Internet Engineering Task Force (IETF)                 F. Brockners, Ed.
Request for Comments: 9197                                         Cisco
Category: Standards Track                               S. Bhandari, Ed.
ISSN: 2070-1721                                              Thoughtspot
                                                        T. Mizrahi, Ed.
                                                                 Huawei
                                                               May 2022


 Data Fields for In Situ Operations, Administration, and Maintenance
                                (IOAM)

Abstract

  In situ Operations, Administration, and Maintenance (IOAM) collects
  operational and telemetry information in the packet while the packet
  traverses a path between two points in the network.  This document
  discusses the data fields and associated data types for IOAM.  IOAM-
  Data-Fields can be encapsulated into a variety of protocols, such as
  Network Service Header (NSH), Segment Routing, Generic Network
  Virtualization Encapsulation (Geneve), or IPv6.  IOAM can be used to
  complement OAM mechanisms based on, e.g., ICMP or other types of
  probe packets.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9197.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions
  3.  Scope, Applicability, and Assumptions
  4.  IOAM Data-Fields, Types, and Nodes
    4.1.  IOAM Data-Fields and Option-Types
    4.2.  IOAM-Domains and Types of IOAM Nodes
    4.3.  IOAM-Namespaces
    4.4.  IOAM Trace Option-Types
      4.4.1.  Pre-allocated and Incremental Trace Option-Types
      4.4.2.  IOAM Node Data Fields and Associated Formats
        4.4.2.1.  Hop_Lim and node_id Short
        4.4.2.2.  ingress_if_id and egress_if_id Short
        4.4.2.3.  Timestamp Seconds
        4.4.2.4.  Timestamp Fraction
        4.4.2.5.  Transit Delay
        4.4.2.6.  Namespace-Specific Data
        4.4.2.7.  Queue Depth
        4.4.2.8.  Checksum Complement
        4.4.2.9.  Hop_Lim and node_id Wide
        4.4.2.10. ingress_if_id and egress_if_id Wide
        4.4.2.11. Namespace-Specific Data Wide
        4.4.2.12. Buffer Occupancy
        4.4.2.13. Opaque State Snapshot
      4.4.3.  Examples of IOAM Node Data
    4.5.  IOAM Proof of Transit Option-Type
      4.5.1.  IOAM Proof of Transit Type 0
    4.6.  IOAM Edge-to-Edge Option-Type
  5.  Timestamp Formats
    5.1.  PTP Truncated Timestamp Format
    5.2.  NTP 64-Bit Timestamp Format
    5.3.  POSIX-Based Timestamp Format
  6.  IOAM Data Export
  7.  IANA Considerations
    7.1.  IOAM Option-Type Registry
    7.2.  IOAM Trace-Type Registry
    7.3.  IOAM Trace-Flags Registry
    7.4.  IOAM POT-Type Registry
    7.5.  IOAM POT-Flags Registry
    7.6.  IOAM E2E-Type Registry
    7.7.  IOAM Namespace-ID Registry
  8.  Management and Deployment Considerations
  9.  Security Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  This document defines data fields for In situ Operations,
  Administration, and Maintenance (IOAM).  IOAM records OAM information
  within the packet while the packet traverses a particular network
  domain.  The term "in situ" refers to the fact that the OAM data is
  added to the data packets rather than being sent within packets
  specifically dedicated to OAM.  IOAM is used to complement
  mechanisms, such as Ping or Traceroute.  In terms of "active" or
  "passive" OAM, IOAM can be considered a hybrid OAM type.  "In situ"
  mechanisms do not require extra packets to be sent.  IOAM adds
  information to the already available data packets and therefore
  cannot be considered passive.  In terms of the classification given
  in [RFC7799], IOAM could be portrayed as Hybrid Type I.  IOAM
  mechanisms can be leveraged where mechanisms using, e.g., ICMP do not
  apply or do not offer the desired results, such as proving that a
  certain traffic flow takes a predefined path, Service Level Agreement
  (SLA) verification for the data traffic, detailed statistics on
  traffic distribution paths in networks that distribute traffic across
  multiple paths, or scenarios in which probe traffic is potentially
  handled differently from regular data traffic by the network devices.

  The term "in situ OAM" was originally motivated by the use of OAM-
  related mechanisms that add information into a packet.  This document
  uses IOAM as a term defining the IOAM technology.  IOAM includes "in
  situ" mechanisms but also mechanisms that could trigger the creation
  of additional packets dedicated to OAM.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Abbreviations and definitions used in this document:

  E2E:           Edge to Edge

  Geneve:        Generic Network Virtualization Encapsulation [RFC8926]

  IOAM:          In situ Operations, Administration, and Maintenance

  MTU:           Maximum Transmission Unit

  NSH:           Network Service Header [RFC8300]

  OAM:           Operations, Administration, and Maintenance

  PMTU:          Path MTU

  POT:           Proof of Transit

  Short format:  refers to an IOAM-Data-Field that comprises 4 octets

  SID:           Segment Identifier

  SR:            Segment Routing

  VXLAN-GPE:     Virtual eXtensible Local Area Network, Generic
                 Protocol Extension [NVO3-VXLAN-GPE]

  Wide format:   refers to an IOAM-Data-Field that comprises 8 octets

3.  Scope, Applicability, and Assumptions

  IOAM assumes a set of constraints as well as guiding principles and
  concepts that go hand in hand with the definition of the IOAM-Data-
  Fields.  These constraints, guiding principles, and concepts are
  described in this section.  A discussion of how IOAM-Data-Fields and
  the associated concepts are applied to an IOAM deployment are out of
  scope for this document.  Please refer to [IPPM-IOAM-DEPLOYMENT] for
  IOAM deployment considerations.

  Scope:
     This document defines the data fields and associated data types
     for IOAM.  The IOAM-Data-Fields can be encapsulated in a variety
     of protocols, including NSH, Segment Routing, Geneve, and IPv6.
     Specification details for these different protocols are outside
     the scope of this document.  It is expected that each such
     encapsulation would be specified by an RFC and jointly designed by
     the working group that develops or maintains the encapsulation
     protocol and the IETF IP Performance Measurement (IPPM) Working
     Group.

  Domain (or scope) of in situ OAM deployment:
     IOAM is focused on "limited domains", as defined in [RFC8799].
     For IOAM, a limited domain could, for example, be an enterprise
     campus using physical connections between devices or an overlay
     network using virtual connections/tunnels for connectivity between
     said devices.  A limited domain that uses IOAM may constitute one
     or multiple "IOAM-Domains", each disambiguated through separate
     namespace identifiers.  An IOAM-Domain is bounded by its perimeter
     or edge.  IOAM-Domains may overlap inside the limited domain.
     Designers of protocol encapsulations for IOAM specify mechanisms
     to ensure that IOAM data stays within an IOAM-Domain.  In
     addition, the operator of such a domain is expected to put
     provisions in place to ensure that IOAM data does not leak beyond
     the edge of an IOAM-Domain using, for example, packet filtering
     methods.  The operator SHOULD consider the potential operational
     impact of IOAM to mechanisms, such as ECMP processing (e.g., load-
     balancing schemes based on packet length could be impacted by the
     increased packet size due to IOAM), PMTU (i.e., ensure that the
     MTU of all links within a domain is sufficiently large to support
     the increased packet size due to IOAM), and ICMP message handling
     (i.e., in case of IPv6, IOAM support for ICMPv6 echo request/reply
     is desired, which would translate into ICMPv6 extensions to enable
     IOAM-Data-Fields to be copied from an echo request message to an
     echo reply message).

  IOAM control points:
     IOAM-Data-Fields are added to or removed from the user traffic by
     the devices that form the edge of a domain.  Devices that form an
     IOAM-Domain can add, update, or remove IOAM-Data-Fields.  Edge
     devices of an IOAM-Domain can be hosts or network devices.

  Traffic sets that IOAM is applied to:
     IOAM can be deployed on all or only on subsets of the user
     traffic.  Using IOAM on a selected set of traffic (e.g., per
     interface, based on an access control list or flow specification
     defining a specific set of traffic, etc.) could be useful in
     deployments where the cost of processing IOAM-Data-Fields by
     encapsulating, transit, or decapsulating nodes might be a concern
     from a performance or operational perspective.  Thus, limiting the
     amount of traffic IOAM is applied to could be beneficial in some
     deployments.

  Encapsulation independence:
     The definition of IOAM-Data-Fields is independent from the
     protocols the IOAM-Data-Fields are encapsulated into.  IOAM-Data-
     Fields can be encapsulated into several encapsulating protocols.

  Layering:
     If several encapsulation protocols (e.g., in case of tunneling)
     are stacked on top of each other, IOAM-Data-Fields could be
     present at multiple layers.  The behavior follows the "ships-in-
     the-night" model, i.e., IOAM-Data-Fields in one layer are
     independent from IOAM-Data-Fields in another layer.  Layering
     allows operators to instrument the protocol layer they want to
     measure.  The different layers could, but do not have to, share
     the same IOAM encapsulation mechanisms.

  IOAM implementation:
     The definition of the IOAM-Data-Fields takes the specifics of
     devices with hardware data planes and software data planes into
     account.

4.  IOAM Data-Fields, Types, and Nodes

  This section details IOAM-related nomenclature and describes data
  types, such as IOAM-Data-Fields, IOAM-Types, IOAM-Namespaces, as well
  as the different types of IOAM nodes.

4.1.  IOAM Data-Fields and Option-Types

  An IOAM-Data-Field is a set of bits with a defined format and
  meaning, which can be stored at a certain place in a packet for the
  purpose of IOAM.

