Internet Engineering Task Force (IETF)                   P. van der Stok
Request for Comments: 9148                                    Consultant
Category: Standards Track                                  P. Kampanakis
ISSN: 2070-1721                                            Cisco Systems
                                                          M. Richardson
                                                                    SSW
                                                                S. Raza
                                     RISE Research Institutes of Sweden
                                                             April 2022


EST-coaps: Enrollment over Secure Transport with the Secure Constrained
                         Application Protocol

Abstract

  Enrollment over Secure Transport (EST) is used as a certificate
  provisioning protocol over HTTPS.  Low-resource devices often use the
  lightweight Constrained Application Protocol (CoAP) for message
  exchanges.  This document defines how to transport EST payloads over
  secure CoAP (EST-coaps), which allows constrained devices to use
  existing EST functionality for provisioning certificates.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9148.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  DTLS and Conformance to RFC 7925 Profiles
  4.  Protocol Design
    4.1.  Discovery and URIs
    4.2.  Mandatory/Optional EST Functions
    4.3.  Payload Formats
    4.4.  Message Bindings
    4.5.  CoAP Response Codes
    4.6.  Message Fragmentation
    4.7.  Delayed Responses
    4.8.  Server-Side Key Generation
  5.  HTTPS-CoAPS Registrar
  6.  Parameters
  7.  Deployment Limitations
  8.  IANA Considerations
    8.1.  Content-Formats Registry
    8.2.  Resource Type Registry
    8.3.  Well-Known URIs Registry
  9.  Security Considerations
    9.1.  EST Server Considerations
    9.2.  HTTPS-CoAPS Registrar Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Appendix A.  EST Messages to EST-coaps
    A.1.  cacerts
    A.2.  enroll / reenroll
    A.3.  serverkeygen
    A.4.  csrattrs
  Appendix B.  EST-coaps Block Message Examples
    B.1.  cacerts
    B.2.  enroll / reenroll
  Appendix C.  Message Content Breakdown
    C.1.  cacerts
    C.2.  enroll / reenroll
    C.3.  serverkeygen
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  "Classical" Enrollment over Secure Transport (EST) [RFC7030] is used
  for authenticated/authorized endpoint certificate enrollment (and
  optionally key provisioning) through a Certification Authority (CA)
  or Registration Authority (RA).  EST transports messages over HTTPS.

  This document defines a new transport for EST based on the
  Constrained Application Protocol (CoAP) since some Internet of Things
  (IoT) devices use CoAP instead of HTTP.  Therefore, this
  specification utilizes DTLS [RFC6347] and CoAP [RFC7252] instead of
  TLS [RFC8446] and HTTP [RFC7230].

  EST responses can be relatively large, and for this reason, this
  specification also uses CoAP Block-Wise Transfer [RFC7959] to offer a
  fragmentation mechanism of EST messages at the CoAP layer.

  This document also profiles the use of EST to support certificate-
  based client authentication only.  Neither HTTP Basic nor Digest
  authentication (as described in Section 3.2.3 of [RFC7030]) is
  supported.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Many of the concepts in this document are taken from [RFC7030].
  Consequently, much text is directly traceable to [RFC7030].

3.  DTLS and Conformance to RFC 7925 Profiles

  This section describes how EST-coaps conforms to the profiles of low-
  resource devices described in [RFC7925].  EST-coaps can transport
  certificates and private keys.  Certificates are responses to
  (re-)enrollment requests or requests for a trusted certificate list.
  Private keys can be transported as responses to a server-side key
  generation request as described in Section 4.4 of [RFC7030] (and
  subsections) and discussed in Section 4.8 of this document.

  EST-coaps depends on a secure transport mechanism that secures the
  exchanged CoAP messages.  DTLS is one such secure protocol.  No other
  changes are necessary regarding the secure transport of EST messages.

           +------------------------------------------------+
           |    EST request/response messages               |
           +------------------------------------------------+
           |    CoAP for message transfer and signaling     |
           +------------------------------------------------+
           |    Secure Transport                            |
           +------------------------------------------------+

                   Figure 1: EST-coaps Protocol Layers

  In accordance with Sections 3.3 and 4.4 of [RFC7925], the mandatory
  cipher suite for DTLS in EST-coaps is
  TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251].  Curve secp256r1 MUST
  be supported [RFC8422]; this curve is equivalent to the NIST P-256
  curve.  After the publication of [RFC7748], support for Curve25519
  will likely be required in the future by (D)TLS profiles for the
  Internet of Things [RFC7925].

  DTLS 1.2 implementations must use the Supported Elliptic Curves and
  Supported Point Formats Extensions in [RFC8422].  Uncompressed point
  format must also be supported.  DTLS 1.3 [RFC9147] implementations
  differ from DTLS 1.2 because they do not support point format
  negotiation in favor of a single point format for each curve.  Thus,
  support for DTLS 1.3 does not mandate point format extensions and
  negotiation.  In addition, in DTLS 1.3, the Supported Elliptic Curves
  extension has been renamed to Supported Groups.

  CoAP was designed to avoid IP fragmentation.  DTLS is used to secure
  CoAP messages.  However, fragmentation is still possible at the DTLS
  layer during the DTLS handshake even when using Elliptic Curve
  Cryptography (ECC) cipher suites.  If fragmentation is necessary,
  "DTLS provides a mechanism for fragmenting a handshake message over a
  number of records, each of which can be transmitted separately, thus
  avoiding IP fragmentation" [RFC6347].

  The authentication of the EST-coaps server by the EST-coaps client is
  based on certificate authentication in the DTLS handshake.  The EST-
  coaps client MUST be configured with at least an Implicit Trust
  Anchor database, which will enable the authentication of the server
  the first time before updating its trust anchor (Explicit TA)
  [RFC7030].

  The authentication of the EST-coaps client MUST be with a client
  certificate in the DTLS handshake.  This can either be:

  *  A previously issued client certificate (e.g., an existing
     certificate issued by the EST CA); this could be a common case for
     simple re-enrollment of clients.

  *  A previously installed certificate (e.g., manufacturer IDevID
     [IEEE802.1AR] or a certificate issued by some other party).
     IDevID's are expected to have a very long life, as long as the
     device, but under some conditions could expire.  In that case, the
     server MAY authenticate a client certificate against its trust
     store though the certificate is expired (Section 9).

  EST-coaps supports the certificate types and TAs that are specified
  for EST in Section 3 of [RFC7030].

  As described in Section 2.1 of [RFC5272], proof-of-identity refers to
  a value that can be used to prove that an end entity or client is in
  the possession of and can use the private key corresponding to the
  certified public key.  Additionally, channel-binding information can
  link proof-of-identity with an established connection.  Connection-
  based proof-of-possession is OPTIONAL for EST-coaps clients and
  servers.  When proof-of-possession is desired, a set of actions are
  required regarding the use of tls-unique, described in Section 3.5 of
  [RFC7030].  The tls-unique information consists of the contents of
  the first Finished message in the (D)TLS handshake between server and
  client [RFC5929].  The client adds the Finished message as a
  challengePassword in the attributes section of the PKCS #10
  CertificationRequest [RFC5967] to prove that the client is indeed in
  control of the private key at the time of the (D)TLS session
  establishment.  In the case of handshake message fragmentation, if
  proof-of-possession is desired, the Finished message added as the
  challengePassword in the Certificate Signing Request (CSR) is
  calculated as specified by (D)TLS.  We summarize it here for
  convenience.  For DTLS 1.2, in the event of handshake message
  fragmentation, the hash of the handshake messages used in the Message
  Authentication Code (MAC) calculation of the Finished message must be
  computed on each reassembled message, as if each message had not been
  fragmented (Section 4.2.6 of [RFC6347]).  The Finished message is
  calculated as shown in Section 7.4.9 of [RFC5246].

  For (D)TLS 1.3, Appendix C.5 of [RFC8446] describes the lack of
  channel bindings similar to tls-unique.  [TLS13-CHANNEL-BINDINGS] can
  be used instead to derive a 32-byte tls-exporter binding from the
  (D)TLS 1.3 master secret by using a PRF negotiated in the (D)TLS 1.3
  handshake, "EXPORTER-Channel-Binding" with no terminating NUL as the
  label, the ClientHello.random and ServerHello.random, and a zero-
  length context string.  When proof-of-possession is desired, the
  client adds the tls-exporter value as a challengePassword in the
  attributes section of the PKCS #10 CertificationRequest [RFC5967] to
  prove that the client is indeed in control of the private key at the
  time of the (D)TLS session establishment.

  In a constrained CoAP environment, endpoints can't always afford to
  establish a DTLS connection for every EST transaction.  An EST-coaps
  DTLS connection MAY remain open for sequential EST transactions,
  which was not the case with [RFC7030].  For example, if a /crts
  request is followed by a /sen request, both can use the same
  authenticated DTLS connection.  However, when a /crts request is
  included in the set of sequential EST transactions, some additional
  security considerations apply regarding the use of the Implicit and
  Explicit TA database as explained in Section 9.1.

  Given that after a successful enrollment, it is more likely that a
  new EST transaction will not take place for a significant amount of
  time, the DTLS connections SHOULD only be kept alive for EST messages
  that are relatively close to each other.  These could include a /sen
  immediately following a /crts when a device is getting bootstrapped.
  In some cases, like NAT rebinding, keeping the state of a connection
  is not possible when devices sleep for extended periods of time.  In
  such occasions, [RFC9146] negotiates a connection ID that can
  eliminate the need for a new handshake and its additional cost; or,
  DTLS session resumption provides a less costly alternative than
  redoing a full DTLS handshake.

4.  Protocol Design

  EST-coaps uses CoAP to transfer EST messages, aided by Block-Wise
  Transfer [RFC7959], to avoid IP fragmentation.  The use of blocks for
  the transfer of larger EST messages is specified in Section 4.6.
  Figure 1 shows the layered EST-coaps architecture.

  The EST-coaps protocol design follows closely the EST design.  The
  supported message types in EST-coaps are:

  *  CA certificate retrieval needed to receive the complete set of CA
     certificates.

  *  Simple enroll and re-enroll for a CA to sign client identity
     public keys.

  *  Certificate Signing Request (CSR) attribute messages that informs
     the client of the fields to include in a CSR.

  *  Server-side key generation messages to provide a client identity
     private key when the client chooses so.

  While [RFC7030] permits a number of the EST functions to be used
  without authentication, this specification requires that the client
  MUST be authenticated for all functions.

