Internet Engineering Task Force (IETF)                           T. Aura
Request for Comments: 9140                              Aalto University
Category: Standards Track                                       M. Sethi
ISSN: 2070-1721                                                 Ericsson
                                                            A. Peltonen
                                                       Aalto University
                                                          December 2021


         Nimble Out-of-Band Authentication for EAP (EAP-NOOB)

Abstract

  The Extensible Authentication Protocol (EAP) provides support for
  multiple authentication methods.  This document defines the EAP-NOOB
  authentication method for nimble out-of-band (OOB) authentication and
  key derivation.  The EAP method is intended for bootstrapping all
  kinds of Internet-of-Things (IoT) devices that have no preconfigured
  authentication credentials.  The method makes use of a user-assisted,
  one-directional, out-of-band (OOB) message between the peer device
  and authentication server to authenticate the in-band key exchange.
  The device must have a nonnetwork input or output interface, such as
  a display, microphone, speaker, or blinking light, that can send or
  receive dynamically generated messages of tens of bytes in length.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9140.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  EAP-NOOB Method
    3.1.  Protocol Overview
    3.2.  Protocol Messages and Sequences
      3.2.1.  Common Handshake in All EAP-NOOB Exchanges
      3.2.2.  Initial Exchange
      3.2.3.  OOB Step
      3.2.4.  Completion Exchange
      3.2.5.  Waiting Exchange
    3.3.  Protocol Data Fields
      3.3.1.  Peer Identifier and NAI
      3.3.2.  Message Data Fields
    3.4.  Fast Reconnect and Rekeying
      3.4.1.  Persistent EAP-NOOB Association
      3.4.2.  Reconnect Exchange
      3.4.3.  User Reset
    3.5.  Key Derivation
    3.6.  Error Handling
      3.6.1.  Invalid Messages
      3.6.2.  Unwanted Peer
      3.6.3.  State Mismatch
      3.6.4.  Negotiation Failure
      3.6.5.  Cryptographic Verification Failure
      3.6.6.  Application-Specific Failure
  4.  ServerInfo and PeerInfo Contents
  5.  IANA Considerations
    5.1.  Cryptosuites
    5.2.  Message Types
    5.3.  Error Codes
    5.4.  ServerInfo Data Fields
    5.5.  PeerInfo Data Fields
    5.6.  Domain Name Reservation
    5.7.  Guidance for Designated Experts
  6.  Security Considerations
    6.1.  Authentication Principle
    6.2.  Identifying Correct Endpoints
    6.3.  Trusted Path Issues and Misbinding Attacks
    6.4.  Peer Identifiers and Attributes
    6.5.  Downgrading Threats
    6.6.  Protected Success and Failure Indications
    6.7.  Channel Binding
    6.8.  Denial of Service
    6.9.  Recovery from Loss of Last Message
    6.10. Privacy Considerations
    6.11. EAP Security Claims
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Appendix A.  Exchanges and Events per State
  Appendix B.  Application-Specific Parameters
  Appendix C.  EAP-NOOB Roaming
  Appendix D.  OOB Message as a URL
  Acknowledgments
  Authors' Addresses

1.  Introduction

  This document describes a method for registration, authentication,
  and key derivation for network-connected smart devices, such as
  consumer and enterprise appliances that are part of the Internet of
  Things (IoT).  These devices may be off-the-shelf hardware that is
  sold and distributed without any prior registration or credential-
  provisioning process, or they may be recycled devices after a hard
  reset.  Thus, the device registration in a server database, ownership
  of the device, and the authentication credentials for both network
  access and application-level security must all be established at the
  time of the device deployment.  Furthermore, many such devices have
  only limited user interfaces that could be used for their
  configuration.  Often, the user interfaces are limited to either only
  input (e.g., a camera) or output (e.g., a display screen).  The
  device configuration is made more challenging by the fact that the
  devices may exist in large numbers and may have to be deployed or
  reconfigured nimbly based on user needs.

  To summarize, devices may have the following characteristics:

  *  no preestablished relation with the intended server or user,

  *  no preprovisioned device identifier or authentication credentials,
     or

  *  an input or output interface that may be capable of only one-
     directional out-of-band communication.

