Independent Submission                                        V. Smyslov
Request for Comments: 9227                                    ELVIS-PLUS
Category: Informational                                       March 2022
ISSN: 2070-1721


  Using GOST Ciphers in the Encapsulating Security Payload (ESP) and
          Internet Key Exchange Version 2 (IKEv2) Protocols

Abstract

  This document defines a set of encryption transforms for use in the
  Encapsulating Security Payload (ESP) and in the Internet Key Exchange
  version 2 (IKEv2) protocols, which are parts of the IP Security
  (IPsec) protocol suite.  The transforms are based on the GOST R
  34.12-2015 block ciphers (which are named "Magma" and "Kuznyechik")
  in Multilinear Galois Mode (MGM) and the external rekeying approach.

  This specification was developed to facilitate implementations that
  wish to support the GOST algorithms.  This document does not imply
  IETF endorsement of the cryptographic algorithms used in this
  document.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9227.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
  2.  Requirements Language
  3.  Overview
  4.  Description of Transforms
    4.1.  Tree-Based External Rekeying
    4.2.  Initialization Vector Format
    4.3.  Nonce Format for MGM
      4.3.1.  MGM Nonce Format for Transforms Based on the
              "Kuznyechik" Cipher
      4.3.2.  MGM Nonce Format for Transforms Based on the "Magma"
              Cipher
    4.4.  Keying Material
    4.5.  Integrity Check Value
    4.6.  Plaintext Padding
    4.7.  AAD Construction
      4.7.1.  ESP AAD
      4.7.2.  IKEv2 AAD
    4.8.  Using Transforms
  5.  Security Considerations
  6.  IANA Considerations
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Appendix A.  Test Vectors
  Acknowledgments
  Author's Address

1.  Introduction

  The IP Security (IPsec) protocol suite consists of several protocols,
  of which the Encapsulating Security Payload (ESP) [RFC4303] and the
  Internet Key Exchange version 2 (IKEv2) [RFC7296] are most widely
  used.  This document defines four transforms for ESP and IKEv2 based
  on Russian cryptographic standard algorithms (often referred to as
  "GOST" algorithms).  These definitions are based on the
  recommendations [GOST-ESP] established by the Federal Agency on
  Technical Regulating and Metrology (Rosstandart), which describe how
  Russian cryptographic standard algorithms are used in ESP and IKEv2.
  The transforms defined in this document are based on two block
  ciphers from Russian cryptographic standard algorithms --
  "Kuznyechik" [GOST3412-2015] [RFC7801] and "Magma" [GOST3412-2015]
  [RFC8891] in Multilinear Galois Mode (MGM) [GOST-MGM] [RFC9058].
  These transforms provide Authenticated Encryption with Associated
  Data (AEAD).  An external rekeying mechanism, described in [RFC8645],
  is also used in these transforms to limit the load on session keys.

  Because the GOST specification includes the definition of both
  128-bit ("Kuznyechik") and 64-bit ("Magma") block ciphers, both are
  included in this document.  Implementers should make themselves aware
  of the relative security and other cost-benefit implications of the
  two ciphers.  See Section 5 for more details.

  This specification was developed to facilitate implementations that
  wish to support the GOST algorithms.  This document does not imply
  IETF endorsement of the cryptographic algorithms used in this
  document.

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Overview

  Russian cryptographic standard algorithms, often referred to as
  "GOST" algorithms, constitute a set of cryptographic algorithms of
  different types -- ciphers, hash functions, digital signatures, etc.
  In particular, Russian cryptographic standard [GOST3412-2015] defines
  two block ciphers -- "Kuznyechik" (also defined in [RFC7801]) and
  "Magma" (also defined in [RFC8891]).  Both ciphers use a 256-bit key.
  "Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit
  block.

  Multilinear Galois Mode (MGM) is an AEAD mode defined in [GOST-MGM]
  and [RFC9058].  It is claimed to provide defense against some attacks
  on well-known AEAD modes, like Galois/Counter Mode (GCM).