  To accommodate the different uses of IOAM, IOAM-Data-Fields fall into
  different categories.  In IOAM, these categories are referred to as
  "IOAM-Option-Types".  A common registry is maintained for IOAM-
  Option-Types (see Section 7.1 for details).  Corresponding to these
  IOAM-Option-Types, different IOAM-Data-Fields are defined.

  This document defines four IOAM-Option-Types:

  *  Pre-allocated Trace Option-Type

  *  Incremental Trace Option-Type

  *  POT Option-Type

  *  E2E Option-Type

  Future IOAM-Option-Types can be allocated by IANA, as described in
  Section 7.1.

4.2.  IOAM-Domains and Types of IOAM Nodes

  Section 3 already mentioned that IOAM is expected to be deployed in a
  limited domain [RFC8799].  One or more IOAM-Option-Types are added to
  a packet upon entering an IOAM-Domain and are removed from the packet
  when exiting the domain.  Within the IOAM-Domain, the IOAM-Data-
  Fields MAY be updated by network nodes that the packet traverses.  An
  IOAM-Domain consists of "IOAM encapsulating nodes", "IOAM
  decapsulating nodes", and "IOAM transit nodes".  The role of a node
  (i.e., encapsulating, transit, and decapsulating) is defined within
  an IOAM-Namespace (see below).  A node can have different roles in
  different IOAM-Namespaces.

  A device that adds at least one IOAM-Option-Type to the packet is
  called an "IOAM encapsulating node", whereas a device that removes an
  IOAM-Option-Type is referred to as an "IOAM decapsulating node".
  Nodes within the domain that are aware of IOAM data and read, write,
  and/or process IOAM data are called "IOAM transit nodes".  IOAM nodes
  that add or remove the IOAM-Data-Fields can also update the IOAM-
  Data-Fields at the same time.  Or, in other words, IOAM encapsulating
  or decapsulating nodes can also serve as IOAM transit nodes at the
  same time.  Note that not every node in an IOAM-Domain needs to be an
  IOAM transit node.  For example, a deployment might require that
  packets traverse a set of firewalls that support IOAM.  In that case,
  only the set of firewall nodes would be IOAM transit nodes, rather
  than all nodes.

  An IOAM encapsulating node incorporates one or more IOAM-Option-Types
  (from the list of IOAM-Types, see Section 7.1) into packets that IOAM
  is enabled for.  If IOAM is enabled for a selected subset of the
  traffic, the IOAM encapsulating node is responsible for applying the
  IOAM functionality to the selected subset.

  An IOAM transit node reads, writes, and/or processes one or more of
  the IOAM-Data-Fields.  If both the Pre-allocated and the Incremental
  Trace Option-Types are present in the packet, each IOAM transit node,
  based on configuration and available implementation of IOAM, might
  populate IOAM trace data in either a Pre-allocated or Incremental
  Trace Option-Type but not both.  Note that not populating any of the
  Trace Option-Types is also valid behavior for an IOAM transit node.
  A transit node MUST ignore IOAM-Option-Types that it does not
  understand.  A transit node MUST NOT add new IOAM-Option-Types to a
  packet, MUST NOT remove IOAM-Option-Types from a packet, and MUST NOT
  change the IOAM-Data-Fields of an IOAM Edge-to-Edge Option-Type.

  An IOAM decapsulating node removes IOAM-Option-Type(s) from packets.

  The role of an IOAM encapsulating, IOAM transit, or IOAM
  decapsulating node is always performed within a specific IOAM-
  Namespace.  This means that an IOAM node that is, e.g., an IOAM
  decapsulating node for IOAM-Namespace "A" but not for IOAM-Namespace
  "B" will only remove the IOAM-Option-Types for IOAM-Namespace "A"
  from the packet.  Note that this applies even for IOAM-Option-Types
  that the node does not understand, for example, an IOAM-Option-Type
  other than the four described above, which is added in a future
  revision.

  IOAM-Namespaces allow for a namespace-specific definition and
  interpretation of IOAM-Data-Fields.  An interface identifier could,
  for example, point to a physical interface (e.g., to understand which
  physical interface of an aggregated link is used when receiving or
  transmitting a packet), whereas, in another case, it could refer to a
  logical interface (e.g., in case of tunnels).  Please refer to
  Section 4.3 for details on IOAM-Namespaces.

4.3.  IOAM-Namespaces

  IOAM-Namespaces add further context to IOAM-Option-Types and
  associated IOAM-Data-Fields.  The IOAM-Option-Types and associated
  IOAM-Data-Fields are interpreted as defined in this document,
  regardless of the value of the IOAM-Namespace.  However, IOAM-
  Namespaces provide a way to group nodes to support different
  deployment approaches of IOAM (see a few example use cases below).
  IOAM-Namespaces also help to resolve potential issues that can occur
  due to IOAM-Data-Fields not being globally unique (e.g., IOAM node
  identifiers do not have to be globally unique).  The significance of
  IOAM-Data-Fields is always within a particular IOAM-Namespace.  Given
  that IOAM-Data-Fields are always interpreted as the context of a
  specific namespace, the Namespace-ID field always needs to be carried
  along with the IOAM data-fields themselves.

  An IOAM-Namespace is identified by a 16-bit namespace identifier
  (Namespace-ID).  The IOAM-Namespace field is included in all the
  IOAM-Option-Types defined in this document and MUST be included in
  all future IOAM-Option-Types.  The Namespace-ID value is divided into
  two subranges:

  *  an operator-assigned range from 0x0001 to 0x7FFF and

  *  an IANA-assigned range from 0x8000 to 0xFFFF.

  The IANA-assigned range is intended to allow future extensions to
  have new and interoperable IOAM functionality, while the operator-
  assigned range is intended to be domain specific and managed by the
  network operator.  The Namespace-ID value of 0x0000 is the "Default-
  Namespace-ID".  The Default-Namespace-ID indicates that no specific
  namespace is associated with the IOAM-Data-Fields in the packet.  The
  Default-Namespace-ID MUST be supported by all nodes implementing
  IOAM.  A use case for the Default-Namespace-ID are deployments that
  do not leverage specific namespaces for some or all of their packets
  that carry IOAM-Data-Fields.

  Namespace identifiers allow devices that are IOAM capable to
  determine:

  *  whether one or more IOAM-Option-Types need to be processed by a
     device.  If the Namespace-ID contained in a packet does not match
     any Namespace-ID the node is configured to operate on, then the
     node MUST NOT change the contents of the IOAM-Data-Fields.

  *  which IOAM-Option-Type needs to be processed/updated in case there
     are multiple IOAM-Option-Types present in the packet.  Multiple
     IOAM-Option-Types can be present in a packet in case of
     overlapping IOAM-Domains or in case of a layered IOAM deployment.

  *  whether one or more IOAM-Option-Types have to be removed from the
     packet, e.g., at a domain edge or domain boundary.

  IOAM-Namespaces support several different uses:

  *  IOAM-Namespaces can be used by an operator to distinguish
     different IOAM-Domains.  Devices at edges of an IOAM-Domain can
     filter on Namespace-IDs to provide for proper IOAM-Domain
     isolation.

  *  IOAM-Namespaces provide additional context for IOAM-Data-Fields
     and, thus, can be used to ensure that IOAM-Data-Fields are unique
     and are interpreted properly by management stations or network
     controllers.  The node identifier field (node_id, see below) does
     not need to be unique in a deployment.  This could be the case if
     an operator wishes to use different node identifiers for different
     IOAM layers, even within the same device, or node identifiers
     might not be unique for other organizational reasons, such as
     after a merger of two formerly separated organizations.  The
     Namespace-ID can be used as a context identifier, such that the
     combination of node_id and Namespace-ID will always be unique.

  *  Similarly, IOAM-Namespaces can be used to define how certain IOAM-
     Data-Fields are interpreted; IOAM offers three different timestamp
     format options.  The Namespace-ID can be used to determine the
     timestamp format.  IOAM-Data-Fields (e.g., buffer occupancy) that
     do not have a unit associated are to be interpreted within the
     context of an IOAM-Namespace.

  *  IOAM-Namespaces can be used to identify different sets of devices
     (e.g., different types of devices) in a deployment; if an operator
     wants to insert different IOAM-Data-Fields based on the device,
     the devices could be grouped into multiple IOAM-Namespaces.  This
     could be due to the fact that the IOAM feature set differs between
     different sets of devices, or it could be for reasons of optimized
     space usage in the packet header.  It could also stem from
     hardware or operational limitations on the size of the trace data
     that can be added and processed, preventing collection of a full
     trace for a flow.

  *  By assigning different IOAM Namespace-IDs to different sets of
     nodes or network partitions and using a separate instance of an
     IOAM-Option-Type for each Namespace-ID, a full trace for a flow
     could be collected and constructed via partial traces from each
     IOAM-Option-Type in each of the packets in the flow.  For example,
     an operator could choose to group the devices of a domain into two
     IOAM-Namespaces in a way that each IOAM-Namespace is represented
     by one of two IOAM-Option-Types in the packet.  Each node would
     record data only for the IOAM-Namespace that it belongs to,
     ignoring the other IOAM-Option-Type with an IOAM-Namespace to
     which it doesn't belong.  To retrieve a full view of the
     deployment, the captured IOAM-Data-Fields of the two IOAM-
     Namespaces need to be correlated.