4.1.  Discovery and URIs

  EST-coaps is targeted for low-resource networks with small packets.
  Two types of installations are possible: (1) a rigid one, where the
  address and the supported functions of the EST server(s) are known,
  and (2) a flexible one, where the EST server and its supported
  functions need to be discovered.

  For both types of installations, saving header space is important and
  short EST-coaps URIs are specified in this document.  These URIs are
  shorter than the ones in [RFC7030].  Two example EST-coaps resource
  path names are:

  coaps://example.com:<port>/.well-known/est/<short-est>
  coaps://example.com:<port>/.well-known/est/ArbitraryLabel/<short-est>

  The short-est strings are defined in Table 1.  Arbitrary Labels are
  usually defined and used by EST CAs in order to route client requests
  to the appropriate certificate profile.  Implementers should consider
  using short labels to minimize transmission overhead.

  The EST-coaps server URIs, obtained through discovery of the EST-
  coaps resource(s) as shown below, are of the form:

  coaps://example.com:<port>/<root-resource>/<short-est>
  coaps://example.com:<port>/<root-resource>/ArbitraryLabel/<short-est>

  Figure 5 in Section 3.2.2 of [RFC7030] enumerates the operations and
  corresponding paths that are supported by EST.  Table 1 provides the
  mapping from the EST URI path to the shorter EST-coaps URI path.

           +=================+==============================+
           | EST             | EST-coaps                    |
           +=================+==============================+
           | /cacerts        | /crts                        |
           +-----------------+------------------------------+
           | /simpleenroll   | /sen                         |
           +-----------------+------------------------------+
           | /simplereenroll | /sren                        |
           +-----------------+------------------------------+
           | /serverkeygen   | /skg (PKCS #7)               |
           +-----------------+------------------------------+
           | /serverkeygen   | /skc (application/pkix-cert) |
           +-----------------+------------------------------+
           | /csrattrs       | /att                         |
           +-----------------+------------------------------+

                   Table 1: Short EST-coaps URI Path

  The /skg message is the EST /serverkeygen equivalent where the client
  requests a certificate in PKCS #7 format and a private key.  If the
  client prefers a single application/pkix-cert certificate instead of
  PKCS #7, it will make an /skc request.  In both cases (i.e., /skg,
  /skc), a private key MUST be returned.

  Clients and servers MUST support the short resource EST-coaps URIs.

  In the context of CoAP, the presence and location of (path to) the
  EST resources are discovered by sending a GET request to "/.well-
  known/core" including a resource type (RT) parameter with the value
  "ace.est*" [RFC6690].  The example below shows the discovery over
  CoAPS of the presence and location of EST-coaps resources.  Linefeeds
  are included only for readability.

    REQ: GET /.well-known/core?rt=ace.est*

    RES: 2.05 Content
  </est/crts>;rt="ace.est.crts";ct="281 287",
  </est/sen>;rt="ace.est.sen";ct="281 287",
  </est/sren>;rt="ace.est.sren";ct="281 287",
  </est/att>;rt="ace.est.att";ct=285,
  </est/skg>;rt="ace.est.skg";ct=62,
  </est/skc>;rt="ace.est.skc";ct=62

  The first three lines, describing ace.est.crts, ace.est.sen, and
  ace.est.sren, of the discovery response above MUST be returned if the
  server supports resource discovery.  The last three lines are only
  included if the corresponding EST functions are implemented (see
  Table 2).  The Content-Formats in the response allow the client to
  request one that is supported by the server.  These are the values
  that would be sent in the client request with an Accept Option.

  Discoverable port numbers can be returned in the response payload.
  An example response payload for non-default CoAPS server port 61617
  follows below.  Linefeeds are included only for readability.

    REQ: GET /.well-known/core?rt=ace.est*

    RES: 2.05 Content
  <coaps://[2001:db8:3::123]:61617/est/crts>;rt="ace.est.crts";
                ct="281 287",
  <coaps://[2001:db8:3::123]:61617/est/sen>;rt="ace.est.sen";
                ct="281 287",
  <coaps://[2001:db8:3::123]:61617/est/sren>;rt="ace.est.sren";
                ct="281 287",
  <coaps://[2001:db8:3::123]:61617/est/att>;rt="ace.est.att";
                ct=285,
  <coaps://[2001:db8:3::123]:61617/est/skg>;rt="ace.est.skg";
                ct=62,
  <coaps://[2001:db8:3::123]:61617/est/skc>;rt="ace.est.skc";
                ct=62

  The server MUST support the default /.well-known/est root resource.
  The server SHOULD support resource discovery when it supports non-
  default URIs (like /est or /est/ArbitraryLabel) or ports.  The client
  SHOULD use resource discovery when it is unaware of the available
  EST-coaps resources.

  Throughout this document, the example root resource of /est is used.

4.2.  Mandatory/Optional EST Functions

  This specification contains a set of required-to-implement functions,
  optional functions, and not-specified functions.  The unspecified
  functions are deemed too expensive for low-resource devices in
  payload and calculation times.

  Table 2 specifies the mandatory-to-implement or optional
  implementation of the EST-coaps functions.  Discovery of the
  existence of optional functions is described in Section 4.1.

             +=================+==========================+
             | EST Functions   | EST-coaps Implementation |
             +=================+==========================+
             | /cacerts        | MUST                     |
             +-----------------+--------------------------+
             | /simpleenroll   | MUST                     |
             +-----------------+--------------------------+
             | /simplereenroll | MUST                     |
             +-----------------+--------------------------+
             | /fullcmc        | Not specified            |
             +-----------------+--------------------------+
             | /serverkeygen   | OPTIONAL                 |
             +-----------------+--------------------------+
             | /csrattrs       | OPTIONAL                 |
             +-----------------+--------------------------+

                  Table 2: List of EST-coaps Functions

4.3.  Payload Formats

  EST-coaps is designed for low-resource devices; hence, it does not
  need to send Base64-encoded data.  Simple binary is more efficient
  (30% smaller payload for DER-encoded ASN.1) and well supported by
  CoAP.  Thus, the payload for a given media type follows the ASN.1
  structure of the media type and is transported in binary format.

  The Content-Format (HTTP Content-Type equivalent) of the CoAP message
  determines which EST message is transported in the CoAP payload.  The
  media types specified in the HTTP Content-Type header field
  (Section 3.2.4 of [RFC7030]) are specified by the Content-Format
  Option (12) of CoAP.  The combination of URI-Path and Content-Format
  in EST-coaps MUST map to an allowed combination of URI and media type
  in EST.  The required Content-Formats for these requests and response
  messages are defined in Section 8.1.  The CoAP response codes are
  defined in Section 4.5.

  Content-Format 287 can be used in place of 281 to carry a single
  certificate instead of a PKCS #7 container in a /crts, /sen, /sren,
  or /skg response.  Content-Format 281 MUST be supported by EST-coaps
  servers.  Servers MAY also support Content-Format 287.  It is up to
  the client to support only Content-Format 281, 287 or both.  The
  client will use a CoAP Accept Option in the request to express the
  preferred response Content-Format.  If an Accept Option is not
  included in the request, the client is not expressing any preference
  and the server SHOULD choose format 281.

  Content-Format 286 is used in /sen, /sren, and /skg requests and 285
  in /att responses.

  A representation with Content-Format identifier 62 contains a
  collection of representations along with their respective Content-
  Format.  The Content-Format identifies the media type application/
  multipart-core specified in [RFC8710].  For example, a collection,
  containing two representations in response to an EST-coaps server-
  side key generation /skg request, could include a private key in PKCS
  #8 [RFC5958] with Content-Format identifier 284 (0x011C) and a single
  certificate in a PKCS #7 container with Content-Format identifier 281
  (0x0119).  Such a collection would look like
  [284,h'0123456789abcdef', 281,h'fedcba9876543210'] in diagnostic
  Concise Binary Object Representation (CBOR) notation.  The
  serialization of such CBOR content would be:

     84                  # array(4)
     19 011C             # unsigned(284)
     48                  # bytes(8)
        0123456789ABCDEF # "\x01#Eg\x89\xAB\xCD\xEF"
     19 0119             # unsigned(281)
     48                  # bytes(8)
        FEDCBA9876543210 # "\xFE\xDC\xBA\x98vT2\x10"

             Figure 2: Multipart /skg Response Serialization

  When the client makes an /skc request, the certificate returned with
  the private key is a single X.509 certificate (not a PKCS #7
  container) with Content-Format identifier 287 (0x011F) instead of
  281.  In cases where the private key is encrypted with Cryptographic
  Message Syntax (CMS) (as explained in Section 4.8), the Content-
  Format identifier is 280 (0x0118) instead of 284.  The Content-Format
  used in the response is summarized in Table 3.

           +==========+==================+==================+
           | Function | Response, Part 1 | Response, Part 2 |
           +==========+==================+==================+
           | /skg     | 284              | 281              |
           +----------+------------------+------------------+
           | /skc     | 280              | 287              |
           +----------+------------------+------------------+

             Table 3: Response Content-Formats for /skg and
                                  /skc

  The key and certificate representations are DER-encoded ASN.1, in its
  binary form.  An example is shown in Appendix A.3.

4.4.  Message Bindings

  The general EST-coaps message characteristics are:

  *  EST-coaps servers sometimes need to provide delayed responses,
     which are preceded by an immediately returned empty ACK or an ACK
     containing response code 5.03 as explained in Section 4.7.  Thus,
     it is RECOMMENDED for implementers to send EST-coaps requests in
     Confirmable (CON) CoAP messages.

  *  The CoAP Options used are Uri-Host, Uri-Path, Uri-Port, Content-
     Format, Block1, Block2, and Accept.  These CoAP Options are used
     to communicate the HTTP fields specified in the EST REST messages.
     The Uri-host and Uri-Port Options can be omitted from the CoAP
     message sent on the wire.  When omitted, they are logically
     assumed to be the transport protocol destination address and port,
     respectively.  Explicit Uri-Host and Uri-Port Options are
     typically used when an endpoint hosts multiple virtual servers and
     uses the Options to route the requests accordingly.  Other CoAP
     Options should be handled in accordance with [RFC7252].

  *  EST URLs are HTTPS based (https://); in CoAP, these are assumed to
     be translated to CoAPS (coaps://).

  Table 1 provides the mapping from the EST URI path to the EST-coaps
  URI path.  Appendix A includes some practical examples of EST
  messages translated to CoAP.

