Independent Submission                                        T. Mizrahi
Request for Comments: 9192                                        Huawei
Category: Informational                                    I. Yerushalmi
ISSN: 2070-1721                                                D. Melman
                                                                Marvell
                                                              R. Browne
                                                                  Intel
                                                          February 2022


 Network Service Header (NSH) Fixed-Length Context Header Allocation

Abstract

  The Network Service Header (NSH) specification defines two possible
  methods of including metadata (MD): MD Type 0x1 and MD Type 0x2.  MD
  Type 0x1 uses a fixed-length Context Header.  The allocation of this
  Context Header, i.e., its structure and semantics, has not been
  standardized.  This memo defines the Timestamp Context Header, which
  is an NSH fixed-length Context Header that incorporates the packet's
  timestamp, a sequence number, and a source interface identifier.

  Although the definition of the Context Header presented in this
  document has not been standardized by the IETF, it has been
  implemented in silicon by several manufacturers and is published here
  to facilitate interoperability.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9192.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
  2.  Terminology
    2.1.  Requirements Language
    2.2.  Abbreviations
  3.  NSH Timestamp Context Header Allocation
  4.  Timestamping Use Cases
    4.1.  Network Analytics
    4.2.  Alternate Marking
    4.3.  Consistent Updates
  5.  Synchronization Considerations
  6.  IANA Considerations
  7.  Security Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Acknowledgments
  Authors' Addresses

1.  Introduction

  The Network Service Header (NSH), defined in [RFC8300], is an
  encapsulation header that is used as the service encapsulation in the
  Service Function Chaining (SFC) architecture [RFC7665].

  In order to share metadata (MD) along a service path, the NSH
  specification [RFC8300] supports two methods: a fixed-length Context
  Header (MD Type 0x1) and a variable-length Context Header (MD Type
  0x2).  When using MD Type 0x1, the NSH includes 16 octets of Context
  Header fields.

  The NSH specification [RFC8300] has not defined the semantics of the
  16-octet Context Header, nor does it specify how the Context Header
  is used by NSH-aware Service Functions (SFs), Service Function
  Forwarders (SFFs), and proxies.  Several Context Header formats are
  defined in [NSH-TLV].  Furthermore, some allocation schemes were
  proposed in the past to accommodate specific use cases, e.g.,
  [NSH-DC-ALLOC], [NSH-BROADBAND-ALLOC], and [RFC8592].

  This memo presents an allocation for the MD Type 0x1 Context Header,
  which incorporates the timestamp of the packet, a sequence number,
  and a source interface identifier.  Note that other allocation schema
  for MD Type 0x1 might be specified in the future.  Although such
  schema are currently not being standardized by the SFC Working Group,
  a consistent format (allocation schema) should be used in an SFC-
  enabled domain in order to allow interoperability.

  In a nutshell, packets that enter the SFC-enabled domain are
  timestamped by a classifier [RFC7665].  Thus, the timestamp, sequence
  number, and source interface are incorporated in the NSH Context
  Header.  As discussed in [RFC8300], if reclassification is used, it
  may result in an update to the NSH metadata.  Specifically, when the
  Timestamp Context Header is used, a reclassifier may either leave it
  unchanged or update the three fields: Timestamp, Sequence Number, and
  Source Interface.

  The Timestamp Context Header includes three fields that may be used
  for various purposes.  The Timestamp field may be used for logging,
  troubleshooting, delay measurement, packet marking for performance
  monitoring, and timestamp-based policies.  The source interface
  identifier indicates the interface through which the packet was
  received at the classifier.  This identifier may specify a physical
  interface or a virtual interface.  The sequence numbers can be used
  by SFs to detect out-of-order delivery or duplicate transmissions.
  Note that out-of-order and duplicate packet detection is possible
  when packets are received by the same SF but is not necessarily
  possible when there are multiple instances of the same SF and
  multiple packets are spread across different instances of the SF.
  The sequence number is maintained on a per-source-interface basis.

  This document presents the Timestamp Context Header but does not
  specify the functionality of the SFs that receive the Context Header.
  Although a few possible use cases are described in this document, the
  SF behavior and application are outside the scope of this document.

  Key Performance Indicator (KPI) stamping [RFC8592] defines an NSH
  timestamping mechanism that uses the MD Type 0x2 format.  This memo
  defines a compact MD Type 0x1 Context Header that does not require
  the packet to be extended beyond the NSH.  Furthermore, the
  mechanisms described in [RFC8592] and this memo can be used in
  concert, as further discussed in Section 4.1.

  Although the definition of the Context Header presented in this
  document has not been standardized by the IETF, it has been
  implemented in silicon by several manufacturers and is published here
  to facilitate interoperability.

