND FIELD OF APPLICATION........................ 2

2   REFERENCES............................................ 3

3   DEFINITIONS........................................... 4
3.1   Reference Model Definitions......................... 4
3.2   Service Conventions Definitions..................... 4
3.3   Network Layer Architecture Definitions.............. 4
3.4   Network Layer Addressing Definitions................ 5
3.5   Additional Definitions.............................. 5

4   SYMBOLS AND ABBREVIATIONS............................. 7
4.1   Data Units.......................................... 7
4.2   Protocol Data Units................................. 7
4.3   Protocol Data Unit Fields........................... 7
4.4   Parameters.......................................... 8
4.5   Miscellaneous....................................... 8

5   OVERVIEW OF THE PROTOCOL.............................. 9
5.1   Internal Organization of the Network Layer.......... 9
5.2   Subsets of the Protocol............................. 9
5.3   Addressing......................................... 10
5.4   Service Provided by the Network Layer.............. 10
5.5   Service Assumed from the Subnetwork Service
   Provider.............................................. 11
5.5.1   Subnetwork Addresses............................. 12
5.5.2   Subnetwork Quality of Service.................... 12
5.5.3   Subnetwork User Data............................. 13
5.5.4   Subnetwork Dependent Convergence Functions....... 13
5.6   Service Assumed from Local Evironment.............. 14

6   PROTOCOL FUNCTIONS................................... 16
6.1   PDU Composition Function........................... 16
6.2   PDU Decomposition Function......................... 17
6.3   Header Format Analysis Function.................... 17
6.4   PDU Lifetime Control Function...................... 18
6.5   Route PDU Function................................. 18
6.6   Forward PDU Function............................... 19
6.7   Segmentation Function.............................. 19
6.8   Reassembly Function................................ 20
6.9   Discard PDU Function............................... 21






ISO DIS 8473 (May 1984)                                         [Page i]





RFC 926                                                    December 1984


6.10   Error Reporting Function.......................... 22
6.10.1   Overview........................................ 22
6.10.2   Requirements.................................... 23
6.10.3   Processing of Error Reports..................... 24
6.11   PDU Header Error Detection........................ 25
6.12   Padding Function.................................. 26
6.13   Security.......................................... 26
6.14   Source Routing Function........................... 27
6.15   Record Route Function............................. 28
6.16   Quality of Service Maintenance Function........... 29
6.17   Classification of Functions....................... 29

7   STRUCTURE AND ENCODING OF PDUS....................... 32
7.1   Structure.......................................... 32
7.2   Fixed Part......................................... 34
7.2.1   General.......................................... 34
7.2.2   Network Layer Protocol Identifier................ 34
7.2.3   Length Indicator................................. 35
7.2.4   Version/Protocol Identifier Extension............ 35
7.2.5   PDU Lifetime..................................... 35
7.2.6   Flags............................................ 36
7.2.6.1   Segmentation Permitted and More Segments Flags. 36
7.2.6.2   Error Report Flag.............................. 37
7.2.7   Type Code........................................ 37
7.2.8   PDU Segment Length............................... 37
7.2.9   PDUChecksum...................................... 38
7.3   Address Part....................................... 38
7.3.1   General.......................................... 38
7.3.1.1     Destination and Source Address Information... 39

7.4   Segmentation Part.................................. 40
7.4.1   Data Unit Identifier............................. 41
7.4.2   Segment Offset................................... 41
7.4.3   PDU Total Length................................. 41
7.5   Options Part....................................... 41
7.5.1   General.......................................... 41
7.5.2   Padding.......................................... 43
7.5.3   Security......................................... 43
7.5.4   Source Routing................................... 44
7.5.5   Recording of Route............................... 45
7.5.6   Quality of Service Maintenance................... 46
7.6   Priority........................................... 47







ISO DIS 8473 (May 1984)                                        [Page ii]





RFC 926                                                    December 1984


7.7   Data Part.......................................... 47
7.8   Data (DT) PDU...................................... 49
7.8.1   Structure........................................ 49
7.8.1.1   Fixed Part..................................... 50
7.8.1.2   Addresses...................................... 50
7.8.1.3   Segmentation................................... 50
7.8.1.4   Options........................................ 50
7.8.1.5   Data........................................... 50
7.9   Inactive Network Layer Protocol.................... 51
7.9.1   Network Layer Protocol Id........................ 51
7.9.2   Data Field....................................... 51
7.10   Error Report PDU (ER)............................. 52
7.10.1   Structure....................................... 52
7.10.1.1   Fixed Part.................................... 53
7.10.1.2   Addresses..................................... 53
7.10.1.3   Segmentation.................................. 53
7.10.1.4   Options....................................... 54
7.10.1.5   Reason for Discard............................ 54
7.10.1.6   Error Report Data Field....................... 55

8   FORMAL DESCRIPTION................................... 56
8.1   Values of the State Variable....................... 57
8.2   Atomic Events...................................... 57
8.2.1   N.UNITDATA_request and N.UNITDATA_indication..... 57
8.2.2   SN.UNITDATA_request and SN.UNITDATA_indication... 58
8.2.3   TIMER Atomic Events.............................. 59
8.3   Operation of the Finite State Automation........... 59
8.3.1   Type and Constant Definitions.................... 61
8.3.2   Interface Definitions............................ 65
8.3.3   Formal Machine Definition........................ 67

9   CONFORMANCE.......................................... 84
9.1   Provision of Functions for Conformance............. 84
















ISO DIS 8473 (May 1984)                                       [Page iii]





RFC 926                                                    December 1984



















































ISO DIS 8473 (May 1984)                                        [Page iv]





RFC 926                                                    December 1984


INTRODUCTION

This Protocol is one of a set of International Standards produced to
facilitate the interconnection of open systems. The set of standards
covers the services and protocols required to achieve such
interconnection.

This Protocol Standard is positioned with respect to other related
standards by the layers defined in the Reference Model for Open Systems
Interconnection (ISO 7498). In particular, it is a protocol of the
Network Layer. The Protocol herein described is a Subnetwork
Independent Convergence Protocol combined with relay and routing
functions as described in the Internal Organization of the Network
Layer (ISO iiii). This Protocol provides the connectionless-mode
Network Service as defined in ISO 8348/DAD1, Addendum to the Network
Service Definition Covering Connectionless-mode Transmission, between
Network Service users and/or Network Layer relay systems.

The interrelationship of these standards is illustrated in Figure 0-1
below:

     ______________OSI Network Service Definition______________
                   |                             ^
                                                 |
                   |                             |
        Protocol     Reference to aims __________|
                   |

     Specification | Reference to assumptions ___
                                                 |
                   |                             |
                                                 |
                   |                             |
                                                 |
                   |                             v
     ______________Subnetwork Service Definition(s) ___________

             Figure 0-1.  Interrelationship of Standards











ISO DIS 8473 (May 1984)                                         [Page 1]





RFC 926                                                    December 1984


1  SCOPE AND FIELD OF APPLICATION

This International Standard specifies a protocol which is used to
provide the Connectionless-mode Network Service as described in ISO
8348/DAD1, Addendum to the Network Service Definition Covering
Connectionless-mode Transmission. The protocol herein described relies
upon the provision of a connectionless-mode subnetwork service.

This Standard specifies:

 a)  procedures for the connectionless transmission of data and control
     information from one network-entity to a peer network-entity;

 b)  the encoding of the protocol data units used for the transmission
     of data and control information, comprising a variable-length
     protocol header format;

 c)  procedures for the correct interpretation of protocol control
     information; and

 d)  the functional requirements for implementations claiming
     conformance to the Standard.

The procedures are defined in terms of:

 a)  the interactions among peer network-entities through the exchange
     of protocol data units;

 b)  the interactions between a network-entity and a Network Service
     user through the exchange of Network Service primitives; and

 c)  the interactions between a network-entity and a subnetwork service
     provider through the exchange of subnetwork service primitives.
















ISO DIS 8473 (May 1984)                                         [Page 2]





RFC 926                                                    December 1984


2  REFERENCES

ISO 7498       Information Processing Systems - Open Systems
               Interconnection - Basic Reference Model

DP 8524        Information Processing Systems - Open Systems
               Interconnection - Addendum to ISO 7498 Covering
               Connectionless-Mode Transmission

DIS 8348       Information Processing Systems - Data Communications -
               Network Service Definition

ISO 8348/DAD1  Information Processing Systems - Data Communications -
               Addendum to the Network Service Definition Covering
               Connectionless-Mode Transmission

ISO 8348/DAD2  Information Processing Systems - Data Communications -
               Addendum to the Network Service Definition Covering
               Network Layer Addressing

DP iiii        Information Processing Systems - Data Communications -
               Internal Organization of the Network Layer

DP 8509        Information Processing Systems - Open Systems
               Interconnection - Service Conventions

ISO TC97/SC16  A Formal Description Technique based on an N1825
               Extended State Transition Model





















ISO DIS 8473 (May 1984)                                         [Page 3]





RFC 926                                                    December 1984


SECTION ONE.  GENERAL

3  DEFINITIONS

3.1  Reference Model Definitions

 This document makes use of the following concepts defined in ISO 7498:

  a) Network layer
  b) Network service
  c) Network service access point
  d) network service access point address
  e) Network entity
  f) Routing
  f) Service
  h) Network protocol
  i) Network relay
  j) Network protocol data unit
  k) End system

3.2  Service Conventions Definitions

 This document makes use of the following concepts from the OSI Service
 Conventions (ISO 8509):

  l) Service user
  m) Service provider

3.3  Network Layer Architecture Definitions

 This document makes use of the following concepts from the Internal
 Organization of the Network Layer (ISO iiii):

  n) Subnetwork















ISO DIS 8473 (May 1984)                                         [Page 4]





RFC 926                                                    December 1984


  o) Relay system
  p) Intermediate system
  q) Subnetwork service

3.4  Network Layer Addressing Definitions

 This document makes use of the following concepts from DIS 8348/DAD2,
 Addendum to the Network Service Definition Covering Network layer
 addressing:

  r) Network entity title
  s) Network protocol address information
  t) Subnetwork address
  u) Domain

3.5  Additional Definitions

 For the purposes of this document, the following definitions apply:

  a) automaton    -  a machine designed to follow automatically a
                     predetermined sequence of operations or to respond
                     to encoded instructions.

  b) local matter -  a decision made by a system concerning its
                     behavior in the Network Layer that is not subject
                     to the requirements of this Protocol.

  c) segment      -  part of the user data provided in the N_UNITDATA
                     request and delivered in the N_UNITDATA
                     indication.

  d) initial PDU  -  a protocol data unit carrying the whole of the
                     user data from an N_UNITDATA request.

  e) derived PDU  -  a  protocol data unit whose fields are identical
                     to those of an initial PDU, except that it carries
                     only a segment of the user data from an N_UNITDATA
                     request.











ISO DIS 8473 (May 1984)                                         [Page 5]





RFC 926                                                    December 1984


  f) segmentation -  the act of generating two or more derived PDUS
                     from an initial or derived PDU.  The derived PDUs
                     together carry the entire user data of the initial
                     or derived PDU from which they were generated.
                     [Note: it is possible that such an initial PDU
                     will never actually be generated for a particular
                     N_UNITDATA request, owing to the immediate
                     application of segmentation.]

  g) reassembly   -  the act of regenerating an initial PDU (in order
                     to issue an N_UNITDATA indication) from two or
                     more derived PDUs produced by segmentation.





































ISO DIS 8473 (May 1984)                                         [Page 6]





RFC 926                                                    December 1984


4  SYMBOLS AND ABBREVIATIONS

4.1  Data Units

 PDU          Protocol Data Unit
 NSDU         Network Service Data Unit
 SNSDU        Subnetwork Service Data Unit

4.2  Protocol Data Units

 DT PDU       Data Protocol Data Unit
 ER PDU       Error Report Protocol Data Unit

4.3  Protocol Data Unit Fields

 NPID         Network Layer Protocol Identifier
 LI           Length Indicator
 V/P          Version/protocol Identifier Extension
 LT           Lifetime
 SP           Segmentation Permitted Flag
 MS           More Segments Flag
 E/R          Error Report Flag
 TP           Type
 SL           Segment Length
 CS           Checksum
 DAL          Destination Address Length
 DA           Destination Address
 SAL          Source Address Length
 SA           Source Address
 DUID         Data Unit Identifier
 SO           Segment Offset
 TL           Total Length

















ISO DIS 8473 (May 1984)                                         [Page 7]





RFC 926                                                    December 1984


4.4  Parameters

 DA           Destination Address
 SA           Source Address
 QOS          Quality of Service

4.5  Miscellaneous

 SNICP        Subnetwork Independent Convergence Protocol
 SNDCP        Subnetwork Dependent Convergence Protocol
 SNAcP        Subnetwork Access Protocol
 SN           Subnetwork
 P            Protocol
 NSAP         Network Service Access Point
 SNSAP        Subnetwork Service Access Point
 NPAI         Network Protocol Address Information
 NS           Network Service
































ISO DIS 8473 (May 1984)                                         [Page 8]





RFC 926                                                    December 1984


5  OVERVIEW OF THE PROTOCOL

5.1  Internal Organization of the Network Layer

 The architecture of the Network Layer is described in a separate
 document, Internal Organization of the Network Layer (ISO iiii), in
 which an OSI Network Layer structure is defined, and a structure to
 classify protocols as an aid to the progression toward that structure
 is presented. This protocol is designed to be used in the context of
 the internetworking protocol approach defined in that document,
 between Network Service users and/or Network Layer relay systems. As
 described in the Internal Organization of the Network Layer, the
 protocol herein described is a Subnetwork Independent Convergence
 Protocol combined with relay and routing functions designed to allow
 the incorporation of existing network standards within the OSI
 framework.

 A Subnetwork Independent Convergence Protocol is one which can be
 defined on a subnetwork independent basis and which is necessary to
 support the uniform appearance of the OSI Connectionless-mode Network
 Service between Network Service users and/or Network Layer relay
 systems over a set of interconnected homogeneous or heterogeneous
 subnetworks. This protocol is defined in just such a subnetwork
 independent way so as to minimize variability where subnetwork
 dependent and/or subnetwork access protocols do not provide the OSI
 Network Service.

 The subnetwork service required from the lower sublayers by the
 protocol described herein is identified in Section 5.5.

5.2  Subsets of the Protocol

 Two proper subsets of the full protocol are also defined which permit
 the use of known subnetwork characteristics, and are therefore not
 subnetwork independent.

 One protocol subset is for use where it is known that the source and
 destination end-systems are connected by a single subnetwork. This is
 known as the "Inactive Network Layer Protocol" subset. A second subset
 permits simplification of the header where it is known that the source
 and destination end-systems are connected by subnetworks whose
 subnetwork service data unit (SNSDU) sizes are greater than or equal
 to a known bound large enough for segmentation not to be required.
 This subset, selected by setting the "segmentation permitted" flag to
 zero, is known as the "non-segmenting" protocol subset.




ISO DIS 8473 (May 1984)                                         [Page 9]





RFC 926                                                    December 1984


5.3  Addressing

 The Source Address and Destination Address parameters referred to in
 Section 7.3 of this International Standard are OSI Network Service
 Access Point Addresses. The syntax and semantics of an OSI Network
 Service Access Point Address, the syntax and encoding of the Network
 Protocol Address Information employed by this Protocol, and the
 relationship between the NSAP and the NPAI is described in a separate
 document, ISO 8348/DAD2, Addendum to the Network Service Definition
 covering Network Layer Addressing.

 The syntax and semantics of the titles and addresses used for relaying
 and routing are also described in ISO 8348/DAD2.