  [RFC8645] defines mechanisms that can be used to limit the number of
  times any particular session key is used.  One of these mechanisms,
  called external rekeying with tree-based construction (defined in
  Section 5.2.3 of [RFC8645]), is used in the defined transforms.  For
  the purpose of deriving subordinate keys, the Key Derivation Function
  (KDF) KDF_GOSTR3411_2012_256, defined in Section 4.5 of [RFC7836], is
  used.  This KDF is based on a Hashed Message Authentication Code
  (HMAC) construction [RFC2104] with a Russian GOST hash function
  defined in Russian cryptographic standard [GOST3411-2012] (also
  defined in [RFC6986]).

4.  Description of Transforms

  This document defines four transforms of Type 1 (Encryption
  Algorithm) for use in ESP and IKEv2.  All of them use MGM as the mode
  of operation with tree-based external rekeying.  The transforms
  differ in underlying ciphers and in cryptographic services they
  provide.

  *  ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform
     based on the "Kuznyechik" algorithm; it provides confidentiality
     and message authentication and thus can be used in both ESP and
     IKEv2.

  *  ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based
     on the "Magma" algorithm; it provides confidentiality and message
     authentication and thus can be used in both ESP and IKEv2.

  *  ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only
     transform based on the "Kuznyechik" algorithm; it provides no
     confidentiality and thus can only be used in ESP, but not in
     IKEv2.

  *  ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform
     based on the "Magma" algorithm; it provides no confidentiality and
     thus can only be used in ESP, but not in IKEv2.

  Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and
  ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality, but they
  are defined as Type 1 (Encryption Algorithm) transforms because of
  the need to include an Initialization Vector (IV), which is
  impossible for Type 3 (Integrity Algorithm) transforms.

4.1.  Tree-Based External Rekeying

  All four transforms use the same tree-based external rekeying
  mechanism.  The idea is that the key that is provided for the
  transform is not directly used to protect messages.  Instead, a tree
  of keys is derived using this key as a root.  This tree may have
  several levels.  The leaf keys are used for message protection, while
  intermediate-node keys are used to derive lower-level keys, including
  leaf keys.  See Section 5.2.3 of [RFC8645] for more details.  This
  construction allows us to protect a large amount of data, at the same
  time providing a bound on a number of times any particular key in the
  tree is used, thus defending against some side-channel attacks and
  also increasing the key lifetime limitations based on combinatorial
  properties.

  The transforms defined in this document use a three-level tree.  The
  leaf key that protects a message is computed as follows:

       K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)

  where:

  KDF (k, l, s)   Key Derivation Function KDF_GOSTR3411_2012_256
                  (defined in Section 4.5 of [RFC7836]), which accepts
                  three input parameters -- a key (k), a label (l), and
                  a seed (s) -- and provides a new key as output

  K               the root key for the tree (see Section 4.4)

  l1, l2, l3      labels defined as 6-octet ASCII strings without null
                  termination:

                  l1 =  "level1"

                  l2 =  "level2"

                  l3 =  "level3"

  i1, i2, i3      parameters that determine which keys out of the tree
                  are used on each level.  Together, they determine a
                  leaf key that is used for message protection; the
                  length of i1 is one octet, and i2 and i3 are two-
                  octet integers in network byte order

  |               indicates concatenation

  This construction allows us to generate up to 2^8 keys on level 1 and
  up to 2^16 keys on levels 2 and 3.  So, the total number of possible
  leaf keys generated from a single Security Association (SA) key is
  2^40.

  This specification doesn't impose any requirements on how frequently
  external rekeying takes place.  It is expected that the sending
  application will follow its own policy dictating how many times the
  keys on each level must be used.