  Many proprietary out-of-band (OOB) configuration methods exist for
  specific IoT devices.  The goal of this specification is to provide
  an open standard and a generic protocol for bootstrapping the
  security of network-connected appliances, such as displays, printers,
  speakers, and cameras.  The security bootstrapping in this
  specification makes use of a user-assisted OOB channel.  The device
  authentication relies on a user having physical access to the device,
  and the key exchange security is based on the assumption that
  attackers are not able to observe or modify the messages conveyed
  through the OOB channel.  We follow the common approach taken in
  pairing protocols: performing a Diffie-Hellman key exchange over the
  insecure network and authenticating the established key with the help
  of the OOB channel in order to prevent impersonation attacks.

  The solution presented here is intended for devices that have either
  a nonnetwork input or output interface, such as a camera, microphone,
  display screen, speaker, or blinking Light Emitting Diode (LED)
  light, that is able to send or receive dynamically generated messages
  of tens of bytes in length.  Naturally, this solution may not be
  appropriate for very small sensors or actuators that have no user
  interface at all or for devices that are inaccessible to the user.
  We also assume that the OOB channel is at least partly automated
  (e.g., a camera scanning a bar code); thus, there is no need to
  absolutely minimize the length of the data transferred through the
  OOB channel.  This differs, for example, from Bluetooth pairing
  [Bluetooth], where it is essential to minimize the length of the
  manually transferred or compared codes.  The OOB messages in this
  specification are dynamically generated.  Thus, we do not support
  static printed registration codes.  One reason for requiring dynamic
  OOB messages is that the receipt of the OOB message authorizes the
  server to take ownership of the device.  Dynamic OOB messages are
  more secure than static printed codes, which could be leaked and
  later misused.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  In addition, this document frequently uses the following terms as
  they have been defined in [RFC5216]:

  authenticator
        The entity initiating EAP authentication.

  peer
        The entity that responds to the authenticator.  In
        [IEEE-802.1X], this entity is known as the supplicant.  (We use
        the terms peer, device, and peer device interchangeably.)

  server
        The entity that terminates the EAP authentication method with
        the peer.  In the case where no backend authentication server
        is used, the EAP server is part of the authenticator.  In the
        case where the authenticator operates in pass-through mode, the
        EAP server is located on the backend authentication server.

3.  EAP-NOOB Method

  This section defines the EAP-NOOB method.  The protocol is a
  generalized version of the original idea presented by Sethi et al.
  [Sethi14].

3.1.  Protocol Overview

  One EAP-NOOB method execution spans two or more EAP conversations,
  called Exchanges in this specification.  Each Exchange consists of
  several EAP request-response pairs.  At least two separate EAP
  conversations are needed to give the human user time to deliver the
  OOB message between them.

  The overall protocol starts with the Initial Exchange, which
  comprises four EAP request-response pairs.  In the Initial Exchange,
  the server allocates an identifier to the peer, and the server and
  peer negotiate the protocol version and cryptosuite (i.e.,
  cryptographic algorithm suite), exchange nonces, and perform an
  Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key exchange.  The
  user-assisted OOB Step then takes place.  This step requires only one
  out-of-band message, either from the peer to the server or from the
  server to the peer.  While waiting for the OOB Step action, the peer
  MAY probe the server by reconnecting to it with EAP-NOOB.  If the OOB
  Step has already taken place, the probe leads to the Completion
  Exchange, which completes the mutual authentication and key
  confirmation.  On the other hand, if the OOB Step has not yet taken
  place, the probe leads to the Waiting Exchange, and the peer will
  perform another probe after a server-defined minimum waiting time.
  The Initial Exchange and Waiting Exchange always end in EAP-Failure,
  while the Completion Exchange may result in EAP-Success.  Once the
  peer and server have performed a successful Completion Exchange, both
  endpoints store the created association in persistent storage, and
  the OOB Step is not repeated.  Thereafter, creation of new temporal
  keys, ECDHE rekeying, and updates of cryptographic algorithms can be
  achieved with the Reconnect Exchange.

                                      OOB Output/Initial Exchange/
                                                 Waiting Exchange
                                                   .-----.
                                                   |     v
       .------------------.   Initial       .------------------.
       |                  |   Exchange      |                  |
    .->| Unregistered (0) |---------------->|Waiting for OOB(1)|
    |  |   (ephemeral)    |                 |   (ephemeral)    |
    |  |                  |                 |                  |
    |  '------------------'                 '------------------'
    |                                         |      |      ^
   User Reset                 Completion      |      |      |
    |                         Exchange        |     OOB   OOB
    |<-------.      .-------------------------'    Input  Reject/
    |        |      |                                |    Initial
    |        |      |                                |    Exchange
    |        |      v                                v      |
    |  .------------------.   Completion    .------------------.
    |  |                  |   Exchange      |                  |
    |  |  Registered (4)  |<----------------| OOB Received (2) |
    |  |   (persistent)   |                 |   (ephemeral)    |
    |  |                  |                 |                  |
    |  '------------------'                 '------------------'
    |        |      ^
    |  Mobility/    |
    |  Timeout/   Reconnect
    |  Failure    Exchange
    |        |      |
    |        v      |
    |  .------------------.
    |  |                  |
    '--| Reconnecting (3) |
       |   (persistent)   |
       |                  |
       '------------------'