5.4  Service Provided by the Network Layer

 The service provided by the protocol herein described is a
 connectionless-mode Network Service. The connectionless-mode Network
 Service is described in document ISO 8348/DAD1, Addendum to the
 Network Service Definition Covering Connectionless-mode Transmission.
 The Network Service primitives provided are summarized below:




























ISO DIS 8473 (May 1984)                                        [Page 10]





RFC 926                                                    December 1984


                Primitives                Parameters
     +--------------------------------------------------------+
     |                           |                            |
     | N_UNITDATA Request        | NS_Destination_Address,    |
     |            Indication     | NS_Source_Address,         |
     |                           | NS_Quality_of_Service,     |
     |                           | NS_Userdata                |
     +--------------------------------------------------------+

                Table 5-1.  Network Service Primitives

 The Addendum to the Network Service Definition Covering
 Connectionless-mode Transmission (ISO 8348/DAD1) states that the
 maximum size of a connectionless-mode Network-service-data-unit is
 limited to 64512 octets.

5.5  Service Assumed from the Subnetwork Service provider

 The subnetwork service required to support this protocol is defined as
 comprising the following primitives:

               Primitives                  Parameters
     +--------------------------------------------------------+
     |                           |                            |
     | SN_UNITDATA Request       | SN_Destination_Address,    |
     |             Indication    | SN_Source_Address,         |
     |                           | SN_Quality_of_Service,     |
     |                           | SN_Userdata                |
     +--------------------------------------------------------+

              Table 5-2.  Subnetwork Service Primitives


















ISO DIS 8473 (May 1984)                                        [Page 11]





RFC 926                                                    December 1984


 5.5.1  Subnetwork Addresses

  The source and destination addresses specify the points of attachment
  to a public or private subnetwork(s) involved in the transmission.
  Subnetwork addresses are defined in the Service Definition of each
  individual subnetwork.

  The syntax and semantics of subnetwork addresses are not defined in
  this Protocol Standard.

 5.5.2  Subnetwork Quality of Service

  Subnetwork Quality of Service describes aspects of a subnetwork
  connectionless-mode service which are attributable solely to the
  subnetwork service provider.

  Associated with each subnetwork connectionless-mode transmission,
  certain measures of quality of service are requested when the
  primitive action is initiated. These requested measures (or parameter
  values and options) are based on a priori knowledge by the Network
  Service provider of the service(s) made available to it by the
  subnetwork. Knowledge of the nature and type of service available is
  typically obtained prior to an invocation of the subnetwork
  connectionless-mode service.

   Note:

    The quality of service parameters identified for the subnetwork
    connectionless-mode service may in some circumstances be directly
    derivable from or mappable onto those identified in the
    connectionless-mode Network Service; e.g., the parameters

     a)  transit delay;
     b)  protection against unauthorized access;
     c)  cost determinants;
     d)  priority; and
     e)  residual error probability

    as defined in ISO 8348/DAD1, Addendum to the Network Service
    Definition Covering Connectionless-mode Transmission, may be
    employed.








ISO DIS 8473 (May 1984)                                        [Page 12]





RFC 926                                                    December 1984


    For those subnetworks which do not inherently provide Quality of
    Service as a parameter when the primitive action is initiated, it
    is a local matter as to how the semantics of the service requested
    might be preserved. In particular, there may be instances in which
    the Quality of Service requested cannot be maintained. In such
    circumstances, the subnetwork service provider shall attempt to
    deliver the protocol data unit at whatever Quality of Service is
    available.

 5.5.3  Subnetwork User Data

  The SN_Userdata is an ordered multiple of octets, and is transferred
  transparently between the specified subnetwork service access points.

  The subnetwork service is required to support a subnetwork service
  data unit size of at least the maximum size of the Data PDU header
  plus one octet of NS-Userdata. This requires a minimum subnetwork
  service data unit size of 256 octets.

  Where the subnetwork service can support a subnetwork service data
  unit (SNSDU) size greater than the size of the Data PDU header plus
  one octet of NS_Userdata, the protocol may take advantage of this. In
  particular, if all SNSDU sizes of the subnetworks involved are known
  to be large enough that segmentation is not required, then the
  "non-segmenting" protocol subset may be used.

 5.5.4  Subnetwork Dependent Convergence Functions

  Subnetwork Dependent Convergence Functions may be performed to
  provide a connectionless-mode subnetwork service in the case where
  subnetworks also provide a connection-oriented subnetwork service. If
  a subnetwork provides a connection-oriented service, some subnetwork
  dependent function is assumed to provide a mapping into the required
  subnetwork service described in the preceding text.

  A Subnetwork Dependent Convergence Protocol may also be employed in
  those cases where functions assumed from the subnetwork service
  provider are not performed.











ISO DIS 8473 (May 1984)                                        [Page 13]





RFC 926                                                    December 1984


5.6  Service Assumed from Local Evironment

 A timer service is provided to allow the protocol entity to schedule
 events.

 There are three primitives associated with the S_TIMER service:

  1)  the S-TIMER request;

  2)  the S_TIMER response; and

  3)  the S_TIMER cancel.

 The S_TIMER request primitive indicates to the local environment that
 it should initiate a timer of the specified name and subscript and
 maintain it for the duration specified by the time parameter.

 The S_TIMER response primitive is initiated by the local environment
 to indicate that the delay requested by the corresponding S_TIMER
 request primitive has elapsed.

 The S_TIMER cancel primitive is an indication to the local environment
 that the specified timer(s) should be cancelled. If the subscript
 parameter is not specified, then all timers with the specified name
 are cancelled; otherwise, the timer of the given name and subscript is
 cancelled. If no timers correspond to the parameters specified, the
 local environment takes no action.

 The parameters of the S_TIMER service primitives are:




















ISO DIS 8473 (May 1984)                                        [Page 14]





RFC 926                                                    December 1984


           Primitives                  Parameters
     +--------------------------------------------------------+
     |                           |                            |
     | S_TIMER Request           | S_Time                     |
     |                           | S_Name                     |
     |                           | S_Subscript                |
     |                           |                            |
     | S_TIMER Response          | S_Name                     |
     |         Cancel            | S_Subscript                |
     +--------------------------------------------------------+

                     Table 5-3.  Timer Primitives

 The time parameter indicates the time duration of the specified timer.
 An identifying label is associated with a timer by means of the name
 parameter. The subscript parameter specifies a value to distinguish
 timers with the same name. The name and subscript taken together
 constitute a unique reference to the timer.































ISO DIS 8473 (May 1984)                                        [Page 15]





RFC 926                                                    December 1984


SECTION TWO.  SPECIFICATION OF THE PROTOCOL

6  PROTOCOL FUNCTIONS

This section describes the functions performed as part of the Protocol.

Not all of the functions must be performed by every implementation.
Section 6.17 specifies which functions may be omitted and the correct
behavior where requested functions are not implemented.

6.1  PDU Composition Function

 This function is responsible for the construction of a protocol data
 unit according to the rules of protocol given in Section 7. Protocol
 Control Information required for delivering the data unit to its
 destination is determined from current state information and from the
 parameters provided with the N_UNITDATA Request; e.g., source and
 destination addresses, QOS, etc. User data passed from the Network
 Service user in the N_UNITDATA Request forms the Data field of the
 protocol data unit.

 During the composition of the protocol data unit, a Data Unit
 Identifier is assigned to identify uniquely all segments of the
 corresponding NS_Userdata. The "Reassemble PDU" function considers
 PDUs to correspond to the same Initial PDU, and hence N_UNITDATA
 request, if they have the same Source and Destination Addresses and
 Data Unit Identifier.

 The Data Unit Identifier is available for ancillary functions such as
 error reporting. The originator of the PDU must choose the Data Unit
 Identifier so that it remains unique (for this Source and Destination
 Address pair) for the maximum lifetime of the PDU (or any Derived
 PDUs) in the network.
















ISO DIS 8473 (May 1984)                                        [Page 16]





RFC 926                                                    December 1984


 During the composition of the PDU, a value of the total length of the
 PDU is determined by the originator and placed in the Total Length
 field of the PDU header. This field is not changed in any Derived PDU
 for the lifetime of the protocol data unit.

 Where the non-segmenting subset is employed, neither the Total Length
 field nor the Data Unit Identifier field is present. During the
 composition of the protocol data unit, a value of the total length of
 the PDU is determined by the originator and placed in the Segment
 Length field of the PDU header. This field is not changed for the
 lifetime of the PDU.

6.2  PDU Decomposition Function

 This function is responsible for removing the Protocol Control
 Information from the protocol data unit. During this process,
 information pertinent to the generation of the N_UNITDATA Indication
 is retained. The data field of the PDU received is reserved until all
 segments of the original service data unit have been received; this is
 the NS_Userdata parameter of the N_UNITDATA Indication.

6.3  Header Format Analysis Function

 This function determines whether the full Protocol described in this
 Standard is employed, or one of the defined proper subsets thereof. If
 the protocol data unit has a Network Layer Protocol Identifier
 indicating that this is a standard version of the Protocol, this
 function determines whether a PDU received has reached its destination
 using the destination address provided in the PDU is the same as the
 one which addresses an NSAP served by this network-entity, then the
 PDU has reached its destination; if not, it must be forwarded.

 If the protocol data unit has a Network Layer Protocol Identifier
 indicating that the Inactive Network Layer Protocol subset is in use,
 then no further analysis of the PDU header is required. The














ISO DIS 8473 (May 1984)                                        [Page 17]





RFC 926                                                    December 1984


 network-entity in this case determines that either the network address
 encoded in the network protocol address information of a supporting
 subnetwork protocol corresponds to a network Service Access Point
 address served by this network-entity, or that an error has occurred.
 If the subnetwork PDU has been delivered correctly, then the protocol
 data unit may be decomposed according to the procedure described for
 that particular subnetwork protocol.

6.4  PDU Lifetime Control Function

 This function is used to enforce the maximum PDU lifetime. It is
 closely associated with the "Header Format Analysis" function. This
 function determines whether a PDU received may be forwarded or whether
 its assigned lifetime has expired, in which case it must be discarded.

 The operation of the Lifetime Control function depends upon the
 Lifetime field in the PDU header. This field contains, at any time,
 the remaining lifetime of the PDU (represented in units of 500
 Milliseconds). The Lifetime of the Initial PDU is determined by the
 originating network-entity, and placed in the Lifetime field of the
 PDU.

6.5  Route PDU Function

 This function determines the network-entity to which a protocol data
 unit should be forwarded, using the destination NSAP address
 parameters, Quality of Service parameter, and/or other parameters. It
 determines the subnetwork which must be transited to reach that
 network-entity. Where segmentation occurs, it further determines which
 subnetwork(s) the segments may transit to reach that network-entity.



















ISO DIS 8473 (May 1984)                                        [Page 18]





RFC 926                                                    December 1984


6.6  Forward PDU Function

 This function issues a subnetwork service primitive (see Section 5.5)
 supplying the subnetwork identified by the "Route PDU" function with
 the protocol data unit as an SNSDU, and the address information
 required by that subnetwork to identify the "next" intermediate-system
 within the subnetwork-specific address domain.

 When an Error Report PDU is to be forwarded, and is longer than the
 maximum user data acceptable by the subnetwork, it shall be truncated
 to the maximum acceptable length ad forwarded with no other change.
 When a Data PDU is to be forwarded ad is longer than the maximum user
 data acceptable by the subnetwork, the Segmentation function is
 applied (See Section 6.7, which follows).

6.7  Segmentation Function

 Segmentation is performed when the size of the protocol data unit is
 greater than the maximum size of the user data parameter field of the
 subnetwork service primitive.

 Segmentation consists of composing two or more new PDUs (Derived PDUs)
 from the PDU received. The PDU received may be the Initial PDU, or it
 may be a Derived PDU. The Protocol Control Information required to
 identify, route, and forward a PDU is duplicated in each PDU derived
 from the Initial PDU. The user data encapsulated within the PDU
 received is divided such that the Derived PDUs satisfy the size
 requirements of the user data parameter field of the subnetwork
 service primitive.

 Derived PDUs are identified as being from the same Initial PDU by
 means of

  a)  the source address,

  b)  the destination address, and

  c)  the data unit identifier.











ISO DIS 8473 (May 1984)                                        [Page 19]





RFC 926                                                    December 1984


 The following fields of the PDU header are used in conjunction with
 the Segmentation function:

  a)  Segment Offset - identifies at which octet in the data field of
      the Initial PDU the segment begins;

  b)  Segment Length - specifies the number of octets in the Derived
      PDU, including both header and data;

  c)  More Segments Flag - set to one if this Derived PDU does not
      contain, as its final octet of user data, the final octet of the
      Initial PDU; and

  d)  Total Length - specifies the entire length of the Initial PDU,
      including both header and data.

 Derived PDUs may be further segmented without constraining the routing
 of the individual Derived PDUs.

 A Segmentation Permitted flag is set to one to indicate that
 segmentation is permitted. If the Initial PDU is not to be segmented
 at any point during its lifetime in the network, the flag is set to
 zero.

 When the "Segmentation Permitted" flag is set to zero, the non-
 segmenting protocol subset is in use.

6.8  Reassembly Function

 The Reassembly Function reconstructs the Initial PDU transmitted to
 the destination network-entity from the Derived PDUs generated during
 the lifetime of the Initial PDU.

 A bound on the time during which segments (Derived PDUs) of an Initial
 PDU will be held at a reassembly point is provided so that resources
 may be released when it is no longer expected that any outstanding
 segments of the Initial PDU will arrive at the reassembly point. When
 such an event occurs, segments (Derived PDUs) of the Initial PDU held
 at the reassembly point are discarded, the resources allocated for
 those segments are freed,









ISO DIS 8473 (May 1984)                                        [Page 20]





RFC 926                                                    December 1984


 and if selected, an Error Report is generated.

  Note:

   The design of the Segmentation and Reassembly functions is intended
   principally to be used such that reassembly takes place at the
   destination. However, other schemes which

    a)  interact with the routing algorithm to favor paths on which
        fewer segments are generated,

    b)  generate more segments than absolutely required in order to
        avoid additional segmentation at some subsequent point, or

    c)  allow partial/full reassembly at some point along the route
        where it is known that the subnetwork with the smallest PDU
        size has been transited

   are not precluded. The information necessary to enable the use of
   one of these alternative strategies may be made available through
   the operation of a Network Layer Management function.

   While the exact relationship between reassembly lifetime and PDU
   lifetime is a local matter, the reassembly algorithm must preserve
   the intent of the PDU lifetime. Consequently, the reassembly
   function must discard PDUs whose lifetime would otherwise have
   expired had they not been under the control of the reassembly
   function.

6.9  Discard PDU Function

 This function performs all of the actions necessary to free the
 resources reserved by the network-entity in any of the following
 situations (Note: the list is not exhaustive):

  a)  A violation of protocol procedure has occurred.

  b)  A PDU is received whose checksum is inconsistent with its
      contents.










ISO DIS 8473 (May 1984)                                        [Page 21]





RFC 926                                                    December 1984


  c)  A PDU is received, but due to congestion, it cannot be processed.

  d)  A PDU is received whose header cannot be analyzed.

  e)  A PDU is received which cannot be segmented and cannot be
      forwarded because its length exceeds the maximum subnetwork
      service data unit size.

  f)  A PDU is received whose destination address is unreachable or
      unknown.

  g)  Incorrect or invalid source routing was specified. This may
      include a syntax error in the source routing field, and unknown
      or unreachable address in the source routing field, or a path
      which is not acceptable for other reasons.

  h)  A PDU is received whose PDU lifetime has expired or the lifetime
      expires during reassembly.

  i)  A PDU is received which contains an unsupported option.

6.10  Error Reporting Function

 6.10.1  Overview

  This function causes the return of an Error Report PDU to the source
  network-entity when a protocol data unit is discarded. An "error
  report flag" in the original PDU is set by the source network-entity
  to indicate whether or not Error Report PDUs are to be returned.