4.5.  CoAP Response Codes

  Section 5.9 of [RFC7252] and Section 7 of [RFC8075] specify the
  mapping of HTTP response codes to CoAP response codes.  The success
  code in response to an EST-coaps GET request (/crts, /att) is 2.05.
  Similarly, 2.04 is used in successful response to EST-coaps POST
  requests (/sen, /sren, /skg, /skc).

  EST makes use of HTTP 204 or 404 responses when a resource is not
  available for the client.  In EST-coaps, 2.04 is used in response to
  a POST (/sen, /sren, /skg, /skc). 4.04 is used when the resource is
  not available for the client.

  HTTP response code 202 with a Retry-After header field in [RFC7030]
  has no equivalent in CoAP.  HTTP 202 with Retry-After is used in EST
  for delayed server responses.  Section 4.7 specifies how EST-coaps
  handles delayed messages with 5.03 responses with a Max-Age Option.

  Additionally, EST's HTTP 400, 401, 403, 404, and 503 status codes
  have their equivalent CoAP 4.00, 4.01, 4.03, 4.04, and 5.03 response
  codes in EST-coaps.  Table 4 summarizes the EST-coaps response codes.

  +=============+=========================+==========================+
  | Operation   | EST-coaps Response Code | Description              |
  +=============+=========================+==========================+
  | /crts, /att | 2.05                    | Success.  Certs included |
  |             |                         | in the response payload. |
  +-------------+-------------------------+--------------------------+
  |             | 4.xx / 5.xx             | Failure.                 |
  +-------------+-------------------------+--------------------------+
  | /sen, /skg, | 2.04                    | Success.  Cert included  |
  | /sren, /skc |                         | in the response payload. |
  +-------------+-------------------------+--------------------------+
  |             | 5.03                    | Retry in Max-Age Option  |
  |             |                         | time.                    |
  +-------------+-------------------------+--------------------------+
  |             | 4.xx / 5.xx             | Failure.                 |
  +-------------+-------------------------+--------------------------+

                   Table 4: EST-coaps Response Codes

4.6.  Message Fragmentation

  DTLS defines fragmentation only for the handshake and not for secure
  data exchange (DTLS records).  [RFC6347] states that to avoid using
  IP fragmentation, which involves error-prone datagram reconstitution,
  invokers of the DTLS record layer should size DTLS records so that
  they fit within any Path MTU estimates obtained from the record
  layer.  In addition, invokers residing on 6LoWPAN (IPv6 over Low-
  Power Wireless Personal Area Networks) over IEEE 802.15.4 networks
  [IEEE802.15.4] are recommended to size CoAP messages such that each
  DTLS record will fit within one or two IEEE 802.15.4 frames.

  That is not always possible in EST-coaps.  Even though ECC
  certificates are small in size, they can vary greatly based on
  signature algorithms, key sizes, and Object Identifier (OID) fields
  used.  For 256-bit curves, common Elliptic Curve Digital Signature
  Algorithm (ECDSA) cert sizes are 500-1000 bytes, which could
  fluctuate further based on the algorithms, OIDs, Subject Alternative
  Names (SANs), and cert fields.  For 384-bit curves, ECDSA
  certificates increase in size and can sometimes reach 1.5KB.
  Additionally, there are times when the EST cacerts response from the
  server can include multiple certificates that amount to large
  payloads.  Section 4.6 of [RFC7252] (CoAP) describes the possible
  payload sizes: "if nothing is known about the size of the headers,
  good upper bounds are 1152 bytes for the message size and 1024 bytes
  for the payload size".  Section 4.6 of [RFC7252] also suggests that
  IPv4 implementations may want to limit themselves to more
  conservative IPv4 datagram sizes such as 576 bytes.  Even with ECC,
  EST-coaps messages can still exceed MTU sizes on the Internet or
  6LoWPAN [RFC4919] (Section 2 of [RFC7959]).  EST-coaps needs to be
  able to fragment messages into multiple DTLS datagrams.

  To perform fragmentation in CoAP, [RFC7959] specifies the Block1
  Option for fragmentation of the request payload and the Block2 Option
  for fragmentation of the return payload of a CoAP flow.  As explained
  in Section 1 of [RFC7959], block-wise transfers should be used in
  Confirmable CoAP messages to avoid the exacerbation of lost blocks.
  EST-coaps servers MUST implement Block1 and Block2.  EST-coaps
  clients MUST implement Block2.  EST-coaps clients MUST implement
  Block1 only if they are expecting to send EST-coaps requests with a
  packet size that exceeds the path MTU.

  [RFC7959] also defines Size1 and Size2 Options to provide size
  information about the resource representation in a request and
  response.  The EST-coaps client and server MAY support Size1 and
  Size2 Options.

  Examples of fragmented EST-coaps messages are shown in Appendix B.

4.7.  Delayed Responses

  Server responses can sometimes be delayed.  According to
  Section 5.2.2 of [RFC7252], a slow server can acknowledge the request
  and respond later with the requested resource representation.  In
  particular, a slow server can respond to an EST-coaps enrollment
  request with an empty ACK with code 0.00 before sending the
  certificate to the client after a short delay.  If the certificate
  response is large, the server will need more than one Block2 block to
  transfer it.

  This situation is shown in Figure 3.  The client sends an enrollment
  request that uses N1+1 Block1 blocks.  The server uses an empty 0.00
  ACK to announce the delayed response, which is provided later with
  2.04 messages containing N2+1 Block2 Options.  The first 2.04 is a
  Confirmable message that is acknowledged by the client.  Onwards, the
  client acknowledges all subsequent Block2 blocks.  The notation of
  Figure 3 is explained in Appendix B.1.

  POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256)
                     {CSR (frag# 1)} -->
     <-- (ACK) (1:0/1/256) (2.31 Continue)
  POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256)
                     {CSR (frag# 2)} -->
     <-- (ACK) (1:1/1/256) (2.31 Continue)
                    .
                    .
                    .
  POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256)
                     {CSR (frag# N1+1)}-->
     <-- (0.00 empty ACK)
                    |
     ... Short delay before the certificate is ready ...
                    |
     <-- (CON) (1:N1/0/256)(2:0/1/256)(2.04 Changed)
                     {Cert resp (frag# 1)}
                                                (ACK)          -->
  POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)          -->
     <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
                    .
                    .
                    .
  POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256)          -->
     <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}

              Figure 3: EST-coaps Enrollment with Short Wait

  If the server is very slow (for example, manual intervention is
  required, which would take minutes), it SHOULD respond with an ACK
  containing response code 5.03 (Service unavailable) and a Max-Age
  Option to indicate the time the client SHOULD wait before sending
  another request to obtain the content.  After a delay of Max-Age, the
  client SHOULD resend the identical CSR to the server.  As long as the
  server continues to respond with response code 5.03 (Service
  Unavailable) with a Max-Age Option, the client will continue to delay
  for Max-Age and then resend the enrollment request until the server
  responds with the certificate or the client abandons the request due
  to policy or other reasons.

  To demonstrate this scenario, Figure 4 shows a client sending an
  enrollment request that uses N1+1 Block1 blocks to send the CSR to
  the server.  The server needs N2+1 Block2 blocks to respond but also
  needs to take a long delay (minutes) to provide the response.
  Consequently, the server uses a 5.03 ACK response with a Max-Age
  Option.  The client waits for a period of Max-Age as many times as it
  receives the same 5.03 response and retransmits the enrollment
  request until it receives a certificate in a fragmented 2.04
  response.

  POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256)
                     {CSR (frag# 1)}  -->
    <-- (ACK) (1:0/1/256) (2.31 Continue)
  POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256)
                     {CSR (frag# 2)}  -->
    <-- (ACK) (1:1/1/256) (2.31 Continue)
                    .
                    .
                    .
  POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256)
                     {CSR (frag# N1+1)}-->
    <-- (ACK) (1:N1/0/256) (5.03 Service Unavailable) (Max-Age)
                    |
                    |
    ... Client tries again after Max-Age with identical payload ...
                    |
                    |
  POST [2001:db8::2:1]:61616/est/sen(CON)(1:0/1/256)
                     {CSR (frag# 1)}-->
    <-- (ACK) (1:0/1/256) (2.31 Continue)
  POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256)
                     {CSR (frag# 2)}  -->
    <-- (ACK) (1:1/1/256) (2.31 Continue)
                    .
                    .
                    .
  POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256)
                     {CSR (frag# N1+1)}-->
                    |
     ... Immediate response when certificate is ready ...
                    |
    <-- (ACK) (1:N1/0/256) (2:0/1/256) (2.04 Changed)
                     {Cert resp (frag# 1)}
  POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)           -->
    <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
                    .
                    .
                    .
  POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256)          -->
    <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}

              Figure 4: EST-coaps Enrollment with Long Wait

4.8.  Server-Side Key Generation

  Private keys can be generated on the server to support scenarios
  where server-side key generation is needed.  Such scenarios include
  those where it is considered more secure to generate the long-lived,
  random private key that identifies the client at the server, or where
  the resources spent to generate a random private key at the client
  are considered scarce, or where the security policy requires that the
  certificate public and corresponding private keys are centrally
  generated and controlled.  As always, it is necessary to use proper
  random numbers in various protocols such as (D)TLS (Section 9.1).

  When requesting server-side key generation, the client asks for the
  server or proxy to generate the private key and the certificate,
  which are transferred back to the client in the server-side key
  generation response.  In all respects, the server treats the CSR as
  it would treat any enroll or re-enroll CSR; the only distinction here
  is that the server MUST ignore the public key values and signature in
  the CSR.  These are included in the request only to allow reuse of
  existing codebases for generating and parsing such requests.

  The client /skg request is for a certificate in a PKCS #7 container
  and private key in two application/multipart-core elements.
  Respectively, an /skc request is for a single application/pkix-cert
  certificate and a private key.  The private key Content-Format
  requested by the client is indicated in the PKCS #10 CSR request.  If
  the request contains SMIMECapabilities and DecryptKeyIdentifier or
  AsymmetricDecryptKeyIdentifier, the client is expecting Content-
  Format 280 for the private key.  Then, this private key is encrypted
  symmetrically or asymmetrically per [RFC7030].  The symmetric key or
  the asymmetric keypair establishment method is out of scope of this
  specification.  An /skg or /skc request with a CSR without
  SMIMECapabilities expects an application/multipart-core with an
  unencrypted PKCS #8 private key with Content-Format 284.