         Figure 1: EAP-NOOB Server-Peer Association State Machine

  Figure 1 shows the association state machine, which is the same for
  the server and for the peer.  (For readability, only the main state
  transitions are shown.  The complete table of transitions can be
  found in Appendix A.)  When the peer initiates the EAP-NOOB method,
  the server chooses the ensuing message exchange based on the
  combination of the server and peer states.  The EAP server and peer
  are initially in the Unregistered (0) state, in which no state
  information needs to be stored.  Before a successful Completion
  Exchange, the server-peer association state is ephemeral in both the
  server and peer (ephemeral states 0..2), and a timeout or error may
  cause one or both endpoints to go back to the Unregistered (0) state
  so that the Initial Exchange is repeated.  After the Completion
  Exchange has resulted in EAP-Success, the association state becomes
  persistent (persistent states 3..4).  Only user reset or memory
  failure can cause the return of the server or the peer from the
  persistent states to the ephemeral states and to the Initial
  Exchange.

  The server MUST NOT repeat a successful OOB Step with the same peer
  except if the association with the peer is explicitly reset by the
  user or lost due to failure of the persistent storage in the server.
  More specifically, once the association has entered the Registered
  (4) state, the server MUST NOT delete the association or go back to
  the ephemeral states 0..2 without explicit user approval.  Similarly,
  the peer MUST NOT repeat the OOB Step unless the user explicitly
  deletes the association with the server from the peer or resets the
  peer to the Unregistered (0) state.  The server and peer MAY
  implement user reset of the association by deleting the state data
  from that endpoint.  If an endpoint continues to store data about the
  association after the user reset, its behavior MUST be equivalent to
  having deleted the association data.

  It can happen that the peer accidentally (or through user reset)
  loses its persistent state and reconnects to the server without a
  previously allocated peer identifier.  In that case, the server MUST
  treat the peer as a new peer.  The server MAY use auxiliary
  information, such as the PeerInfo field received in the Initial
  Exchange, to detect multiple associations with the same peer.
  However, it MUST NOT delete or merge redundant associations without
  user or application approval because EAP-NOOB internally has no
  secure way of verifying that the two peers are the same physical
  device.  Similarly, the server might lose the association state
  because of a memory failure or user reset.  In that case, the only
  way to recover is that the user also resets the peer.

  A special feature of the EAP-NOOB method is that the server is not
  assumed to have any a priori knowledge of the peer.  Therefore, the
  peer initially uses the generic identity string "[email protected]"
  as its Network Access Identifier (NAI).  The server then allocates a
  server-specific identifier to the peer.  The generic NAI serves two
  purposes: firstly, it tells the server that the peer supports and
  expects the EAP-NOOB method; secondly, it allows routing of the EAP-
  NOOB sessions to a specific authentication server in an
  Authentication, Authorization, and Accounting (AAA) architecture.

  EAP-NOOB is an unusual EAP method in that the peer has to have
  multiple EAP conversations with the server before it can receive EAP-
  Success.  The reason is that, while EAP allows delays between the
  request-response pairs, e.g., for repeated password entry, the user
  delays in OOB authentication can be much longer than in password
  trials.  Moreover, EAP-NOOB supports peers with no input capability
  in the user interface (e.g., LED light bulbs).  Since users cannot
  initiate the protocol in these devices, the devices have to perform
  the Initial Exchange opportunistically and hope for the OOB Step to
  take place within a timeout period (NoobTimeout), which is why the
  timeout needs to be several minutes rather than seconds.  To support
  such high-latency OOB channels, the peer and server perform the
  Initial Exchange in one EAP conversation, then allow time for the OOB
  message to be delivered, and later perform the Waiting Exchange and
  Completion Exchange in different EAP conversations.