  The Error Report PDU identifies the discarded PDU, specifies the type
  of error detected, and identifies the location at which the error was
  detected. Part or all of the discarded PDU is included in the data
  field of the Error Report PDU.

  The address of the originator of the Data Protocol Data Unit is













ISO DIS 8473 (May 1984)                                        [Page 22]





RFC 926                                                    December 1984


  conveyed as both the destination address of the Error Report PDU as
  well as the source address of the original Data PDU; the latter is
  contained in the Data field of the Error Report PDU. The address of
  the originator of the Error Report PDU is contained in the source
  address field of the header of the Error Report PDU.

   Note:

    Non-receipt of an Error Report PDU does not imply correct delivery
    of a PDU issued by a source network-entity.

 6.10.2  Requirements

  An Error Report PDU shall not be generated to report the discarding
  of a PDU that itself contains an Error Report.

  An Error Report PDU shall not be generated upon discarding of a PDU
  unless that PDU has the Error Report flag set to allow Error Reports.

  If a Data PDU is discarded, and has the Error Report flag set to
  allow Error Reports, an Error Report PDU shall be generated if the
  reason for discard (See Section 6.9)  is

   a)  destination address unreachable,

   b)  source routing failure,

   c)  unsupported options, or

   d)  protocol violation.



















ISO DIS 8473 (May 1984)                                        [Page 23]





RFC 926                                                    December 1984


   Note:

    It is intended that this list shall include all nontransient
    reasons for discard; the list may therefore need to be amended or
    extended in the light of any changes made in the definitions of
    such reasons.

  If a Data PDU with the Error Report flag set to allow Error Reports
  is discarded for any other reason, an Error Report PDU may be
  generated (as an implementation option).

 6.10.3  Processing of Error Reports

  Error Report PDUs are forwarded by intermediate network-entities in
  the same way as Data PDUs. It is possible that an Error Report PDU
  may be longer than the maximum user data size of a subnetwork that
  must be traversed to reach the origin of the discarded PDU. In this
  case, the Forward PDU function shall truncate the PDU to the maximum
  size acceptable.

  The entire header of the discarded data unit shall be included in the
  data field of the Error Report PDU. Some or all of the data field of
  the discarded data unit may also be included.

   Note:

    Since the suppression of Error Report PDUs is controlled by the
    originating network-entity and not by the NS User, care should be
    exercised by the originator with regard to suppressing ER PDUs so
    that error reporting is not suppressed for every PDU generated.



















ISO DIS 8473 (May 1984)                                        [Page 24]





RFC 926                                                    December 1984


6.11  PDU Header Error Detection

 The PDU Header Error Detection function protects against failure of
 intermediate or end-system network-entities due to the processing of
 erroneous information in the PDU header. The function is realized by a
 checksum computed on the PDU header. The checksum is verified at each
 point at which the PDU header is processed. If PDU header fields are
 modified (for example, due to lifetime function), then the checksum is
 modified so that the checksum remains valid.

 An intermediate system network-entity must not recompute the checksum
 for the entire header, even if fields are modified.

  Note:

   This is to ensure that inadvertent modification of a header while a
   PDU is being processed by an intermediate system (for example, due
   to a memory fault) may still be detected by the PDU Header Error
   function.

 The use of this function is optional, and is selected by the
 originating network-entity. If the function is not used, the checksum
 field of the PDU header is set to zero.

 If the function is selected by the originating network-entity, the
 value of the checksum field causes the following formulae to be
 satisfied:

    L
  (SUM)     a   = 0  (modulo 255)
             i
    i=1

    L
  (SUM)     (L-i+1) a   = 0 (modulo 255)
                      i
    i=1

   Where L = the number of octets in the PDU header, and
         a = value of octet at position i.
          i








ISO DIS 8473 (May 1984)                                        [Page 25]





RFC 926                                                    December 1984


 When the function is in use, neither octet of the checksum field may
 be set to zero.

 Annex C contains descriptions of algorithms which may be used to
 calculate the correct value of the checksum field when the PDU is
 created, and to update the checksum field when the header is modified.

6.12  Padding Function

 The padding function is provided to allow space to be reserved in the
 PDU header which is not used to support any other function. Octet
 alignment must be maintained.

  Note:

   An example of the use of this function is to cause the data field of
   a PDU to begin on a convenient boundary for the originating
   network-entity, such as a computer word boundary.

6.13  Security

 An issue related to the quality of the network service is the
 protection of information flowing between transport-entities. A system
 may wish to control the distribution of secure data by assigning
 levels of security to PDUs. As a local consideration, the Network
 Service user could be authenticated to ascertain whether the user has
 permission to engage in communication at a particular security level
 before sending the PDU. While no protocol exchange is required in the
 authentication process, the optional security parameter in the options
 part of the PDU header may be employed to convey the particular
 security level between peer network-entities.

 The syntax and semantics of the security parameter are not specified
 by this Standard. The security parameter is related to the "protection
 from unauthorized access" Quality of service parameter described in
 ISO 8348/DAD1, Addendum to the Network Service Definition Covering
 Connectionless-mode Transmission. However, to facilitate
 interoperation between end-systems and relay-systems by avoiding
 different interpretations of the same encoding, a mechanism is
 provided to distinguish user-defined security encoding from
 standardized security encoding.








ISO DIS 8473 (May 1984)                                        [Page 26]





RFC 926                                                    December 1984


6.14  Source Routing Function

 The Source Routing function allows the originator to specify the path
 a generated PDU must take. Source routing can only be selected by the
 originator of a PDU. Source Routing is accomplished using a list of
 intermediate system addresses (or titles, see Section 5.3 and 5.5.1)
 held in a parameter within the options part of the PDU Header. The
 size of the option field is determined by the originating
 network-entity. The length of this option does not change as the PDU
 traverses the network. Associated with this list is an indicator which
 identifies the next entry in the list to be used; this indicator is
 advanced by the receiver of the PDU when the next address matches its
 own address. The indicator is updated as the PDU is forwarded so as to
 identify the appropriate entry at each stage of relaying.

 Two forms of the source routing option are provided. The first form,
 referred to as complete source routing, requires that the specified
 path must be taken; if the specified path cannot be taken, the PDU
 must be discarded. The source may be informed of the discard using the
 Error Reporting function described in Section 6.10.

 The second form is referred to as partial source routing. Again, each
 address in the list must be visited in the order specified while on
 route to the destination. However, with this form of source routing
 the PDU may take any path necessary to arrive at the next address in
 the list. The PDU will not be discarded (for source routing related
 causes) unless one of the addresses specified cannot be reached by any
 available route.





















ISO DIS 8473 (May 1984)                                        [Page 27]





RFC 926                                                    December 1984


6.15  Record Route Function

 The Record Route function permits the exact recording of the paths
 taken by a PDU as it traverses a series of interconnected subnetworks.
 A recorded route is composed of a list of intermediate system
 addresses held in a parameter within the options part of the PDU
 header. The size of the option field is determined by the originating
 network-entity. The length of this option does not change as the PDU
 traverses the network.

 The list is constructed as the PDU traverses a set of interconnected
 subnetworks. Only intermediate system addresses are included in the
 recorded route. The address of the originator of the PDU is not
 recorded in the list. When an intermediate system network-entity
 processes a PDU containing the record route parameter, the system
 inserts its own address (or titles, see Sections 5.3 or 5.5.1) into
 the list of recorded addresses.

 The record route option contains an indicator which identifies the
 next available octet to be used for recording of route. This
 identifier is updated as entries are added to the list. If the
 addition of the current address to the list would exceed the size of
 the option field, the indicator is set to show that recording of route
 has terminated. The PDU may still be forwarded to its final
 destination, without further addition of intermediate system
 addresses.

  Note:

   The Record Route function is principally intended to be used in the
   diagnosis of network problems. Its mechanism has been designed on
   this basis, and may provide a return path.

















ISO DIS 8473 (May 1984)                                        [Page 28]





RFC 926                                                    December 1984


6.16  Quality of Service Maintenance Function

 In order to support the Quality of Service requested by Network
 Service users, the Protocol may need to make QOS information available
 at intermediate systems. This information may be used by network
 entities in intermediate systems to make routing decisions where such
 decisions affect the overall QOS provided to NS users.

 In those instances where the QOS indicated cannot be maintained, the
 NS provider will attempt to deliver the PDU at a QOS less than that
 indicated. The NS provider will not necessarily provide a notification
 of failure to meet the indicated quality of service.

6.17  Classification of Functions

 Implementations do not have to support all of the functions described
 in Section 6. Functions are divided into three categories:

  Type 1:  These functions must be supported.

  Type 2:  These functions may or may not be supported. If an
           implementation does not support a Type 2 function, and the
           function is selected by a PDU, then the PDU shall be
           discarded, and an Error Report PDU shall be generated and
           forwarded to the originating network-entity, providing that
           the Error Report flag is set.

  Type 3:  These functions may or may not be supported. If an
           implementation does not support a Type 3 function, and the
           function is selected by a PDU, then the function is not
           performed and the PDU is processed exactly as though the
           function was not selected. The protocol data unit shall not
           be discarded.

 Table 6-1 shows how the functions are divided into these three
 categories:













ISO DIS 8473 (May 1984)                                        [Page 29]





RFC 926                                                    December 1984


        +---------------------------------------------------+
        | Function                       |  Type            |
        |--------------------------------|------------------|
        |                                |                  |
        | PDU Composition                |  1               |
        | PDU Decomposition              |  1               |
        | Header Format Analysis         |  1               |
        | PDU Lifetime Control           |  1               |
        | Route PDU                      |  1               |
        | Forward PDU                    |  1               |
        | Segment PDU                    |  1               |
        | Reassemble PDU                 |  1               |
        | Discard PDU                    |  1               |
        | Error Reporting                |  1 (note 1)      |
        | PDU Header Error Detection     |  1 (note 1)      |
        | Padding                        |  1 (notes 1   2) |
        | Security                       |  2               |
        | Complete Source Routing        |  2               |
        | Partial Source Routing         |  3               |
        | Priority                       |  3               |
        | Record Route                   |  3               |
        | Quality of Service Maintenance |  3               |
        +---------------------------------------------------+

           Table 6-1.  Categorization of Protocol Functions
























ISO DIS 8473 (May 1984)                                        [Page 30]





RFC 926                                                    December 1984


 Notes:

  1)  While the Padding, Error Reporting, and Header Error Detection
      functions must be provided, they are provided only when selected
      by the sending Network Service user.

  2)  The correct treatment of the Padding function involves no
      processing. Therefore, this could equally be described as a Type
      3 function.

  3)  The rationale for the inclusion of type 3 functions is that in
      the case of some functions it is more important to forward the
      PDUs between intermediate systems or deliver them to an
      end-system than it is to support the functions. Type 3 functions
      should be used in those cases where they are of an advisory
      nature and should not be the cause of the discarding of a PDU
      when not supported.
































ISO DIS 8473 (May 1984)                                        [Page 31]





RFC 926                                                    December 1984


7  STRUCTURE AND ENCODING OF PDUS

7.1 Structure

 All Protocol Data Units shall contain an integral number of octets.
 The octets in a PDU are numbered starting from one (1) and increasing
 in the order in which they are put into an SNSDU. The bits in an octet
 are numbered from one (1) to eight (8), where bit one (1) is the
 low-order bit.

 When consecutive octets are used to represent a binary number, the
 lower octet number has the most significant value.

 Any subnetwork supporting this protocol is required to state in its
 specification the way octets are transferred, using the terms "most
 significant bit" and "least significant bit." The PDUs of this
 protocol are defined using the terms "most significant bit" and "least
 significant bit."

  Note:

   When the encoding of a PDU is represented using a diagram in this
   section, the following representation is used:

    a)  octets are shown with the lowest numbered octet to the left,
        higher number octets being further to the right;

    b)  within an octet, bits are shown with bit eight (8) to the left
        and bit one (1) to the right.

 PDUs shall contain, in the following order:

  1)  the header, comprising:

   a)  the fixed part;

   b)  the address part;

   c)  the segmentation part, if present;

   d)  the options part, if present

  and






ISO DIS 8473 (May 1984)                                        [Page 32]





RFC 926                                                    December 1984


  2)  the data field, if present.

 This structure is illustrated below:

                      Part:                Described in:

           +-------------------+
           |    Fixed Part     |            Section 7.2
           +-------------------+

           +-------------------+
           |   Address Part    |            Section 7.3
           +-------------------+

           +-------------------+
           | Segmentation Part |            Section 7.4
           +-------------------+

           +-------------------+
           |   Options Part    |            Section 7.5
           +-------------------+

           +-------------------+
           |       Data        |            Section 7.6
           +-------------------+

                      Figure 7-1.  PDU Structure






















ISO DIS 8473 (May 1984)                                        [Page 33]





RFC 926                                                    December 1984


7.2 Fixed Part

 7.2.1 General

  The fixed part contains frequently occuring parameters including the
  type code (DT or ER) of the protocol data unit. The length and the
  structure of the fixed part are defined by the PDU code.

  The fixed part has the following format:

                                                     Octet
           +------------------------------------+
           | Network Layer Protocol Identifier  |     1
           |------------------------------------|
           |         Length Indicator           |     2
           |------------------------------------|
           |   Version/Protocol Id Extension    |     3
           |------------------------------------|
           |            Lifetime                |     4
           |------------------------------------|
           |S |M |E/R|         Type             |     5
           | P| S|   |                          |
           |------------------------------------|
           |          Segment Length            |    6,7
           |------------------------------------|
           |             Checksum               |    8,9
           +------------------------------------+

                 Figure 7-2.  PDU Header--Fixed Part

 7.2.2 Network Layer Protocol Identifier

  The value of this field shall be binary 1000 0001. This field
  identifies this Network Layer Protocol as ISO 8473, Protocol for
  Providing the Connectionless-mode Network Service.














ISO DIS 8473 (May 1984)                                        [Page 34]





RFC 926                                                    December 1984


 7.2.3 Length Indicator

  The length is indicated by a binary number, with a maximum value of
  254 (1111 1110). The length indicated is the length in octets of the
  header, as described in Section 7.1, Structure. The value 255 (1111
  1111) is reserved for possible future extensions.

   Note:

    The rules for forwarding and segmentation ensure that the header
    length is the same for all segments (Derived PDUs) of the Initial
    PDU, and is the same as the header length of the Initial PDU.

 7.2.4 Version/Protocol Identifier Extension

  The value of this field is binary 0000 0001. This Identifies a
  standard version of ISO 8473, Protocol for Providing the
  Connectionless-mode Network Service.

 7.2.5 PDU Lifetime

  The Lifetime field is encoded as a binary number representing the
  remaining lifetime of the PDU, in units of 500 milliseconds.

  The Lifetime field is set by the originating network-entity, and is
  decremented by every network-entity which processes the PDU. The PDU
  shall be discarded if the value of the field reaches zero.

  When a network-entity processes a PDU, it decrements the Lifetime by
  at least one. The Lifetime shall be decremented by more than one if
  the sum of:

   1)  the transit delay in the subnetwork from which the PDU was
       received; and















ISO DIS 8473 (May 1984)                                        [Page 35]





RFC 926                                                    December 1984


   2)  the delay within the system processing the PDU

  exceeds or is estimated to exceed 500 milliseconds. In this case, the
  lifetime field should be decremented by one for each additional 500
  milliseconds of delay. The determination of delay need not be
  precise, but where error exists the value used shall be an
  overestimate, not an underestimate.

  If the Lifetime reaches a value of zero before the PDU is delivered
  to the destination, the PDU shall be discarded. The Error Reporting
  function shall be invoked, as described in Section 6.10, Error
  Reporting Function, and may result in the generation of an ER PDU. It
  is a local matter whether the destination network-entity performs the
  Lifetime Control function.