  The EST-coaps server-side key generation response is returned with
  Content-Format application/multipart-core [RFC8710] containing a CBOR
  array with four items (Section 4.3).  The two representations (each
  consisting of two CBOR array items) do not have to be in a particular
  order since each representation is preceded by its Content-Format ID.
  Depending on the request, the private key can be in unprotected PKCS
  #8 format [RFC5958] (Content-Format 284) or protected inside of CMS
  SignedData (Content-Format 280).  The SignedData, placed in the
  outermost container, is signed by the party that generated the
  private key, which may be the EST server or the EST CA.  SignedData
  placed within the Enveloped Data does not need additional signing as
  explained in Section 4.4.2 of [RFC7030].  In summary, the
  symmetrically encrypted key is included in the encryptedKey attribute
  in a KEKRecipientInfo structure.  In the case where the asymmetric
  encryption key is suitable for transport key operations, the
  generated private key is encrypted with a symmetric key.  The
  symmetric key itself is encrypted by the client-defined (in the CSR)
  asymmetric public key and is carried in an encryptedKey attribute in
  a KeyTransRecipientInfo structure.  Finally, if the asymmetric
  encryption key is suitable for key agreement, the generated private
  key is encrypted with a symmetric key.  The symmetric key itself is
  encrypted by the client defined (in the CSR) asymmetric public key
  and is carried in a recipientEncryptedKeys attribute in a
  KeyAgreeRecipientInfo.

  [RFC7030] recommends the use of additional encryption of the returned
  private key.  For the context of this specification, clients and
  servers that choose to support server-side key generation MUST
  support unprotected (PKCS #8) private keys (Content-Format 284).
  Symmetric or asymmetric encryption of the private key (CMS
  EnvelopedData, Content-Format 280) SHOULD be supported for
  deployments where end-to-end encryption is needed between the client
  and a server.  Such cases could include architectures where an entity
  between the client and the CA terminates the DTLS connection
  (Registrar in Figure 5).  Though [RFC7030] strongly recommends that
  clients request the use of CMS encryption on top of the TLS channel's
  protection, this document does not make such a recommendation; CMS
  encryption can still be used when mandated by the use case.

5.  HTTPS-CoAPS Registrar

  In real-world deployments, the EST server will not always reside
  within the CoAP boundary.  The EST server can exist outside the
  constrained network, in which case it will support TLS/HTTP instead
  of CoAPS.  In such environments, EST-coaps is used by the client
  within the CoAP boundary and TLS is used to transport the EST
  messages outside the CoAP boundary.  A Registrar at the edge is
  required to operate between the CoAP environment and the external
  HTTP network as shown in Figure 5.

                                          Constrained Network
     .------.                         .----------------------------.
     |  CA  |                         |.--------------------------.|
     '------'                         ||                          ||
        |                             ||                          ||
     .------.  HTTP   .------------------.  CoAPS  .-----------.  ||
     | EST  |<------->|EST-coaps-to-HTTPS|<------->| EST Client|  ||
     |Server|over TLS |   Registrar      |         '-----------'  ||
     '------'         '------------------'                        ||
                                      ||                          ||
                                      |'--------------------------'|
                                      '----------------------------'

       Figure 5: EST-coaps-to-HTTPS Registrar at the CoAP Boundary

  The EST-coaps-to-HTTPS Registrar MUST terminate EST-coaps downstream
  and initiate EST connections over TLS upstream.  The Registrar MUST
  authenticate and optionally authorize the client requests while it
  MUST be authenticated by the EST server or CA.  The trust
  relationship between the Registrar and the EST server SHOULD be pre-
  established for the Registrar to proxy these connections on behalf of
  various clients.

  When enforcing Proof-of-Possession (POP) linking, the tls-unique or
  tls-exporter value of the session for DTLS 1.2 and DTLS 1.3,
  respectively, is used to prove that the private key corresponding to
  the public key is in the possession of the client and was used to
  establish the connection as explained in Section 3.  The POP linking
  information is lost between the EST-coaps client and the EST server
  when a Registrar is present.  The EST server becomes aware of the
  presence of a Registrar from its TLS client certificate that includes
  the id-kp-cmcRA extended key usage (EKU) extension [RFC6402].  As
  explained in Section 3.7 of [RFC7030], the "EST server SHOULD apply
  authorization policy consistent with an RA client ... the EST server
  could be configured to accept POP linking information that does not
  match the current TLS session because the authenticated EST client RA
  has verified this information when acting as an EST server".

  Table 1 contains the URI mappings between EST-coaps and EST that the
  Registrar MUST adhere to.  Section 4.5 of this specification and
  Section 7 of [RFC8075] define the mappings between EST-coaps and HTTP
  response codes that determine how the Registrar MUST translate CoAP
  response codes from/to HTTP status codes.  The mapping from CoAP
  Content-Format to HTTP Content-Type is defined in Section 8.1.
  Additionally, a conversion from CBOR major type 2 to Base64 encoding
  MUST take place at the Registrar.  If CMS end-to-end encryption is
  employed for the private key, the encrypted CMS EnvelopedData blob
  MUST be converted at the Registrar to binary CBOR type 2 downstream
  to the client.  This is a format conversion that does not require
  decryption of the CMS EnvelopedData.

  A deviation from the mappings in Table 1 could take place if clients
  that leverage server-side key generation preferred for the enrolled
  keys to be generated by the Registrar in the case the CA does not
  support server-side key generation.  Such a Registrar is responsible
  for generating a new CSR signed by a new key that will be returned to
  the client along with the certificate from the CA.  In these cases,
  the Registrar MUST use random number generation with proper entropy.

  Due to fragmentation of large messages into blocks, an EST-coaps-to-
  HTTP Registrar MUST reassemble the blocks before translating the
  binary content to Base64 and consecutively relay the message
  upstream.

  The EST-coaps-to-HTTP Registrar MUST support resource discovery
  according to the rules in Section 4.1.

6.  Parameters

  This section addresses transmission parameters described in Sections
  4.7 and 4.8 of [RFC7252].  EST does not impose any unique values on
  the CoAP parameters in [RFC7252], but the setting of the CoAP
  parameter values may have consequence for the setting of the EST
  parameter values.

  Implementations should follow the default CoAP configuration
  parameters [RFC7252].  However, depending on the implementation
  scenario, retransmissions and timeouts can also occur on other
  networking layers, governed by other configuration parameters.  When
  a change in a server parameter has taken place, the parameter values
  in the communicating endpoints MUST be adjusted as necessary.
  Examples of how parameters could be adjusted include higher-layer
  congestion protocols, provisioning agents, and configurations
  included in firmware updates.

  Some further comments about some specific parameters, mainly from
  Table 2 in [RFC7252], include the following:

  NSTART:  A parameter that controls the number of simultaneous
     outstanding interactions that a client maintains to a given
     server.  An EST-coaps client is expected to control at most one
     interaction with a given server, which is the default NSTART value
     defined in [RFC7252].

  DEFAULT_LEISURE:  A setting that is only relevant in multicast
     scenarios and is outside the scope of EST-coaps.

  PROBING_RATE:  A parameter that specifies the rate of resending Non-
     confirmable messages.  In the rare situations that Non-confirmable
     messages are used, the default PROBING_RATE value defined in
     [RFC7252] applies.

  Finally, the Table 3 parameters in [RFC7252] are mainly derived from
  Table 2.  Directly changing parameters on one table would affect
  parameters on the other.

7.  Deployment Limitations

  Although EST-coaps paves the way for the utilization of EST by
  constrained devices in constrained networks, some classes of devices
  [RFC7228] will not have enough resources to handle the payloads that
  come with EST-coaps.  The specification of EST-coaps is intended to
  ensure that EST works for networks of constrained devices that choose
  to limit their communications stack to DTLS/CoAP.  It is up to the
  network designer to decide which devices execute the EST protocol and
  which do not.

8.  IANA Considerations

8.1.  Content-Formats Registry

  IANA has registered the following Content-Formats given in Table 5 in
  the "CoAP Content-Formats" subregistry within the "CoRE Parameters"
  registry [CORE-PARAMS].  These have been registered in the IETF
  Review or IESG Approval range (256-9999).

     +=================================+=====+====================+
     | Media Type                      |  ID | Reference          |
     +=================================+=====+====================+
     | application/pkcs7-mime; smime-  | 280 | [RFC7030]          |
     | type=server-generated-key       |     | [RFC8551] RFC 9148 |
     +---------------------------------+-----+--------------------+
     | application/pkcs7-mime; smime-  | 281 | [RFC8551] RFC 9148 |
     | type=certs-only                 |     |                    |
     +---------------------------------+-----+--------------------+
     | application/pkcs8               | 284 | [RFC5958]          |
     |                                 |     | [RFC8551] RFC 9148 |
     +---------------------------------+-----+--------------------+
     | application/csrattrs            | 285 | [RFC7030] RFC 9148 |
     +---------------------------------+-----+--------------------+
     | application/pkcs10              | 286 | [RFC5967]          |
     |                                 |     | [RFC8551] RFC 9148 |
     +---------------------------------+-----+--------------------+
     | application/pkix-cert           | 287 | [RFC2585] RFC 9148 |
     +---------------------------------+-----+--------------------+

                   Table 5: New CoAP Content-Formats

8.2.  Resource Type Registry

  IANA has registered the following Resource Type (rt=) Link Target
  Attributes given in Table 6 in the "Resource Type (rt=) Link Target
  Attribute Values" subregistry under the "Constrained RESTful
  Environments (CoRE) Parameters" registry.

    +==============+===================================+===========+
    | Value        | Description                       | Reference |
    +==============+===================================+===========+
    | ace.est.crts | This resource depicts the support | RFC 9148  |
    |              | of EST GET cacerts.               |           |
    +--------------+-----------------------------------+-----------+
    | ace.est.sen  | This resource depicts the support | RFC 9148  |
    |              | of EST simple enroll.             |           |
    +--------------+-----------------------------------+-----------+
    | ace.est.sren | This resource depicts the support | RFC 9148  |
    |              | of EST simple reenroll.           |           |
    +--------------+-----------------------------------+-----------+
    | ace.est.att  | This resource depicts the support | RFC 9148  |
    |              | of EST GET CSR attributes.        |           |
    +--------------+-----------------------------------+-----------+
    | ace.est.skg  | This resource depicts the support | RFC 9148  |
    |              | of EST server-side key generation |           |
    |              | with the returned certificate in  |           |
    |              | a PKCS #7 container.              |           |
    +--------------+-----------------------------------+-----------+
    | ace.est.skc  | This resource depicts the support | RFC 9148  |
    |              | of EST server-side key generation |           |
    |              | with the returned certificate in  |           |
    |              | application/pkix-cert format.     |           |
    +--------------+-----------------------------------+-----------+

        Table 6: New Resource Type (rt=) Link Target Attributes

8.3.  Well-Known URIs Registry

  IANA has added an additional reference to the est URI in the "Well-
  Known URIs" registry:

  URI Suffix:  est

  Change Controller:  IETF

  References:  [RFC7030] RFC 9148

  Status:  permanent

  Related Information:

  Date Registered:  2013-08-16

  Date Modified:  2020-04-29

9.  Security Considerations

9.1.  EST Server Considerations

  The security considerations in Section 6 of [RFC7030] are only
  partially valid for the purposes of this document.  As HTTP Basic
  Authentication is not supported, the considerations expressed for
  using passwords do not apply.  The other portions of the security
  considerations in [RFC7030] continue to apply.