2.  Terminology

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Abbreviations

  The following abbreviations are used in this document:

  KPI           Key Performance Indicator [RFC8592]

  MD            Metadata [RFC8300]

  NSH           Network Service Header [RFC8300]

  SF            Service Function [RFC7665]

  SFC           Service Function Chaining [RFC7665]

  SFF           Service Function Forwarder [RFC8300]

3.  NSH Timestamp Context Header Allocation

  This memo defines the following fixed-length Context Header
  allocation, as presented in Figure 1.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Sequence Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Source Interface                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Timestamp                           |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 1: NSH Timestamp Allocation

  The NSH Timestamp allocation defined in this memo MUST include the
  following fields:

  Sequence Number:  A 32-bit sequence number.  The sequence number is
     maintained on a per-source-interface basis.  Sequence numbers can
     be used by SFs to detect out-of-order delivery or duplicate
     transmissions.  The classifier increments the sequence number by 1
     for each packet received through the source interface.  This
     requires the classifier to maintain a per-source-interface
     counter.  The sequence number is initialized to a random number on
     startup.  After it reaches its maximal value (2^32-1), the
     sequence number wraps around back to zero.

  Source Interface:  A 32-bit source interface identifier that is
     assigned by the classifier.  The combination of the source
     interface and the classifier identity is unique within the context
     of an SFC-enabled domain.  Thus, in order for an SF to be able to
     use the source interface as a unique identifier, the identity of
     the classifier needs to be known for each packet.  The source
     interface is unique in the context of the given classifier.

  Timestamp:  A 64-bit field that specifies the time at which the
     packet was received by the classifier.  Two possible timestamp
     formats can be used for this field: the two 64-bit recommended
     formats specified in [RFC8877].  One of the formats is based on
     the timestamp format defined in [IEEE1588], and the other is based
     on the format defined in [RFC5905].

  The NSH specification [RFC8300] does not specify the possible
  coexistence of multiple MD Type 0x1 Context Header formats in a
  single SFC-enabled domain.  It is assumed that the Timestamp Context
  Header will be deployed in an SFC-enabled domain that uniquely uses
  this Context Header format.  Thus, operators SHOULD ensure that
  either a consistent Context Header format is used in the SFC-enabled
  domain or there is a clear policy that allows SFs to know the Context
  Header format of each packet.  Specifically, operators are expected
  to ensure the consistent use of a timestamp format across the whole
  SFC-enabled domain.

  The two timestamp formats that can be used in the Timestamp field are
  as follows:

  Truncated Timestamp Format [IEEE1588]:  This format is specified in
     Section 4.3 of [RFC8877].  For the reader's convenience, this
     format is illustrated in Figure 2.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Seconds                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Nanoseconds                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 2: Truncated Timestamp Format (IEEE 1588)

  NTP 64-bit Timestamp Format [RFC5905]:  This format is specified in
     Section 4.2.1 of [RFC8877].  For the reader's convenience, this
     format is illustrated in Figure 3.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Seconds                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Fraction                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: NTP 64-Bit Timestamp Format (RFC 5905)

  Synchronization aspects of the timestamp format in the context of the
  NSH Timestamp allocation are discussed in Section 5.

4.  Timestamping Use Cases

4.1.  Network Analytics

  Per-packet timestamping enables coarse-grained monitoring of network
  delays along the Service Function Chain.  Once a potential problem or
  bottleneck is detected (for example, when the delay exceeds a certain
  policy), a highly granular monitoring mechanism can be triggered (for
  example, using the hop-by-hop measurement data defined in [RFC8592]
  or [IOAM-DATA]), allowing analysis and localization of the problem.

  Timestamping is also useful for logging, troubleshooting, and flow
  analytics.  It is often useful to maintain the timestamp of the first
  and last packet of the flow.  Furthermore, traffic mirroring and
  sampling often require a timestamp to be attached to analyzed
  packets.  Attaching the timestamp to the NSH provides an in-band
  common time reference that can be used for various network analytics
  applications.

4.2.  Alternate Marking

  A possible approach for passive performance monitoring is to use an
  Alternate-Marking Method [RFC8321].  This method requires data
  packets to carry a field that marks (colors) the traffic, and enables
  passive measurement of packet loss, delay, and delay variation.  The
  value of this marking field is periodically toggled between two
  values.

  When the timestamp is incorporated in the NSH, it can intrinsically
  be used for Alternate Marking.  For example, the least significant
  bit of the timestamp Seconds field can be used for this purpose,
  since the value of this bit is inherently toggled every second.

4.3.  Consistent Updates

  The timestamp can be used for making policy decisions, such as
  'Perform action A if timestamp>=T_0'.  This can be used for enforcing
  time-of-day policies or periodic policies in SFs.  Furthermore,
  timestamp-based policies can be used for enforcing consistent network
  updates, as discussed in [DPT].  It should be noted that, as in the
  case of Alternate Marking, this use case alone does not require a
  full 64-bit timestamp but could be implemented with a significantly
  smaller number of bits.

5.  Synchronization Considerations

  Some of the applications that make use of the timestamp require the
  classifier and SFs to be synchronized to a common time reference --
  for example, using the Network Time Protocol [RFC5905] or the
  Precision Time Protocol [IEEE1588].  Although it is not a requirement
  to use a clock synchronization mechanism, it is expected that,
  depending on the applications that use the timestamp, such
  synchronization mechanisms will be used in most deployments that use
  the Timestamp allocation.

6.  IANA Considerations

  This document has no IANA actions.