  When the Segmentation function is applied to a PDU, the Lifetime
  field is copied into all of the Derived PDUs.

 7.2.6 Flags

  7.2.6.1 Segmentation Permitted and More Segments Flags

   The Segmentation Permitted flag determines whether segmentation is
   permitted. A value of one indicates that segmentation is permitted.

   A value of zero indicates that the non-segmenting protocol subset is
   employed. Where this is the case, the segmentation part of the PDU
   header is not present, and the Segment Length field serves as the
   Total Length field.

   The More Segments flag indicates whether the data segment in this
   PDU contains (as its last octet) the last octet of the User Data in
   the NSDU. When the More Segments flag is set to one (1) then
   segmentation has taken place and the last octet of the NSDU is not
   contained in this PDU. The More Segments flag cannot be set to one
   (1) if the Segmentation Permitted flag is not set to one (1).













ISO DIS 8473 (May 1984)                                        [Page 36]





RFC 926                                                    December 1984


   When the More Segments flag is set to zero (0) the last octet of the
   Data Part of the PDU is the last octet of the NSDU.

  7.2.6.2 Error Report Flag

   When the Error Report flag is set to one, the rules in Section 6.10
   are used to determine whether to generate an Error Report PDU upon
   discard of the PDU.

   When the Error Report flag is set to zero, discard of the PDU will
   not cause the generation of an Error Report PDU.

 7.2.7 Type Code

  The Type code field identifies the type of the protocol data unit.
  Allowed values are given in Table 7-1:

                               Bits    5 4 3 2 1
                   +-----------------------------+
                   |  DT PDU  |        1 1 1 0 0 |
                   |-----------------------------|
                   |  ER PDU  |        0 0 0 0 1 |
                   +-----------------------------+

                     Table 7-1.  Valid PDU Types

 7.2.8 PDU Segment Length

  The Segment Length field specifies the entire length of the PDU
  segment including both header and data, if present. When the full
  protocol is employed and a PDU is not segmented, then the value of
  this field is identical to the value of the Total Length field
  located in the Segmentation Part of the header.
















ISO DIS 8473 (May 1984)                                        [Page 37]





RFC 926                                                    December 1984


  When the Non-segmenting protocol subset is employed, no segmentation
  part is present in the header. In this subset, the Segment Length
  field serves as the Total Length field of the header (see Section
  7.4.3).

 7.2.9 PDU Checksum

  The checksum is computed on the entire PDU header. This includes the
  segmentation and options parts, if present. A checksum value of zero
  is reserved to indicate that the checksum is to be ignored. The
  operation of the PDU Header Error Detection function ensures that the
  value zero does not represent a valid checksum. A non-zero value
  indicates that the checksum must be processed or the PDU must be
  discarded.

7.3 Address Part

 7.3.1 General

  Address parameters are distinguished by their location, immediately
  following the fixed part of the PDU header. The address part is
  illustrated below:



























ISO DIS 8473 (May 1984)                                        [Page 38]





RFC 926                                                    December 1984


                                                     Octet
         +--------------------------------------+
         |                                      |
         | Destination Address Length Indicator |      10
         |                                      |
         |--------------------------------------|
         |                                      |      11
         |         Destination Address          |
         |                                      |      m-1
         |--------------------------------------|
         |                                      |
         |   Source Address Length Indicator    |       m
         |                                      |
         |--------------------------------------|
         |                                      |      m+1
         |           Source Address             |
         |                                      |      n-1
         +--------------------------------------+

                Figure 7-3.  PDU header--Address Part

  7.3.1.1 Destination and Source Address Information

   The Destination and Source addresses are Network Service Access
   Point addresses as defined in ISO 8348/DAD2, Addendum to the Network
   Service Definition Covering Network Layer Addressing.

   The Destination and Source Address information is of variable
   length.

   The Destination Address Length Indicator field specifies the length
   of the Destination Address in number of octets. The Destination
   Address field follows the Destination Address Length Indicator
   field. The Source Address Length Indicator field specifies the
   length of the Source Address in number of octets. The Source Address
   Length Indicator field follows the Destination Address field. The
   Source Address field follows the Source Address Length Indicator
   field.











ISO DIS 8473 (May 1984)                                        [Page 39]





RFC 926                                                    December 1984


   Each address parameter is encoded as follows:

                     Bits   8   7   6   5   4   3   2   1
           +---------------------------------------------+
           | Octet  | Address parameter Length Indicator |
           |   n    |           (e.g., 'm')              |
           |---------------------------------------------|
           | Octets |                                    |
           |  n+1   |     Address Parameter Value        |
           | thru   |                                    |
           |  n+m   |                                    |
           +---------------------------------------------+

                    Table 7-2.  Address Parameters

7.4 Segmentation Part

 If the Segmentation Permitted Flag in the Fixed Part of the PDU Header
 (Octet 4, Bit 8) is set to one, the segmentation part of the header,
 illustrated below, must be present:

                                              Octet
               +------------------------+
               |  Data Unit Identifier  |     n,n+1
               |------------------------|
               |     Segment Offset     |    n+2,n+3
               |------------------------|
               |      Total Length      |    n+4,n+5
               +------------------------+

              Figure 7-4.  PDU Header--Segmentation Part

 Where the "Segmentation Permitted" flag is set to zero, the
 nonsegmenting protocol subset is in use.















ISO DIS 8473 (May 1984)                                        [Page 40]





RFC 926                                                    December 1984


 7.4.1 Data Unit Identifier

  The Data Unit Identifier identifies an Initial PDU (and hence, its
  Derived PDUs) so that a segmented data unit may be correctly
  reassembled by the destination network-entity. The Data Unit
  Identifier size is two octets.

 7.4.2 Segment Offset

  For each segment the Segment Offset field specifies the relative
  position of the segment in the data part of the Initial PDU with
  respect to the start of the data field. The offset is measured in
  units of octets. The offset of the first segment is zero.

 7.4.3 PDU Total Length

  The Total Length field specifies the entire length of the Initial
  PDU, including both the header and data. This field is not changed in
  any segment (Derived PDU) for the lifetime of the PDU.

7.5 Options Part

 7.5.1 General

  The options part is used to convey optional parameters. If the
  options part is present, it contains one or more parameters. The
  number of parameters that may be contained in the options part is
  indicated by the length of the options part which is:

   PDU Header Length - (length of fixed part +
                        length of address part +
                        length of segmentation part).

















ISO DIS 8473 (May 1984)                                        [Page 41]





RFC 926                                                    December 1984


  The options part of the PDU header is illustrated below:

                                              Octet
                  +--------------------+
                  |                    |       n+6
                  |      Options       |
                  |                    |       p
                  +--------------------+

                Figure 7-5.  PDU Header--Options Part

  Each parameter contained within the options part of the PDU header is
  encoded as follows:

                         BITS    8  7  6  5  4  3  2  1
            +------------------------------------------+
            |  Octets  |                               |
            |    n     |  Parameter Code               |
            |------------------------------------------|
            |   n+1    |  Parameter Length (e.g., 'm') |
            |------------------------------------------|
            |   n+2    |  Parameter Value              |
            |  n+m+1   |                               |
            +------------------------------------------+

                  Table 7-3.  Encoding of Parameters

  The parameter code field is coded in binary and, without extensions,
  provides a maximum number of 255 different parameters. However, as
  noted below, bits 8 and 7 cannot take every possible value, so the
  practical maximum number of different parameters is less. A parameter
  code of 255 (binary 1111 1111) is reserved for possible extensions of
  the parameter code.

  The parameter length field indicates the length, in octets, of the
  parameter value field. The length is indicated by a binary number,
  'm', with a theoretical maximum value of 255. The practical maximum
  value of 'm' is lower. For example, in the case of a single parameter
  contained within the options part, two octets are required for the
  parameter code and the parameter length indication itself. Thus, the
  value of 'm' is limited to:








ISO DIS 8473 (May 1984)                                        [Page 42]





RFC 926                                                    December 1984


    253 - (length of fixed part +
    length of address part +
    length of segmentation part).

  For each succeeding parameter the maximum value of 'm' decreases.

  The parameter value field contains the value of the parameter
  identified in the parameter code field.

  No parameter codes use bits 8 and 7 with the value 00.

  Implementations shall accept the parameters defined in the options
  part in any order. Duplication of options (where detected) is not
  permitted. Receipt of a PDU with an option duplicated should be
  treated as a protocol error. The rules governing the treatment of
  protocol errors are described in Section 6.10, Error Reporting
  Function.

  The following parameters are permitted in the options part.

 7.5.2 Padding

  The padding parameter is used to lengthen the PDU header to a
  convenient size (See Section 6.12).

   Parameter Code:       1100 1100
   Parameter Length:     variable
   Parameter Value:      any value is allowed

 7.5.3 Security

  This parameter is user defined.

   Parameter Code:       1100 0101
   Parameter Length:     variable
   Parameter Value:

    High order bit of first octet is Security Domain bit, S, to be
    interpreted as follows:










ISO DIS 8473 (May 1984)                                        [Page 43]





RFC 926                                                    December 1984


     S=0

      +---------------------------
      | S | User Defined        ----
      +------------------------

     S=1

      +---------------------------
      | S | CODE | ORGANIZATION ----
      +------------------------

     where

      CODE = This field contains a geographic or non-geographic code to
             which the option applies.

      ORGANIZATION = This is a further subdivision of the CODE field
                     and is determined by an administrator of the
                     geographic or non-geographic domain identified by
                     the value of CODE.

 7.5.4 Source Routing

  The source routing parameter specifies, either completely or
  partially, the route to be taken from Source Network Address to
  Destination Network Address.

   Parameter Code:      1100 1000
   Parameter Length:    variable
   Parameter Value:     2 octet control information
                        succeeded by a concatenation
                        of ordered address fields
                        (ordered from source to destination)















ISO DIS 8473 (May 1984)                                        [Page 44]





RFC 926                                                    December 1984


  The first octet of the parameter value is the type code. This has the
  following significance.

   0000 0001     complete source routing
   0000 0000     partial source routing

   <all other values reserved>

  The second octet indicates the octet offset of the next address to be
  processed in the list. A value of three (3) indicates that the next
  address begins immediately after this control octet. Successive
  octets are indicated by correspondingly larger values of this
  indicator.

  The third octet begins the intermediate-system address list. The
  address list consists of variable length address fields. The first
  octet of each address field identifies the length of the address
  which comprises the remainder of the address field.

 7.5.5 Recording of Route

  The recording of route parameter identifies the route of intermediate
  systems traversed by the PDU.

   Parameter Code:       1100 1011
   Parameter Length:     variable
   Parameter Value:      two octets control information
                         succeeded  by a concatenation of
                         ordered addresses

  The first octet is used to indicate that the recording of route has
  been terminated owing to lack of space in the option. It has the
  following significance:

   0000 0000     Recording of Route still in progress
   1111 1111     Recording of Route terminated

   <all other values reserved>











ISO DIS 8473 (May 1984)                                        [Page 45]





RFC 926                                                    December 1984


  The second octet identifies the next octet which may be used to
  record an address. It is encoded relative to the start of the
  parameter, such that a value of three (3) indicates that the octet
  after this one is the next to be used.

  The third octet begins the address list. The address list consists of
  variable length address fields. The first octet of each address field
  identifies the length of the address which comprises the remainder of
  the field. Address fields are always added to the beginning of the
  address list; i.e., the most recently added field will begin in the
  third octet of the parameter value.

 7.5.6 Quality of Service Maintenance

  The Quality of Service parameter conveys information about the
  quality of service requested by the originating Network Service user.
  At intermediate systems, Network Layer relay entities may (but are
  not required to) make use of this information as an aid in selecting
  a route when more than one route satisfying other routing criteria is
  available and the available routes are known to differ with respect
  to Quality of Service (see Section 6.16).

   Parameter Code:       1100 0011
   Parameter Length:     one octet
   Parameter Value:      Bit 8:  transit delay vs. cost
                         Bit 7:  residual error probability vs.
                                 transit delay
                         Bit 6:  residual error probability vs.
                                 cost
                         Bits 5 thru 0 are not specified.

  Bit 8 is set to one indicates that where possible, routing decision
  should favor low transit delay over low cost. A value of 0 indicates
  that routing decisions should favor low cost over low transit delay.















ISO DIS 8473 (May 1984)                                        [Page 46]





RFC 926                                                    December 1984


  Bit 7 set to one indicates that where possible, routing decisions
  should favor low residual error probability over low transit delay. A
  value of zero indicates that routing decisions should favor low
  transit delay over low residual error probability.

  Bit 6 is set to one indicates that where possible, routing decisions
  should favor low residual error probability over low cost. A value of
  0 indicates that routing decisions should favor low cost over low
  residual error probability.

7.6 Priority

 The priority parameter carries the relative priority of the protocol
 data unit. Intermediate systems that support this option should make
 use of this information in routing and in ordering PDUs for
 transmission.

  Parameter Code:       1100 1100
  Parameter Length:     one octet
  Parameter Value:      0000 0000 - Normal (Default)
                        thru
                        0000 1111 - Highest

 The values 0000 0001 through 0000 1111 are to be used for higher
 priority protocol data units. If an intermediate system does not
 support this option then all PDUs shall be treated as if the field had
 the value 0000 0000.

7.7 Data Part

 The Data part of the PDU is structured as an ordered multiple of
 octets, which is identical to the same ordered multiple of octets
 specified for the NS_Userdata parameter of the N_UNITDATA Request and
 Indication primitives. The data field is illustrated below:















ISO DIS 8473 (May 1984)                                        [Page 47]





RFC 926                                                    December 1984


                                            Octet
                 +------------------+
                 |                  |      p+1
                 |       Data       |
                 |                  |       z
                 +------------------+

                 Figure 7-6.  PDU header--Data Field









































ISO DIS 8473 (May 1984)                                        [Page 48]





RFC 926                                                    December 1984


7.8 Data (DT) PDU

 7.8.1 Structure

  The DT PDU has the following format:

                                                 Octet
    +--------------------------------------+
    |  Network Layer Protocol Identifier   |      1
    |--------------------------------------|
    |           Length Indicator           |      2
    |--------------------------------------|
    |   Version/Protocol Id Extension      |      3
    |--------------------------------------|
    |              Lifetime                |      4
    |--------------------------------------|
    |SP|MS|E/R|      Type                  |      5
    |--------------------------------------|
    |           Segment Length             |     6,7
    |--------------------------------------|
    |              Checksum                |     8,9
    |--------------------------------------|
    | Destination Address Length Indicator |     10
    |--------------------------------------|
    |         Destination Address          |     11 through m-1
    |--------------------------------------|
    |    Source Address Length Indicator   |      m
    |--------------------------------------|
    |            Source Address            |     m+1 through n-1
    |--------------------------------------|
    |         Data Unit Identifier         |     n,n+1
    |--------------------------------------|
    |            Segment Offset            |     n+2,n+3
    |--------------------------------------|
    |             Total Length             |     n+4,n+5
    |--------------------------------------|
    |                Options               |     n+6 through p
    |--------------------------------------|
    |                 Data                 |     p+1 through z
    +--------------------------------------+

                    Figure 7-7.  PDU Header Format







ISO DIS 8473 (May 1984)                                        [Page 49]





RFC 926                                                    December 1984


  7.8.1.1 Fixed Part

   1) Network Layer Protocol Identifier   See Section 7.2.2.
   2) Length Indicator                    See Section 7.2.3.
   3) Version/Protocol Id Extension       See Section 7.2.4.
   4) Lifetime                            See Section 7.2.5.
   5) SP, MS, E/R                         See Section 7.2.6.
   6) Type Code                           See Section 7.2.7.
   7) Segment Length                      See Section 7.2.8.
   8) Checksum                            See Section 7.2.9.