  Modern security protocols require random numbers to be available
  during the protocol run, for example, for nonces and ephemeral (EC)
  Diffie-Hellman key generation.  This capability to generate random
  numbers is also needed when the constrained device generates the
  private key (that corresponds to the public key enrolled in the CSR).
  When server-side key generation is used, the constrained device
  depends on the server to generate the private key randomly, but it
  still needs locally generated random numbers for use in security
  protocols, as explained in Section 12 of [RFC7925].  Additionally,
  the transport of keys generated at the server is inherently risky.
  For those deploying server-side key generation, analysis SHOULD be
  done to establish whether server-side key generation increases or
  decreases the probability of digital identity theft.

  It is important to note that, as pointed out in [PsQs], sources
  contributing to the randomness pool used to generate random numbers
  on laptops or desktop PCs, such as mouse movement, timing of
  keystrokes, or air turbulence on the movement of hard drive heads,
  are not available on many constrained devices.  Other sources have to
  be used or dedicated hardware has to be added.  Selecting hardware
  for an IoT device that is capable of producing high-quality random
  numbers is therefore important [RSA-FACT].

  As discussed in Section 6 of [RFC7030], it is

  |  RECOMMENDED that the Implicit Trust Anchor database used for EST
  |  server authentication be carefully managed to reduce the chance of
  |  a third-party CA with poor certification practices from being
  |  trusted.  Disabling the Implicit Trust Anchor database after
  |  successfully receiving the Distribution of CA certificates
  |  response ([RFC7030], Section 6) limits any vulnerability to the
  |  first TLS exchange.

  Alternatively, in a case where a /sen request immediately follows a
  /crts, a client MAY choose to keep the connection authenticated by
  the Implicit TA open for efficiency reasons (Section 3).  A client
  that interleaves EST-coaps /crts request with other requests in the
  same DTLS connection SHOULD revalidate the server certificate chain
  against the updated Explicit TA from the /crts response before
  proceeding with the subsequent requests.  If the server certificate
  chain does not authenticate against the database, the client SHOULD
  close the connection without completing the rest of the requests.
  The updated Explicit TA MUST continue to be used in new DTLS
  connections.

  In cases where the Initial Device Identifier (IDevID) used to
  authenticate the client is expired, the server MAY still authenticate
  the client because IDevIDs are expected to live as long as the device
  itself (Section 3).  In such occasions, checking the certificate
  revocation status or authorizing the client using another method is
  important for the server to raise its confidence that the client can
  be trusted.

  In accordance with [RFC7030], TLS cipher suites that include
  "_EXPORT_" and "_DES_" in their names MUST NOT be used.  More
  recommendations for secure use of TLS and DTLS are included in
  [BCP195].

  As described in Certificate Management over CMS (CMC), Section 6.7 of
  [RFC5272], "For keys that can be used as signature keys, signing the
  certification request with the private key serves as a POP on that
  key pair".  In (D)TLS 1.2, the inclusion of tls-unique in the
  certificate request links the proof-of-possession to the (D)TLS
  proof-of-identity.  This implies but does not prove that only the
  authenticated client currently has access to the private key.

  What's more, CMC POP linking uses tls-unique as it is defined in
  [RFC5929].  The 3SHAKE attack [TRIPLESHAKE] poses a risk by allowing
  an on-path active attacker to leverage session resumption and
  renegotiation to inject itself between a client and server even when
  channel binding is in use.  Implementers should use the Extended
  Master Secret Extension in DTLS [RFC7627] to prevent such attacks.
  In the context of this specification, an attacker could invalidate
  the purpose of the POP linking challengePassword in the client
  request by resuming an EST-coaps connection.  Even though the
  practical risk of such an attack to EST-coaps is not devastating, we
  would rather use a more secure channel-binding mechanism.  In this
  specification, we still depend on the tls-unique mechanism defined in
  [RFC5929] for DTLS 1.2 because a 3SHAKE attack does not expose
  messages exchanged with EST-coaps.  But for DTLS 1.3,
  [TLS13-CHANNEL-BINDINGS] is used instead to derive a 32-byte tls-
  exporter binding in place of the tls-unique value in the CSR.  That
  would alleviate the risks from the 3SHAKE attack [TRIPLESHAKE].

  Interpreters of ASN.1 structures should be aware of the use of
  invalid ASN.1 length fields and should take appropriate measures to
  guard against buffer overflows, stack overruns in particular, and
  malicious content in general.

9.2.  HTTPS-CoAPS Registrar Considerations

  The Registrar proposed in Section 5 must be deployed with care and
  only when direct client-server connections are not possible.  When
  POP linking is used, the Registrar terminating the DTLS connection
  establishes a new TLS connection with the upstream CA.  Thus, it is
  impossible for POP linking to be enforced end to end for the EST
  transaction.  The EST server could be configured to accept POP
  linking information that does not match the current TLS session
  because the authenticated EST Registrar is assumed to have verified
  POP linking downstream to the client.

  The introduction of an EST-coaps-to-HTTP Registrar assumes the client
  can authenticate the Registrar using its implicit or explicit TA
  database.  It also assumes the Registrar has a trust relationship
  with the upstream EST server in order to act on behalf of the
  clients.  When a client uses the Implicit TA database for certificate
  validation, it SHOULD confirm if the server is acting as an RA by the
  presence of the id-kp-cmcRA EKU [RFC6402] in the server certificate.

  In a server-side key generation case, if no end-to-end encryption is
  used, the Registrar may be able see the private key as it acts as a
  man in the middle.  Thus, the client puts its trust on the Registrar
  not exposing the private key.

  Clients that leverage server-side key generation without end-to-end
  encryption of the private key (Section 4.8) have no knowledge as to
  whether the Registrar will be generating the private key and
  enrolling the certificates with the CA or if the CA will be
  responsible for generating the key.  In such cases, the existence of
  a Registrar requires the client to put its trust on the Registrar
  when it is generating the private key.

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2585]  Housley, R. and P. Hoffman, "Internet X.509 Public Key
             Infrastructure Operational Protocols: FTP and HTTP",
             RFC 2585, DOI 10.17487/RFC2585, May 1999,
             <https://www.rfc-editor.org/info/rfc2585>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC5958]  Turner, S., "Asymmetric Key Packages", RFC 5958,
             DOI 10.17487/RFC5958, August 2010,
             <https://www.rfc-editor.org/info/rfc5958>.

  [RFC5967]  Turner, S., "The application/pkcs10 Media Type", RFC 5967,
             DOI 10.17487/RFC5967, August 2010,
             <https://www.rfc-editor.org/info/rfc5967>.

  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
             January 2012, <https://www.rfc-editor.org/info/rfc6347>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <https://www.rfc-editor.org/info/rfc6690>.

  [RFC7030]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
             "Enrollment over Secure Transport", RFC 7030,
             DOI 10.17487/RFC7030, October 2013,
             <https://www.rfc-editor.org/info/rfc7030>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7925]  Tschofenig, H., Ed. and T. Fossati, "Transport Layer
             Security (TLS) / Datagram Transport Layer Security (DTLS)
             Profiles for the Internet of Things", RFC 7925,
             DOI 10.17487/RFC7925, July 2016,
             <https://www.rfc-editor.org/info/rfc7925>.

  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
             the Constrained Application Protocol (CoAP)", RFC 7959,
             DOI 10.17487/RFC7959, August 2016,
             <https://www.rfc-editor.org/info/rfc7959>.

  [RFC8075]  Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
             E. Dijk, "Guidelines for Mapping Implementations: HTTP to
             the Constrained Application Protocol (CoAP)", RFC 8075,
             DOI 10.17487/RFC8075, February 2017,
             <https://www.rfc-editor.org/info/rfc8075>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8422]  Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
             Curve Cryptography (ECC) Cipher Suites for Transport Layer
             Security (TLS) Versions 1.2 and Earlier", RFC 8422,
             DOI 10.17487/RFC8422, August 2018,
             <https://www.rfc-editor.org/info/rfc8422>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC8551]  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
             Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
             Message Specification", RFC 8551, DOI 10.17487/RFC8551,
             April 2019, <https://www.rfc-editor.org/info/rfc8551>.

  [RFC8710]  Fossati, T., Hartke, K., and C. Bormann, "Multipart
             Content-Format for the Constrained Application Protocol
             (CoAP)", RFC 8710, DOI 10.17487/RFC8710, February 2020,
             <https://www.rfc-editor.org/info/rfc8710>.

  [RFC9147]  Rescorla, E., Tschofenig, H., and N. Modadugu, "The
             Datagram Transport Layer Security (DTLS) Protocol Version
             1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
             <https://www.rfc-editor.org/info/rfc9147>.

10.2.  Informative References

  [BCP195]   Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, May 2015.

             <https://www.rfc-editor.org/info/bcp195>

  [CORE-PARAMS]
             IANA, "Constrained RESTful Environments (CoRE)
             Parameters",
             <https://www.iana.org/assignments/core-parameters/>.

  [IEEE802.15.4]
             IEEE, "IEEE 802.15.4-2020 - IEEE Standard for Low-Rate
             Wireless Networks", May 2020.

  [IEEE802.1AR]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Secure Device Identity", December 2009.

  [PKI-GUIDE]
             Moskowitz, R., Birkholz, H., Xia, L., and M. Richardson,
             "Guide for building an ECC pki", Work in Progress,
             Internet-Draft, draft-moskowitz-ecdsa-pki-10, 31 January
             2021, <https://datatracker.ietf.org/doc/html/draft-
             moskowitz-ecdsa-pki-10>.

  [PsQs]     Heninger, N., Durumeric, Z., Wustrow, E., and J. Alex
             Halderman, "Mining Your Ps and Qs: Detection of Widespread
             Weak Keys in Network Devices", USENIX Security Symposium
             2012, ISBN 978-931971-95-9, August 2012.