4.4.  IOAM Trace Option-Types

  In a typical deployment, all nodes in an IOAM-Domain would
  participate in IOAM; thus, they would be IOAM transit nodes, IOAM
  encapsulating nodes, or IOAM decapsulating nodes.  If not all nodes
  within a domain support IOAM functionality as defined in this
  document, IOAM tracing information (i.e., node data, see below) can
  only be collected on those nodes that support IOAM functionality as
  defined in this document.  Nodes that do not support IOAM
  functionality as defined in this document will forward the packet
  without any changes to the IOAM-Data-Fields.  The maximum number of
  hops and the minimum PMTU of the IOAM-Domain is assumed to be known.
  An overflow indicator (O-bit) is defined as one of the ways to deal
  with situations where the PMTU was underestimated, i.e., where the
  number of hops that are IOAM capable exceeds the available space in
  the packet.

  To optimize hardware and software implementations, IOAM tracing is
  defined as two separate options.  A deployment can choose to
  configure and support one or both of the following options.

  Pre-allocated Trace-Option:
     This trace option is defined as a container of node data fields
     (see below) with pre-allocated space for each node to populate its
     information.  This option is useful for implementations where it
     is efficient to allocate the space once and index into the array
     to populate the data during transit (e.g., software forwarders
     often fall into this class).  The IOAM encapsulating node
     allocates space for the Pre-allocated Trace Option-Type in the
     packet and sets corresponding fields in this IOAM-Option-Type.
     The IOAM encapsulating node allocates an array that is used to
     store operational data retrieved from every node while the packet
     traverses the domain.  IOAM transit nodes update the content of
     the array and possibly update the checksums of outer headers.  A
     pointer that is part of the IOAM trace data points to the next
     empty slot in the array.  An IOAM transit node that updates the
     content of the Pre-allocated Trace-Option also updates the value
     of the pointer, which specifies where the next IOAM transit node
     fills in its data.  The "node data list" array (see below) in the
     packet is populated iteratively as the packet traverses the
     network, starting with the last entry of the array, i.e., "node
     data list [n]" is the first entry to be populated, "node data list
     [n-1]" is the second one, etc.

  Incremental Trace-Option:
     This trace option is defined as a container of node data fields,
     where each node allocates and pushes its node data immediately
     following the option header.  This type of trace recording is
     useful for some of the hardware implementations, as it eliminates
     the need for the transit network elements to read the full array
     in the option and allows for as arbitrarily long packets as the
     MTU allows.  The IOAM encapsulating node allocates space for the
     Incremental Trace Option-Type.  Based on the operational state and
     configuration, the IOAM encapsulating node sets the fields in the
     Option-Type that control what IOAM-Data-Fields have to be
     collected and how large the node data list can grow.  IOAM transit
     nodes push their node data to the node data list subject to any
     protocol constraints of the encapsulating layer.  They then
     decrease the remaining length available to subsequent nodes and
     adjust the lengths and possibly checksums in outer headers.

  IOAM encapsulating nodes and IOAM decapsulating nodes that support
  tracing MUST support both Trace Option-Types.  For IOAM transit
  nodes, it is sufficient to support one of the Trace Option-Types.  In
  the event that both options are utilized in a deployment at the same
  time, the Incremental Trace-Option MUST be placed before the Pre-
  allocated Trace-Option.  Deployments that mix devices with either the
  Incremental Trace-Option or the Pre-allocated Trace-Option could
  result in both Option-Types being present in a packet.  Given that
  the operator knows which equipment is deployed in a particular IOAM-
  Domain, the operator will decide by means of configuration which
  type(s) of trace options will be used for a particular domain.

  Every node data entry holds information for a particular IOAM transit
  node that is traversed by a packet.  The IOAM decapsulating node
  removes the IOAM-Option-Types and processes and/or exports the
  associated data.  Like all IOAM-Data-Fields, the IOAM-Data-Fields of
  the IOAM Trace Option-Types are defined in the context of an IOAM-
  Namespace.

  IOAM tracing can collect the following types of information:

  *  Identification of the IOAM node.  An IOAM node identifier can
     match to a device identifier or a particular control point or
     subsystem within a device.

  *  Identification of the interface that a packet was received on,
     i.e., ingress interface.

  *  Identification of the interface that a packet was sent out on,
     i.e., egress interface.

  *  Time of day when the packet was processed by the node, as well as
     the transit delay.  Different definitions of processing time are
     feasible and expected, though it is important that all devices of
     an IOAM-Domain follow the same definition.

  *  Generic data, i.e., format-free information where syntax and
     semantics of the information is defined by the operator in a
     specific deployment.  For a specific IOAM-Namespace, all IOAM
     nodes have to interpret the generic data the same way.  Examples
     for generic IOAM data include geolocation information (location of
     the node at the time the packet was processed), buffer queue fill
     level or cache fill level at the time the packet was processed, or
     even a battery-charge level.

  *  Information to detect whether IOAM trace data was added at every
     hop or whether certain hops in the domain weren't IOAM transit
     nodes.

  It should be noted that the semantics of some of the node data fields
  that are defined below, such as the queue depth and buffer occupancy,
  are implementation specific.  This approach is intended to allow IOAM
  nodes with various different architectures.

4.4.1.  Pre-allocated and Incremental Trace Option-Types

  The IOAM Pre-allocated Trace-Option and the IOAM Incremental Trace-
  Option have similar formats.  Except where noted below, the internal
  formats and fields of the two trace options are identical.  Both
  trace options consist of a fixed-size "trace option header" and a
  variable data space to store gathered data, i.e., the "node data
  list".  An IOAM transit node (that is, not an IOAM encapsulating node
  or IOAM decapsulating node) MUST NOT modify any of the fields in the
  fixed-size "trace option header", other than Flags" and
  "RemainingLen", i.e., an IOAM transit node MUST NOT modify the
  Namespace-ID, NodeLen, IOAM Trace-Type, or Reserved fields.

  The Pre-allocated and Incremental Trace-Option headers:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Namespace-ID           |NodeLen  | Flags | RemainingLen|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               IOAM Trace-Type                 |  Reserved     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The trace option data MUST be aligned by 4 octets:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |                                                               |  |
  |                        node data list [0]                     |  |
  |                                                               |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  D
  |                                                               |  a
  |                        node data list [1]                     |  t
  |                                                               |  a
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                             ...                               ~  S
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  p
  |                                                               |  a
  |                        node data list [n-1]                   |  c
  |                                                               |  e
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
  |                                                               |  |
  |                        node data list [n]                     |  |
  |                                                               |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+

  Namespace-ID:
     16-bit identifier of an IOAM-Namespace.  The Namespace-ID value of
     0x0000 is defined as the "Default-Namespace-ID" (see Section 4.3)
     and MUST be known to all the nodes implementing IOAM.  For any
     other Namespace-ID value that does not match any Namespace-ID the
     node is configured to operate on, the node MUST NOT change the
     contents of the IOAM-Data-Fields.

  NodeLen:
     5-bit unsigned integer.  This field specifies the length of data
     added by each node in multiples of 4 octets, excluding the length
     of the "Opaque State Snapshot" field.

     If IOAM Trace-Type Bit 22 is not set, then NodeLen specifies the
     actual length added by each node.  If IOAM Trace-Type Bit 22 is
     set, then the actual length added by a node would be (NodeLen +
     length of the "Opaque State Snapshot" field) in 4-octet units.

     For example, if 3 IOAM Trace-Type bits are set and none of them
     are in wide format, then NodeLen would be 3.  If 3 IOAM Trace-Type
     bits are set and 2 of them are wide, then NodeLen would be 5.

     An IOAM encapsulating node MUST set NodeLen.

     A node receiving an IOAM Pre-allocated or Incremental Trace-Option
     relies on the NodeLen value.

  Flags:
     4-bit field.  Flags are allocated by IANA, as specified in
     Section 7.3.  This document allocates a single flag as follows:

     Bit 0:
        "Overflow" (O-bit) (most significant bit).  In case a network
        element is supposed to add node data to a packet but detects
        that there are not enough octets left to record the node data,
        the network element MUST NOT add any fields and MUST set the
        overflow "O-bit" to "1" in the IOAM Trace-Option header.  This
        is useful for transit nodes to ignore further processing of the
        option.

  RemainingLen:
     7-bit unsigned integer.  This field specifies the data space in
     multiples of 4 octets remaining for recording the node data before
     the node data list is considered to have overflowed.  The sender
     MUST assign the initial value of the RemainingLen field.  The
     sender MAY calculate the value of the RemainingLen field by
     computing the number of node data bytes allowed before exceeding
     the PMTU, given that the PMTU is known to the sender.  Subsequent
     nodes can carry out a simple comparison between RemainingLen and
     NodeLen, along with the length of the "Opaque State Snapshot", if
     applicable, to determine whether or not data can be added by this
     node.  When node data is added, the node MUST decrease
     RemainingLen by the amount of data added.  In the Pre-allocated
     Trace-Option, RemainingLen is used to derive the offset in data
     space to record the node data element.  Specifically, the
     recording of the node data element would start from RemainingLen -
     NodeLen - size of (opaque snapshot) in 4-octet units.  If
     RemainingLen in a Pre-allocated Trace-Option exceeds the length of
     the option, as specified in the lower-layer header (which is not
     within the scope of this document), then the node MUST NOT add any
     fields.

  IOAM Trace-Type:
     24-bit identifier that specifies which data types are used in this
     node data list.

     The IOAM Trace-Type value is a bit field.  The following bits are
     defined in this document, with details on each bit described in
     Section 4.4.2.  The order of packing the data fields in each node
     data element follows the bit order of the IOAM Trace-Type field as
     follows:

     Bit 0     Most significant bit.  When set, indicates the presence
               of Hop_Lim and node_id (short format) in the node data.

     Bit 1     When set, indicates the presence of ingress_if_id and
               egress_if_id (short format) in the node data.