  7.8.1.2 Addresses

   See Section 7.3.

  7.8.1.3 Segmentation

   See Section 7.4.

  7.8.1.4 Options

   See Section 7.5.

  7.8.1.5 Data

   See Section 7.7.























ISO DIS 8473 (May 1984)                                        [Page 50]





RFC 926                                                    December 1984


7.9 Inactive Network Layer Protocol

                                             Octet
           +-----------------------------+
           |  Network Layer Protocol Id  |     1
           |-----------------------------|
           |           Data              |     2 through n
           +-----------------------------+

             Figure 7-9.  Inactive Network Layer Protocol

 7.9.1 Network Layer Protocol Id

  The value of the Network Layer Protocol Identifier field is binary
  zero (0000 0000).

 7.9.2 Data Field

  See Section 7.7.

  The length of the NS_Userdata parameter is constrained to be less
  than or equal to the value of the length of the SN_Userdata parameter
  minus one.


























ISO DIS 8473 (May 1984)                                        [Page 51]





RFC 926                                                    December 1984


7.10 Error Report PDU (ER)

 7.10.1 Structure

                                                 Octet
    +--------------------------------------+
    |   Network Layer Protocol Identifier  |       1
    |--------------------------------------|
    |           Length Indicator           |       2
    |--------------------------------------|
    |     Version/Protocol Id Extension    |       3
    |--------------------------------------|
    |               Lifetime               |       4
    |--------------------------------------|
    |SP|MS|E/R|       Type                 |       5
    |--------------------------------------|
    |             Segment Length           |      6,7
    |--------------------------------------|
    |                Checksum              |      8,9
    |--------------------------------------|
    | Destination Address Length Indicator |      10
    |--------------------------------------|
    |         Destination Address          |     10 through m-1
    |--------------------------------------|
    |     Source Address Length Indicator  |       m
    |--------------------------------------|
    |             Source Address           |     m+1 through n-1
    |--------------------------------------|
    |          Data Unit Identifier        |     n,n+1
    |--------------------------------------|
    |             Segment Offset           |     n+2,n+3
    |--------------------------------------|
    |              Total Length            |     n+4,n+5
    |--------------------------------------|
    |                Options               |     n+6 through p-1
    |--------------------------------------|
    |           Reason for Discard         |     p through q-1
    |--------------------------------------|
    |       Error Report Data Field        |       z
    +--------------------------------------+

                    Figure 7-10.  Error Report PDU







ISO DIS 8473 (May 1984)                                        [Page 52]





RFC 926                                                    December 1984


  7.10.1.1 Fixed Part

   The fixed part of the Error Report Protocol Data Unit is set as
   though this is a new (Initial) PDU. Thus, references are provided to
   precious sections describing the composition of the fields
   comprising the fixed part:

   1) Network Layer Protocol Identifier   See Section 7.2.2.
   2) Length Indicator                    See Section 7.2.3.
   3) Version/Protocol Id Extension       See Section 7.2.4.
   4) Lifetime                            See Section 7.2.5.
   5) SP, MS, E/R                         See Section 7.2.6.
   6) Type Code                           See Section 7.2.7.
   7) Segment Length                      See Section 7.2.8.
   8) Checksum                            See Section 7.2.9.

  7.10.1.2 Addresses

   See Section 7.3.

   The Destination Address specifies the original source of the
   discarded PDU. The Source Address specifies the intermediate system
   or end system network-entity initiating the Error Report PDU.

  7.10.1.3 Segmentation

   See Section 7.4.






















ISO DIS 8473 (May 1984)                                        [Page 53]





RFC 926                                                    December 1984


  7.10.1.4 Options

   See Section 7.5.

  7.10.1.5 Reason for Discard

   This parameter is only valid for the Error Report PDU. It provides a
   report on the discarded protocol data unit.

   Parameter Code:

    1100 0001

   Parameter Length:

    two octets
    type of error encoded in binary:

     0000 0000:  Reason not specified.
     0000 0001:  Protocol Procedure Error.
                 other than below:
     0000 0010:  Incorrect checksum.
     0000 0011:  PDU discarded due to congestion.
     0000 0100:  Header syntax error (header cannot
                 be parsed).
     0000 0101:  Segmentation is needed but is not
                 permitted.

     1000 xxxx:  Addressing Error:
                 0000 0000:  Destination Address
                             Unreachable.
                 1000 0001:  Destination Address
                             Unknown.

     1001 xxxx:  Source Routing Error:
                 1001 0000:  Unspecified Source
                             Routing error.
                 1001 0001:  Syntax error in Source
                             Routing field.
                 1001 0010:  Unknown Address in
                             Source Routing field.
                 1001 0011:  Path not acceptable.







ISO DIS 8473 (May 1984)                                        [Page 54]





RFC 926                                                    December 1984


     1010 xxxx:  Lifetime Expiration:
                 1010 0000:  Lifetime expired while
                             data unit in transit.
                 1010 0001:  Lifetime expired
                             during reassembly.

     1011 xxxx:  PDU discarded due to unsupported
                 option:
                 1011 0000:  unsupported option not
                             specified.
                 1011 0001:  unsupported padding
                             option.
                 1011 0010:  unsupported security
                             option.
                 1011 0011:  unsupported source
                             routing option.
                 1011 0100:  unsupported recording
                             of route option.
                 1011 0101:  unsupported QoS
                             Maintenance option.

    The second octet contains a pointer to the field in the associated
    discarded PDU which caused the error. If no one particular field
    can be associated with the error, then this field contains the
    value of zero.

  7.10.1.6 Error Report Data Field

   This field provides all or a portion of the discarded PDU. The
   octets comprising this field contain the rejected or discarded PDU
   up to and including the octet which caused the rejection/discard.


















ISO DIS 8473 (May 1984)                                        [Page 55]





RFC 926                                                    December 1984


8  FORMAL DESCRIPTION

The operation of the protocol is modelled as a finite state automaton
governed by a state variable with three values. The behavior of the
automaton is defined with respect to individual independent Protocol
Data Units. A transition of the automaton is prompted by the occurrence
of an atomic event at one of three interfaces:

 1) an interface to the Transport Layer, defined by the service
     primitives of the Addendum to the Network Service Definition
     Covering Connectionless-mode Transmission;

 2) an interface to the subnetwork service provider, defined by the
     SN_UNITDATA primitive of Section 5.5 of this Standard;

 3) an interface to an implementation-dependent timer function defined
     by the TIMER primitives described in Section 5.6 of this Standard.

In addition, a transition of the automaton may be prompted by the
occurrence of a condition of the automaton.

The atomic events are defined in Section 8.2. The occurrence of an
atomic event is not in itself sufficient to cause a transition to take
place; other conditions, called "enabling conditions" may also have to
be met before a particular transition can take place. Enabling
conditions are boolean expressions that depend on the values of
parameters associated with the corresponding atomic event (that is, the
parameters of some primitive), and on the values of locally maintained
variables.

More than one enabling condition -- and therefore, more than one
possible transition -- may be associated with a single atomic event. In
every such case, the enabling conditions are mutually exclusive, so
that for any given combination of atomic event and parameter values,
only one state transition can take place.

Associated with each transition is an action, or "output." Actions
consist of changes to the values of local variables and the sequential
performance of zero or more functions. The operation of the finite
state automaton is completely specified in Section 8.3 by defining the
action associated with every possible transition.








ISO DIS 8473 (May 1984)                                        [Page 56]





RFC 926                                                    December 1984


8.1  Values of the State Variable

 The protocol state variable has three values:

 1)  INITIAL       The automaton is created in the INITIAL state.  No
                   transition may carry the automaton into the INITIAL
                   state.

 2)  REASSEMBLING  The automaton is in the REASSEMBLING state for the
                   period in which it is assembling PDU segments into a
                   complete PDU.

 3)  CLOSED        The final state of the automaton is the  CLOSED
                   state.  When the automaton enters the CLOSED state
                   it ceases to exist.

8.2  Atomic Events

 An atomic event is the transfer of a unit of information across an
 interface.  The description of an atomic event specifies a primitive
 (such as an N_UNITDATA.Request), and the service boundary at which it
 is invoked (such as the Network Service boundary). The direction of
 information flow across the boundary is implied by the definition of
 each of the primitives.

 8.2.1  N.UNITDATA_request and N.UNITDATA_indication

  The N.UNITDATA_request and N.UNITDATA_indication atomic events occur
  at the Network Service boundary. They are defined by the Addendum to
  the Network Service Definition Covering Connectionless Data
  Transmission (ISO 8348/DAD1).


















ISO DIS 8473 (May 1984)                                        [Page 57]





RFC 926                                                    December 1984


  N.UNITDATA_request    (NS Source_Address,
                         NS_Destination_Address,
                         NS_Quality_of_Service,
                         NS_Userdata)

  N.UNITDATA_indication (NS_Source_Address,
                         NS_Destination_Address,
                         NS_Quality_of_Service, NS_Userdata)

  The     parameters     of     the     N.UNITDATA_request      and
  N.UNITDATA_indication  are  collectively  referred  to as Network
  Service Data Unit (NSDUs).

 8.2.2  SN.UNITDATA_request and SN.UNITDATA_indication

  The SN.UNITDATA_request and SN.UNITDATA_indication atomic events
  occur at the interface between the Protocol described herein and a
  subnetwork service provider. They are defined in Section 5.5 of this
  Standard.

  SN.UNITDATA_request    (SN_Source_Address,
                          SN_Destination_Address,
                          SN_Quality_of_Service,
                          SN_Userdata)

  SN.UNITDATA_indication (SN_Source_Address,
                          SN_Destination_Address,
                          SN_Quality_of_Service,
                          SN_Userdata)

  The parameters of the SN_UNITDATA request and SN_UNITDATA Indication
  are collectively referred to as Subnetwork Service Data Units
  (SNSDUs).

  The value of the SN_Userdata parameter may represent an Initial PDU
  or a Derived PDU.













ISO DIS 8473 (May 1984)                                        [Page 58]





RFC 926                                                    December 1984


 8.2.3  TIMER Atomic Events

  The TIMER atomic events occur at the interface between the Protocol
  described herein and its local environment. They are defined in
  Section 5.6 of this Standard.

   S.TIMER_request  (Time,
                     Name,
                     Subscript)

   S.TIMER_cancel   (Name
                     Subscript)

   S.TIMER_response (Name,
                     Subscript)

8.3  Operation of the Finite State Automation

 The operation of the automaton is defined by use of the formal
 description technique and notation specified in ISO/TC97/SC16 N1347.
 This technique is based on an extended finite state transition model
 and the Pascal programming language. The technique makes use of strong
 variable typing to reduce ambiguity in interpretation of the
 specification.

 This specification formally specifies an abstract machine which
 provides a single instance of the Connectionless-Mode Network Service
 by use of the Protocol For Providing the Connectionless-Mode Network
 Service. It should be emphasized that this formal specification does
 not in any way constrain the internal operation or design of any
 actual implementation. For example, it is not required that the
 program segments contained in the state transitions will actually
 appear as part of an actual implementation. A formal protocol
 specification is useful in that it goes as far as possible to
 eliminate any degree of ambiguity or vagueness in the specification of
 a protocol standard.

 The formal specification contained here specifies the behavior of a
 single finite-state machine, which provides the protocol










ISO DIS 8473 (May 1984)                                        [Page 59]





RFC 926                                                    December 1984


 behavior corresponding to a single independent service request. It is
 expected that any actual implementation will be able to handle
 behavior corresponding to many simultaneous finite state machines.














































ISO DIS 8473 (May 1984)                                        [Page 60]





RFC 926                                                    December 1984


 8.3.1  Type and Constant Definitions

  const

   ZERO  = 0;
   max_user_data = 64512;

  type

   NSAP_addr_type  = ...;

    { NSAP_addr_type defines the data type for NSAP addresses, as
    passed across the Network Service Boundary. }

   NPAI_addr_type  = ...;

    { NPAI_addr_type defines the data type for the addresses carried in
    PDUs. }

   SN_addr_type    = ...;

    { SN_addr_type defines the data type for addresses in the
    underlying service used by this protocol. }

   quality_of_service_type = ...;

    { Quality_of_service_type defines the data type for the QOS
    parameter passed across the Network Service boundary. }

   SN_QOS_type     = ...;

    { SN_QOS_type defines the data type for the QOS parameter, if any,
    passed to the underlying service used by this protocol. }

   data_type       = ...;

    { Data_type defines the data type for user data. Conceptually this
    is equivalent to a variable length binary string. }

   buffer_type     = ...;

    { Buffer_type defines the data type for the memory resources used
    in sending and receiving of user data.  This provides capabilities
    required for segmentation and reassembly. }





ISO DIS 8473 (May 1984)                                        [Page 61]





RFC 926                                                    December 1984


   timer_name_type = (lifetime_timer);
   timer_data_type = ...;

   network_layer_protocol_id_type = (ISO_8473_protocol_id);
   version_id_type  = (version1);
   pdu_tp_type      = (DT, ER);

   options_type    = ...;

    { Options_type defines the data type used to store the options part
    of the PDU header. }

   subnet_id_type  = ...;

    { The subnet_id_type defines the data type used to locally identify
    a particular underlying service used by this protocol.  In general
    there may be multiple underlying subnetwork (or data link)
    services. }

   error_type      = (NO_ERROR,
                      TOO_MUCH_USER_DATA,
                      PROTOCOL_PROCEDURE_ERROR,
                      INCORRECT_CHECKSUM, CONGESTION,
                      SYNTAX_ERROR,
                      SEG_NEEDED_AND_NOT_PERMITTED,
                      DESTINATION_UNREACHABLE,
                      DESTINATION_UNKNOWN,
                      UNSPECIFIED_SRC_ROUTING_ERROR,
                      SYNTAX_ERROR_IN_SRC_ROUTING,
                      UNKNOWN_ADDRESS_IN_SRC_ROUTING,
                      PATH_NOT_ACCEPTABLE_IN_SRC_ROUTING,
                      LIFETIME_EXPIRED_IN_TRANSIT,
                      LIFETIME_EXPIRED_IN_REASSEMBLY,
                      UNSUPPORTED_OPTION_NOT_SPECIFIED,
                      UNSUPPORTED_PADDING_OPTION,
                      UNSUPPORTED_SECURITY_OPTION,
                      UNSUPPORTED_SRC_ROUTING_OPTION,
                      UNSUPPORTED_RECORDING_OF_ROUTE_OPTION,
                      UNSUPPORTED_QOS_MAINTENANCE_OPTION);










ISO DIS 8473 (May 1984)                                        [Page 62]





RFC 926                                                    December 1984


  nsdu_type = record
                  da   : NSAP_addr_type;
                  sa   : NSAP_addr_type;
                  qos  : quality_of_service_type;
                  data : data_type;
               end;

  pdu_type = record
                  nlp_id   : network_layer_protocol_id_type;
                  hli      : integer;
                  vp_id    : version_id_type; lifetime : integer;
                  sp       : boolean;
                  ms       : boolean;
                  er_flag  : boolean;
                  pdu_tp   : pdu_tp_type;
                  seg_len  : integer;
                  checksum : integer;
                  da_len   : integer;
                  da       : NPAI_addr_type;
                  sa_len   : integer;
                  sa       : NPAI_addr_type;
                  du_id    : optional integer;
                  so       : optional integer;
                  tot_len  : optional integer;
                     { du_id, so, and tot_len are present
                      only if sp has the value TRUE. }
                  options  : options_type;
                  data     : data_type;
               end;




















ISO DIS 8473 (May 1984)                                        [Page 63]





