Internet Engineering Task Force (IETF)                          C. Hopps
Request for Comments: 9179                       LabN Consulting, L.L.C.
Category: Standards Track                                  February 2022
ISSN: 2070-1721


               A YANG Grouping for Geographic Locations

Abstract

  This document defines a generic geographical location YANG grouping.
  The geographical location grouping is intended to be used in YANG
  data models for specifying a location on or in reference to Earth or
  any other astronomical object.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9179.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Terminology
  2.  The Geolocation Object
    2.1.  Frame of Reference
    2.2.  Location
    2.3.  Motion
    2.4.  Nested Locations
    2.5.  Non-location Attributes
    2.6.  Tree
  3.  YANG Module
  4.  ISO 6709:2008 Conformance
  5.  Usability
    5.1.  Portability
      5.1.1.  IETF URI Value
      5.1.2.  W3C
      5.1.3.  Geography Markup Language (GML)
      5.1.4.  KML
  6.  IANA Considerations
    6.1.  Geodetic System Values Registry
    6.2.  Updates to the IETF XML Registry
    6.3.  Updates to the YANG Module Names Registry
  7.  Security Considerations
  8.  Normative References
  9.  Informative References
  Appendix A.  Examples
  Acknowledgments
  Author's Address

1.  Introduction

  In many applications, we would like to specify the location of
  something geographically.  Some examples of locations in networking
  might be the location of data centers, a rack in an Internet exchange
  point, a router, a firewall, a port on some device, or it could be
  the endpoints of a fiber, or perhaps the failure point along a fiber.

  Additionally, while this location is typically relative to Earth, it
  does not need to be.  Indeed, it is easy to imagine a network or
  device located on the Moon, on Mars, on Enceladus (the moon of
  Saturn), or even on a comet (e.g., 67p/churyumov-gerasimenko).

  Finally, one can imagine defining locations using different frames of
  reference or even alternate systems (e.g., simulations or virtual
  realities).

  This document defines a 'geo-location' YANG grouping that allows for
  all the above data to be captured.

  This specification conforms to [ISO.6709.2008].

  The YANG data model described in this document conforms to the
  Network Management Datastore Architecture (NMDA) defined in
  [RFC8342].

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  The Geolocation Object

2.1.  Frame of Reference

  The frame of reference ('reference-frame') defines what the location
  values refer to and their meaning.  The referred-to object can be any
  astronomical body.  It could be a planet such as Earth or Mars, a
  moon such as Enceladus, an asteroid such as Ceres, or even a comet
  such as 1P/Halley.  This value is specified in 'astronomical-body'
  and is defined by the International Astronomical Union
  <http://www.iau.org>.  The default 'astronomical-body' value is
  'earth'.

  In addition to identifying the astronomical body, we also need to
  define the meaning of the coordinates (e.g., latitude and longitude)
  and the definition of 0-height.  This is done with a 'geodetic-datum'
  value.  The default value for 'geodetic-datum' is 'wgs-84' (i.e., the
  World Geodetic System [WGS84]), which is used by the Global
  Positioning System (GPS) among many others.  We define an IANA
  registry for specifying standard values for the 'geodetic-datum'.

  In addition to the 'geodetic-datum' value, we allow overriding the
  coordinate and height accuracy using 'coord-accuracy' and 'height-
  accuracy', respectively.  When specified, these values override the
  defaults implied by the 'geodetic-datum' value.

  Finally, we define an optional feature that allows for changing the
  system for which the above values are defined.  This optional feature
  adds an 'alternate-system' value to the reference frame.  This value
  is normally not present, which implies the natural universe is the
  system.  The use of this value is intended to allow for creating
  virtual realities or perhaps alternate coordinate systems.  The
  definition of alternate systems is outside the scope of this
  document.

2.2.  Location

  This is the location on, or relative to, the astronomical object.  It
  is specified using two or three coordinate values.  These values are
  given either as 'latitude', 'longitude', and an optional 'height', or
  as Cartesian coordinates of 'x', 'y', and 'z'.  For the standard
  location choice, 'latitude' and 'longitude' are specified as decimal
  degrees, and the 'height' value is in fractions of meters.  For the
  Cartesian choice, 'x', 'y', and 'z' are in fractions of meters.  In
  both choices, the exact meanings of all the values are defined by the
  'geodetic-datum' value in Section 2.1.