     Bit 2     When set, indicates the presence of timestamp seconds in
               the node data.

     Bit 3     When set, indicates the presence of timestamp fraction
               in the node data.

     Bit 4     When set, indicates the presence of transit delay in the
               node data.

     Bit 5     When set, indicates the presence of IOAM-Namespace-
               specific data in short format in the node data.

     Bit 6     When set, indicates the presence of queue depth in the
               node data.

     Bit 7     When set, indicates the presence of the Checksum
               Complement node data.

     Bit 8     When set, indicates the presence of Hop_Lim and node_id
               in wide format in the node data.

     Bit 9     When set, indicates the presence of ingress_if_id and
               egress_if_id in wide format in the node data.

     Bit 10    When set, indicates the presence of IOAM-Namespace-
               specific data in wide format in the node data.

     Bit 11    When set, indicates the presence of buffer occupancy in
               the node data.

     Bits 12-21  Undefined.  These values are available for future
               assignment in the IOAM Trace-Type Registry
               (Section 7.2).  Every future node data field
               corresponding to one of these bits MUST be 4 octets
               long.  An IOAM encapsulating node MUST set the value of
               each undefined bit to 0.  If an IOAM transit node
               receives a packet with one or more of these bits set to
               1, it MUST either:

               1.  add corresponding node data filled with the reserved
                   value 0xFFFFFFFF after the node data fields for the
                   IOAM Trace-Type bits defined above, such that the
                   total node data added by this node in units of 4
                   octets is equal to NodeLen or

               2.  not add any node data fields to the packet, even for
                   the IOAM Trace-Type bits defined above.

     Bit 22    When set, indicates the presence of the variable-length
               Opaque State Snapshot field.

     Bit 23    Reserved; MUST be set to zero upon transmission and be
               ignored upon receipt.  This bit is reserved to allow for
               future extensions of the IOAM Trace-Type bit field.

     Section 4.4.2 describes the IOAM-Data-Types and their formats.
     Within an IOAM-Domain, possible combinations of these bits making
     the IOAM Trace-Type can be restricted by configuration knobs.

  Reserved:
     8 bits.  An IOAM encapsulating node MUST set the value to zero
     upon transmission.  IOAM transit nodes MUST ignore the received
     value.

  Node data List [n]:
     Variable-length field.  This is a list of node data elements where
     the content of each node data element is determined by the IOAM
     Trace-Type.  The order of packing the data fields in each node
     data element follows the bit order of the IOAM Trace-Type field.
     Each node MUST prepend its node data element in front of the node
     data elements that it received, such that the transmitted node
     data list begins with this node's data element as the first
     populated element in the list.  The last node data element in this
     list is the node data of the first IOAM-capable node in the path.
     Populating the node data list in this way ensures that the order
     of the node data list is the same for Incremental and Pre-
     allocated Trace-Options.  In the Pre-allocated Trace-Option, the
     index contained in RemainingLen identifies the offset for current
     active node data to be populated.

4.4.2.  IOAM Node Data Fields and Associated Formats

  All the IOAM-Data-Fields MUST be aligned by 4 octets.  If a node that
  is supposed to update an IOAM-Data-Field is not capable of populating
  the value of a field set in the IOAM Trace-Type, the field value MUST
  be set to 0xFFFFFFFF for 4-octet fields or 0xFFFFFFFFFFFFFFFF for
  8-octet fields, indicating that the value is not populated, except
  when explicitly specified in the field description below.

  Some IOAM-Data-Fields defined below, such as interface identifiers or
  IOAM-Namespace-specific data, are defined in both "short format" and
  "wide format".  The use of "short format" or "wide format" is not
  mutually exclusive.  A deployment could choose to leverage both.  For
  example, ingress_if_id_(short format) could be an identifier for the
  physical interface, whereas ingress_if_id_(wide format) could be an
  identifier for a logical sub-interface of that physical interface.

  Data fields and associated data types for each of the IOAM-Data-
  Fields are specified in the following sections.  The definition of
  IOAM-Data-Fields focuses on the syntax of the data fields and avoids
  specifying the semantics where feasible.  This is why no units are
  defined for data fields, e.g., like "buffer occupancy" or "queue
  depth".  With this approach, nodes can supply the information in
  their original format and are not required to perform unit or format
  conversions.  Systems that further process IOAM information, e.g.,
  like a network management system, are assumed to also handle unit
  conversions as part of their IOAM-Data-Fields processing.  The
  combination of a particular data field and the Namespace-ID provides
  for the context to interpret the provided data appropriately.

4.4.2.1.  Hop_Lim and node_id Short

  The "Hop_Lim and node_id short" field is a 4-octet field that is
  defined as follows:

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Hop_Lim     |              node_id                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Hop_Lim:
     1-octet unsigned integer.  It is set to the Hop Limit value in the
     packet at egress from the node that records this data.  Hop Limit
     information is used to identify the location of the node in the
     communication path.  This is copied from the lower layer, e.g.,
     TTL value in IPv4 header or Hop Limit field from IPv6 header of
     the packet when the packet is ready for transmission.  The
     semantics of the Hop_Lim field depend on the lower-layer protocol
     that IOAM is encapsulated into; therefore, its specific semantics
     are outside the scope of this memo.  The value of this field MUST
     be set to 0xff when the lower level does not have a field
     equivalent to TTL / Hop Limit.

  node_id:
     3-octet unsigned integer.  A node identifier field to uniquely
     identify a node within the IOAM-Namespace and associated IOAM-
     Domain.  The procedure to allocate, manage, and map the node_ids
     is beyond the scope of this document.  See [IPPM-IOAM-DEPLOYMENT]
     for a discussion of deployment-related aspects of the node_id.

4.4.2.2.  ingress_if_id and egress_if_id Short

  The "ingress_if_id and egress_if_id" field is a 4-octet field that is
  defined as follows:

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     ingress_if_id             |         egress_if_id          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  ingress_if_id:
     2-octet unsigned integer.  An interface identifier to record the
     ingress interface the packet was received on.

  egress_if_id:
     2-octet unsigned integer.  An interface identifier to record the
     egress interface the packet is forwarded out of.

  Note that due to the fact that IOAM uses its own IOAM-Namespaces for
  IOAM-Data-Fields, data fields, like interface identifiers, can be
  used in a flexible way to represent system resources that are
  associated with ingressing or egressing packets, i.e., ingress_if_id
  could represent a physical interface, a virtual or logical interface,
  or even a queue.

4.4.2.3.  Timestamp Seconds

  The "timestamp seconds" field is a 4-octet unsigned integer field.
  It contains the absolute timestamp in seconds that specifies the time
  at which the packet was received by the node.  This field has three
  possible formats, based on either the Precision Time Protocol (PTP)
  (see e.g., [RFC8877]), NTP [RFC5905], or POSIX [POSIX].  The three
  timestamp formats are specified in Section 5.  In all three cases,
  the timestamp seconds field contains the 32 most significant bits of
  the timestamp format that is specified in Section 5.  If a node is
  not capable of populating this field, it assigns the value
  0xFFFFFFFF.  Note that this is a legitimate value that is valid for 1
  second in approximately 136 years; the analyzer has to correlate
  several packets or compare the timestamp value to its own time of day
  in order to detect the error indication.

4.4.2.4.  Timestamp Fraction

  The "timestamp fraction" field is a 4-octet unsigned integer field.
  Fraction specifies the fractional portion of the number of seconds
  since the NTP epoch [RFC8877].  The field specifies the time at which
  the packet was received by the node.  This field has three possible
  formats, based on either PTP (see e.g., [RFC8877]), NTP [RFC5905], or
  POSIX [POSIX].  The three timestamp formats are specified in
  Section 5.  In all three cases, the timestamp fraction field contains
  the 32 least significant bits of the timestamp format that is
  specified in Section 5.  If a node is not capable of populating this
  field, it assigns the value 0xFFFFFFFF.  Note that this is a
  legitimate value in the NTP format, valid for approximately 233
  picoseconds in every second.  If the NTP format is used, the analyzer
  has to correlate several packets in order to detect the error
  indication.

4.4.2.5.  Transit Delay

  The "transit delay" field is a 4-octet unsigned integer in the range
  0 to 2^31-1.  It is the time in nanoseconds the packet spent in the
  transit node.  This can serve as an indication of the queuing delay
  at the node.  If the transit delay exceeds 2^31-1 nanoseconds, then
  the top bit 'O' is set to indicate overflow and value set to
  0x80000000.  When this field is part of the data field but a node
  populating the field is not able to fill it, the field position in
  the field MUST be filled with value 0xFFFFFFFF to mean not populated.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |O|                     transit delay                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.6.  Namespace-Specific Data

  The "namespace-specific data" field is a 4-octet field that can be
  used by the node to add IOAM-Namespace-specific data.  This
  represents a "free-format" 4-octet bit field with its semantics
  defined in the context of a specific IOAM-Namespace.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    namespace-specific data                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.7.  Queue Depth

  The "queue depth" field is a 4-octet unsigned integer field.  This
  field indicates the current length of the egress interface queue of
  the interface from where the packet is forwarded out.  The queue
  depth is expressed as the current amount of memory buffers used by
  the queue (a packet could consume one or more memory buffers,
  depending on its size).