3.2.  Protocol Messages and Sequences

  This section defines the EAP-NOOB exchanges, which correspond to EAP
  conversations.  The exchanges start with a common handshake, which
  determines the type of the following exchange.  The common handshake
  messages and the subsequent messages for each exchange type are
  listed in the diagrams below.  The diagrams also specify the data
  fields present in each message.  Each exchange comprises multiple EAP
  request-response pairs and ends in either EAP-Failure, indicating
  that authentication is not (yet) successful, or in EAP-Success.

3.2.1.  Common Handshake in All EAP-NOOB Exchanges

  All EAP-NOOB exchanges start with common handshake messages.  The
  handshake begins with the identity request and response that are
  common to all EAP methods.  Their purpose is to enable the AAA
  architecture to route the EAP conversation to the EAP server and to
  enable the EAP server to select the EAP method.  The handshake then
  continues with one EAP-NOOB request-response pair in which the server
  discovers the peer identifier used in EAP-NOOB and the peer state.

  In more detail, each EAP-NOOB exchange begins with the authenticator
  sending an EAP-Request/Identity packet to the peer.  From this point
  on, the EAP conversation occurs between the server and the peer, and
  the authenticator acts as a pass-through device.  The peer responds
  to the authenticator with an EAP-Response/Identity packet, which
  contains the Network Access Identifier (NAI).  The authenticator,
  acting as a pass-through device, forwards this response and the
  following EAP conversation between the peer and the AAA architecture.
  The AAA architecture routes the conversation to a specific AAA server
  (called "EAP server" or simply "server" in this specification) based
  on the realm part of the NAI.  The server selects the EAP-NOOB method
  based on the user part of the NAI, as defined in Section 3.3.1.

  After receiving the EAP-Response/Identity message, the server sends
  the first EAP-NOOB request (Type=1) to the peer, which responds with
  the peer identifier (PeerId) and state (PeerState) in the range 0..3.
  However, the peer SHOULD omit the PeerId from the response (Type=1)
  when PeerState=0.  The server then chooses the EAP-NOOB exchange,
  i.e., the ensuing message sequence, as explained below.  The peer
  recognizes the exchange based on the message type field (Type) of the
  next EAP-NOOB request received from the server.

  The server MUST determine the exchange type based on the combination
  of the peer and server states as follows (also summarized in
  Table 14).  If either the peer or server is in the Unregistered (0)
  state and the other is in one of the ephemeral states (0..2), the
  server chooses the Initial Exchange.  If either the peer or server is
  in the OOB Received (2) state and the other is either in the Waiting
  for OOB (1) or OOB Received (2) state, the OOB Step has taken place
  and the server chooses the Completion Exchange.  If both the server
  and peer are in the Waiting for OOB (1) state, the server chooses the
  Waiting Exchange.  If the peer is in the Reconnecting (3) state and
  the server is in the Registered (4) or Reconnecting (3) state, the
  server chooses the Reconnect Exchange.  All other state combinations
  are error situations where user action is required, and the server
  SHOULD indicate such errors to the peer with the error code 2002 (see
  Section 3.6.3).  Note also that the peer MUST NOT initiate EAP-NOOB
  when the peer is in the Registered (4) state.


        EAP Peer                      Authenticator    EAP Server
          |                                   |              |
          |<----------- EAP-Request/Identity -|              |
          |                                                  |
          |                                                  |
          |------------ EAP-Response/Identity -------------->|
          |      ([email protected])                    |
          |                                                  |
          |                                                  |
          |<----------- EAP-Request/EAP-NOOB ----------------|
          |      (Type=1)                                    |
          |                                                  |
          |                                                  |
          |------------ EAP-Response/EAP-NOOB -------------->|
          |      (Type=1,[PeerId],PeerState=1)               |
          |                                                  |
          |  continuing with exchange-specific messages...   |