2.3.  Motion

  Support is added for objects in relatively stable motion.  For
  objects in relatively stable motion, the grouping provides a three-
  dimensional vector value.  The components of the vector are
  'v-north', 'v-east', and 'v-up', which are all given in fractional
  meters per second.  The values 'v-north' and 'v-east' are relative to
  true north as defined by the reference frame for the astronomical
  body; 'v-up' is perpendicular to the plane defined by 'v-north' and
  'v-east', and is pointed away from the center of mass.

  To derive the two-dimensional heading and speed, one would use the
  following formulas:

                ,------------------------------
      speed =  V  v_{north}^{2} + v_{east}^{2}

      heading = arctan(v_{east} / v_{north})

  For some applications that demand high accuracy and where the data is
  infrequently updated, this velocity vector can track very slow
  movement such as continental drift.

  Tracking more complex forms of motion is outside the scope of this
  work.  The intent of the grouping being defined here is to identify
  where something is located, and generally this is expected to be
  somewhere on, or relative to, Earth (or another astronomical body).
  At least two options are available to YANG data models that wish to
  use this grouping with objects that are changing location frequently
  in non-simple ways.  A data model can either add additional motion
  data to its model directly, or if the application allows, it can
  require more frequent queries to keep the location data current.

2.4.  Nested Locations

  When locations are nested (e.g., a building may have a location that
  houses routers that also have locations), the module using this
  grouping is free to indicate in its definition that the 'reference-
  frame' is inherited from the containing object so that the
  'reference-frame' need not be repeated in every instance of location
  data.

2.5.  Non-location Attributes

  During the development of this module, the question of whether it
  would support data such as orientation arose.  These types of
  attributes are outside the scope of this grouping because they do not
  deal with a location but rather describe something more about the
  object that is at the location.  Module authors are free to add these
  non-location attributes along with their use of this location
  grouping.

2.6.  Tree

  The following is the YANG tree diagram [RFC8340] for the geo-location
  grouping.

    module: ietf-geo-location
      grouping geo-location:
        +-- geo-location
           +-- reference-frame
           |  +-- alternate-system?    string {alternate-systems}?
           |  +-- astronomical-body?   string
           |  +-- geodetic-system
           |     +-- geodetic-datum?    string
           |     +-- coord-accuracy?    decimal64
           |     +-- height-accuracy?   decimal64
           +-- (location)?
           |  +--:(ellipsoid)
           |  |  +-- latitude?    decimal64
           |  |  +-- longitude?   decimal64
           |  |  +-- height?      decimal64
           |  +--:(cartesian)
           |     +-- x?           decimal64
           |     +-- y?           decimal64
           |     +-- z?           decimal64
           +-- velocity
           |  +-- v-north?   decimal64
           |  +-- v-east?    decimal64
           |  +-- v-up?      decimal64
           +-- timestamp?         yang:date-and-time
           +-- valid-until?       yang:date-and-time

3.  YANG Module

  This model imports Common YANG Data Types [RFC6991].  It uses YANG
  version 1.1 [RFC7950].

  <CODE BEGINS> file "[email protected]"
  module ietf-geo-location {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-geo-location";
    prefix geo;
    import ietf-yang-types {
      prefix yang;
      reference "RFC 6991: Common YANG Data Types";
    }

    organization
      "IETF NETMOD Working Group (NETMOD)";
    contact
     "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
      WG List:  <mailto:[email protected]>

      Editor:   Christian Hopps
                <mailto:[email protected]>";

    description
      "This module defines a grouping of a container object for
       specifying a location on or around an astronomical object (e.g.,
       'earth').

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
       NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
       'MAY', and 'OPTIONAL' in this document are to be interpreted as
       described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
       they appear in all capitals, as shown here.

       Copyright (c) 2022 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms,
       with or without modification, is permitted pursuant to,
       and subject to the license terms contained in, the
       Revised BSD License set forth in Section 4.c of the
       IETF Trust's Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9179
       (https://www.rfc-editor.org/info/rfc9179); see the RFC itself
       for full legal notices.";

    revision 2022-02-11 {
      description
        "Initial Revision";
      reference
        "RFC 9179: A YANG Grouping for Geographic Locations";
    }

    feature alternate-systems {
      description
        "This feature means the device supports specifying locations
         using alternate systems for reference frames.";
    }

    grouping geo-location {
      description
        "Grouping to identify a location on an astronomical object.";