4.2.  Initialization Vector Format

  Each message protected by the defined transforms MUST contain an IV.
  The IV has a size of 64 bits and consists of four fields.  The fields
  i1, i2, and i3 are parameters that determine the particular leaf key
  this message was protected with (see Section 4.1).  The fourth field
  is a counter, representing the message number for this key.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      i1       |               i2              |      i3       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   i3 (cont)   |                     pnum                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 1: IV Format

  where:

  i1 (1 octet), i2 (2 octets), i3 (2 octets):  parameters that
     determine the particular key used to protect this message; 2-octet
     parameters are integers in network byte order

  pnum (3 octets):  message counter in network byte order for the leaf
     key protecting this message; up to 2^24 messages may be protected
     using a single leaf key

  For any given SA, the IV MUST NOT be used more than once, but there
  is no requirement that IV be unpredictable.

4.3.  Nonce Format for MGM

  MGM requires a per-message nonce (called the Initial Counter Nonce,
  or ICN in [RFC9058]) that MUST be unique in the context of any leaf
  key.  The size of the ICN is n-1 bits, where n is the block size of
  the underlying cipher.  The two ciphers used in the transforms
  defined in this document have different block sizes, so two different
  formats for the ICN are defined.

  MGM specification requires that the nonce be n-1 bits in size, where
  n is the block size of the underlying cipher.  This document defines
  MGM nonces having n bits (the block size of the underlying cipher) in
  size.  Since n is always a multiple of 8 bits, this makes MGM nonces
  having a whole number of octets.  When used inside MGM, the most
  significant bit of the first octet of the nonce (represented as an
  octet string) is dropped, making the effective size of the nonce
  equal to n-1 bits.  Note that the dropped bit is a part of the "zero"
  field (see Figures 2 and 3), which is always set to 0, so no
  information is lost when it is dropped.

4.3.1.  MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

  For transforms based on the "Kuznyechik" cipher
  (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the
  ICN consists of a "zero" octet; a 24-bit message counter; and a
  96-bit secret salt, which is fixed for the SA and is not transmitted.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     zero      |                     pnum                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                             salt                              |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2: Nonce Format for Transforms Based on the "Kuznyechik"
                                  Cipher

  where:

  zero (1 octet):  set to 0

  pnum (3 octets):  the counter for the messages protected by the given
     leaf key; this field MUST be equal to the pnum field in the IV

  salt (12 octets):  secret salt.  The salt is a string of bits that
     are formed when the SA is created (see Section 4.4 for details).
     The salt does not change during the SA's lifetime and is not
     transmitted on the wire.  Every SA will have its own salt.

4.3.2.  MGM Nonce Format for Transforms Based on the "Magma" Cipher

  For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
  ENCR_MAGMA_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a
  24-bit message counter; and a 32-bit secret salt, which is fixed for
  the SA and is not transmitted.

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     zero      |                     pnum                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             salt                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 3: Nonce Format for Transforms Based on the "Magma" Cipher

  where:

  zero (1 octet):  set to 0

  pnum (3 octets):  the counter for the messages protected by the given
     leaf key; this field MUST be equal to the pnum field in the IV

  salt (4 octets):  secret salt.  The salt is a string of bits that are
     formed when the SA is created (see Section 4.4 for details).  The
     salt does not change during the SA's lifetime and is not
     transmitted on the wire.  Every SA will have its own salt.

4.4.  Keying Material

  We'll call a string of bits that is used to initialize the transforms
  defined in this specification a "transform key".  The transform key
  is a composite entity consisting of the root key for the tree and the
  secret salt.

  The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and
  ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44
  octets), of which the first 256 bits is a root key for the tree
  (denoted as K in Section 4.1) and the remaining 96 bits is a secret
  salt (see Section 4.3.1).

  The transform key for the ENCR_MAGMA_MGM_KTREE and
  ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets),
  of which the first 256 bits is a root key for the tree (denoted as K
  in Section 4.1) and the remaining 32 bits is a secret salt (see
  Section 4.3.2).