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       queue depth                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.8.  Checksum Complement

  The "Checksum Complement" field is a 4-octet node data that contains
  the Checksum Complement value.  The Checksum Complement is useful
  when IOAM is transported over encapsulations that make use of a UDP
  transport, such as VXLAN-GPE or Geneve.  Without the Checksum
  Complement, nodes adding IOAM node data update the UDP Checksum field
  following the recommendation of the encapsulation protocols.  When
  the Checksum Complement is present, an IOAM encapsulating node or
  IOAM transit node adding node data MUST carry out one of the
  following two alternatives in order to maintain the correctness of
  the UDP Checksum value:

  1.  recompute the UDP Checksum field or

  2.  use the Checksum Complement to make a checksum-neutral update in
      the UDP payload; the Checksum Complement is assigned a value that
      complements the rest of the node data fields that were added by
      the current node, causing the existing UDP Checksum field to
      remain correct.

  IOAM decapsulating nodes MUST recompute the UDP Checksum field, since
  they do not know whether previous hops modified the UDP Checksum
  field or the Checksum Complement field.

  Checksum Complement fields are used in a similar manner in [RFC7820]
  and [RFC7821].

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Checksum Complement                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.9.  Hop_Lim and node_id Wide

  The "Hop_Lim and node_id wide" field is an 8-octet field defined as
  follows:

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Hop_Lim     |              node_id                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                         node_id (contd)                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Hop_Lim:
     1-octet unsigned integer.  See Section 4.4.2.1 for the definition
     of the field.

  node_id:
     7-octet unsigned integer.  It is a node identifier field to
     uniquely identify a node within the IOAM-Namespace and associated
     IOAM-Domain.  The procedure to allocate, manage, and map the
     node_ids is beyond the scope of this document.

4.4.2.10.  ingress_if_id and egress_if_id Wide

  The "ingress_if_id and egress_if_id wide" field is an 8-octet field,
  which is defined as follows:

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       ingress_if_id                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       egress_if_id                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  ingress_if_id:
     4-octet unsigned integer.  It is an interface identifier to record
     the ingress interface the packet was received on.

  egress_if_id:
     4-octet unsigned integer.  It is an interface identifier to record
     the egress interface the packet is forwarded out of.

4.4.2.11.  Namespace-Specific Data Wide

  The "namespace-specific data wide" field is an 8-octet field that can
  be used by the node to add IOAM-Namespace-specific data.  This
  represents a "free-format" 8-octet bit field with its semantics
  defined in the context of a specific IOAM-Namespace.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    namespace-specific data                    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                namespace-specific data (contd)                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.12.  Buffer Occupancy

  The "buffer occupancy" field is a 4-octet unsigned integer field.
  This field indicates the current status of the occupancy of the
  common buffer pool used by a set of queues.  The units of this field
  are implementation specific.  Hence, the units are interpreted within
  the context of an IOAM-Namespace and/or node identifier if used.  The
  authors acknowledge that, in some operational cases, there is a need
  for the units to be consistent across a packet path through the
  network; hence, it is recommended for implementations to use standard
  units, such as bytes.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       buffer occupancy                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.2.13.  Opaque State Snapshot

  The "Opaque State Snapshot" field is a variable-length field and
  follows the fixed-length IOAM-Data-Fields defined above.  It allows
  the network element to store an arbitrary state in the node data
  field without a predefined schema.  The schema is to be defined
  within the context of an IOAM-Namespace.  The schema needs to be made
  known to the analyzer by some out-of-band mechanism.  The
  specification of this mechanism is beyond the scope of this document.
  A 24-bit "Schema ID" field, interpreted within the context of an
  IOAM-Namespace, indicates which particular schema is used and has to
  be configured on the network element by the operator.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Length      |                     Schema ID                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                                                               |
  |                        Opaque data                            |
  ~                                                               ~
  .                                                               .
  .                                                               .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Length:
     1-octet unsigned integer.  It is the length in multiples of 4
     octets of the Opaque data field that follows Schema ID.

  Schema ID:
     3-octet unsigned integer identifying the schema of Opaque data.

  Opaque data:
     Variable-length field.  This field is interpreted as specified by
     the schema identified by the Schema ID.

  When this field is part of the data field, but a node populating the
  field has no opaque state data to report, the Length MUST be set to 0
  and the Schema ID MUST be set to 0xFFFFFF to mean no schema.

4.4.3.  Examples of IOAM Node Data

  The format used for the entries in a packet's "node data list" array
  can vary from packet to packet and deployment to deployment.  Some
  deployments might only be interested in recording the node
  identifiers, whereas others might be interested in recording node
  identifiers and timestamps.  This section provides example entries of
  the "node data list" array.

  0xD40000:  If the IOAM Trace-Type is 0xD40000
     (0b110101000000000000000000), then the format of node data is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     ingress_if_id             |         egress_if_id          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     timestamp fraction                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    namespace-specific data                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  0xC00000:  If the IOAM Trace-Type is 0xC00000
     (0b110000000000000000000000), then the format is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     ingress_if_id             |         egress_if_id          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  0x900000:  If the IOAM Trace-Type is 0x900000
     (0b100100000000000000000000), then the format is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   timestamp fraction                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  0x840000:  If the IOAM Trace-Type is 0x840000
     (0b100001000000000000000000), then the format is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    namespace-specific data                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  0x940000:  If the IOAM Trace-Type is 0x940000
     (0b100101000000000000000000), then the format is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    timestamp fraction                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    namespace-specific data                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  0x308002:  If the IOAM Trace-Type is 0x308002
     (0b001100001000000000000010), then the format is:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      timestamp seconds                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    timestamp fraction                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Hop_Lim     |              node_id                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         node_id(contd)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Length      |                     Schema ID                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                                                               |
     |                        Opaque data                            |
     ~                                                               ~
     .                                                               .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.5.  IOAM Proof of Transit Option-Type

  The IOAM Proof of Transit Option-Type is used to support path or
  service function chain [RFC7665] verification use cases, i.e., prove
  that traffic transited a defined path.  While the details on how the
  IOAM data for the Proof of Transit Option-Type is processed at IOAM
  encapsulating, decapsulating, and transit nodes are outside the scope
  of the document, Proof of Transit approaches share the need to
  uniquely identify a packet, as well as iteratively operate on a set
  of information that is handed from node to node.  Correspondingly,
  two pieces of information are added as IOAM-Data-Fields to the
  packet:

  PktID:
     unique identifier for the packet

  Cumulative:
     information that is handed from node to node and updated by every
     node according to a verification algorithm

  The IOAM Proof of Transit Option-Type consist of a fixed-size "IOAM
  Proof of Transit Option header" and "IOAM Proof of Transit Option
  data fields":

  IOAM Proof of Transit Option header:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Namespace-ID            |IOAM POT-Type  | IOAM POT flags|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IOAM Proof of Transit Option-Type IOAM-Data-Fields MUST be aligned by
  4 octets:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       POT Option data field determined by IOAM POT-Type       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Namespace-ID:
     16-bit identifier of an IOAM-Namespace.  The Namespace-ID value of
     0x0000 is defined as the "Default-Namespace-ID" (see Section 4.3)
     and MUST be known to all the nodes implementing IOAM.  For any
     other Namespace-ID value that does not match any Namespace-ID the
     node is configured to operate on, the node MUST NOT change the
     contents of the IOAM-Data-Fields.

  IOAM POT-Type:
     8-bit identifier of a particular POT variant that specifies the
     POT data that is included.  This document defines IOAM POT-Type 0:

     0:  POT data is a 16-octet field to carry data associated to POT
        procedures.

     If a node receives an IOAM POT-Type value that it does not
     understand, the node MUST NOT change, add to, or remove the
     contents of the IOAM-Data-Fields.

  IOAM POT flags:
     8 bits.  This document does not define any flags.  Bits 0-7 are
     available for assignment (see Section 7.5).  Bits that have not
     been assigned MUST be set to zero upon transmission and be ignored
     upon receipt.

  POT Option data:
     Variable-length field.  The type of which is determined by the
     IOAM POT-Type.

4.5.1.  IOAM Proof of Transit Type 0

  IOAM Proof of Transit Option of IOAM POT-Type 0:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Namespace-ID           |IOAM POT-Type=0|R R R R R R R R|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
  |                        PktID                                  |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  P
  |                        PktID (contd)                          |  O
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  T
  |                        Cumulative                             |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
  |                        Cumulative (contd)                     |  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+

  Namespace-ID:
     16-bit identifier of an IOAM-Namespace (see Section 4.3 above).

  IOAM POT-Type:
     8-bit identifier of a particular POT variant that specifies the
     POT data that is included (see Section 4.5 above).  For this case
     here, IOAM POT-Type is set to the value 0.

  Bit 0-7:
     Undefined (see Section 4.5 above).

  PktID:
     64-bit packet identifier.

  Cumulative:
     64-bit Cumulative that is updated at specific nodes by processing
     per packet PktID field and configured parameters.

     |  Note: Larger or smaller sizes of "PktID" and "Cumulative" data
     |  are feasible and could be required for certain deployments,
     |  e.g., in case of space constraints in the encapsulation
     |  protocols used.  Future documents could introduce different
     |  sizes of data for "Proof of Transit".

4.6.  IOAM Edge-to-Edge Option-Type

  The IOAM Edge-to-Edge Option-Type carries data that is added by the
  IOAM encapsulating node and interpreted by the IOAM decapsulating
  node.  The IOAM transit nodes MAY process the data but MUST NOT
  modify it.

  The IOAM Edge-to-Edge Option-Type consist of a fixed-size "IOAM Edge-
  to-Edge Option-Type header" and "IOAM Edge-to-Edge Option-Type data
  fields":

  IOAM Edge-to-Edge Option-Type header:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Namespace-ID           |         IOAM E2E-Type         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The IOAM Edge-to-Edge Option-Type IOAM-Data-Fields MUST be aligned by
  4 octets:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       E2E Option data field determined by IOAM-E2E-Type       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Namespace-ID:
     16-bit identifier of an IOAM-Namespace.  The Namespace-ID value of
     0x0000 is defined as the "Default-Namespace-ID" (see Section 4.3)
     and MUST be known to all the nodes implementing IOAM.  For any
     other Namespace-ID value that does not match any Namespace-ID the
     node is configured to operate on, the node MUST NOT change the
     contents of the IOAM-Data-Fields.