      container geo-location {
        description
          "A location on an astronomical body (e.g., 'earth')
           somewhere in a universe.";

        container reference-frame {
          description
            "The Frame of Reference for the location values.";

          leaf alternate-system {
            if-feature "alternate-systems";
            type string;
            description
              "The system in which the astronomical body and
               geodetic-datum is defined.  Normally, this value is not
               present and the system is the natural universe; however,
               when present, this value allows for specifying alternate
               systems (e.g., virtual realities).  An alternate-system
               modifies the definition (but not the type) of the other
               values in the reference frame.";
          }
          leaf astronomical-body {
            type string {
              pattern '[ -@\[-\^_-~]*';
            }
            default "earth";
            description
              "An astronomical body as named by the International
               Astronomical Union (IAU) or according to the alternate
               system if specified.  Examples include 'sun' (our star),
               'earth' (our planet), 'moon' (our moon), 'enceladus' (a
               moon of Saturn), 'ceres' (an asteroid), and
               '67p/churyumov-gerasimenko (a comet).  The ASCII value
               SHOULD have uppercase converted to lowercase and not
               include control characters (i.e., values 32..64, and
               91..126).  Any preceding 'the' in the name SHOULD NOT be
               included.";
            reference
              "https://www.iau.org/";
          }
          container geodetic-system {
            description
              "The geodetic system of the location data.";
            leaf geodetic-datum {
              type string {
                pattern '[ -@\[-\^_-~]*';
              }
              description
                "A geodetic-datum defining the meaning of latitude,
                 longitude, and height.  The default when the
                 astronomical body is 'earth' is 'wgs-84', which is
                 used by the Global Positioning System (GPS).  The
                 ASCII value SHOULD have uppercase converted to
                 lowercase and not include control characters
                 (i.e., values 32..64, and 91..126).  The IANA registry
                 further restricts the value by converting all spaces
                 (' ') to dashes ('-').
                 The specification for the geodetic-datum indicates
                 how accurately it models the astronomical body in
                 question, both for the 'horizontal'
                 latitude/longitude coordinates and for height
                 coordinates.";
              reference
                "RFC 9179: A YANG Grouping for Geographic Locations,
                 Section 6.1";
            }
            leaf coord-accuracy {
              type decimal64 {
                fraction-digits 6;
              }
              description
                "The accuracy of the latitude/longitude pair for
                 ellipsoidal coordinates, or the X, Y, and Z components
                 for Cartesian coordinates.  When coord-accuracy is
                 specified, it indicates how precisely the coordinates
                 in the associated list of locations have been
                 determined with respect to the coordinate system
                 defined by the geodetic-datum.  For example, there
                 might be uncertainty due to measurement error if an
                 experimental measurement was made to determine each
                 location.";
            }
            leaf height-accuracy {
              type decimal64 {
                fraction-digits 6;
              }
              units "meters";
              description
                "The accuracy of the height value for ellipsoidal
                 coordinates; this value is not used with Cartesian
                 coordinates.  When height-accuracy is specified, it
                 indicates how precisely the heights in the
                 associated list of locations have been determined
                 with respect to the coordinate system defined by the
                 geodetic-datum.  For example, there might be
                 uncertainty due to measurement error if an
                 experimental measurement was made to determine each
                 location.";
            }
          }
        }
        choice location {
          description
            "The location data either in latitude/longitude or
             Cartesian values";
          case ellipsoid {
            leaf latitude {
              type decimal64 {
                fraction-digits 16;
              }
              units "decimal degrees";
              description
                "The latitude value on the astronomical body.  The
                 definition and precision of this measurement is
                 indicated by the reference-frame.";
            }
            leaf longitude {
              type decimal64 {
                fraction-digits 16;
              }
              units "decimal degrees";
              description
                "The longitude value on the astronomical body.  The
                 definition and precision of this measurement is
                 indicated by the reference-frame.";
            }
            leaf height {
              type decimal64 {
                fraction-digits 6;
              }
              units "meters";
              description
                "Height from a reference 0 value.  The precision and
                 '0' value is defined by the reference-frame.";
            }
          }
          case cartesian {
            leaf x {
              type decimal64 {
                fraction-digits 6;
              }
              units "meters";
              description
                "The X value as defined by the reference-frame.";
            }
            leaf y {
              type decimal64 {
                fraction-digits 6;
              }
              units "meters";
              description
                "The Y value as defined by the reference-frame.";
            }
            leaf z {
              type decimal64 {
                fraction-digits 6;
              }
              units "meters";
              description
                "The Z value as defined by the reference-frame.";
            }
          }
        }
        container velocity {
          description
            "If the object is in motion, the velocity vector describes
             this motion at the time given by the timestamp.  For a
             formula to convert these values to speed and heading, see
             RFC 9179.";
          reference
            "RFC 9179: A YANG Grouping for Geographic Locations";