7.  Security Considerations

  The security considerations for the NSH in general are discussed in
  [RFC8300].  The NSH is typically run within a confined trust domain.
  However, if a trust domain is not enough to provide the operator with
  protection against the timestamp threats as described below, then the
  operator SHOULD use transport-level protection between SFC processing
  nodes as described in [RFC8300].

  The security considerations of in-band timestamping in the context of
  the NSH are discussed in [RFC8592]; this section is based on that
  discussion.

  In-band timestamping, as defined in this document and [RFC8592], can
  be used as a means for network reconnaissance.  By passively
  eavesdropping on timestamped traffic, an attacker can gather
  information about network delays and performance bottlenecks.  An on-
  path attacker can maliciously modify timestamps in order to attack
  applications that use the timestamp values, such as performance-
  monitoring applications.

  Since the timestamping mechanism relies on an underlying time
  synchronization protocol, by attacking the time protocol an attack
  can potentially compromise the integrity of the NSH Timestamp.  A
  detailed discussion about the threats against time protocols and how
  to mitigate them is presented in [RFC7384].

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

  [RFC8877]  Mizrahi, T., Fabini, J., and A. Morton, "Guidelines for
             Defining Packet Timestamps", RFC 8877,
             DOI 10.17487/RFC8877, September 2020,
             <https://www.rfc-editor.org/info/rfc8877>.

8.2.  Informative References

  [DPT]      Mizrahi, T. and Y. Moses, "The Case for Data Plane
             Timestamping in SDN", IEEE INFOCOM Workshop on Software-
             Driven Flexible and Agile Networking (SWFAN),
             DOI 10.1109/INFCOMW.2016.7562197, 2016,
             <https://ieeexplore.ieee.org/document/7562197>.

  [IEEE1588] IEEE, "IEEE 1588-2008 - IEEE Standard for a Precision
             Clock Synchronization Protocol for Networked Measurement
             and Control Systems", DOI 10.1109/IEEESTD.2008.4579760,
             <https://standards.ieee.org/standard/1588-2008.html>.

  [IOAM-DATA]
             Brockners, F., Ed., Bhandari, S., Ed., and T. Mizrahi,
             Ed., "Data Fields for In-situ OAM", Work in Progress,
             Internet-Draft, draft-ietf-ippm-ioam-data-17, 13 December
             2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
             ippm-ioam-data-17>.

  [NSH-BROADBAND-ALLOC]
             Napper, J., Kumar, S., Muley, P., Hendericks, W., and M.
             Boucadair, "NSH Context Header Allocation for Broadband",
             Work in Progress, Internet-Draft, draft-ietf-sfc-nsh-
             broadband-allocation-01, 19 June 2018,
             <https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-
             broadband-allocation-01>.

  [NSH-DC-ALLOC]
             Guichard, J., Ed., Smith, M., Kumar, S., Majee, S., and T.
             Mizrahi, "Network Service Header (NSH) MD Type 1: Context
             Header Allocation (Data Center)", Work in Progress,
             Internet-Draft, draft-ietf-sfc-nsh-dc-allocation-02, 25
             September 2018, <https://datatracker.ietf.org/doc/html/
             draft-ietf-sfc-nsh-dc-allocation-02>.

  [NSH-TLV]  Wei, Y., Ed., Elzur, U., Majee, S., Pignataro, C., and D.
             Eastlake, "Network Service Header Metadata Type 2
             Variable-Length Context Headers", Work in Progress,
             Internet-Draft, draft-ietf-sfc-nsh-tlv-13, 26 January
             2022, <https://datatracker.ietf.org/doc/html/draft-ietf-
             sfc-nsh-tlv-13>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC7384]  Mizrahi, T., "Security Requirements of Time Protocols in
             Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
             October 2014, <https://www.rfc-editor.org/info/rfc7384>.

  [RFC8321]  Fioccola, G., Ed., Capello, A., Cociglio, M., Castaldelli,
             L., Chen, M., Zheng, L., Mirsky, G., and T. Mizrahi,
             "Alternate-Marking Method for Passive and Hybrid
             Performance Monitoring", RFC 8321, DOI 10.17487/RFC8321,
             January 2018, <https://www.rfc-editor.org/info/rfc8321>.

  [RFC8592]  Browne, R., Chilikin, A., and T. Mizrahi, "Key Performance
             Indicator (KPI) Stamping for the Network Service Header
             (NSH)", RFC 8592, DOI 10.17487/RFC8592, May 2019,
             <https://www.rfc-editor.org/info/rfc8592>.

Acknowledgments

  The authors thank Mohamed Boucadair and Greg Mirsky for their
  thorough reviews and detailed comments.

Authors' Addresses

  Tal Mizrahi
  Huawei
  Israel
  Email: [email protected]


  Ilan Yerushalmi
  Marvell
  6 Hamada
  Yokneam 2066721
  Israel
  Email: [email protected]


  David Melman
  Marvell
  6 Hamada
  Yokneam 2066721
  Israel
  Email: [email protected]


  Rory Browne
  Intel
  Dromore House
  Shannon
  Co. Clare
  Ireland
  Email: [email protected]