  IOAM-E2E-Type:
     16-bit identifier that specifies which data types are used in the
     E2E Option data.  The IOAM-E2E-Type value is a bit field.  The
     order of packing the E2E Option data field elements follows the
     bit order of the IOAM E2E-Type field as follows:

     Bit 0    Most significant bit.  When set, it indicates the
              presence of a 64-bit sequence number added to a specific
              "packet group" that is used to detect packet loss, packet
              reordering, or packet duplication within the group.  The
              "packet group" is deployment dependent and defined at the
              IOAM encapsulating node, e.g., by n-tuple-based
              classification of packets.  When this bit is set, "Bit 1"
              (for a 32-bit sequence number, see below) MUST be zero.

     Bit 1    When set, it indicates the presence of a 32-bit sequence
              number added to a specific "packet group" that is used to
              detect packet loss, packet reordering, or packet
              duplication within that group.  The "packet group" is
              deployment dependent and defined at the IOAM
              encapsulating node, e.g., by n-tuple-based classification
              of packets.  When this bit is set, "Bit 0" (for a 64-bit
              sequence number, see above) MUST be zero.

     Bit 2    When set, it indicates the presence of timestamp seconds,
              representing the time at which the packet entered the
              IOAM-Domain.  Within the IOAM encapsulating node, the
              time that the timestamp is retrieved can depend on the
              implementation.  Some possibilities are 1) the time at
              which the packet was received by the node, 2) the time at
              which the packet was transmitted by the node, or 3) when
              a tunnel encapsulation is used, the point at which the
              packet is encapsulated into the tunnel.  Each
              implementation has to document when the E2E timestamp
              that is going to be put in the packet is retrieved.  This
              4-octet field has three possible formats, based on either
              PTP (see e.g., [RFC8877]), NTP [RFC5905], or POSIX
              [POSIX].  The three timestamp formats are specified in
              Section 5.  In all three cases, the timestamp seconds
              field contains the 32 most significant bits of the
              timestamp format that is specified in Section 5.  If a
              node is not capable of populating this field, it assigns
              the value 0xFFFFFFFF.  Note that this is a legitimate
              value that is valid for 1 second in approximately 136
              years; the analyzer has to correlate several packets or
              compare the timestamp value to its own time of day in
              order to detect the error indication.

     Bit 3    When set, it indicates the presence of timestamp
              fraction, representing the time at which the packet
              entered the IOAM-Domain.  This 4-octet field has three
              possible formats, based on either PTP (see e.g.,
              [RFC8877]), NTP [RFC5905], or POSIX [POSIX].  The three
              timestamp formats are specified in Section 5.  In all
              three cases, the timestamp fraction field contains the 32
              least significant bits of the timestamp format that is
              specified in Section 5.  If a node is not capable of
              populating this field, it assigns the value 0xFFFFFFFF.
              Note that this is a legitimate value in the NTP format,
              valid for approximately 233 picoseconds in every second.
              If the NTP format is used, the analyzer has to correlate
              several packets in order to detect the error indication.

     Bit 4-15  Undefined.  An IOAM encapsulating node MUST set the
              value of these bits to zero upon transmission and ignore
              them upon receipt.

  E2E Option data:
     Variable-length field.  The type of which is determined by the
     IOAM E2E-Type.

5.  Timestamp Formats

  The IOAM-Data-Fields include a timestamp field that is represented in
  one of three possible timestamp formats.  It is assumed that the
  management plane is responsible for determining which timestamp
  format is used.

5.1.  PTP Truncated Timestamp Format

  The Precision Time Protocol (PTP) uses an 80-bit timestamp format.
  The truncated timestamp format is a 64-bit field, which is the 64
  least significant bits of the 80-bit PTP timestamp.  The PTP
  truncated format is specified in Section 4.3 of [RFC8877], and the
  details are presented below for the sake of completeness.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Seconds                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Nanoseconds                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Timestamp field format:
     Seconds:  Specifies the integer portion of the number of seconds
        since the PTP epoch

        Size:  32 bits

        Units:  seconds

     Nanoseconds:  Specifies the fractional portion of the number of
        seconds since the PTP epoch

        Size:  32 bits

        Units:  nanoseconds.  The value of this field is in the range 0
           to (10^9)-1.

  Epoch:
     PTP epoch.  For details, see e.g., [RFC8877].

  Resolution:
     The resolution is 1 nanosecond.

  Wraparound:
     This time format wraps around every 2^32 seconds, which is roughly
     136 years.  The next wraparound will occur in the year 2106.

  Synchronization Aspects:
     It is assumed that the nodes that run this protocol are
     synchronized among themselves.  Nodes MAY be synchronized to a
     global reference time.  Note that if PTP is used for
     synchronization, the timestamp MAY be derived from the PTP-
     synchronized clock, allowing the timestamp to be measured with
     respect to the clock of a PTP Grandmaster clock.

5.2.  NTP 64-Bit Timestamp Format

  The Network Time Protocol (NTP) [RFC5905] timestamp format is 64 bits
  long.  This specification uses the NTP timestamp format that is
  specified in Section 4.2.1 of [RFC8877], and the details are
  presented below for the sake of completeness.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Seconds                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Fraction                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Timestamp field format:
     Seconds:  specifies the integer portion of the number of seconds
        since the NTP epoch

        Size:  32 bits

        Units:  seconds

     Fraction:  specifies the fractional portion of the number of
        seconds since the NTP epoch

        Size:  32 bits

        Units:  the unit is 2^(-32) seconds, which is roughly equal to
           233 picoseconds.

  Epoch:
     NTP epoch.  For details, see [RFC5905].

  Resolution:
     The resolution is 2^(-32) seconds.

  Wraparound:
     This time format wraps around every 2^32 seconds, which is roughly
     136 years.  The next wraparound will occur in the year 2036.

  Synchronization Aspects:
     Nodes that use this timestamp format will typically be
     synchronized to UTC using NTP [RFC5905].  Thus, the timestamp MAY
     be derived from the NTP-synchronized clock, allowing the timestamp
     to be measured with respect to the clock of an NTP server.

5.3.  POSIX-Based Timestamp Format

  This timestamp format is based on the POSIX time format [POSIX].  The
  detailed specification of the timestamp format used in this document
  is presented below.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Seconds                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Microseconds                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Timestamp field format:
     Seconds:  specifies the integer portion of the number of seconds
        since the POSIX epoch

        Size:  32 bits

        Units:  seconds

     Microseconds:  specifies the fractional portion of the number of
        seconds since the POSIX epoch

        Size:  32 bits

        Units:  the unit is microseconds.  The value of this field is
           in the range 0 to (10^6)-1.

  Epoch:
     POSIX epoch.  For details, see [POSIX], Appendix A.4.16.

  Resolution:
     The resolution is 1 microsecond.

  Wraparound:
     This time format wraps around every 2^32 seconds, which is roughly
     136 years.  The next wraparound will occur in the year 2106.

  Synchronization Aspects:
     It is assumed that nodes that use this timestamp format run the
     Linux operating system and hence use the POSIX time.  In some
     cases, nodes MAY be synchronized to UTC using a synchronization
     mechanism that is outside the scope of this document, such as NTP
     [RFC5905].  Thus, the timestamp MAY be derived from the NTP-
     synchronized clock, allowing the timestamp to be measured with
     respect to the clock of an NTP server.

6.  IOAM Data Export

  IOAM nodes collect information for packets traversing a domain that
  supports IOAM.  IOAM decapsulating nodes, as well as IOAM transit
  nodes, can choose to retrieve IOAM information from the packet,
  process the information further, and export the information using
  e.g., IP Flow Information Export (IPFIX).  The mechanisms and
  associated data formats for exporting IOAM data are outside the scope
  of this document.

  A way to perform raw data export of IOAM data using IPFIX is
  discussed in [IPPM-IOAM-RAWEXPORT].

7.  IANA Considerations

  IANA has defined a registry group named "In Situ OAM (IOAM)".

  This group includes the following registries:

     IOAM Option-Type

     IOAM Trace-Type

     IOAM Trace-Flags

     IOAM POT-Type

     IOAM POT-Flags

     IOAM E2E-Type

     IOAM Namespace-ID

  The subsequent subsections detail the registries therein contained.

7.1.  IOAM Option-Type Registry

  This registry defines 128 code points for the IOAM Option-Type field
  for identifying IOAM-Option-Types, as explained in Section 4.  The
  following code points are defined in this document:

  0:  IOAM Pre-allocated Trace Option-Type

  1:  IOAM Incremental Trace Option-Type

  2:  IOAM POT Option-Type

  3:  IOAM E2E Option-Type

  Code points 4-127 are available for assignment via the "IETF Review"
  process, as per [RFC8126].

  New registration requests MUST use the following template:

  Name:  name of the newly registered Option-Type

  Code point:  desired value of the requested code point

  Description:  brief description of the newly registered Option-Type

  Reference:  reference to the document that defines the new Option-
     Type

  The evaluation of a new registration request MUST also include
  checking whether the new IOAM-Option-Type includes an IOAM-Namespace
  field and that the IOAM-Namespace field is the first field in the
  newly defined header of the new Option-Type.