          leaf v-north {
            type decimal64 {
              fraction-digits 12;
            }
            units "meters per second";
            description
              "v-north is the rate of change (i.e., speed) towards
               true north as defined by the geodetic-system.";
          }

          leaf v-east {
            type decimal64 {
              fraction-digits 12;
            }
            units "meters per second";
            description
              "v-east is the rate of change (i.e., speed) perpendicular
               to the right of true north as defined by
               the geodetic-system.";
          }

          leaf v-up {
            type decimal64 {
              fraction-digits 12;
            }
            units "meters per second";
            description
              "v-up is the rate of change (i.e., speed) away from the
               center of mass.";
          }
        }
        leaf timestamp {
          type yang:date-and-time;
          description
            "Reference time when location was recorded.";
        }
        leaf valid-until {
          type yang:date-and-time;
          description
            "The timestamp for which this geo-location is valid until.
             If unspecified, the geo-location has no specific
             expiration time.";
        }
      }
    }
  }
  <CODE ENDS>

4.  ISO 6709:2008 Conformance

  [ISO.6709.2008] provides an appendix with a set of tests for
  conformance to the standard.  The tests and results are given in the
  following table along with an explanation of inapplicable tests.

      +=========+===========================+====================+
      | Test    | Description               | Pass Explanation   |
      +=========+===========================+====================+
      | A.1.2.1 | elements required for a   | CRS is always      |
      |         | geographic point location | indicated          |
      +---------+---------------------------+--------------------+
      | A.1.2.2 | description of a CRS from | CRS register is    |
      |         | a register                | defined            |
      +---------+---------------------------+--------------------+
      | A.1.2.3 | definition of CRS         | N/A - Don't define |
      |         |                           | CRS                |
      +---------+---------------------------+--------------------+
      | A.1.2.4 | representation of         | latitude/longitude |
      |         | horizontal position       | values conform     |
      +---------+---------------------------+--------------------+
      | A.1.2.5 | representation of         | height value       |
      |         | vertical position         | conforms           |
      +---------+---------------------------+--------------------+
      | A.1.2.6 | text string               | N/A - No string    |
      |         | representation            | format             |
      +---------+---------------------------+--------------------+

                   Table 1: Conformance Test Results

  For test 'A.1.2.1', the YANG geo-location object either includes a
  Coordinate Reference System (CRS) ('reference-frame') or has a
  default defined [WGS84].

  For 'A.1.2.3', we do not define our own CRS, and doing so is not
  required for conformance.

  For 'A.1.2.6', we do not define a text string representation, which
  is also not required for conformance.

5.  Usability

  The geo-location object defined in this document and YANG module has
  been designed to be usable in a very broad set of applications.  This
  includes the ability to locate things on astronomical bodies other
  than Earth, and to utilize entirely different coordinate systems and
  realities.

5.1.  Portability

  In order to verify portability while developing this module, the
  following standards and standard APIs were considered.

5.1.1.  IETF URI Value

  [RFC5870] defines a standard URI value for geographic location data.
  It includes the ability to specify the 'geodetic-value' (it calls
  this 'crs') with the default being 'wgs-84' [WGS84].  For the
  location data, it allows two to three coordinates defined by the
  'crs' value.  For accuracy, it has a single 'u' parameter for
  specifying uncertainty.  The 'u' value is in fractions of meters and
  applies to all the location values.  As the URI is a string, all
  values are specified as strings and so are capable of as much
  precision as required.

  URI values can be mapped to and from the YANG grouping with the
  caveat that some loss of precision (in the extremes) may occur due to
  the YANG grouping using decimal64 values rather than strings.