  In the case of ESP, the transform keys are extracted from the KEYMAT
  as defined in Section 2.17 of [RFC7296].  In the case of IKEv2, the
  transform keys are either SK_ei or SK_er, which are generated as
  defined in Section 2.14 of [RFC7296].  Note that since these
  transforms provide authenticated encryption, no additional keys are
  needed for authentication.  This means that, in the case of IKEv2,
  the keys SK_ai/SK_ar are not used and MUST be treated as having zero
  length.

4.5.  Integrity Check Value

  The length of the authentication tag that MGM can compute is in the
  range from 32 bits to the block size of the underlying cipher.
  Section 4 of [RFC9058] states that the authentication tag length MUST
  be fixed for a particular protocol.  For transforms based on the
  "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and
  ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting Integrity Check Value
  (ICV) length is set to 96 bits.  For transforms based on the "Magma"
  cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE), the full
  ICV length is set to the block size (64 bits).

4.6.  Plaintext Padding

  The transforms defined in this document don't require any plaintext
  padding, as specified in [RFC9058].  This means that only those
  padding requirements that are imposed by the protocol are applied (4
  bytes for ESP, no padding for IKEv2).

4.7.  AAD Construction

4.7.1.  ESP AAD

  Additional Authenticated Data (AAD) in ESP is constructed
  differently, depending on the transform being used and whether the
  Extended Sequence Number (ESN) is in use or not.  The
  ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms provide
  confidentiality, so the content of the ESP body is encrypted and the
  AAD consists of the ESP Security Parameter Index (SPI) and (E)SN.
  The AAD is constructed similarly to the AAD in [RFC4106].

  On the other hand, the ENCR_KUZNYECHIK_MGM_MAC_KTREE and
  ENCR_MAGMA_MGM_MAC_KTREE transforms don't provide confidentiality;
  they provide only message authentication.  For this purpose, the IV
  and the part of the ESP packet that is normally encrypted are
  included in the AAD.  For these transforms, the encryption capability
  provided by MGM is not used.  The AAD is constructed similarly to the
  AAD in [RFC4543].

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               SPI                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     32-bit Sequence Number                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 4: AAD for AEAD Transforms with 32-Bit SN

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               SPI                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 64-bit Extended Sequence Number               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 5: AAD for AEAD Transforms with 64-Bit ESN

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               SPI                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     32-bit Sequence Number                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               IV                              |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    ~                     Payload Data (variable)                   ~
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Padding (0-255 bytes)                      |
    +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |  Pad Length   | Next Header   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 6: AAD for Authentication-Only Transforms with 32-Bit SN

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               SPI                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 64-bit Extended Sequence Number               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               IV                              |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    ~                     Payload Data (variable)                   ~
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Padding (0-255 bytes)                      |
    +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |  Pad Length   | Next Header   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 7: AAD for Authentication-Only Transforms with 64-Bit ESN

4.7.2.  IKEv2 AAD

  For IKEv2, the AAD consists of the IKEv2 Header, any unencrypted
  payloads following it (if present), and either the Encrypted payload
  header (Section 3.14 of [RFC7296]) or the Encrypted Fragment payload
  (Section 2.5 of [RFC7383]), depending on whether IKE fragmentation is
  used.  The AAD is constructed similarly to the AAD in [RFC5282].

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                         IKEv2 Header                          ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                   Unencrypted IKE Payloads                    ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Next Payload  |C|  RESERVED   |         Payload Length        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 8: AAD for IKEv2 in the Case of the Encrypted Payload

                         1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                         IKEv2 Header                          ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                   Unencrypted IKE Payloads                    ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Next Payload  |C|  RESERVED   |         Payload Length        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Fragment Number        |        Total Fragments        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 9: AAD for IKEv2 in the Case of the Encrypted Fragment Payload

4.8.  Using Transforms

  When the SA is established, the i1, i2, and i3 parameters are set to
  0 by the sender and a leaf key is calculated.  The pnum parameter
  starts from 0 and is incremented with each message protected by the
  same leaf key.  When the sender decides that the leaf should be
  changed, it increments the i3 parameter and generates a new leaf key.
  The pnum parameter for the new leaf key is reset to 0, and the
  process continues.  If the sender decides that a third-level key
  corresponding to i3 is used enough times, it increments i2, resets i3
  to 0, and calculates a new leaf key.  The pnum is reset to 0 (as with
  every new leaf key), and the process continues.  A similar procedure
  is used when a second-level key needs to be changed.