7.2.  IOAM Trace-Type Registry

  This registry defines code points for each bit in the 24-bit IOAM
  Trace-Type field for the Pre-allocated Trace Option-Type and
  Incremental Trace Option-Type defined in Section 4.4.  Bits 0-11 are
  defined in this document in Paragraph 5 of Section 4.4.1:

  Bit 0:  hop_Lim and node_id in short format

  Bit 1:  ingress_if_id and egress_if_id in short format

  Bit 2:  timestamp seconds

  Bit 3:  timestamp fraction

  Bit 4:  transit delay

  Bit 5:  namespace-specific data in short format

  Bit 6:  queue depth

  Bit 7:  checksum complement

  Bit 8:  hop_Lim and node_id in wide format

  Bit 9:  ingress_if_id and egress_if_id in wide format

  Bit 10:  namespace-specific data in wide format

  Bit 11:  buffer occupancy

  Bit 22:  variable-length Opaque State Snapshot

  Bit 23:  reserved

  Bits 12-21 are available for assignment via the "IETF Review"
  process, as per [RFC8126].

  New registration requests MUST use the following template:

  Bit:  desired bit to be allocated in the 24-bit IOAM Trace Option-
     Type field for the Pre-allocated Trace Option-Type and Incremental
     Trace Option-Type

  Description:  brief description of the newly registered bit

  Reference:  reference to the document that defines the new bit

7.3.  IOAM Trace-Flags Registry

  This registry defines code points for each bit in the 4-bit flags for
  the Pre-allocated Trace-Option and Incremental Trace-Option defined
  in Section 4.4.  The meaning of Bit 0 (the most significant bit) for
  trace flags is defined in this document in Paragraph 3 of
  Section 4.4.1:

  Bit 0:  "Overflow" (O-bit)

  Bits 1-3 are available for assignment via the "IETF Review" process,
  as per [RFC8126].

  New registration requests MUST use the following template:

  Bit:  desired bit to be allocated in the 8-bit flags field of the
     Pre-allocated Trace Option-Type and Incremental Trace Option-Type

  Description:  brief description of the newly registered bit

  Reference:  reference to the document that defines the new bit

7.4.  IOAM POT-Type Registry

  This registry defines 256 code points to define the IOAM POT-Type for
  the IOAM Proof of Transit Option (Section 4.5).  The code point value
  0 is defined in this document:

  0:  16-Octet POT data

  Code points 1-255 are available for assignment via the "IETF Review"
  process, as per [RFC8126].

  New registration requests MUST use the following template:

  Name:  name of the newly registered POT-Type

  Code point:  desired value of the requested code point

  Description:  brief description of the newly registered POT-Type

  Reference:  reference to the document that defines the new POT-Type

7.5.  IOAM POT-Flags Registry

  This registry defines code points for each bit in the 8-bit flags for
  the IOAM POT Option-Type defined in Section 4.5.

  Bits 0-7 are available for assignment via the "IETF Review" process,
  as per [RFC8126].

  New registration requests MUST use the following template:

  Bit:  desired bit to be allocated in the 8-bit flags field of the
     IOAM POT Option-Type

  Description:  brief description of the newly registered bit

  Reference:  reference to the document that defines the new bit

7.6.  IOAM E2E-Type Registry

  This registry defines code points for each bit in the 16-bit IOAM
  E2E-Type field for the IOAM E2E Option (Section 4.6).  Bits 0-3 are
  defined in this document:

  Bit 0:  64-bit sequence number

  Bit 1:  32-bit sequence number

  Bit 2:  timestamp seconds

  Bit 3:  timestamp fraction

  Bits 4-15 are available for assignment via the "IETF Review" process,
  as per [RFC8126].

  New registration requests MUST use the following template:

  Bit:  desired bit to be allocated in the 16-bit IOAM E2E-Type field

  Description:  brief description of the newly registered bit

  Reference:  reference to the document that defines the new bit

7.7.  IOAM Namespace-ID Registry

  IANA has set up the "IOAM Namespace-ID" registry that contains 16-bit
  values and follows the template for requests shown below.  The
  meaning of 0x0000 is defined in this document.  IANA has reserved the
  values 0x0001 to 0x7FFF for private use (managed by operators), as
  specified in Section 4.3 of this document.  Registry entries for the
  values 0x8000 to 0xFFFF are to be assigned via the "Expert Review"
  policy, as per [RFC8126].

  Upon receiving a new allocation request, a designated expert will
  perform the following:

  *  Review whether the request is complete, i.e., the registration
     template has been filled in.  The expert will send incomplete
     requests back to the requester.

  *  Check whether the request is neither a duplicate of nor
     conflicting with either an already existing allocation or a
     pending allocation.  In case of duplicates or conflicts, the
     expert will ask the requester to update the allocation request
     accordingly.

  *  Solicit feedback from relevant working groups and communities to
     ensure that the new allocation request has been properly reviewed
     and that rough consensus on the request exists.  At a minimum, the
     expert will solicit feedback from the IPPM Working Group by
     posting the request to the [email protected] mailing list.  The expert
     will allow for a 3-week review period on the mailing lists.  If
     the feedback received from the relevant working groups and
     communities within the review period indicates rough consensus on
     the request, the expert will approve the request and ask IANA to
     allocate the new Namespace-ID.  In case the expert senses a lack
     of consensus from the feedback received, the expert will ask the
     requester to engage with the corresponding working groups and
     communities to further review and refine the request.

  It is intended that any allocation will be accompanied by a published
  RFC.  In order to allow for the allocation of code points prior to
  the RFC being approved for publication, the designated expert can
  approve allocations once it seems clear that an RFC will be
  published.

  0x0000:  default namespace (known to all IOAM nodes)

  0x0001 - 0x7FFF:  reserved for private use

  0x8000 - 0xFFFF:  unassigned

  New registration requests MUST use the following template:

  Name:  name of the newly registered Namespace-ID

  Code point:  desired value of the requested Namespace-ID

  Description:  brief description of the newly registered Namespace-ID

  Reference:  reference to the document that defines the new Namespace-
     ID

  Status of the registration:  Status can be either "permanent" or
     "provisional".  Namespace-ID registrations following a successful
     expert review will have the status "provisional".  Once the RFC
     that defines the new Namespace-ID is published, the status is
     changed to "permanent".

8.  Management and Deployment Considerations

  This document defines the structure and use of IOAM-Data-Fields.
  This document does not define the encapsulation of IOAM-Data-Fields
  into different protocols.  Management and deployment aspects for IOAM
  have to be considered within the context of the protocol IOAM-Data-
  Fields are encapsulated into and, as such, are out of scope for this
  document.  For a discussion of IOAM deployment, please also refer to
  [IPPM-IOAM-DEPLOYMENT], which outlines a framework for IOAM
  deployment and provides best current practices.

9.  Security Considerations

  As discussed in [RFC7276], a successful attack on an OAM protocol in
  general, and specifically on IOAM, can prevent the detection of
  failures or anomalies or create a false illusion of nonexistent ones.
  In particular, these threats are applicable by compromising the
  integrity of IOAM data, either by maliciously modifying IOAM options
  in transit or by injecting packets with maliciously generated IOAM
  options.  All nodes in the path of an IOAM-carrying packet can
  perform such an attack.

  The Proof of Transit Option-Type (see Section 4.5) is used for
  verifying the path of data packets, i.e., proving that packets
  transited through a defined set of nodes.

  In case an attacker gains access to several nodes in a network and
  would be able to change the system software of these nodes, IOAM-
  Data-Fields could be misused and repurposed for a use different from
  what is specified in this document.  One type of misuse is the
  implementation of a covert channel between network nodes.

  From a confidentiality perspective, although IOAM options are not
  expected to contain user data, they can be used for network
  reconnaissance, allowing attackers to collect information about
  network paths, performance, queue states, buffer occupancy, etc.
  Moreover, if IOAM data leaks from the IOAM-Domain, it could enable
  reconnaissance beyond the scope of the IOAM-Domain.  One possible
  application of such reconnaissance is to gauge the effectiveness of
  an ongoing attack, e.g., if buffers and queues are overflowing.

  IOAM can be used as a means for implementing Denial-of-Service (DoS)
  attacks or for amplifying them.  For example, a malicious attacker
  can add an IOAM header to packets in order to consume the resources
  of network devices that take part in IOAM or entities that receive,
  collect, or analyze the IOAM data.  Another example is a packet
  length attack in which an attacker pushes headers associated with
  IOAM-Option-Types into data packets, causing these packets to be
  increased beyond the MTU size, resulting in fragmentation or in
  packet drops.  In case POT is used, an attacker could corrupt the POT
  data fields in the packet, resulting in a verification failure of the
  POT data, even if the packet followed the correct path.

  Since IOAM options can include timestamps, if network devices use
  synchronization protocols, then any attack on the time protocol
  [RFC7384] can compromise the integrity of the timestamp-related data
  fields.

  At the management plane, attacks can be set up by misconfiguring or
  by maliciously configuring IOAM-enabled nodes in a way that enables
  other attacks.  IOAM configuration should only be managed by
  authorized processes or users.

  IETF protocols require features to ensure their security.  While
  IOAM-Data-Fields don't represent a protocol by themselves, the IOAM-
  Data-Fields add to the protocol that the IOAM-Data-Fields are
  encapsulated into.  Any specification that defines how IOAM-Data-
  Fields carried in an encapsulating protocol MUST provide for a
  mechanism for cryptographic integrity protection of the IOAM-Data-
  Fields.  Cryptographic integrity protection could be achieved through
  a mechanism of the encapsulating protocol, or it could incorporate
  the mechanisms specified in [IPPM-IOAM-DATA-INTEGRITY].