5.1.2.  W3C

  W3C defines a geolocation API in [W3CGEO].  We show a snippet of code
  below that defines the geolocation data for this API.  This is used
  by many applications (e.g., Google Maps API).

  interface GeolocationPosition {
    readonly attribute GeolocationCoordinates coords;
    readonly attribute DOMTimeStamp timestamp;
  };

  interface GeolocationCoordinates {
    readonly attribute double latitude;
    readonly attribute double longitude;
    readonly attribute double? altitude;
    readonly attribute double accuracy;
    readonly attribute double? altitudeAccuracy;
    readonly attribute double? heading;
    readonly attribute double? speed;
  };

             Figure 1: Snippet Showing Geolocation Definition

5.1.2.1.  Comparison with YANG Data Model

   +==================+==============+=================+=============+
   | Field            | Type         | YANG            | Type        |
   +==================+==============+=================+=============+
   | accuracy         | double       | coord-accuracy  | dec64 fr 6  |
   +------------------+--------------+-----------------+-------------+
   | altitude         | double       | height          | dec64 fr 6  |
   +------------------+--------------+-----------------+-------------+
   | altitudeAccuracy | double       | height-accuracy | dec64 fr 6  |
   +------------------+--------------+-----------------+-------------+
   | heading          | double       | v-north, v-east | dec64 fr 12 |
   +------------------+--------------+-----------------+-------------+
   | latitude         | double       | latitude        | dec64 fr 16 |
   +------------------+--------------+-----------------+-------------+
   | longitude        | double       | longitude       | dec64 fr 16 |
   +------------------+--------------+-----------------+-------------+
   | speed            | double       | v-north, v-east | dec64 fr 12 |
   +------------------+--------------+-----------------+-------------+
   | timestamp        | DOMTimeStamp | timestamp       | string      |
   +------------------+--------------+-----------------+-------------+

                                 Table 2

  accuracy (double):  Accuracy of 'latitude' and 'longitude' values in
     meters.

  altitude (double):  Optional height in meters above the [WGS84]
     ellipsoid.

  altitudeAccuracy (double):  Optional accuracy of 'altitude' value in
     meters.

  heading (double):  Optional direction in decimal degrees from true
     north increasing clockwise.

  latitude, longitude (double):  Standard latitude/longitude values in
     decimal degrees.

  speed (double):  Speed along the heading in meters per second.

  timestamp (DOMTimeStamp):  Specifies milliseconds since the UNIX
     Epoch in a 64-bit unsigned integer.  The YANG data model defines
     the timestamp with arbitrarily large precision by using a string
     that encompasses all representable values of this timestamp value.

  W3C API values can be mapped to the YANG grouping with the caveat
  that some loss of precision (in the extremes) may occur due to the
  YANG grouping using decimal64 values rather than doubles.

  Conversely, only YANG values for Earth using the default 'wgs-84'
  [WGS84] as the 'geodetic-datum' can be directly mapped to the W3C
  values as W3C does not provide the extra features necessary to map
  the broader set of values supported by the YANG grouping.

5.1.3.  Geography Markup Language (GML)

  ISO adopted the Geography Markup Language (GML) defined by OGC 07-036
  [OGC] as [ISO.19136.2007].  GML defines, among many other things, a
  position type 'gml:pos', which is a sequence of 'double' values.
  This sequence of values represents coordinates in a given CRS.  The
  CRS is either inherited from containing elements or directly
  specified as attributes 'srsName' and optionally 'srsDimension' on
  the 'gml:pos'.

  GML defines an Abstract CRS type from which Concrete CRS types are
  derived.  This allows for many types of CRS definitions.  We are
  concerned with the Geodetic CRS type, which can have either
  ellipsoidal or Cartesian coordinates.  We believe that other non-
  Earth-based CRSs as well as virtual CRSs should also be representable
  by the GML CRS types.

  Thus, GML 'gml:pos' values can be mapped directly to the YANG
  grouping with the caveat that some loss of precision (in the
  extremes) may occur due to the YANG grouping using decimal64 values
  rather than doubles.

  Conversely, mapping YANG grouping values to GML is fully supported
  for Earth-based geodetic systems.

  GML also defines an observation value in 'gml:Observation', which
  includes a timestamp value 'gml:validTime' in addition to other
  components such as 'gml:using', 'gml:target', and 'gml:resultOf'.
  Only the timestamp is mappable to and from the YANG grouping.
  Furthermore, 'gml:validTime' can either be an instantaneous measure
  ('gml:TimeInstant') or a time period ('gml:TimePeriod').  The
  instantaneous 'gml:TimeInstant' is mappable to and from the YANG
  grouping 'timestamp' value, and values down to the resolution of
  seconds for 'gml:TimePeriod' can be mapped using the 'valid-until'
  node of the YANG grouping.