  A combination of i1, i2, i3, and pnum MUST NOT repeat for any
  particular SA.  This means that the wrapping of these counters is not
  allowed: when i2, i3, or pnum reaches its respective maximum value, a
  procedure for changing a leaf key, described above, is executed, and
  if all four parameters reach their maximum values, the IPsec SA
  becomes unusable.

  There may be other reasons to recalculate leaf keys besides reaching
  maximum values for the counters.  For example, as described in
  Section 5, it is RECOMMENDED that the sender count the number of
  octets protected by a particular leaf key and generate a new key when
  some threshold is reached, and at the latest when reaching the octet
  limits stated in Section 5 for each of the ciphers.

  The receiver always uses i1, i2, and i3 from the received message.
  If they differ from the values in previously received packets, a new
  leaf key is calculated.  The pnum parameter is always used from the
  received packet.  To improve performance, implementations may cache
  recently used leaf keys.  When a new leaf key is calculated (based on
  the values from the received message), the old key may be kept for
  some time to improve performance in the case of possible packet
  reordering (when packets protected by the old leaf key are delayed
  and arrive later).

5.  Security Considerations

  The most important security consideration for MGM is that the nonce
  MUST NOT repeat for a given key.  For this reason, the transforms
  defined in this document MUST NOT be used with manual keying.

  Excessive use of the same key can give an attacker advantages in
  breaking security properties of the transforms defined in this
  document.  For this reason, the amount of data that any particular
  key is used to protect should be limited.  This is especially
  important for algorithms with a 64-bit block size (like "Magma"),
  which currently are generally considered insecure after protecting a
  relatively small amount of data.  For example, Section 3.4 of
  [SP800-67] limits the number of blocks that are allowed to be
  encrypted with the Triple DES cipher to 2^20 (8 MB of data).  This
  document defines a rekeying mechanism that allows the mitigation of
  weak security of a 64-bit block cipher by frequently changing the
  encryption key.

  For transforms defined in this document, [GOST-ESP] recommends
  limiting the number of octets protected with a single K_msg key by
  the following values:

  *  2^41 octets for transforms based on the "Kuznyechik" cipher
     (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE)

  *  2^28 octets for transforms based on the "Magma" cipher
     (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE)

  These values are based on combinatorial properties and may be further
  restricted if side-channel attacks are taken into consideration.
  Note that the limit for transforms based on the "Kuznyechik" cipher
  is unreachable because, due to the construction of the transforms,
  the number of protected messages is limited to 2^24 and each message
  (either IKEv2 messages or ESP datagrams) is limited to 2^16 octets in
  size, giving 2^40 octets as the maximum amount of data that can be
  protected with a single K_msg.

  Section 4 of [RFC9058] discusses the possibility of truncating
  authentication tags in MGM as a trade-off between message expansion
  and the probability of forgery.  This specification truncates an
  authentication tag length for transforms based on the "Kuznyechik"
  cipher to 96 bits.  This decreases message expansion while still
  providing a very low probability of forgery: 2^-96.

  An attacker can send a lot of packets with arbitrarily chosen i1, i2,
  and i3 parameters.  This will 1) force a recipient to recalculate the
  leaf key for every received packet if i1, i2, and i3 are different
  from these values in previously received packets, thus consuming CPU
  resources and 2) force a recipient to make verification attempts
  (that would fail) on a large amount of data, thus allowing the
  attacker a deeper analysis of the underlying cryptographic primitive
  (see [AEAD-USAGE-LIMITS]).  Implementations MAY initiate rekeying if
  they deem that they receive too many packets with an invalid ICV.