  [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
             over Low-Power Wireless Personal Area Networks (6LoWPANs):
             Overview, Assumptions, Problem Statement, and Goals",
             RFC 4919, DOI 10.17487/RFC4919, August 2007,
             <https://www.rfc-editor.org/info/rfc4919>.

  [RFC5272]  Schaad, J. and M. Myers, "Certificate Management over CMS
             (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
             <https://www.rfc-editor.org/info/rfc5272>.

  [RFC5929]  Altman, J., Williams, N., and L. Zhu, "Channel Bindings
             for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
             <https://www.rfc-editor.org/info/rfc5929>.

  [RFC6402]  Schaad, J., "Certificate Management over CMS (CMC)
             Updates", RFC 6402, DOI 10.17487/RFC6402, November 2011,
             <https://www.rfc-editor.org/info/rfc6402>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <https://www.rfc-editor.org/info/rfc7228>.

  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.

  [RFC7251]  McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
             CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
             TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
             <https://www.rfc-editor.org/info/rfc7251>.

  [RFC7299]  Housley, R., "Object Identifier Registry for the PKIX
             Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
             <https://www.rfc-editor.org/info/rfc7299>.

  [RFC7627]  Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
             Langley, A., and M. Ray, "Transport Layer Security (TLS)
             Session Hash and Extended Master Secret Extension",
             RFC 7627, DOI 10.17487/RFC7627, September 2015,
             <https://www.rfc-editor.org/info/rfc7627>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <https://www.rfc-editor.org/info/rfc7748>.

  [RFC9146]  Rescorla, E., Ed., Tschofenig, H., Ed., Fossati, T., and
             A. Kraus, "Connection Identifier for DTLS 1.2", RFC 9146,
             DOI 10.17487/RFC9146, March 2022,
             <https://www.rfc-editor.org/info/rfc9146>.

  [RSA-FACT] Bernstein, D., Chang, Y., Cheng, C., Chou, L., Heninger,
             N., Lange, T., and N. Someren, "Factoring RSA keys from
             certified smart cards: Coppersmith in the wild", Advances
             in Cryptology - ASIACRYPT 2013, August 2013.

  [TLS13-CHANNEL-BINDINGS]
             Whited, S., "Channel Bindings for TLS 1.3", Work in
             Progress, Internet-Draft, draft-ietf-kitten-tls-channel-
             bindings-for-tls13-15, 4 March 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-kitten-
             tls-channel-bindings-for-tls13-15>.

  [TRIPLESHAKE]
             Bhargavan, B., Delignat-Lavaud, A., Fournet, C., Pironti,
             A., and P. Strub, "Triple Handshakes and Cookie Cutters:
             Breaking and Fixing Authentication over TLS",
             ISBN 978-1-4799-4686-0, DOI 10.1109/SP.2014.14, May 2014,
             <https://doi.org/10.1109/SP.2014.14>.

Appendix A.  EST Messages to EST-coaps

  This section shows similar examples to the ones presented in
  Appendix A of [RFC7030].  The payloads in the examples are the hex-
  encoded binary, generated with 'xxd -p', of the PKI certificates
  created following [PKI-GUIDE].  Hex is used for visualization
  purposes because a binary representation cannot be rendered well in
  text.  The hexadecimal representations would not be transported in
  hex, but in binary.  The payloads are shown unencrypted.  In
  practice, the message content would be transferred over an encrypted
  DTLS channel.

  The certificate responses included in the examples contain Content-
  Format 281 (application/pkcs7).  If the client had requested Content-
  Format 287 (application/pkix-cert), the server would respond with a
  single DER binary certificate.  That certificate would be in a
  multipart-core container specifically in the case of a response to a
  /est/skc query.

  These examples assume a short resource path of "/est".  Even though
  omitted from the examples for brevity, before making the EST-coaps
  requests, a client would learn about the server supported EST-coaps
  resources with a GET request for /.well-known/core?rt=ace.est* as
  explained in Section 4.1.

  The corresponding CoAP headers are only shown in Appendix A.1.
  Creating CoAP headers is assumed to be generally understood.

  The message content is presented in plain text in Appendix C.

A.1.  cacerts

  In EST-coaps, a cacerts message can be the following:

  GET example.com:9085/est/crts
  (Accept:  281)

  The corresponding CoAP header fields are shown below.  The use of
  block and DTLS are shown in Appendix B.

    Ver = 1
    T = 0 (CON)
    Code = 0x01 (0.01 is GET)
    Token = 0x9a (client generated)
    Options
    Option (Uri-Host)
       Option Delta = 0x3  (option# 3)
       Option Length = 0xB
       Option Value = "example.com"
    Option (Uri-Port)
       Option Delta = 0x4  (option# 3+4=7)
       Option Length = 0x2
       Option Value = 9085
     Option (Uri-Path)
       Option Delta = 0x4   (option# 7+4=11)
       Option Length = 0x3
       Option Value = "est"
     Option (Uri-Path)
       Option Delta = 0x0   (option# 11+0=11)
       Option Length = 0x4
       Option Value = "crts"
     Option (Accept)
       Option Delta = 0x6   (option# 11+6=17)
       Option Length = 0x2
       Option Value = 281
    Payload = [Empty]

  As specified in Section 5.10.1 of [RFC7252], the Uri-Host and Uri-
  Port Options can be omitted if they coincide with the transport
  protocol destination address and port, respectively.

  A 2.05 Content response with a cert in EST-coaps will then be the
  following:

  2.05 Content (Content-Format: 281)
     {payload with certificate in binary format}

  With the following CoAP fields:

    Ver = 1
    T = 2 (ACK)
    Code = 0x45 (2.05 Content)
    Token = 0x9a   (copied from request by server)
    Options
      Option (Content-Format)
        Option Delta = 0xC  (option# 12)
        Option Length = 0x2
        Option Value = 281

    [ The hexadecimal representation below would NOT be transported
    in hex, but in binary. Hex is used because a binary representation
    cannot be rendered well in text. ]

    Payload =
  3082027a06092a864886f70d010702a082026b308202670201013100300b
  06092a864886f70d010701a082024d30820249308201efa0030201020208
  0b8bb0fe604f6a1e300a06082a8648ce3d0403023067310b300906035504
  0613025553310b300906035504080c024341310b300906035504070c024c
  4131143012060355040a0c0b4578616d706c6520496e6331163014060355
  040b0c0d63657274696669636174696f6e3110300e06035504030c07526f
  6f74204341301e170d3139303133313131323730335a170d333930313236
  3131323730335a3067310b3009060355040613025553310b300906035504
  080c024341310b300906035504070c024c4131143012060355040a0c0b45
  78616d706c6520496e6331163014060355040b0c0d636572746966696361
  74696f6e3110300e06035504030c07526f6f742043413059301306072a86
  48ce3d020106082a8648ce3d030107034200040c1b1e82ba8cc72680973f
  97edb8a0c72ab0d405f05d4fe29b997a14ccce89008313d09666b6ce375c
  595fcc8e37f8e4354497011be90e56794bd91ad951ab45a3818430818130
  1d0603551d0e041604141df1208944d77b5f1d9dcb51ee244a523f3ef5de
  301f0603551d230418301680141df1208944d77b5f1d9dcb51ee244a523f
  3ef5de300f0603551d130101ff040530030101ff300e0603551d0f0101ff
  040403020106301e0603551d110417301581136365727469667940657861
  6d706c652e636f6d300a06082a8648ce3d040302034800304502202b891d
  d411d07a6d6f621947635ba4c43165296b3f633726f02e51ecf464bd4002
  2100b4be8a80d08675f041fbc719acf3b39dedc85dc92b3035868cb2daa8
  f05db196a1003100

  The payload is shown in plain text in Appendix C.1.

A.2.  enroll / reenroll

  During the (re-)enroll exchange, the EST-coaps client uses a CSR
  (Content-Format 286) request in the POST request payload.  The Accept
  Option tells the server that the client is expecting Content-Format
  281 (PKCS #7) in the response.  As shown in Appendix C.2, the CSR
  contains a challengePassword, which is used for POP linking
  (Section 3).

  POST [2001:db8::2:321]:61616/est/sen
  (Token: 0x45)
  (Accept: 281)
  (Content-Format: 286)

  [ The hexadecimal representation below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  3082018b30820131020100305c310b3009060355040613025553310b3009
  06035504080c024341310b300906035504070c024c413114301206035504
  0a0c0b6578616d706c6520496e63310c300a060355040b0c03496f54310f
  300d060355040513065774313233343059301306072a8648ce3d02010608
  2a8648ce3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f
  028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75
  f602f9152618f816a2b23b5638e59fd9a073303406092a864886f70d0109
  0731270c2576437630292a264a4b4a3bc3a2c280c2992f3e3c2e2c3d6b6e
  7634332323403d204e787e60303b06092a864886f70d01090e312e302c30
  2a0603551d1104233021a01f06082b06010505070804a013301106092b06
  010401b43b0a01040401020304300a06082a8648ce3d0403020348003045
  02210092563a546463bd9ecff170d0fd1f2ef0d3d012160e5ee90cffedab
  ec9b9a38920220179f10a3436109051abad17590a09bc87c4dce5453a6fc
  1135a1e84eed754377

  After verification of the CSR by the server, a 2.04 Changed response
  with the issued certificate will be returned to the client.

  2.04 Changed
  (Token: 0x45)
  (Content-Format: 281)

  [ The hexadecimal representation below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  3082026e06092a864886f70d010702a082025f3082025b0201013100300b
  06092a864886f70d010701a08202413082023d308201e2a0030201020208
  7e7661d7b54e4632300a06082a8648ce3d040302305d310b300906035504
  0613025553310b300906035504080c02434131143012060355040a0c0b45
  78616d706c6520496e6331163014060355040b0c0d636572746966696361
  74696f6e3113301106035504030c0a3830322e3141522043413020170d31
  39303133313131323931365a180f39393939313233313233353935395a30
  5c310b3009060355040613025553310b300906035504080c024341310b30
  0906035504070c024c4131143012060355040a0c0b6578616d706c652049
  6e63310c300a060355040b0c03496f54310f300d06035504051306577431
  3233343059301306072a8648ce3d020106082a8648ce3d03010703420004
  c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50c
  ff958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b56
  38e59fd9a3818a30818730090603551d1304023000301d0603551d0e0416
  041496600d8716bf7fd0e752d0ac760777ad665d02a0301f0603551d2304
  183016801468d16551f951bfc82a431d0d9f08bc2d205b1160300e060355
  1d0f0101ff0404030205a0302a0603551d1104233021a01f06082b060105
  05070804a013301106092b06010401b43b0a01040401020304300a06082a
  8648ce3d0403020349003046022100c0d81996d2507d693f3c48eaa5ee94
  91bda6db214099d98117c63b361374cd86022100a774989f4c321a5cf25d
  832a4d336a08ad67df20f1506421188a0ade6d349236a1003100

  The request and response is shown in plain text in Appendix C.2.