5.1.4.  KML

  KML 2.2 [KML22] (formerly Keyhole Markup Language) was submitted by
  Google to the Open Geospatial Consortium
  (https://www.opengeospatial.org/) and was adopted.  The latest
  version as of this writing is KML 2.3 [KML23].  This schema includes
  geographic location data in some of its objects (e.g., 'kml:Point' or
  'kml:Camera' objects).  This data is provided in string format and
  corresponds to the values specified in [W3CGEO].  The timestamp value
  is also specified as a string as in our YANG grouping.

  KML has some special handling for the height value that is useful for
  visualization software, 'kml:altitudeMode'.  The values for
  'kml:altitudeMode' include 'clampToGround', which indicates the
  height is ignored; 'relativeToGround', which indicates the height
  value is relative to the location's ground level; or 'absolute',
  which indicates the height value is an absolute value within the
  geodetic datum.  The YANG grouping can directly map the ignored and
  absolute cases but not the relative-to-ground case.

  In addition to the 'kml:altitudeMode', KML also defines two seafloor
  height values using 'kml:seaFloorAltitudeMode'.  One value is to
  ignore the height value ('clampToSeaFloor') and the other is relative
  ('relativeToSeaFloor').  As with the 'kml:altitudeMode' value, the
  YANG grouping supports the ignore case but not the relative case.

  The KML location values use a geodetic datum defined in Annex A of
  [ISO.19136.2007] with identifier 'LonLat84_5773'.  The altitude value
  for KML absolute height mode is measured from the vertical datum
  specified by [WGS84].

  Thus, the YANG grouping and KML values can be directly mapped in both
  directions (when using a supported altitude mode) with the caveat
  that some loss of precision (in the extremes) may occur due to the
  YANG grouping using decimal64 values rather than strings.  For the
  relative height cases, the application doing the transformation is
  expected to have the data available to transform the relative height
  into an absolute height, which can then be expressed using the YANG
  grouping.

6.  IANA Considerations

6.1.  Geodetic System Values Registry

  IANA has created the "Geodetic System Values" registry under the
  "YANG Geographic Location Parameters" registry.

  This registry allocates names for standard geodetic systems.  Often,
  these values are referred to using multiple names (e.g., full names
  or multiple acronyms).  The intent of this registry is to provide a
  single standard value for any given geodetic system.

  The values SHOULD use an acronym when available, they MUST be
  converted to lowercase, and spaces MUST be changed to dashes "-".

  Each entry should be sufficient to define the two coordinate values
  and to define height if height is required.  So, for example, the
  'wgs-84' is defined as WGS-84 with the geoid updated by at least
  [EGM96] for height values.  Specific entries for [EGM96] and [EGM08]
  are present if a more precise definition of the data is required.

  It should be noted that [RFC5870] also created a registry for
  geodetic systems (the "'geo' URI 'crs' Parameter Values" registry);
  however, this registry has a very strict modification policy.  The
  authors of [RFC5870] have the stated goal of making CRS registration
  hard to avoid proliferation of CRS values.  As our module defines
  alternate systems and has a broader scope (i.e., beyond Earth), the
  registry defined below is meant to be more easily modified.

  The allocation policy for this registry is First Come First Served
  [RFC8126], as the intent is simply to avoid duplicate values.

  The Reference value can either be a document or a contact person as
  defined in [RFC8126].  The Change Controller (i.e., Owner) is also
  defined by [RFC8126].

  The initial values for this registry are as follows.  They include
  the non-Earth-based geodetic-datum value for the Moon based on
  [MEAN-EARTH].

    +===========+==================+===========+===================+
    | Name      | Description      | Reference | Change Controller |
    +===========+==================+===========+===================+
    | me        | Mean Earth/Polar | RFC 9179  | IETF              |
    |           | Axis (Moon)      |           |                   |
    +-----------+------------------+-----------+-------------------+
    | wgs-84-96 | World Geodetic   | RFC 9179  | IETF              |
    |           | System 1984      |           |                   |
    +-----------+------------------+-----------+-------------------+
    | wgs-84-08 | World Geodetic   | RFC 9179  | IETF              |
    |           | System 1984      |           |                   |
    +-----------+------------------+-----------+-------------------+
    | wgs-84    | World Geodetic   | RFC 9179  | IETF              |
    |           | System 1984      |           |                   |
    +-----------+------------------+-----------+-------------------+

                                Table 3

6.2.  Updates to the IETF XML Registry

  This document registers a URI in the "IETF XML Registry" [RFC3688].
  Following the format in [RFC3688], the following registration has
  been made:

  URI:  urn:ietf:params:xml:ns:yang:ietf-geo-location
  Registrant Contact:  The IESG.
  XML:  N/A; the requested URI is an XML namespace.