  Security properties of MGM are discussed in [MGM-SECURITY].

6.  IANA Considerations

  IANA maintains a registry called "Internet Key Exchange Version 2
  (IKEv2) Parameters" with a subregistry called "Transform Type
  Values".  IANA has added the following four Transform IDs to the
  "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.

   +========+===============================+===========+===========+
   | Number | Name                          | ESP       | IKEv2     |
   |        |                               | Reference | Reference |
   +========+===============================+===========+===========+
   | 32     | ENCR_KUZNYECHIK_MGM_KTREE     | RFC 9227  | RFC 9227  |
   +--------+-------------------------------+-----------+-----------+
   | 33     | ENCR_MAGMA_MGM_KTREE          | RFC 9227  | RFC 9227  |
   +--------+-------------------------------+-----------+-----------+
   | 34     | ENCR_KUZNYECHIK_MGM_MAC_KTREE | RFC 9227  | Not       |
   |        |                               |           | allowed   |
   +--------+-------------------------------+-----------+-----------+
   | 35     | ENCR_MAGMA_MGM_MAC_KTREE      | RFC 9227  | Not       |
   |        |                               |           | allowed   |
   +--------+-------------------------------+-----------+-----------+

                         Table 1: Transform IDs

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, DOI 10.17487/RFC4303, December 2005,
             <https://www.rfc-editor.org/info/rfc4303>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
             2014, <https://www.rfc-editor.org/info/rfc7296>.

  [RFC7383]  Smyslov, V., "Internet Key Exchange Protocol Version 2
             (IKEv2) Message Fragmentation", RFC 7383,
             DOI 10.17487/RFC7383, November 2014,
             <https://www.rfc-editor.org/info/rfc7383>.

  [RFC6986]  Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
             Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
             2013, <https://www.rfc-editor.org/info/rfc6986>.

  [RFC7801]  Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
             "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
             <https://www.rfc-editor.org/info/rfc7801>.

  [RFC8891]  Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
             Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
             September 2020, <https://www.rfc-editor.org/info/rfc8891>.

  [RFC9058]  Smyshlyaev, S., Ed., Nozdrunov, V., Shishkin, V., and E.
             Griboedova, "Multilinear Galois Mode (MGM)", RFC 9058,
             DOI 10.17487/RFC9058, June 2021,
             <https://www.rfc-editor.org/info/rfc9058>.

  [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
             Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
             on the Cryptographic Algorithms to Accompany the Usage of
             Standards GOST R 34.10-2012 and GOST R 34.11-2012",
             RFC 7836, DOI 10.17487/RFC7836, March 2016,
             <https://www.rfc-editor.org/info/rfc7836>.

7.2.  Informative References

  [GOST3411-2012]
             Federal Agency on Technical Regulating and Metrology,
             "Information technology. Cryptographic data security. Hash
             function", GOST R 34.11-2012, August 2012.  (In Russian)

  [GOST3412-2015]
             Federal Agency on Technical Regulating and Metrology,
             "Information technology. Cryptographic data security.
             Block ciphers", GOST R 34.12-2015, June 2015.  (In
             Russian)

  [GOST-MGM] Federal Agency on Technical Regulating and Metrology,
             "Information technology. Cryptographic information
             security. Block Cipher Modes Implementing Authenticated
             Encryption", R 1323565.1.026-2019, September 2019.  (In
             Russian)

  [GOST-ESP] Federal Agency on Technical Regulating and Metrology,
             "Information technology. Cryptographic information
             protection. The use of Russian cryptographic algorithms in
             the ESP information protection protocol",
             R 1323565.1.035-2021, January 2021.  (In Russian)

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <https://www.rfc-editor.org/info/rfc2104>.