A.3.  serverkeygen

  In a serverkeygen exchange, the CoAP POST request looks like the
  following:

  POST 192.0.2.1:8085/est/skg
  (Token: 0xa5)
  (Accept: 62)
  (Content-Format: 286)

  [ The hexadecimal representation below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  3081d03078020100301631143012060355040a0c0b736b67206578616d70
  6c653059301306072a8648ce3d020106082a8648ce3d03010703420004c8
  b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50cff
  958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b5638
  e59fd9a000300a06082a8648ce3d040302034800304502207c553981b1fe
  349249d8a3f50a0346336b7dfaa099cf74e1ec7a37a0a760485902210084
  79295398774b2ff8e7e82abb0c17eaef344a5088fa69fd63ee611850c34b
  0a

  The response would follow [RFC8710] and could look like the
  following:

  2.04 Changed
  (Token: 0xa5)
  (Content-Format: 62)

  [ The hexadecimal representations below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  84                                   # array(4)
  19 011C                              # unsigned(284)
  58 8A                                # bytes(138)
  308187020100301306072a8648ce3d020106082a8648ce3d030107046d30
  6b020101042061336a86ac6e7af4a96f632830ad4e6aa0837679206094d7
  679a01ca8c6f0c37a14403420004c8b421f11c25e47e3ac57123bf2d9fdc
  494f028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95
  cf75f602f9152618f816a2b23b5638e59fd9
  19 0119                              # unsigned(281)
  59 01D3                              # bytes(467)
  308201cf06092a864886f70d010702a08201c0308201bc0201013100300b
  06092a864886f70d010701a08201a23082019e30820144a0030201020209
  00b3313e8f3fc9538e300a06082a8648ce3d040302301631143012060355
  040a0c0b736b67206578616d706c65301e170d3139303930343037343430
  335a170d3339303833303037343430335a301631143012060355040a0c0b
  736b67206578616d706c653059301306072a8648ce3d020106082a8648ce
  3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351
  cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75f602f915
  2618f816a2b23b5638e59fd9a37b307930090603551d1304023000302c06
  096086480186f842010d041f161d4f70656e53534c2047656e6572617465
  64204365727469666963617465301d0603551d0e0416041496600d8716bf
  7fd0e752d0ac760777ad665d02a0301f0603551d2304183016801496600d
  8716bf7fd0e752d0ac760777ad665d02a0300a06082a8648ce3d04030203
  48003045022100e95bfa25a08976652246f2d96143da39fce0dc4c9b26b9
  cce1f24164cc2b12b602201351fd8eea65764e3459d324e4345ff5b2a915
  38c04976111796b3698bf6379ca1003100

  The private key in the response above is without CMS EnvelopedData
  and has no additional encryption beyond DTLS (Section 4.8).

  The request and response is shown in plain text in Appendix C.3.

A.4.  csrattrs

  The following is a csrattrs exchange:

  REQ:
  GET example.com:61616/est/att

  RES:
  2.05 Content
  (Content-Format: 285)

  [ The hexadecimal representation below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  307c06072b06010101011630220603883701311b131950617273652053455
  420617320322e3939392e31206461746106092a864886f70d010907302c06
  0388370231250603883703060388370413195061727365205345542061732
  0322e3939392e32206461746106092b240303020801010b06096086480165
  03040202

  A 2.05 Content response should contain attributes that are relevant
  for the authenticated client.  This example is copied from
  Appendix A.2 of [RFC7030], where the base64 representation is
  replaced with a hexadecimal representation of the equivalent binary
  format.  The EST-coaps server returns attributes that the client can
  ignore if they are unknown to the client.

Appendix B.  EST-coaps Block Message Examples

  Two examples are presented in this section:

  1.  A cacerts exchange shows the use of Block2 and the block headers.

  2.  An enroll exchange shows the Block1 and Block2 size negotiation
      for request and response payloads.

  The payloads are shown unencrypted.  In practice, the message
  contents would be binary formatted and transferred over an encrypted
  DTLS tunnel.  The corresponding CoAP headers are only shown in
  Appendix B.1.  Creating CoAP headers is assumed to be generally
  known.

B.1.  cacerts

  This section provides a detailed example of the messages using DTLS
  and CoAP Option Block2.  The example block length is taken as 64,
  which gives an SZX value of 2.

  The following is an example of a cacerts exchange over DTLS.  The
  content length of the cacerts response in Appendix A.1 of [RFC7030]
  contains 639 bytes in binary in this example.  The CoAP message adds
  around 10 bytes in this example, and the DTLS record around 29 bytes.
  To avoid IP fragmentation, the CoAP Block Option is used and an MTU
  of 127 is assumed to stay within one IEEE 802.15.4 packet.  To stay
  below the MTU of 127, the payload is split in 9 packets with a
  payload of 64 bytes each, followed by a last tenth packet of 63
  bytes.  The client sends an IPv6 packet containing a UDP datagram
  with DTLS record protection that encapsulates a CoAP request 10 times
  (one fragment of the request per block).  The server returns an IPv6
  packet containing a UDP datagram with the DTLS record that
  encapsulates the CoAP response.  The CoAP request-response exchange
  with block option is shown below.  Block Option is shown in a
  decomposed way (block-option:NUM/M/size) indicating the kind of Block
  Option (2 in this case) followed by a colon, and then the block
  number (NUM), the more bit (M = 0 in Block2 response means it is last
  block), and block size with exponent (2^(SZX+4)) separated by
  slashes.  The Length 64 is used with SZX=2.  The CoAP Request is sent
  Confirmable (CON), and the Content-Format of the response, even
  though not shown, is 281 (application/pkcs7-mime; smime-type=certs-
  only).  The transfer of the 10 blocks with partially filled block
  NUM=9 is shown below.

     GET example.com:9085/est/crts (2:0/0/64)  -->
                   <--   (2:0/1/64) 2.05 Content
     GET example.com:9085/est/crts (2:1/0/64)  -->
                   <--   (2:1/1/64) 2.05 Content
                                 |
                                 |
                                 |
     GET example.com:9085/est/crts (2:9/0/64) -->
                   <--   (2:9/0/64) 2.05 Content

  The header of the GET request looks like the following:

    Ver = 1
    T = 0 (CON)
    Code = 0x01 (0.1 GET)
    Token = 0x9a    (client generated)
    Options
     Option (Uri-Host)
       Option Delta = 0x3  (option# 3)
       Option Length = 0xB
       Option Value = "example.com"
     Option (Uri-Port)
       Option Delta = 0x4   (option# 3+4=7)
       Option Length = 0x2
       Option Value = 9085
     Option (Uri-Path)
       Option Delta = 0x4    (option# 7+4=11)
       Option Length = 0x3
       Option Value = "est"
     Option (Uri-Path)Uri-Path)
       Option Delta = 0x0    (option# 11+0=11)
       Option Length = 0x4
       Option Value = "crts"
     Option (Accept)
       Option Delta = 0x6   (option# 11+6=17)
       Option Length = 0x2
       Option Value = 281
    Payload = [Empty]

  The Uri-Host and Uri-Port Options can be omitted if they coincide
  with the transport protocol destination address and port,
  respectively.  Explicit Uri-Host and Uri-Port Options are typically
  used when an endpoint hosts multiple virtual servers and uses the
  Options to route the requests accordingly.

  To provide further details on the CoAP headers, the first two and the
  last blocks are written out below.  The header of the first Block2
  response looks like the following:

    Ver = 1
    T = 2 (ACK)
    Code = 0x45 (2.05 Content)
    Token = 0x9a     (copied from request by server)
    Options
      Option
        Option Delta = 0xC  (option# 12 Content-Format)
        Option Length = 0x2
        Option Value = 281
      Option
        Option Delta = 0xB  (option# 12+11=23 Block2)
        Option Length = 0x1
        Option Value = 0x0A (block#=0, M=1, SZX=2)

    [ The hexadecimal representation below would NOT be transported
    in hex, but in binary. Hex is used because a binary representation
    cannot be rendered well in text. ]

    Payload =
  3082027b06092a864886f70d010702a082026c308202680201013100300b
  06092a864886f70d010701a082024e3082024a308201f0a0030201020209
  009189bc

  The header of the second Block2 response looks like the following:

    Ver = 1
    T = 2 (means ACK)
    Code = 0x45 (2.05 Content)
    Token = 0x9a     (copied from request by server)
    Options
      Option
        Option Delta = 0xC  (option# 12 Content-Format)
        Option Length = 0x2
        Option Value = 281
      Option
        Option Delta = 0xB  (option 12+11=23 Block2)
        Option Length = 0x1
        Option Value = 0x1A (block#=1, M=1, SZX=2)

    [ The hexadecimal representation below would NOT be transported
    in hex, but in binary. Hex is used because a binary representation
    cannot be rendered well in text. ]

    Payload =
  df9c99244b300a06082a8648ce3d0403023067310b300906035504061302
  5553310b300906035504080c024341310b300906035504070c024c413114
  30120603

  The header of the tenth and final Block2 response looks like the
  following:

    Ver = 1
    T = 2 (means ACK)
    Code = 0x45      (2.05 Content)
    Token = 0x9a     (copied from request by server)
    Options
      Option
        Option Delta = 0xC  (option# 12 Content-Format)
        Option Length = 0x2
        Option Value = 281
      Option
        Option Delta = 0xB  (option# 12+11=23 Block2 )
        Option Length = 0x1
        Option Value = 0x92 (block#=9, M=0, SZX=2)

    [ The hexadecimal representation below would NOT be transported
    in hex, but in binary. Hex is used because a binary representation
    cannot be rendered well in text. ]

    Payload =
  2ec0b4af52d46f3b7ecc9687ddf267bcec368f7b7f1353272f022047a28a
  e5c7306163b3c3834bab3c103f743070594c089aaa0ac870cd13b902caa1
  003100

B.2.  enroll / reenroll

  In this example, the requested Block2 size of 256 bytes, required by
  the client, is transferred to the server in the very first request
  message.  The block size of 256 is equal to (2^(SZX+4)), which gives
  SZX=4.  The notation for block numbering is the same as in
  Appendix B.1.  The header fields and the payload are omitted for
  brevity.

  POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256)
                     {CSR (frag# 1)} -->

         <-- (ACK) (1:0/1/256) (2.31 Continue)
  POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256)
                     {CSR (frag# 2)} -->
         <-- (ACK) (1:1/1/256) (2.31 Continue)
                        .
                        .
                        .
  POST [2001:db8::2:1]:61616/est/sen (CON)(1:N1/0/256)
                     {CSR(frag# N1+1)}-->
                        |
      ...........Immediate response  .........
                        |
    <-- (ACK) (1:N1/0/256)(2:0/1/256)(2.04 Changed)
                     {Cert resp (frag# 1)}
  POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)           -->
    <-- (ACK) (2:1/1/256)(2.04 Changed)
                     {Cert resp (frag# 2)}
                        .
                        .
                        .
  POST [2001:db8::2:321]:61616/est/sen (CON)(2:N2/0/256)          -->
    <-- (ACK) (2:N2/0/256) (2.04 Changed)
                     {Cert resp (frag# N2+1)}

           Figure 6: EST-coaps Enrollment with Multiple Blocks

  N1+1 blocks have been transferred from client to server, and N2+1
  blocks have been transferred from server to client.

Appendix C.  Message Content Breakdown

  This appendix presents the hexadecimal dumps of the binary payloads
  in plain text shown in Appendix A.

C.1.  cacerts

  The cacerts response containing one root CA certificate is presented
  in plain text in the following:

  Certificate:
      Data:
          Version: 3 (0x2)
          Serial Number: 831953162763987486 (0xb8bb0fe604f6a1e)
      Signature Algorithm: ecdsa-with-SHA256
          Issuer: C=US, ST=CA, L=LA, O=Example Inc,
                    OU=certification, CN=Root CA
          Validity
              Not Before: Jan 31 11:27:03 2019 GMT
              Not After : Jan 26 11:27:03 2039 GMT
          Subject: C=US, ST=CA, L=LA, O=Example Inc,
                       OU=certification, CN=Root CA
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:0c:1b:1e:82:ba:8c:c7:26:80:97:3f:97:ed:b8:
                      a0:c7:2a:b0:d4:05:f0:5d:4f:e2:9b:99:7a:14:cc:
                      ce:89:00:83:13:d0:96:66:b6:ce:37:5c:59:5f:cc:
                      8e:37:f8:e4:35:44:97:01:1b:e9:0e:56:79:4b:d9:
                      1a:d9:51:ab:45
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          X509v3 extensions:
              X509v3 Subject Key Identifier:
  1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE
              X509v3 Authority Key Identifier:
                    keyid:
  1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE

              X509v3 Basic Constraints: critical
                  CA:TRUE
              X509v3 Key Usage: critical
                  Certificate Sign, CRL Sign
              X509v3 Subject Alternative Name:
                  email:[email protected]
      Signature Algorithm: ecdsa-with-SHA256
           30:45:02:20:2b:89:1d:d4:11:d0:7a:6d:6f:62:19:47:63:5b:
           a4:c4:31:65:29:6b:3f:63:37:26:f0:2e:51:ec:f4:64:bd:40:
           02:21:00:b4:be:8a:80:d0:86:75:f0:41:fb:c7:19:ac:f3:b3:
           9d:ed:c8:5d:c9:2b:30:35:86:8c:b2:da:a8:f0:5d:b1:96

C.2.  enroll / reenroll

  The enrollment request is presented in plain text in the following:

  Certificate Request:
      Data:
          Version: 0 (0x0)
          Subject: C=US, ST=CA, L=LA, O=example Inc,
                      OU=IoT/serialNumber=Wt1234
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                      9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                      0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                      be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                      56:38:e5:9f:d9
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          Attributes:
              challengePassword:   <256-bit POP linking value>
          Requested Extensions:
              X509v3 Subject Alternative Name:
                  othername:<unsupported>
      Signature Algorithm: ecdsa-with-SHA256
           30:45:02:21:00:92:56:3a:54:64:63:bd:9e:cf:f1:70:d0:fd:
           1f:2e:f0:d3:d0:12:16:0e:5e:e9:0c:ff:ed:ab:ec:9b:9a:38:
           92:02:20:17:9f:10:a3:43:61:09:05:1a:ba:d1:75:90:a0:9b:
           c8:7c:4d:ce:54:53:a6:fc:11:35:a1:e8:4e:ed:75:43:77

  The CSR contains a challengePassword, which is used for POP linking
  (Section 3).  The CSR also contains an id-on-hardwareModuleName
  hardware identifier to customize the returned certificate to the
  requesting device (See [RFC7299] and [PKI-GUIDE]).

  The issued certificate presented in plain text in the following:

  Certificate:
      Data:
          Version: 3 (0x2)
          Serial Number: 9112578475118446130 (0x7e7661d7b54e4632)
      Signature Algorithm: ecdsa-with-SHA256
          Issuer: C=US, ST=CA, O=Example Inc,
                        OU=certification, CN=802.1AR CA
          Validity
              Not Before: Jan 31 11:29:16 2019 GMT
              Not After : Dec 31 23:59:59 9999 GMT
          Subject: C=US, ST=CA, L=LA, O=example Inc,
                  OU=IoT/serialNumber=Wt1234
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                      9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                      0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                      be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                      56:38:e5:9f:d9
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          X509v3 extensions:
              X509v3 Basic Constraints:
                  CA:FALSE
              X509v3 Subject Key Identifier:
  96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
              X509v3 Authority Key Identifier:
                  keyid:
  68:D1:65:51:F9:51:BF:C8:2A:43:1D:0D:9F:08:BC:2D:20:5B:11:60

              X509v3 Key Usage: critical
                  Digital Signature, Key Encipherment
              X509v3 Subject Alternative Name:
                  othername:<unsupported>
      Signature Algorithm: ecdsa-with-SHA256
           30:46:02:21:00:c0:d8:19:96:d2:50:7d:69:3f:3c:48:ea:a5:
           ee:94:91:bd:a6:db:21:40:99:d9:81:17:c6:3b:36:13:74:cd:
           86:02:21:00:a7:74:98:9f:4c:32:1a:5c:f2:5d:83:2a:4d:33:
           6a:08:ad:67:df:20:f1:50:64:21:18:8a:0a:de:6d:34:92:36

C.3.  serverkeygen

  The following is the server-side key generation request presented in
  plain text:

  Certificate Request:
      Data:
          Version: 0 (0x0)
          Subject: O=skg example
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                      9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                      0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                      be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                      56:38:e5:9f:d9
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          Attributes:
              a0:00
      Signature Algorithm: ecdsa-with-SHA256
           30:45:02:20:7c:55:39:81:b1:fe:34:92:49:d8:a3:f5:0a:03:
           46:33:6b:7d:fa:a0:99:cf:74:e1:ec:7a:37:a0:a7:60:48:59:
           02:21:00:84:79:29:53:98:77:4b:2f:f8:e7:e8:2a:bb:0c:17:
           ea:ef:34:4a:50:88:fa:69:fd:63:ee:61:18:50:c3:4b:0a

  The following is the private key content of the server-side key
  generation response presented in plain text:

  Private-Key: (256 bit)
  priv:
      61:33:6a:86:ac:6e:7a:f4:a9:6f:63:28:30:ad:4e:
      6a:a0:83:76:79:20:60:94:d7:67:9a:01:ca:8c:6f:
      0c:37
  pub:
      04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
      9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
      0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
      be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
      56:38:e5:9f:d9
  ASN1 OID: prime256v1
  NIST CURVE: P-256

  The following is the certificate in the server-side key generation
  response payload presented in plain text:

  Certificate:
      Data:
          Version: 3 (0x2)
          Serial Number:
              b3:31:3e:8f:3f:c9:53:8e
      Signature Algorithm: ecdsa-with-SHA256
          Issuer: O=skg example
          Validity
              Not Before: Sep  4 07:44:03 2019 GMT
              Not After : Aug 30 07:44:03 2039 GMT
          Subject: O=skg example
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                      9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                      0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                      be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                      56:38:e5:9f:d9
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          X509v3 extensions:
              X509v3 Basic Constraints:
                  CA:FALSE
              Netscape Comment:
                  OpenSSL Generated Certificate
              X509v3 Subject Key Identifier:
  96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
              X509v3 Authority Key Identifier:
                  keyid:
  96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0

      Signature Algorithm: ecdsa-with-SHA256
           30:45:02:21:00:e9:5b:fa:25:a0:89:76:65:22:46:f2:d9:61:
           43:da:39:fc:e0:dc:4c:9b:26:b9:cc:e1:f2:41:64:cc:2b:12:
           b6:02:20:13:51:fd:8e:ea:65:76:4e:34:59:d3:24:e4:34:5f:
           f5:b2:a9:15:38:c0:49:76:11:17:96:b3:69:8b:f6:37:9c

Acknowledgements

  The authors are very grateful to Klaus Hartke for his detailed
  explanations on the use of Block with DTLS and his support for the
  Content-Format specification.  The authors would like to thank Esko
  Dijk and Michael Verschoor for the valuable discussions that helped
  in shaping the solution.  They would also like to thank Peter
  Panburana for his feedback on technical details of the solution.
  Constructive comments were received from Benjamin Kaduk, Eliot Lear,
  Jim Schaad, Hannes Tschofenig, Julien Vermillard, John Manuel, Oliver
  Pfaff, Pete Beal, and Carsten Bormann.

  Interop tests were done by Oliver Pfaff, Thomas Werner, Oskar
  Camezind, Bjorn Elmers, and Joel Hoglund.

  Robert Moskowitz provided code to create the examples.

Contributors

  Martin Furuhed contributed to the EST-coaps specification by
  providing feedback based on the Nexus EST-over-CoAPS server
  implementation that started in 2015.  Sandeep Kumar kick-started this
  specification and was instrumental in drawing attention to the
  importance of the subject.

Authors' Addresses

  Peter van der Stok
  Consultant
  Email: [email protected]


  Panos Kampanakis
  Cisco Systems
  Email: [email protected]


  Michael C. Richardson
  Sandelman Software Works
  Email: [email protected]
  URI:   https://www.sandelman.ca/


  Shahid Raza
  RISE Research Institutes of Sweden
  Isafjordsgatan 22
  SE-16440 Kista, Stockholm
  Sweden
  Email: [email protected]