           Figure 2: Common Handshake in All EAP-NOOB Exchanges

3.2.2.  Initial Exchange

  The Initial Exchange comprises the common handshake and two further
  EAP-NOOB request-response pairs: one for version, cryptosuite, and
  parameter negotiation and the other for the ECDHE key exchange.  The
  first EAP-NOOB request (Type=2) from the server contains a newly
  allocated PeerId for the peer and an optional NewNAI for assigning a
  new NAI to the peer.  The server allocates a new PeerId in the
  Initial Exchange regardless of any old PeerId received in the
  previous response (Type=1).  The server also sends in the request a
  list of the protocol versions (Vers) and cryptosuites (Cryptosuites)
  it supports, an indicator of the OOB channel directions it supports
  (Dirs), and a ServerInfo object.  The peer chooses one of the
  versions and cryptosuites.  The peer sends a response (Type=2) with
  the selected protocol version (Verp), the received PeerId, the
  selected cryptosuite (Cryptosuitep), an indicator of the OOB channel
  direction(s) selected by the peer (Dirp), and a PeerInfo object.  In
  the second EAP-NOOB request and response (Type=3), the server and
  peer exchange the public components of their ECDHE keys and nonces
  (PKs, Ns, PKp, and Np).  The ECDHE keys MUST be based on the
  negotiated cryptosuite, i.e., Cryptosuitep.  The Initial Exchange
  always ends with EAP-Failure from the server because the
  authentication cannot yet be completed.

       EAP Peer                                        EAP Server
         |       ...continuing from common handshake        |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=2,Vers,PeerId,[NewNAI],               |
         |       Cryptosuites,Dirs,ServerInfo)              |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=2,Verp,PeerId,Cryptosuitep,           |
         |        Dirp,PeerInfo)                            |
         |                                                  |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=3,PeerId,PKs,Ns,[SleepTime])          |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=3,PeerId,PKp,Np)                      |
         |                                                  |
         |                                                  |
         |<----------- EAP-Failure -------------------------|
         |                                                  |

                        Figure 3: Initial Exchange

  At the conclusion of the Initial Exchange, both the server and the
  peer move to the Waiting for OOB (1) state.

3.2.3.  OOB Step

  The OOB Step, labeled as OOB Output and OOB Input in Figure 1, takes
  place after the Initial Exchange.  Depending on the negotiated OOB
  channel direction, the peer or the server outputs the OOB message as
  shown in Figures 4 or 5, respectively.  The data fields are the
  PeerId, the secret nonce Noob, and the cryptographic fingerprint
  Hoob.  The contents of the data fields are defined in Section 3.3.2.
  The OOB message is delivered to the other endpoint via a user-
  assisted OOB channel.

  For brevity, we will use the terms OOB sender and OOB receiver in
  addition to the already familiar EAP server and EAP peer.  If the OOB
  message is sent in the server-to-peer direction, the OOB sender is
  the server and the OOB receiver is the peer.  On the other hand, if
  the OOB message is sent in the peer-to-server direction, the OOB
  sender is the peer and the OOB receiver is the server.

       EAP Peer                                        EAP Server
         |                                                  |
         |=================OOB=============================>|
         |             (PeerId,Noob,Hoob)                   |
         |                                                  |

               Figure 4: OOB Step, from Peer to EAP Server


       EAP Peer                                        EAP Server
         |                                                  |
         |<================OOB==============================|
         |             (PeerId,Noob,Hoob)                   |
         |                                                  |

               Figure 5: OOB Step, from EAP Server to Peer

  The OOB receiver MUST compare the received value of the fingerprint
  Hoob (see Section 3.3.2) with a value that it computed locally for
  the PeerID received.  This integrity check ensures that the endpoints
  agree on contents of the Initial Exchange.  If the values are equal,
  the receiver moves to the OOB Received (2) state.  Otherwise, the
  receiver MUST reject the OOB message.  For usability reasons, the OOB
  receiver SHOULD indicate the acceptance or rejection of the OOB
  message to the user.  The receiver SHOULD reject invalid OOB messages
  without changing its state in the association state machine until an
  application-specific number of invalid messages (OobRetries) has been
  reached; after which, the receiver SHOULD consider it an error and go
  back to the Unregistered (0) state.

  The server or peer MAY send multiple OOB messages with different Noob
  values while in the Waiting for OOB (1) state.  The OOB sender SHOULD
  remember the Noob values until they expire and accept any one of them
  in the following Completion Exchange.  The Noob values sent by the
  server expire after an application-dependent timeout (NoobTimeout),
  and the server MUST NOT accept Noob values older than that in the
  Completion Exchange.  The RECOMMENDED value for NoobTimeout is 3600
  seconds if there are no application-specific reasons for making it
  shorter or longer.  The Noob values sent by the peer expire, as
  defined in Section 3.2.5.

  The OOB receiver does not accept further OOB messages after it has
  accepted one and moved to the OOB Received (2) state.  However, the
  receiver MAY buffer redundant OOB messages in case an OOB message
  expiry or similar error detected in the Completion Exchange causes it
  to return to the Waiting for OOB (1) state.  It is RECOMMENDED that
  the OOB receiver notifies the user about redundant OOB messages, but
  it MAY instead discard them silently.