  [RFC4106]  Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
             (GCM) in IPsec Encapsulating Security Payload (ESP)",
             RFC 4106, DOI 10.17487/RFC4106, June 2005,
             <https://www.rfc-editor.org/info/rfc4106>.

  [RFC4543]  McGrew, D. and J. Viega, "The Use of Galois Message
             Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
             DOI 10.17487/RFC4543, May 2006,
             <https://www.rfc-editor.org/info/rfc4543>.

  [RFC5282]  Black, D. and D. McGrew, "Using Authenticated Encryption
             Algorithms with the Encrypted Payload of the Internet Key
             Exchange version 2 (IKEv2) Protocol", RFC 5282,
             DOI 10.17487/RFC5282, August 2008,
             <https://www.rfc-editor.org/info/rfc5282>.

  [RFC8645]  Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric
             Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,
             <https://www.rfc-editor.org/info/rfc8645>.

  [MGM-SECURITY]
             Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V.
             Nozdrunov, "Security of Multilinear Galois Mode (MGM)",
             2019, <https://eprint.iacr.org/2019/123.pdf>.

  [SP800-67] National Institute of Standards and Technology,
             "Recommendation for the Triple Data Encryption Algorithm
             (TDEA) Block Cipher", DOI 10.6028/NIST.SP.800-67r2,
             November 2017,
             <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
             NIST.SP.800-67r2.pdf>.

  [AEAD-USAGE-LIMITS]
             Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
             AEAD Algorithms", Work in Progress, Internet-Draft, draft-
             irtf-cfrg-aead-limits-04, 7 March 2022,
             <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
             aead-limits-04>.

Appendix A.  Test Vectors

  In the following test vectors, binary data is represented in
  hexadecimal format.  The numbers in square brackets indicate the size
  of the corresponding data in decimal format.

  1.  ENCR_KUZNYECHIK_MGM_KTREE (Example 1):

     transform key [44]:
         b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
         e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
         7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     K [32]:
         b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
         e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
     salt [12]:
         7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
     K_msg [32]:
         2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
         d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
     nonce [16]:
         00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     IV [8]:
         00 00 00 00 00 00 00 00
     AAD [8]:
         51 46 53 6b 00 00 00 01
     plaintext [64]:
         45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
         0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     ciphertext [64]:
         18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
         c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
         62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
         85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
     ESP ICV [12]:
         50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
     ESP packet [112]:
         45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
         0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
         00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
         9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
         60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
         7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
         ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed

  2.  ENCR_KUZNYECHIK_MGM_KTREE (Example 2):

     transform key [44]:
         b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
         e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
         7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     K [32]:
         b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
         e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
     salt [12]:
         7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
     K_msg [32]:
         9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
         66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
     nonce [16]:
         00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
     IV [8]:
         00 00 01 00 01 00 00 00
     AAD [8]:
         51 46 53 6b 00 00 00 10
     plaintext [64]:
         45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
         0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     ciphertext [64]:
         78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
         a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
         15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
         ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
     ESP ICV [12]:
         c2 2f 87 40 83 8e 3d fa ce 91 cc b8
     ESP packet [112]:
         45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
         0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
         01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
         f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
         ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
         62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
         a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8

  3.  ENCR_MAGMA_MGM_KTREE (Example 1):

     transform key [36]:
         5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
         22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
         cf 36 63 12
     K [32]:
         5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
         22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
     salt [4]:
         cf 36 63 12
     i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
     K_msg [32]:
         25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
         5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
     nonce [8]:
         00 00 00 00 cf 36 63 12
     IV [8]:
         00 00 00 00 00 00 00 00
     AAD [8]:
         c8 c2 b2 8d 00 00 00 01
     plaintext [64]:
         45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
         0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     ciphertext [64]:
         fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
         d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
         f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
         32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
     ESP ICV [8]:
         5f 4a fa 8b 02 94 0f 5c
     ESP packet [108]:
         45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
         0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
         00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
         4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
         91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
         99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
         15 52 cc e8 5f 4a fa 8b 02 94 0f 5c