RFC 926                                                    December 1984


  route_result_type =
              record

           subnet_id    : subnet_id_type;
           sn_da        : SN_addr_type;
           sn_sa        : SN_addr_type;
           segment_size : integer;
        end;









































ISO DIS 8473 (May 1984)                                        [Page 64]





RFC 926                                                    December 1984


 8.3.2  Interface Definitions

  channel Network_access_point (User, Provider);

   by User:
       UNITDATA_request
          (NS_Destination_address : NSAP_addr_type;
           NS_Source_address      : NSAP_addr_type;
           NS_Quality_of_Service  : quality_of_service_type;
           NS_Userdata            : data_type);

   by Provider:
       UNITDATA_indication
          (NS_Destination_address : NSAP_addr_type;
           NS_Source_address      : NSAP_addr_type;
           NS_Quality_of_Service  : quality_of_service_type;
           NS_Userdata            : data_type);

  channel Subnetwork_access_point (User, Provider);

   by User:
       UNITDATA_request
          (SN_Destination_address : SN_addr_type;
           SN_Source_address      : SN_addr_type;
           SN_Quality_of_Service  : SN_QOS_type;
           SN_Userdata            : pdu_type);

   by Provider:
       UNITDATA_indication
          (SN_Destination_address : SN_addr_type;
           SN_Source_address      : SN_addr_type;
           SN_Quality_of_Service  : SN_QOS_type;
           SN_Userdata            : pdu_type);

  channel System_access_point (User, Provider);

   by User:
       TIMER_request
          (Time      : integer;
           Name      : timer_name_type;
           Subscript : integer);








ISO DIS 8473 (May 1984)                                        [Page 65]





RFC 926                                                    December 1984


       TIMER_cancel

            (Name      : timer_name_type;
             Subscript : integer);

   by Provider:
       TIMER_indication
          (Name      : timer_name_type;
           Subscript : integer);








































ISO DIS 8473 (May 1984)                                        [Page 66]





RFC 926                                                    December 1984


 8.3.3  Formal Machine Definition

  module Connectionless_Network_Protocol_Machine
       (N:  Network_access_point (Provider) common queue;
        SN: array [subnet_id_type] of Subnetwork_access_point
                                         (User) common queue;
        S:  System_access_point (User) individual queue );

  var
      nsdu    : nsdu_type;
      pdu     : pdu_type;
      rcv_buf : buffer_type;

  state : (INITIAL, REASSEMBLING, CLOSED);



































ISO DIS 8473 (May 1984)                                        [Page 67]





RFC 926                                                    December 1984


  procedure send_error_report (error : error_type;
                               pdu   : pdu_type);

   var
       er_pdu : pdu_type;

   begin
    if (pdu.er_flag) then
     begin
      er_pdu.nlp_id   := ISO_8473_protocol_id;
      er_pdu.vp_id    := version1;
      er_pdu.lifetime := get_er_lifetime(pdu.sa);
      er_pdu.sp       := get_er_seg_per(pdu);
      er_pdu.ms       := FALSE;
      er_pdu.er_flag  := FALSE;
      er_pdu.pdu_tp   := ER;
      er_pdu.da_len   := pdu.sa_len;
      er_pdu.da       := pdu.sa;
      er_pdu.sa_len   := get_local_NPAI_addr_len;
      er_pdu.sa       := get_local_NPAI_addr;
      er_pdu.options  := get_er_options
                         (error,
                         er_pdu.da,
                         pdu.options);
      er_pdu.hli      := get_header_length
                         (er_pdu.da_len, er_pdu.sa_len,
                          er_pdu.sp,
                          er_pdu.options);
      er_pdu.data     := get_er_data_field(error, pdu);
      if (er_pdu.sp) then
                       begin
                          er_pdu.du_id   :=
                          get_data_unit_id(er_pdu.da);
                          er_pdu.so      := ZERO;
                          er_pdu.tot_len := er_pdu.hli +
                          size(er_pdu.data);
                       end;












ISO DIS 8473 (May 1984)                                        [Page 68]





RFC 926                                                    December 1984


      if (NPAI_addr_local(er_pdu.da))
                       then
                          post_error_report(er_pdu)
                       else
                          send_pdu(er_pdu);
     end;
   end;










































ISO DIS 8473 (May 1984)                                        [Page 69]





RFC 926                                                    December 1984


  procedure send_pdu (pdu : pdu_type);

   var

    rte_result   : route_result_type;
    error_code   : error_type;
    send_buf     : buffer_type;
    data_maxsize : integer;
    more_seg     : boolean;
    sn_qos       : SN_QOS_type;

   begin

    send_buf := make_buffer(pdu.data);
    more_seg := pdu.ms;

    repeat

     begin

      error_code := check_parameters
                    (pdu.hli,
                     pdu.sp,
                     pdu.da,
                     pdu.options,
                     size(pdu.data));

      if (error_code = NO_ERROR) then

                       begin

                          rte_result := route(pdu.hli,
                                              pdu.sp,
                                              pdu.da,
                                              pdu.options,
                                              size(pdu.data));

                          data_maxsize := rte_result.segment_size -
                          pdu.hli;
                          pdu.data     := extract(send_buf,
                          data_maxsize);
                          pdu.seg_len  := pdu.hli + size(pdu.data);

                          if (size(send_buf) = ZERO) then
                              pdu.ms   := more_seg
                          else
                              pdu.ms   := TRUE;


ISO DIS 8473 (May 1984)                                        [Page 70]





RFC 926                                                    December 1984


                          pdu.checksum := get_checksum(pdu);
                          sn_qos       := get_sn_qos
                          (rte_result.subnet_id,
                                                      pdu.options);

                          out SN[rte_result.subnet_id].UNITDATA_request
                                     (rte_result.sn_da,
                                      rte_result.sn_sa,
                                      sn_qos,
                                      pdu);

                          pdu.so := pdu.so + data_maxsize;

                       end

      else if (error_code = CONGESTION) then

                       begin

                          if (send_er_on_congestion (pdu)) then
                              send_error_report(CONGESTION, pdu);

                       end

      else

                       send_error_report(error_code, pdu);

     end;

    until (size_buf(data_buf) = ZERO) or
          (error_code <> NO_ERROR);

   end;















ISO DIS 8473 (May 1984)                                        [Page 71]





RFC 926                                                    December 1984


  procedure allocate_reassembly_resources
           (pdu_tot_len : integer);
  primitive;

   { This procedure allocates resources required for reassembly of a
   PDU of the specified total length.  If this requires discarding of a
   PDU in which the ER flag is set, then an error report is returned to
   the source of the discarded data unit. }

  function check_parameters
       (hli     : integer;
        sp      : boolean;
        da      : NPAI_addr_type;
        options : options_type;
        datalen : integer) : error_type;
  primitive;

   { This function examines various parameters associated with a PDU,
   to determine whether forwarding of the PDU can continue.  If a
   result of NO_ERROR is returned, then the primitive route can be
   called to specify the route and segment size.  Otherwise this
   function specifies the reason that an error has occurred. }

  function data_unit_complete
       (buf : buffer_type) : boolean;
  primitive;

   { This function returns a boolean value specifying whether the PDU
   stored in the specified buffer has been completely received. }




















ISO DIS 8473 (May 1984)                                        [Page 72]





RFC 926                                                    December 1984


  function elapsed_time : integer;
  primitive;

   { This function returns an estimate of the time elapsed, in 500
   microsecond increments, since the PDU was transmitted by the
   previous peer network entity.  This estimate includes both time
   spent in transit, and any time to be spent in buffers within the
   local system.  Although this estimate need not be precise,
   overestimates are preferable to underestimates, as underestimating
   the time elapsed may defeat the intent of the lifetime function. }

  procedure empty_buffer
       (buf : buffer_type);
  primitive;

   { This procedure empties the specified buffer. }

  function extract
       (buf    : buffer_type;
        amount : integer) : data_type;
  primitive;

   { This function removes the specified amount of data from
   the specified buffer, and returns this data as the function
   value. }

  procedure free_reassembly_resources;
  primitive;

   { This procedure releases the resources that had been previously
   allocated by the procedure allocate_reassembly_resources. }

  function get_checksum
       (pdu : pdu_type) : integer;
  primitive;

   { This function returns the 16 bit integer value to be placed in the
   checksum field of the PDU.  If the checksum facility is not being
   used, then this function returns the value zero.  The algorithm for
   producing a correct checksum value is specified in Annex A. }

  function get_data_unit_id
       (da : NPAI_addr_type) : integer;
  primitive;

   { This function returns a data unit identifier which is unique for
   the specified destination address. }


ISO DIS 8473 (May 1984)                                        [Page 73]





RFC 926                                                    December 1984


  function get_er_data_field
       (error : error_type;
        pdu   : pdu_type) : data_type;
  primitive;

   { This function returns the correct data field for an error report,
   based on the information that the specified PDU is being discarded
   due to the specified error.  The data field of an error report must
   include the header of the discarded PDU, and may optionally contain
   additional user data. }

  function get_er_flag
       (nsdu : nsdu_type) : boolean;
  primitive;

   { This function returns a boolean value to be used as the error
   report flag in a PDU which transmits the specified nsdu.  If the PDU
   must be discarded at some future time, an error report can be
   returned only if this value is set to TRUE. }

  function get_er_lifetime
       (da : NPAI_addr_type) : integer;
  primitive;

   { This function returns the lifetime value to be used for an error
   report being sent to the specified destination address. }

  function get_er_options
       (error   : error_type;
        da      : NPAI_addr_type;
        options : options_type) : options_type;
  primitive;

   { This function returns the options field of an error report, based
   on the reason for discard, and the destination address and options
   field of the discarded PDU.  The options field contains the reason
   for discard option, and may contain other optional fields. }












ISO DIS 8473 (May 1984)                                        [Page 74]





RFC 926                                                    December 1984


  function get_er_seg_per

       (pdu     : pdu_type) : boolean;
  primitive;

   { This function returns the boolean value which will be used for the
   segmentation permitted flag of an error report. }

  function get_header_len
       (da_len  : integer;
        sa_len  : integer;
        sp      : boolean;
        options : options_type) : integer;
  primitive;

   { This function returns the header length, in octets.  This depends
   upon the lengths of the source and destination addresses, whether
   the segmentation part of the header is present, and the length of
   the options part. }

  function get_lifetime
       (da  : NSAP_addr_type;
        qos : quality_of_service_type) : lifetime_type;
  primitive;

   { This function returns the lifetime value to be used for a PDU,
   based upon the destination address and requested quality of service.
   }

  function get_local_NPAI_addr : NPAI_addr_type;
  primitive;

   { This functions returns the local address as used in the protocol
   header. }

  function get_local_NPAI_addr_len : integer;
  primitive;

   { This functions returns the length of the local address as used in
   the protocol header. }









ISO DIS 8473 (May 1984)                                        [Page 75]





RFC 926                                                    December 1984


  function get_NPAI
       (addr : NSAP_addr_type) : NPAI_addr_type;
  primitive;

   { This function returns the network address as used in the protocol
   header, or "Network Protocol Addressing Information", corresponding
   to the specified NSAP address. }

  function get_NPAI_len
       (addr : NSAP_addr_type) : integer;
  primitive;

   { This function returns the length of the network address
   corresponding to a specified NSAP address. }

  function get_NSAP_addr
       (addr : NPAI_addr_type;
        len  : integer) : NSAP_addr_type;
  primitive;

   { This function returns the NSAP address corresponding to the
   network protocol addressing information (as it appears in the
   protocol header) of the specified length. }

  function get_options
       (da  : NSAP_addr_type;
        qos : quality_of_service_type) : options_type;
  primitive;

   { This function returns the options field for a PDU, based on the
   requested destination address and quality of service. }

  function get_seg_permitted
       (da : NSAP_addr_type;
        qos : quality_of_service_type) : boolean;
  primitive;

   { This function returns the boolean value to be used in the
   segmentation permitted field of a PDU.  This value may depend upon
   the destination address, requested quality of service, and the
   length of the user data. }








ISO DIS 8473 (May 1984)                                        [Page 76]





RFC 926                                                    December 1984


  function get_sn_qos
       (subnet_id : subnet_id_type;

         options   : options_type) : SN_QOS_type;
  primitive;

   { This function returns the quality of service to be used on the
   specified subnetwork, in order to obtain the quality of service (if
   any) and other parameters requested in the options part of the PDU.
   }

  function get_qos
       (options : options_type) : quality_of_service_type;
  primitive;

   { This function determines, to the extent possible, the quality of
   service that was obtained for a particular PDU, based upon the
   quality of service and other information contained in the options
   part of the PDU header. }

  function make_buffer
       (data : data_type) : buffer_type;
  primitive;

   { This function places the specified data in a newly created buffer.
   The precise manner of handling buffers is implementation specific.
   This newly created buffer is returned as the function value. }

  procedure merge_seg
       (buf   : buffer_type;
        so    : integer;
        data  : data_type);
  primitive;

   { This procedure merges the specified data into the specified
   buffer, based on the specified segment offset of the data. }

  function NPAI_addr_local
       (addr : NPAI_addr_type) : boolean;
  primitive;

   { This function returns the boolean value TRUE only if the specified
   network protocol addressing information specifies a local address. }






ISO DIS 8473 (May 1984)                                        [Page 77]





RFC 926                                                    December 1984


  function NSAP_addr_local
       (addr : NSAP_addr_type) : boolean;
  primitive;

   { This function returns the boolean value TRUE only if the specified
   NSAP address specifies a local address. }

  procedure post_error_report
       (er_pdu : pdu_type);
  primitive;

   { This procedure posts the specified error report (ER) type PDU to
   the appropriate local entity that handles error reports. }

  function route
       (hli     : integer;
        sp      : boolean;
        da      : NPAI_addr_type;
        options : options_type;
        datalen : integer) : route_result_type;
  primitive;

   { This function determines the route to be followed by a PDU
   segment, as well as the segment size.  Note that in general, the
   segment size and route may be mutually dependent.  This
   determination is made on the basis of the header length, the
   segmentation permitted flag, the destination address, several
   parameters (such as source routing) contained in the options part of
   the PDU header, and the length of data.  This function returns a
   structure that specifies the subnetwork on which the segment should
   be transmitted, the source and destination addresses to be used on
   the subnetwork, and the segment size.  This routine may only be
   called if the primitive function check_parameters has already
   determined that an error will not occur. }















ISO DIS 8473 (May 1984)                                        [Page 78]





RFC 926                                                    December 1984


  function send_er_on_congestion
      (pdu : pdu_type) : boolean;
  primitive;

   { This function returns the boolean value true if an error report
   should be sent when the indicated data unit is discarded due to
   congestion.  Note that if the value true is returned, then the
   er_flag field of the discarded data unit must still be checked
   before an error report can be sent. }

  function size
      (data : data_type) : integer;
  primitive;

   { This function returns the length, in octets, of the specified
   data. }

  function size_buf
      (buf : buffer_type) : integer;
  primitive;

   { This function returns the length, in octets, of the data contained
   in the specified buffer. }

  initialize

   begin
       state to INITIAL;
   end;




















ISO DIS 8473 (May 1984)                                        [Page 79]