6.3.  Updates to the YANG Module Names Registry

  This document registers one YANG module in the "YANG Module Names"
  registry [RFC6020].  Following the format in [RFC6020], the following
  registration has been made:

  Name:  ietf-geo-location
  Maintained by IANA:  N
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-geo-location
  Prefix:  geo
  Reference:  RFC 9179

7.  Security Considerations

  The YANG module specified in this document defines a schema for data
  that is designed to be accessed via network management protocols such
  as the Network Configuration Protocol (NETCONF) [RFC6241] or RESTCONF
  [RFC8040].  The lowest NETCONF layer is the secure transport layer,
  and the mandatory-to-implement secure transport is Secure Shell (SSH)
  [RFC6242].  The lowest RESTCONF layer is HTTPS, and the mandatory-to-
  implement secure transport is TLS [RFC8446].

  The NETCONF access control model [RFC8341] provides the means to
  restrict access for particular NETCONF or RESTCONF users to a
  preconfigured subset of all available NETCONF or RESTCONF protocol
  operations and content.

  Since the modules defined in this document only define groupings,
  these considerations are primarily for the designers of other modules
  that use these groupings.

  All the data nodes defined in this YANG module are
  writable/creatable/deletable (i.e., "config true", which is the
  default).

  None of the writable/creatable/deletable data nodes in the YANG
  module defined in this document are by themselves considered more
  sensitive or vulnerable than standard configuration.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or
  notification) to these data nodes.

  Since the grouping defined in this module identifies locations,
  authors using this grouping SHOULD consider any privacy issues that
  may arise when the data is readable (e.g., customer device locations,
  etc).

8.  Normative References

  [EGM08]    Pavlis, N., Holmes, S., Kenyon, S., and J. Factor, "An
             Earth Gravitational Model to Degree 2160: EGM08.",
             Presented at the 2008 General Assembly of the European
             Geosciences Union, Vienna, April 2008.

  [EGM96]    Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis,
             N., Chinn, D., Cox, C., Klosko, S., Luthcke, S., Torrence,
             M., Wang, Y., Williamson, R., Pavlis, E., Rapp, R., and T.
             Olson, "The Development of the Joint NASA GSFC and the
             National Imagery and Mapping Agency (NIMA) Geopotential
             Model EGM96.", NASA/TP-1998-206861, July 1998.

  [ISO.6709.2008]
             International Organization for Standardization, "Standard
             representation of geographic point location by
             coordinates", ISO 6709:2008, 2008.

  [MEAN-EARTH]
             NASA, "A Standardized Lunar Coordinate System for the
             Lunar Reconnaissance Orbiter", Version 4, Goddard Space
             Flight Center, May 2008.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [WGS84]    National Imagery and Mapping Agency, "Department of
             Defense World Geodetic System 1984", NIMA TR8350.2, Third
             Edition, January 2000.

9.  Informative References

  [ISO.19136.2007]
             International Organization for Standardization,
             "Geographic information -- Geography Markup Language
             (GML)", ISO 19136:2007.

  [KML22]    Wilson, T., Ed., "OGC KML", Version 2.2, April 2008,
             <https://portal.opengeospatial.org/
             files/?artifact_id=27810>.

  [KML23]    Burggraf, D., Ed., "OGC KML", Version 2.3, August 2015,
             <https://docs.opengeospatial.org/
             is/12-007r2/12-007r2.html>.

  [OGC]      OpenGIS, "OpenGIS Geography Markup Language (GML) Encoding
             Standard", Version: 3.2.1, OGC 07-036, August 2007,
             <https://portal.ogc.org/files/?artifact_id=20509>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC5870]  Mayrhofer, A. and C. Spanring, "A Uniform Resource
             Identifier for Geographic Locations ('geo' URI)",
             RFC 5870, DOI 10.17487/RFC5870, June 2010,
             <https://www.rfc-editor.org/info/rfc5870>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [W3CGEO]   Popescu, A., "Geolocation API Specification", 2nd Edition,
             November 2016, <https://www.w3.org/TR/2016/REC-
             geolocation-API-20161108/>.