  4.  ENCR_MAGMA_MGM_KTREE (Example 2):

     transform key [36]:
         5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
         22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
         cf 36 63 12
     K [32]:
         5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
         22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
     salt [4]:
         cf 36 63 12
     i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
     K_msg [32]:
         20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
         39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
     nonce [8]:
         00 00 00 00 cf 36 63 12
     IV [8]:
         00 00 01 00 01 00 00 00
     AAD [8]:
         c8 c2 b2 8d 00 00 00 10
     plaintext [64]:
         45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
         0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     ciphertext [64]:
         7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
         25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
         1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
         4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
     ESP ICV [8]:
         dd 5d 50 9a fd b8 09 98
     ESP packet [108]:
         45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
         0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
         01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
         26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
         9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
         d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
         bf fe a1 dd dd 5d 50 9a fd b8 09 98

  5.  ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):

     transform key [44]:
         98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
         88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
         6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     K [32]:
         98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
         88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
     salt [12]:
         6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
     K_msg [32]:
         98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
         8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
     nonce [16]:
         00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     IV [8]:
         00 00 00 00 00 00 00 00
     AAD [80]:
         3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
         45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
         0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     plaintext [0]:
     ciphertext [0]:
     ESP ICV [12]:
         ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
     ESP packet [112]:
         45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
         0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
         00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
         0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
         61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
         71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
         01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d

  6.  ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 2):

     transform key [44]:
         98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
         88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
         6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     K [32]:
         98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
         88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
     salt [12]:
         6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
     K_msg [32]:
         02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
         a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
     nonce [16]:
         00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
     IV [8]:
         00 00 00 00 01 00 00 00
     AAD [80]:
         3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
         45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
         0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     plaintext [0]:
     ciphertext [0]:
     ESP ICV [12]:
         ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
     ESP packet [112]:
         45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
         0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
         01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
         0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
         61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
         71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
         01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91

  7.  ENCR_MAGMA_MGM_MAC_KTREE (Example 1):

     transform key [36]:
         d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
         2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
         88 79 8f 29
     K [32]:
         d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
         2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
     salt [4]:
         88 79 8f 29
     i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
     K_msg [32]:
         4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
         ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
     nonce [8]:
         00 00 00 00 88 79 8f 29
     IV [8]:
         00 00 00 00 00 00 00 00
     AAD [80]:
         3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
         45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
         0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     plaintext [0]:
     ciphertext [0]:
     ESP ICV [8]:
         4d d4 25 8a 25 35 95 df
     ESP packet [108]:
         45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
         0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
         00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
         0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
         61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
         71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
         01 02 02 04 4d d4 25 8a 25 35 95 df

  8.  ENCR_MAGMA_MGM_MAC_KTREE (Example 2):

     transform key [36]:
         d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
         2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
         88 79 8f 29
     K [32]:
         d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
         2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
     salt [4]:
         88 79 8f 29
     i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
     K_msg [32]:
         b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
         e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
     nonce [8]:
         00 00 00 00 88 79 8f 29
     IV [8]:
         00 00 00 00 01 00 00 00
     AAD [80]:
         3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
         45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
         0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
         65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
         75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
     plaintext [0]:
     ciphertext [0]:
     ESP ICV [8]:
         84 84 a9 23 30 a0 b1 96
     ESP packet [108]:
         45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
         0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
         01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
         0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
         61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
         71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
         01 02 02 04 84 84 a9 23 30 a0 b1 96

Acknowledgments

  The author wants to thank Adrian Farrel, Russ Housley, Yaron Sheffer,
  and Stanislav Smyshlyaev for valuable input during the publication
  process for this document.

Author's Address

  Valery Smyslov
  ELVIS-PLUS
  PO Box 81
  Moscow (Zelenograd)
  124460
  Russian Federation
  Phone: +7 495 276 0211
  Email: [email protected]