  The current document does not define a specific IOAM encapsulation.
  It has to be noted that some IOAM encapsulation types can introduce
  specific security considerations.  A specification that defines an
  IOAM encapsulation is expected to address the respective
  encapsulation-specific security considerations.

  Notably, IOAM is expected to be deployed in limited domains, thus
  confining the potential attack vectors to within the limited domain.
  A limited administrative domain provides the operator with the means
  to select, monitor, and control the access of all the network
  devices, making these devices trusted by the operator.  Indeed, in
  order to limit the scope of threats mentioned above to within the
  current limited domain, the network operator is expected to enforce
  policies that prevent IOAM traffic from leaking outside of the IOAM-
  Domain and prevent IOAM data from outside the domain to be processed
  and used within the domain.

  This document does not define the data contents of custom fields,
  like "Opaque State Snapshot" and "namespace-specific data" IOAM-Data-
  Fields.  These custom data fields will have security considerations
  corresponding to their defined data contents that need to be
  described where those formats are defined.

  IOAM deployments that leverage both IOAM Trace Option-Types, i.e.,
  the Pre-allocated Trace Option-Type and Incremental Trace Option-
  Type, can suffer from incomplete visibility if the information
  gathered via the two Trace Option-Types is not correlated and
  aggregated appropriately.  If IOAM transit nodes leverage the IOAM-
  Data-Fields in the packet for further actions or insights, then IOAM
  transit nodes that only support one IOAM Trace Option-Type in an IOAM
  deployment that leverages both Trace Option-Types have limited
  visibility and thus can draw inappropriate conclusions or take wrong
  actions.

  The security considerations of a system that deploys IOAM, much like
  any system, has to be reviewed on a per-deployment-scenario basis
  based on a systems-specific threat analysis, which can lead to
  specific security solutions that are beyond the scope of the current
  document.  Specifically, in an IOAM deployment that is not confined
  to a single LAN but spans multiple inter-connected sites (for
  example, using an overlay network), the inter-site links can be
  secured (e.g., by IPsec) in order to avoid external threats.

  IOAM deployment considerations, including approaches to mitigate the
  above discussed threads and potential attacks, are outside the scope
  of this document.  IOAM deployment considerations are discussed in
  [IPPM-IOAM-DEPLOYMENT].

10.  References

10.1.  Normative References

  [POSIX]    IEEE, "IEEE/Open Group 1003.1-2017 - IEEE Standard for
             Information Technology--Portable Operating System
             Interface (POSIX(TM)) Base Specifications, Issue 7", IEEE
             Std 1003.1-2017, January 2018,
             <https://standards.ieee.org/ieee/1003.1/7101/>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2.  Informative References

  [IPPM-IOAM-DATA-INTEGRITY]
             Brockners, F., Bhandari, S., Mizrahi, T., and J. Iurman,
             "Integrity of In-situ OAM Data Fields", Work in Progress,
             Internet-Draft, draft-ietf-ippm-ioam-data-integrity-01, 2
             March 2022, <https://datatracker.ietf.org/doc/html/draft-
             ietf-ippm-ioam-data-integrity-01>.

  [IPPM-IOAM-DEPLOYMENT]
             Brockners, F., Bhandari, S., Bernier, D., and T. Mizrahi,
             "In-situ OAM Deployment", Work in Progress, Internet-
             Draft, draft-ietf-ippm-ioam-deployment-01, 11 April 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-ippm-
             ioam-deployment-01>.

  [IPPM-IOAM-RAWEXPORT]
             Spiegel, M., Brockners, F., Bhandari, S., and R.
             Sivakolundu, "In-situ OAM raw data export with IPFIX",
             Work in Progress, Internet-Draft, draft-spiegel-ippm-ioam-
             rawexport-06, 21 February 2022,
             <https://datatracker.ietf.org/doc/html/draft-spiegel-ippm-
             ioam-rawexport-06>.

  [IPV6-RECORD-ROUTE]
             Kitamura, H., "Record Route for IPv6 (RR6) Hop-by-Hop
             Option Extension", Work in Progress, Internet-Draft,
             draft-kitamura-ipv6-record-route-00, 17 November 2000,
             <https://datatracker.ietf.org/doc/html/draft-kitamura-
             ipv6-record-route-00>.

  [NVO3-VXLAN-GPE]
             Maino, F., Ed., Kreeger, L., Ed., and U. Elzur, Ed.,
             "Generic Protocol Extension for VXLAN (VXLAN-GPE)", Work
             in Progress, Internet-Draft, draft-ietf-nvo3-vxlan-gpe-12,
             22 September 2021, <https://datatracker.ietf.org/doc/html/
             draft-ietf-nvo3-vxlan-gpe-12>.

  [RFC7276]  Mizrahi, T., Sprecher, N., Bellagamba, E., and Y.
             Weingarten, "An Overview of Operations, Administration,
             and Maintenance (OAM) Tools", RFC 7276,
             DOI 10.17487/RFC7276, June 2014,
             <https://www.rfc-editor.org/info/rfc7276>.

  [RFC7384]  Mizrahi, T., "Security Requirements of Time Protocols in
             Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
             October 2014, <https://www.rfc-editor.org/info/rfc7384>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC7799]  Morton, A., "Active and Passive Metrics and Methods (with
             Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799,
             May 2016, <https://www.rfc-editor.org/info/rfc7799>.

  [RFC7820]  Mizrahi, T., "UDP Checksum Complement in the One-Way
             Active Measurement Protocol (OWAMP) and Two-Way Active
             Measurement Protocol (TWAMP)", RFC 7820,
             DOI 10.17487/RFC7820, March 2016,
             <https://www.rfc-editor.org/info/rfc7820>.

  [RFC7821]  Mizrahi, T., "UDP Checksum Complement in the Network Time
             Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
             2016, <https://www.rfc-editor.org/info/rfc7821>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

  [RFC8799]  Carpenter, B. and B. Liu, "Limited Domains and Internet
             Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,
             <https://www.rfc-editor.org/info/rfc8799>.

  [RFC8877]  Mizrahi, T., Fabini, J., and A. Morton, "Guidelines for
             Defining Packet Timestamps", RFC 8877,
             DOI 10.17487/RFC8877, September 2020,
             <https://www.rfc-editor.org/info/rfc8877>.

  [RFC8926]  Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed.,
             "Geneve: Generic Network Virtualization Encapsulation",
             RFC 8926, DOI 10.17487/RFC8926, November 2020,
             <https://www.rfc-editor.org/info/rfc8926>.

Acknowledgements

  The authors would like to thank Éric Vyncke, Nalini Elkins, Srihari
  Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
  Nadahalli, LJ Wobker, Erik Nordmark, Vengada Prasad Govindan, Andrew
  Yourtchenko, Aviv Kfir, Tianran Zhou, Zhenbin (Robin), and Greg
  Mirsky for the comments and advice.

  This document leverages and builds on top of several concepts
  described in [IPV6-RECORD-ROUTE].  The authors would like to
  acknowledge the work done by the author Hiroshi Kitamura and people
  involved in writing it.

  The authors would like to gracefully acknowledge useful review and
  insightful comments received from Joe Clarke, Al Morton, Tom Herbert,
  Carlos J. Bernardos, Haoyu Song, Mickey Spiegel, Roman Danyliw,
  Benjamin Kaduk, Murray S. Kucherawy, Ian Swett, Martin Duke,
  Francesca Palombini, Lars Eggert, Alvaro Retana, Erik Kline, Robert
  Wilton, Zaheduzzaman Sarker, Dan Romascanu, and Barak Gafni.

Contributors

  This document was the collective effort of several authors.  The text
  and content were contributed by the editors and the coauthors listed
  below.

  Carlos Pignataro
  Cisco Systems, Inc.
  Research Triangle Park
  7200-11 Kit Creek Road
  NC 27709
  United States of America
  Email: [email protected]


  Mickey Spiegel
  Barefoot Networks, an Intel company
  101 Innovation Drive
  San Jose, CA 95134-1941
  United States of America
  Email: [email protected]


  Barak Gafni
  Nvidia
  Suite 100
  350 Oakmead Parkway
  Sunnyvale, CA 94085
  United States of America
  Email: [email protected]


  Jennifer Lemon
  Broadcom
  270 Innovation Drive
  San Jose, CA 95134
  United States of America
  Email: [email protected]


  Hannes Gredler
  RtBrick Inc.
  Email: [email protected]


  John Leddy
  United States of America
  Email: [email protected]


  Stephen Youell
  JP Morgan Chase
  25 Bank Street
  London
  E14 5JP
  United Kingdom
  Email: [email protected]


  David Mozes
  Email: [email protected]


  Petr Lapukhov
  Facebook
  1 Hacker Way
  Menlo Park, CA 94025
  United States of America
  Email: [email protected]


  Remy Chang
  Barefoot Networks, an Intel company
  101 Innovation Drive
  San Jose, CA 95134-1941
  United States of America
  Email: [email protected]


  Daniel Bernier
  Bell Canada
  Canada
  Email: [email protected]


Authors' Addresses

  Frank Brockners (editor)
  Cisco Systems, Inc.
  3rd Floor
  Nordhein-Westfalen
  Hansaallee 249
  40549 Duesseldorf
  Germany
  Email: [email protected]


  Shwetha Bhandari (editor)
  Thoughtspot
  3rd Floor
  Indiqube Orion
  Garden Layout
  HSR Layout
  24th Main Rd
  Bangalore 560 102
  Karnataka
  India
  Email: [email protected]


  Tal Mizrahi (editor)
  Huawei
  8-2 Matam
  Haifa 3190501
  Israel
  Email: [email protected]