RFC 926                                                    December 1984


  trans  (* begin transitions *)

  from INITIAL  to  CLOSED
  when      N.UNITDATA_request
  provided  not NSAP_addr_local(NS_Destination_Address)

  begin
    nsdu.da   := NS_Destination_Address;
    nsdu.sa   := NS_Source_Address;
    nsdu.qos  := NS_Quality_o  _Service;
    nsdu.data := NS_Userdata;

    pdu.nlp_id   := ISO_8473_protocol_id;
    pdu.vp_id    := version1;
    pdu.lifetime := get_lifetime(nsdu.da, nsdu.qos);
    pdu.sp       := get_seg_permitted(nsdu.da, nsdu.qos);
    pdu.ms       := FALSE;
    pdu.er_flag  := get_er_flag(nsdu);
    pdu.pdu_tp   := DT;
    pdu.da_len   := get_NPAI_len(nsdu.da);
    pdu.da       := get_NPAI(nsdu.da);
    pdu.sa_len   := get_NPAI_len(nsdu.sa);
    pdu.sa       := get_NPAI(nsdu.sa);
    pdu.options  := get_options(nsdu.da, nsdu.qos);
    pdu.data     := nsdu.data;

    pdu.hli      := get_header_len(pdu.da_len,
                                   pdu.sa_len,
                                   pdu.sp,
                                   pdu.options);

    if (pdu.sp) then
          begin
            pdu.du_id    := get_data_unit_id(pdu.da);
            pdu.so       := ZERO;
            pdu.tot_len  := pdu.hli  +  size(pdu.data);
          end;

    if (size(pdu.data) > max_user_data) then
          send_error_report(TOO_MUCH_USER_DATA, pdu)
    else
          send_pdu(pdu);
  end;






ISO DIS 8473 (May 1984)                                        [Page 80]





RFC 926                                                    December 1984


  from INITIAL  to  CLOSED
  when      N.UNITDATA_request
  provided  NSAP_addr_local(NS_Destination_Address)

  begin
    nsdu.da   := NS_Destination_Address;
    nsdu.sa   := NS_Source_Address;
    nsdu.qos  := NS_Quality_of_Service;
    nsdu.data := NS_Userdata;

    out N.UNITDATA_indication
        (nsdu.da, nsdu.sa, nsdu.qos, nsdu.data);

  end;

  from INITIAL  to  CLOSED
  when      SN[subnet_id].UNITDATA_indication
  provided  NPAI_addr_local(SN_Userdata.da)  and
            SN_Userdata.so       =  ZERO     and
            not  SN_Userdata.ms

  begin
    pdu := SN_Userdata;

    if (pdu.pdu_tp = DT) then
        out N.UNITDATA_indication
           (get_NSAP_addr(pdu.da_len, pdu.da),
            get_NSAP_addr(pdu.sa_len, pdu.sa),
            get_qos(pdu.options),
            pdu.data)

    else
        post_error_report(pdu);

  end;














ISO DIS 8473 (May 1984)                                        [Page 81]





RFC 926                                                    December 1984


  from INITIAL  to  REASSEMBLING
  when      SN[subnet_id].UNITDATA_indication
  provided  NPAI_addr_local(SN_Userdata.da)    and
            ((SN_Userdata.so > ZERO) or (SN_Userdata.ms))

  begin
    pdu := SN_Userdata;
    allocate_reassembly_resources(pdu.tot_len);
    empty_buffer(rcv_buf);

    merge_seg
       (rcv_buf,
        pdu.so,
        pdu.data);

    out S.TIMER_request
       (pdu.lifetime,
        lifetime_timer,
        ZERO);

  end;

  from INITIAL  to  CLOSED
  when      SN[subnet_id].UNITDATA_indication
  provided  not NPAI_addr_local(SN_Userdata.da)

  begin
    pdu := SN_Userdata;

    if (pdu.lifetime > elapsed_time) then
      begin
        pdu.lifetime := pdu.lifetime - elapsed_time;
        send_pdu(pdu);
      end
  else
      send_error_report(LIFETIME_EXPIRED, pdu);

  end;











ISO DIS 8473 (May 1984)                                        [Page 82]





RFC 926                                                    December 1984


  from REASSEMBLING  to  REASSEMBLING
  when      SN[subnet_id].UNITDATA_indication
  provided  (SN_Userdata.du_id   = pdu.du_id)   and
            (SN_Userdata.da_len  = pdu.da_len)  and
            (SN_Userdata.da      = pdu.da)      and
            (SN_Userdata.sa_len  = pdu.sa_len)  and
            (SN_Userdata.sa      = pdu.sa)

  begin
    merge_seg
       (rcv_buf,
        SN_Userdata.so,
        SN_Userdata.data);

  end;

  from REASSEMBLING  to  CLOSED
  provided  data_unit_complete(rcv_buf)
  no delay

  begin
    if (pdu.pdu_tp = DT) then
        out N.UNITDATA_indication
           (get_NSAP_addr(pdu.da_len, pdu.da),
            get_NSAP_addr(pdu.sa_len, pdu.sa),
            get_qos(pdu.options),
            extract (rcv_buf, size_buf(rcv_buf)))
   else
       post_error_report(pdu);
   out S.TIMER_cancel(lifetime_timer,ZERO);
   free_reassembly_resources;

  end;

  from REASSEMBLING  to  CLOSED
  when      S.TIMER_indication

  begin
    send_error_report(LIFETIME_EXPIRED, pdu);

  end;








ISO DIS 8473 (May 1984)                                        [Page 83]





RFC 926                                                    December 1984


9  CONFORMANCE

For conformance to this International Standard, the ability to
originate, manipulate, and receive PDUs in accordance with the full
protocol (as opposed to the "non-segmenting" or "Inactive Network Layer
Protocol" subsets) is required.

Additionally, the provision of the optional functions described in
Section 6.17 and enumerated in Table 9-1 must meet the requirements
described therein.

Additionally, conformance to the Standard requires adherence to the
formal description of Section 8 and to the structure and encoding of
PDUs of Section 7.

If and only if the above requirements are met is there conformance to
this International Standard.

9.1  Provision of Functions for Conformance

 The following table categorizes the functions in Section 6 with
 respect to the type of system providing the function:



























ISO DIS 8473 (May 1984)                                        [Page 84]





RFC 926                                                    December 1984


 +---------------------------------------------------------+
 | Function                   |  Send  | Forward | Receive |
 |---------------------------------------------------------|
 | PDU Composition            |   M    |    -    |    -    |
 | PDU Decomposition          |   M    |    -    |    M    |
 | Header Format Analysis     |   -    |    M    |    M    |
 | PDU Lifetime Control       |   -    |    M    |    I    |
 | Route PDU                  |   -    |    M    |    -    |
 | Forward PDU                |   M    |    M    |    -    |
 | Segment PDU                |   M    | (note 1)|    -    |
 | Reassemble PDU             |   -    |    I    |    M    |
 | Discard PDU                |   -    |    M    |    M    |
 | Error Reporting            |   -    |    M    |    M    |
 | PDU Header Error Detection |   M    |    M    |    M    |
 | Padding                    |(note 2)| (note 2)| (note 2)|
 | Security                   |   -    | (note 3)| (note 3)|
 | Complete Source Routing    |   -    | (note 3)|    -    |
 | Partial Source Routing     |   -    | (note 4)|    -    |
 | Record Route               |   -    | (note 4)|    -    |
 | QoS Maintenance            |   -    | (note 4)|    -    |
 +---------------------------------------------------------+

               Table 9-1.  Categorization of Functions

 +---------------------------------------------------------+
 | KEY:                                                    |
 |       M : Mandatory Function; must be implemented       |
 |       - : Not applicable                                |
 |       I : Implementation option, as described in text   |
 +---------------------------------------------------------+

 Notes:

  1)  The Segment PDU function is in general mandatory for an
      intermediate system. However, a system which is to be connected
      only to subnetworks all offering the same maximum SNSDU size
      (such as identical Local Area Networks) will not need to perform
      this function and therefore does not need to implement it.

      If this function is not implemented, this shall be stated as part
      of the specification of the implementation.








ISO DIS 8473 (May 1984)                                        [Page 85]





RFC 926                                                    December 1984


  2)  The correct treatment of the padding function requires no
      processing. A conforming implementation shall support the
      function, to the extent of ignoring this parameter wherever it
      may appear.

  3)  This function may or may not be supported. If an implementation
      does not support this function, and the function is selected by a
      PDU, then the PDU shall be discarded, and an ER PDU shall be
      generated and forwarded to the originating network-entity if the
      Error Report flag is set.

  4)  This function may or may not be supported. If an implementation
      does not support this function, and the function is selected by a
      PDU, then the function is not provided and the PDU is processed
      exactly as though the function was not selected. The PDU shall
      not be discarded.

































ISO DIS 8473 (May 1984)                                        [Page 86]





RFC 926                                                    December 1984


                               ANNEXES

(These annexes are provided for information for implementors and are
not an integral part of the body of the Standard.)

               ANNEX A.  SUPPORTING TECHNICAL MATERIAL

A.1  Data Unit Lifetime

 There are two primary purposes of providing a PDU lifetime capability
 in the ISO 8473 Protocol. One purpose is to ensure against unlimited
 looping of protocol data units. Although the routing algorithm should
 ensure that it will be very rare for data to loop, the PDU lifetime
 field provides additional assurance that loops will be limited in
 extent.

 The other important purpose of the lifetime capability is to provide
 for a means by which the originating network entity can limit the
 Maximum NSDU lifetime. ISO Transport Protocol Class 4 assumes that
 there is a particular Maximum NSDU Lifetime in order to protect
 against certain error states in the connection establishment and
 termination phases. If a TPDU does not arrive within this time, then
 there is no chance that it will ever arrive. It is necessary to make
 this assumption, even if the Network Layer does not guarantee any
 particular upper bound on NSDU lifetime. It is much easier for
 Transport Protocol Class 4 to deal with occasional lost TPDUs than to
 deal with occasional very late TPDUs. For this reason, it is
 preferable to discard very late TPDUs than to deliver them. Note that
 NSDU lifetime is not directly associated with the retransmission of
 lost TPDUs, but relates to the problem of distinguishing old
 (duplicate) TPDUs from new TPDUs.

 Maximum NSDU Lifetime must be provided to transport protocol entity in
 units of time; a transport entity cannot count "hops". Thus NSDU
 lifetime must be calculated in units of time in order to be useful in
 determining Transport timer values.

 In the absence of any guaranteed bound, it is common to simply guess
 some value which seems like a reasonable compromise. In essence one is
 simply assuming that "surely no TPDU would ever take more than 'x'
 seconds to traverse the network." This value is probably chosen by
 observation of past performance, and may







ISO DIS 8473 (May 1984)                                        [Page 87]





RFC 926                                                    December 1984


 vary with source and destination.

 Three possible ways to deal with the requirement for a limit on the
 maximum NSDU lifetime are: (1) specify lifetime in units of time,
 thereby requiring intermediate systems to decrement the lifetime field
 by a value which is an upper bound on the time spent since the
 previous intermediate system, and have the Network Layer discard
 protocol data units whose lifetime has expired; (2) provide a
 mechanism in the Transport Layer to recognize and discard old TPDUs;
 or (3) ignore the problem, anticipating that the resulting
 difficulties will be rare. Which solution should be followed depends
 in part upon how difficult it is to implement solutions (1) and (2),
 and how strong the transport requirement for a bounded time to live
 really is.

 There is a problem with solution (2) above, in that transport entities
 are inherently transient. In case of a computer system outage or other
 error, or in the case where one of the two endpoints of a connection
 closes without waiting for a sufficient period of time (approximately
 twice Maximum NSDU Lifetime), it is possible for the Transport Layer
 to have no way to know whether a particular TPDU is old unless
 globally synchronized clocks are used (which is unlikely). On the
 other hand, it is expected that intermediate systems will be
 comparatively stable. In addition, even if intermediate systems do
 fail and resume processing without memory of the recent past, it will
 still be possible (in most instances) for the intermediate system to
 easily comply with lifetime in units of time, as discussed below.

 It is not necessary for each intermediate system to subtract a precise
 measure of the time that has passed since an NPDU (containing the TPDU
 or a segment thereof) has left the previous intermediate system. It is
 sufficient to subtract an upper bound on the time taken. In most
 cases, an intermediate system may simply subtract a constant value
 which depends upon the typical near-maximum delays that are
 encountered in a specific subnetwork. It is only necessary to make an
 accurate estimate on a per NPDU basis for those subnetworks which have
 both a relatively large maximum delay, and a relatively large
 variation in delay.

 As an example, assume that a particular local area network has short
 average delays, with overall delays generally in the 1 to 5








ISO DIS 8473 (May 1984)                                        [Page 88]





RFC 926                                                    December 1984


 millisecond range and with occasional delays up to 20 milliseconds. In
 this case, although the relative range in delays might be large (a
 factor of 20), it would still not be necessary to measure the delay
 for actual NPDUs. A constant value of 20 milliseconds (or more) can be
 subtracted for all delays ranging from .5 seconds to .6 seconds (.5
 seconds for the propagation delay, 0 to .1 seconds for queueing delay)
 then the constant value .6 seconds could be used.

 If a third subnetwork had normal delays ranging from .1 to 1 second,
 but occasionally delivered an NPDU after a delay of 15 seconds, the
 intermediate system attached to this subnetwork might be required to
 determine how long it has actually take the PDU to transit the
 subnetwork. In this last example, it is likely to be more useful to
 have the intermediate systems determine when the delays are extreme ad
 discard very old NPDUs, as occasional large delays are precisely what
 causes the Transport Protocol the most trouble.

 In addition to the time delay within each subnetwork, it is important
 to consider the time delay within intermediate systems. It should be
 relatively simple for those gateways which expect to hold on to some
 data-units for significant periods of time to decrement the lifetime
 appropriately.

 Having observed that (i) the Transport Protocol requires Maximum NSDU
 to be calculated in units of time; (ii) in the great majority of
 cases, it is not difficult for intermediate systems to determine a
 valid upper bound on subnetwork transit time; and (iii) those few
 cases where the gateways must actually measure the time take by a NPDU
 are precisely the cases where such measurement truly needs to be made,
 it can be concluded that NSDU lifetime should in fact be measured in
 units of time, and that intermediate systems should required to
 decrement the lifetime field of the ISO 8473 Protocol by a value which
 represents an upper bound on the time actually taken since the
 lifetime field was last decremented.

A.2  Reassembly Lifetime Control

 In order to ensure a bound on the lifetime of NSDUs, and to
 effectively manage reassembly buffers in the Network Layer, the
 Reassembly Function described in Section 6 must control the









ISO DIS 8473 (May 1984)                                        [Page 89]





RFC 926                                                    December 1984


 lifetime of segments representing partially assembled PDUs. This annex
 discusses methods of bounding reassembly lifetime and suggests some
 implementation guidelines for the reassembly function.

 When segments of a PDU arrive at a destination network-entity, they
 are buffered until an entire PDU is received, assembled, and passed to
 the PDU Decomposition Function. The connectionless Internetwork
 Protocol does not guarantee the delivery of PDUs; hence, it is
 possible for some segments of a PDU to be lost or delayed such that
 the entire PDU cannot be assembled in a reasonable length of time. In
 the case of loss of a PDU "segment", for example, this could be
 forever. There are a number of possible schemes to prevent this:

  a)  Per-PDU reassembly timers,

  b)  Extension of the PDU Lifetime control function, and

  c)  Coupling of the Transport Retransmission timers.

 Each of these methods is discussed in the subsections which follow.

 A.2.1  Method (a)

  assigns a "reassembly lifetime" to each PDU received and identified
  by its Data-unit Identifier. This is a local, real time which is
  assigned by the reassembly function and decremented while some, but
  not all segments of the PDU are being buffered by the destination
  network-entity. If the timer expires, all segments of the PDU are
  discarded, thus freeing the reassembly buffers and preventing a "very
  old" PDU from being confused with a newer one bearing the same
  Data-unit Identifier. For this scheme to function properly, the
  timers must be assigned in such a fashion as to prevent the
  phenomenon of Reassembly Interference (discussed below). In
  particular, the following guidelines should be followed:

   1)  The Reassembly Lifetime must be much less than the maximum PDU
       lifetime of the network (to prevent the confusion of old and new
       data-units).