Appendix A.  Examples

  Below is a fictitious module that uses the geo-location grouping.

  module example-uses-geo-location {
    namespace
      "urn:example:example-uses-geo-location";
    prefix ugeo;
    import ietf-geo-location { prefix geo; }
    organization "Empty Org";
    contact "Example Author <[email protected]>";
    description
      "Example use of geo-location";
    revision 2022-02-11 { reference "None"; }
    container locatable-items {
      description
        "The container of locatable items";
      list locatable-item {
        key name;
        description
          "A locatable item";
        leaf name {
          type string;
          description
            "The name of locatable item";
        }
        uses geo:geo-location;
      }
    }
  }

             Figure 2: Example YANG Module Using Geolocation

  Below is the YANG tree for the fictitious module that uses the geo-
  location grouping.

    module: example-uses-geo-location
      +--rw locatable-items
         +--rw locatable-item* [name]
            +--rw name            string
            +--rw geo-location
               +--rw reference-frame
               |  +--rw alternate-system?    string
               |  |       {alternate-systems}?
               |  +--rw astronomical-body?   string
               |  +--rw geodetic-system
               |     +--rw geodetic-datum?    string
               |     +--rw coord-accuracy?    decimal64
               |     +--rw height-accuracy?   decimal64
               +--rw (location)?
               |  +--:(ellipsoid)
               |  |  +--rw latitude?    decimal64
               |  |  +--rw longitude?   decimal64
               |  |  +--rw height?      decimal64
               |  +--:(cartesian)
               |     +--rw x?           decimal64
               |     +--rw y?           decimal64
               |     +--rw z?           decimal64
               +--rw velocity
               |  +--rw v-north?   decimal64
               |  +--rw v-east?    decimal64
               |  +--rw v-up?      decimal64
               +--rw timestamp?         yang:date-and-time
               +--rw valid-until?       yang:date-and-time

              Figure 3: Example YANG Tree Using Geolocation

  Below is some example YANG XML data for the fictitious module that
  uses the geo-location grouping.

  <locatable-items xmlns="urn:example:example-uses-geo-location">
    <locatable-item>
      <name>Gaetana's</name>
      <geo-location>
        <latitude>40.73297</latitude>
        <longitude>-74.007696</longitude>
      </geo-location>
    </locatable-item>
    <locatable-item>
      <name>Pont des Arts</name>
      <geo-location>
        <timestamp>2012-03-31T16:00:00Z</timestamp>
        <latitude>48.8583424</latitude>
        <longitude>2.3375084</longitude>
        <height>35</height>
      </geo-location>
    </locatable-item>
    <locatable-item>
      <name>Saint Louis Cathedral</name>
      <geo-location>
        <timestamp>2013-10-12T15:00:00-06:00</timestamp>
        <latitude>29.9579735</latitude>
        <longitude>-90.0637281</longitude>
      </geo-location>
    </locatable-item>
    <locatable-item>
      <name>Apollo 11 Landing Site</name>
      <geo-location>
        <timestamp>1969-07-21T02:56:15Z</timestamp>
        <reference-frame>
          <astronomical-body>moon</astronomical-body>
          <geodetic-system>
            <geodetic-datum>me</geodetic-datum>
          </geodetic-system>
        </reference-frame>
        <latitude>0.67409</latitude>
        <longitude>23.47298</longitude>
      </geo-location>
    </locatable-item>
    <locatable-item>
      <name>Reference Frame Only</name>
      <geo-location>
        <reference-frame>
          <astronomical-body>moon</astronomical-body>
          <geodetic-system>
            <geodetic-datum>me</geodetic-datum>
          </geodetic-system>
        </reference-frame>
      </geo-location>
    </locatable-item>
  </locatable-items>

              Figure 4: Example XML Data of Geolocation Use

Acknowledgments

  We would like to thank Jim Biard and Ben Koziol for their reviews and
  suggested improvements.  We would also like to thank Peter Lothberg
  for the motivation as well as help in defining a broadly useful
  geographic location object as well as Acee Lindem and Qin Wu for
  their work on a geographic location object that led to this
  document's creation.  We would also like to thank the Document
  Shepherd Kent Watsen.

Author's Address

  Christian Hopps
  LabN Consulting, L.L.C.

  Email: [email protected]