ISO DIS 8473 (May 1984)                                        [Page 90]





RFC 926                                                    December 1984


   2)  The lifetime should be less than the Transport protocol's
       retransmission timers minus the average transit time of the
       network. If this is not done, extra buffers are tied up holding
       data which has already been retransmitted by the Transport
       Protocol. (Note that an assumption has been made that such
       timers are integral to the Transport Protocol, which in some
       sense, dictates that retransmission functions must exist in the
       Transport Protocol employed).

 A.2.2  Method (b)

  is feasible if the PDU lifetime control function operates based on
  real or virtual time rather than hop-count. In this scheme, the
  lifetime field of all PDU segments of a Data-unit continues to be
  decremented by the reassembly function of the destination
  network-entity as if the PdU were still in transit (in a sense, it
  still is). When the lifetime of any segment of a partially
  reassembled PDU expires, all segments of that PDU are discarded. This
  scheme is attractive since the delivery behavior of the ISO 8473
  Protocol would be identical for segmented and unsegmented PDUs.

 A.2.3  Method (c)

  couples the reassembly lifetime directly to the Transport Protocol's
  retransmission timers, and requires that Transport Layer management
  make known to Network Layer Management (and hence, the Reassembly
  Function) the values of its retransmission timers for each source
  from which it expects to be receiving traffic. When a PDU segment is
  received from a source, the retransmission time minus the anticipated
  transit time becomes the reassembly lifetime of that PDU. If this
  timer expires before the entire PDU has been reassembled, all
  segments of the PDU are discarded. This scheme is attractive since it
  has a low probability of holding PDU segments that have already been
  retransmitted by the source Transport-entity; it has, however, the
  disadvantage of depending on reliable operation of the Transport
  Protocol to work effectively. If the retransmission timers are not
  set correctly, it is possible that all PDUs would be discarded too
  soon, and the Transport Protocol would make no progress.

A.3  The Power of the Header Error Detection Function









ISO DIS 8473 (May 1984)                                        [Page 91]





RFC 926                                                    December 1984


 A.3.1  General

  The form of the checksum used for PDU header error detection is such
  that it is easily calculated in software or firmware using only two
  additions per octet of header, yet it has an error detection power
  approaching (but not quite equalling) that of techniques (such as
  cyclic polynomial checks) which involve calculations that are much
  more time- or space-consuming. This annex discusses the power of this
  error detection function.

  The checksum consists of two octets, either of which can assume any
  value except zero. That is, 255 distinct values for each octet are
  possible. The calculation of the two octets is such that the value of
  either is independent of the value of the other, so the checksum has
  a total of 255 x 255 = 65025 values. If one considers all ways in
  which the PDU header might be corrupted as equally likely, then there
  is only one chance in 65025 that the checksum will have the correct
  value for any particular corruption. This corresponds to 0.0015  of
  all possible errors.

  The remainder of this annex considers particular classes of errors
  that are likely to be encountered. The hope is that the error
  detection function will be found to be more powerful, or at least no
  less powerful, against these classes as compared to errors in
  general.

 A.3.2  Bit Alteration Errors

  First considered are classes of errors in which bits are altered, but
  no bits are inserted nor deleted. This section does not consider the
  case where the checksum itself is erroneously set to be all zero;
  this case is discussed in section A.3.4.

  A burst error of length b is a corruption of the header in which all
  of the altered bits (no more than b in number) are within a single
  span of consecutively transmitted bits that is b bits long. Checksums
  are usually expected to do well against burst errors of a length not
  exceeding the number of bits in the header error detection parameter
  (16 for the PDU header). The PDU header error detection parameter in
  fact fails to detect only 0.000019  of all such errors, each distinct
  burst error of length 16 or less being considered to be equally
  likely. In particular,







ISO DIS 8473 (May 1984)                                        [Page 92]





RFC 926                                                    December 1984


  it cannot detect an 8-bit burst in which an octet of zero is altered
  to an octet of 255 (all bits = 1) or vice versa. Similarly, it fails
  to detect the swapping of two adjacent octets only if one is zero and
  the other is 255.

  The PDU header error detection, as should be expected, detects all
  errors involving only a single altered bit.

  Undetected errors involving only two altered bits should occur only
  if the two bits are widely separated (and even then only rarely). The
  PDU header error detection detects all double bit errors for which
  the spacing between the two altered bits is less than 2040 bits = 255
  octets. Since this separation exceeds the maximum header length, all
  double bit errors are detected.

  The power to detect double bit errors is an advantage of the checksum
  algorithm used for the protocol, versus a simple modulo 65536
  summation of the header split into 16 bit fields. This simple
  summation would not catch all such double bit errors. In fact, double
  bit errors with a spacing as little as 16 bits apart could go
  undetected.

 A.3.3  Bit Insertion/Deletion Errors

  Although errors involving the insertion or deletion of bits are in
  general neither more nor less likely to go undetected than are all
  other kinds of general errors, at least one class of such errors is
  of special concern. If octets, all equal to either zero or 255, are
  inserted at a point such that the simple sum CO in the running
  calculation (described in Annex C) happens to equal zero, then the
  error will go undetected. This is of concern primarily because there
  are two points in the calculation for which this value for the sum is
  not a rare happenstance, but is expected; namely, at the beginning
  and the end. That is, if the header is preceded or followed by
  inserted octets all equal to zero or 255 then no error is detected.
  Both cases are examined separately.

  Insertion of erroneous octets at the beginning of the header
  completely misaligns the header fields, causing them to be
  misinterpreted. In particular, the first inserted octet is
  interpreted as the network layer protocol identifier, probably
  eliminating any knowledge that the data unit is related to the







ISO DIS 8473 (May 1984)                                        [Page 93]





RFC 926                                                    December 1984


  ISO 8473 Protocol, and thereby eliminating any attempt to perform the
  checksum calculation or invoking a different form of checksum
  calculation. An initial octet of zero is reserved for the Inactive
  Network Layer Protocol. This is indeed a problem but not one which
  can be ascribed to the form of checksum being used. Therefore, it is
  not discussed further here.

  Insertion of erroneous octets at the end of the header, in the
  absence of other errors, is impossible because the length field
  unequivocally defines where the header ends. Insertion or deletion of
  octets at the end of the header requires an alteration in the value
  of the octet defining the header length. Such an alteration implies
  that the value of the calculated sum at the end of the header would
  not be expected to have the dangerous value of zero and consequently
  that the error is just as likely to be detected as is any error in
  general.

  Insertion of an erroneous octet in the middle of the header is
  primarily of concern if the inserted octet has either the value zero
  or 255, and if the variable CO happens to have the value zero at this
  point. In most cases, this error will completely destroy the parsing
  of the header, which will cause the data unit to e discarded. In
  addition, in the absence of any other error, the last octet of the
  header will be thought to be data. This in turn will cause the header
  to end in the wrong place. In the case where the header otherwise can
  parse correctly, the last field will be found to be missing. Even in
  the case where necessary, the length field is the padding option, and
  therefore not necessary, the length field for the padding function
  will be inconsistent with the header length field, and therefore the
  error can be detected.

 A.3.4  Checksum Non-calculation Errors

  Use of the header error detection function is optional. The choice of
  not using it is indicated by a checksum parameter value of zero. This
  creates the possibility that the two octets of the checksum parameter
  (neither of which is generated as being zero) could both be altered
  to zero. This would in effect be an error not detected by the
  checksum since the check would not be made. One of three
  possibilities exists:

   1)  A burst error of length sixteen (16) which sets the entire







ISO DIS 8473 (May 1984)                                        [Page 94]





RFC 926                                                    December 1984


   checksum to zero. Such an error could not be detected; however, it
       requires a particular positioning of the burst within the
       header. [A calculation of its effect on overall detectability of
       burst errors depends upon the length of the header.]

   2)  All single bit errors are detected. Since both octets of the
       checksum field must be non-zero when the checksum is being used,
       no single bit error can set the checksum to zero.

   3)  Where each of the two octets of the checksum parameter has a
       value that is a power of two, such that only one bit in each
       equals one (1), then a zeroing of the checksum parameter could
       result in an undetected double bit error. Furthermore, the two
       altered bits have a separation of less than sixteen (16), and
       could be consecutive. This is clearly a decline from the
       complete detectability previously described.

  Where a particular administration is highly concerned about the
  possibility of accidental zeroing of the checksum among data units
  within its domain, then the administration may impose the restriction
  that all data units whose source or destination lie within its domain
  must make use of the header error detection function. Any data units
  which do not could be discarded, nor would they be allowed outside
  the domain. This protects against errors that occur within the
  domain, and would protect all data units whose source or destination
  lies within the domain, even where the data path between all such
  pairs crosses other domains (errors outside the protected domain
  notwithstanding).





















ISO DIS 8473 (May 1984)                                        [Page 95]





RFC 926                                                    December 1984


                     ANNEX B.  NETWORK MANAGEMENT

The following topics are considered to be major components of Network
Layer management:

 A.  Routing

  Considered by many to be the most crucial element of Network Layer
  management, since management of the Routing algorithms for networking
  seem to be an absolutely necessary prerequisite to a practical
  networking scheme.

  Routing management consists of three parts; forwarding, decision, and
  update. Management of forwarding is the process of interpreting the
  Network Layer address to properly forward NSDUs on its next network
  hop on a route through the network. Management of decision is the
  process of choosing routes for either connections or NSDUs, depending
  on whether the network is operating a connection-oriented or
  connectionless protocol. The decision component will be driven by a
  number of considerations, not the least of which are those associated
  with Quality of Service. Management of update is the management
  protocol(s) used to exchange information among
  intermediate-systems/network- entities which is used in the decision
  component to determine routes.

  To what extent is it desirable and/or practical to pursue a single
  OSI network routing algorithm and associated Management protocol(s)?
  It is generally understood that it is impractical to expect ISO to
  adopt a single global routing algorithm. On the other hand, it is
  recognized that having no standard at all upon which to make routing
  decisions effectively prevents an internetwork protocol from working
  at all. One possible compromise would be to define the principles for
  the behavior of an internetwork routing algorithm. A possible next
  step would be to specify the types of information that must be
  propagated among the intermediate-systems/network-entities via their
  update procedures. The details of the updating protocol might then be
  left to bilateral agreements among the cooperating administrations.












ISO DIS 8473 (May 1984)                                        [Page 96]





RFC 926                                                    December 1984


 B.  Statistical Analysis

  These management functions relate to the gathering and reporting of
  information about the real-time behavior of the global network. They
  consist of Data counts such as number of PDUs forwarded, entering
  traffic, etc., and Event Counts such as topology changes, quality of
  service changes, etc.

 C.  Network Control

  These management functions are those related to the control of the
  global network, and possibly could be performed by a Network Control
  Center(s). The control functions needed are not al all clear. Neither
  are the issues relating to what organization(s) is/are responsible
  for the management of the environment. Should there be a Network
  Control Center distinct from those provided by the subnetwork
  administrations? What subnetwork management information is needed by
  the network management components to perform their functions?

 D.  Directory Mapping Functions

  Does the Network layer contain a Directory function as defined in the
  Reference Model? Current opinion is that the Network Layer restricts
  itself to the function of mapping NSAP addresses to routes.

 E.  Congestion Control

  Does this come under the umbrella of Network Layer management? How?

 F.  Configuration Control

  This is tightly associated with the concepts of Resource Management,
  and is generally considered to be somehow concerned with the control
  of the resources used in the management of the global network. The
  resources which have to be managed are Bandwidth (use of subnetwork
  resources), Processor (CPU), and Memory (buffers). Where is the
  responsibility for resources assigned, and are they appropriate for
  standardization? It appears that these











ISO DIS 8473 (May 1984)                                        [Page 97]





RFC 926                                                    December 1984


  functions are tightly related to how one signals changes in Quality
  of Service.

 G.  Accounting

  What entities, administrations, etc., are responsible for network
  accounting? How does this happen? What accounting information, if
  any, is required from the subnetworks in order to charge for network
  resources? Who is charged? To what degree is this to be standardized?








































ISO DIS 8473 (May 1984)                                        [Page 98]





RFC 926                                                    December 1984


     ANNEX C.  ALGORITHMS FOR PDU HEADER ERROR DETECTION FUNCTION

This Annex describes algorithm which may be used to computer, check and
update the checksum field of the PDU Header in order to provide the PDU
Header Error Detection function described in Section 6.11.

C.1  Symbols used in algorithms

 CO,C1  variables used in the algorithms
 i      number (i.e., position) of an octet within the header
 n      number (i.e., position) of the first octet of the checksum
        parameter (n=8)
 L      length of the PDU header in octets
 X      value of octet one of the checksum parameter
 Y      value of octet two of the checksum parameter
 a      octet occupying position i of the PDU header

C.2  Arithmetic Conventions

 Addition is performed in one of the two following modes:

  a)  modulo 255 arithmetic;

  b)  eight-bit one's complement arithmetic in which, if any of the
      variables has the value minus zero (i.e., 255) it shall be
      regarded as though it was plus zero (i.e., 0).

C.3  Algorithm for Generating Checksum Parameters

 A:  Construct the complete PDU header with the value of the checksum
     parameter field set to zero;

 B:  Initialize C0 and C1 to zero;

 C:  Process each octet of the PDU header sequentially from i = 1 to L
     by

  a)  adding the value of the octet to C0; then

  b)  adding the value of C0 to C1;

 D:  Calculate X = (L-8)C0 - C1 (modulo 255) and Y = (L-7) (-C0) + C1
     (modulo 255)






ISO DIS 8473 (May 1984)                                        [Page 99]





RFC 926                                                    December 1984


 E:  If X = 0, set X = 255;

 F:  If Y = 0, set Y = 255;

 G:  Place the values X and Y in octets 8 and 9 respectively.

C.4  Algorithm for Checking Checksum Parameters

 A:  If octets 8 and 9 of PDU header both contain 0 (all bits off),
     then the checksum calculation has succeeded; otherwise initialize
     C1 = 0, C0 - 0 and proceed;

 B:  process each octet of the PDU header sequentially from i = 1 to L
     by

  a)  adding the value of the octet to C0; then

  b)  adding the value of C0 to C1;

 C:  If, when all the octets have been processed, C0 = C1 = 0 (modulo
     255) then the checksum calculation has succeeded; otherwise, the
     checksum calculation has failed.

C.5  Algorithm to adjust checksum parameter when an octet is altered

 This algorithm adjusts the checksum when an octet (such as the
 lifetime field) is altered. Suppose the value in octet k is changed by
 Z = new_value - old_value.

 If X and Y denote the checksum values held in octets n and n+1,
 respectively, then adjust X and Y as follows:

  If X = 0 and Y = 0 do nothing, else;
       X := (k-n-1)Z + X (modulo 255) and
       Y := (n-k)Z + Y   (modulo 255).
  If X is equal to zero, then set it to 255; and
  similarly for Y.

 For this Protocol, n = 8. If the octet being altered is the lifetime
 field, k = 4. For the case where the lifetime is decreased by 1 unit
 (Z = -1), the results simplify to








ISO DIS 8473 (May 1984)                                       [Page 100]





RFC 926                                                    December 1984


  X := X + 5 (modulo 255) and
  Y := Y - 4 (modulo 255).

  Note:

   To derive this result, assume that when octet k has the value Z
   added to it then X and Y have values ZX and ZY added to them. For
   the checksum parameters to satisfy the conditions of Section 6.11
   both before and after the values are added, the following is
   required:

    Z + ZX + ZY = 0 (modulo 255) and
    (L-k+1)Z + (L-n+1)ZX + (L-n)ZY = 0 (modulo 255).

 Solving these equations simultaneously yields ZX = (k-n-1)Z and ZY +
 (m-k)Z.

































ISO DIS 8473 (May 1984)                                       [Page 101]