  The sender will typically generate a new Noob, and therefore a new
  OOB message, at constant time intervals (NoobInterval).  The
  RECOMMENDED interval is

     NoobInterval = NoobTimeout / 2

  in which case, the receiver of the OOB will at any given time accept
  either of the two latest Noob values.  However, the timing of the
  Noob generation may also be based on user interaction or on
  implementation considerations.

  Even though not recommended (see Section 3.3), this specification
  allows both directions to be negotiated (Dirp=3) for the OOB channel.
  In that case, both sides SHOULD output the OOB message, and it is up
  to the user to deliver at least one of them.

  The details of the OOB channel implementation including the message
  encoding are defined by the application.  Appendix D gives an example
  of how the OOB message can be encoded as a URL that may be embedded
  in a dynamic QR code or NFC (Near Field Communication) tag.

3.2.4.  Completion Exchange

  After the Initial Exchange, if the OOB channel directions selected by
  the peer include the peer-to-server direction, the peer SHOULD
  initiate the EAP-NOOB method again after an applications-specific
  waiting time in order to probe for completion of the OOB Step.  If
  the OOB channel directions selected by the peer include the server-
  to-peer direction and the peer receives the OOB message, it SHOULD
  initiate the EAP-NOOB method immediately.  Depending on the
  combination of the peer and server states, the server continues with
  the Completion Exchange or Waiting Exchange (see Section 3.2.1 on how
  the server makes this decision).

  The Completion Exchange comprises the common handshake and one or two
  further EAP-NOOB request-response pairs.  If the peer is in the
  Waiting for OOB (1) state, the OOB message has been sent in the peer-
  to-server direction.  In that case, only one request-response pair
  (Type=6) takes place.  In the request, the server sends the NoobId
  value (see Section 3.3.2), which the peer uses to identify the exact
  OOB message received by the server.  On the other hand, if the peer
  is in the OOB Received (2) state, the direction of the OOB message is
  from server to peer.  In this case, two request-response pairs
  (Type=5 and Type=6) are needed.  The purpose of the first request-
  response pair (Type=5) is that it enables the server to discover
  NoobId, which identifies the exact OOB message received by the peer.
  The server returns the same NoobId to the peer in the latter request.

  In the last request-response pair (Type=6) of the Completion
  Exchange, the server and peer exchange message authentication codes.
  Both sides MUST compute the keys Kms and Kmp, as defined in
  Section 3.5, and the message authentication codes MACs and MACp, as
  defined in Section 3.3.2.  Both sides MUST compare the received
  message authentication code with a locally computed value.  If the
  peer finds that it has received the correct value of MACs and the
  server finds that it has received the correct value of MACp, the
  Completion Exchange ends in EAP-Success.  Otherwise, the endpoint
  where the comparison fails indicates this with an error message
  (error code 4001, see Section 3.6.5), and the Completion Exchange
  ends in EAP-Failure.

  After the successful Completion Exchange, both the server and the
  peer move to the Registered (4) state.  They also derive the output
  keying material and store the persistent EAP-NOOB association state,
  as defined in Sections 3.4 and 3.5.

  It is possible that the OOB message expires before it is received.
  In that case, the sender of the OOB message no longer recognizes the
  NoobId that it receives in the Completion Exchange.  Another reason
  why the OOB sender might not recognize the NoobId is if the received
  OOB message was spoofed and contained an attacker-generated Noob
  value.  The recipient of an unrecognized NoobId indicates this with
  an error message (error code 2003, see Section 3.6.1), and the
  Completion Exchange ends in EAP-Failure.  The recipient of the error
  message 2003 moves back to the Waiting for OOB (1) state.  This state
  transition is called OOB Reject in Figure 1 (even though it really is
  a specific type of failed Completion Exchange).  On the other hand,
  the sender of the error message stays in its previous state.

  Although it is not expected to occur in practice, poor user interface
  design could lead to two OOB messages delivered simultaneously, one
  from the peer to the server and the other from the server to the
  peer.  The server detects this event in the beginning of the
  Completion Exchange by observing that both the server and peer are in
  the OOB Received (2) state.  In that case, as a tiebreaker, the
  server MUST behave as if only the server-to-peer message had been
  delivered.


       EAP Peer                                        EAP Server
         |       ...continuing from common handshake        |
         |                                                  |
         |<----------- [ EAP-Request/EAP-NOOB ] ------------|
         |      (Type=5,PeerId)                             |
         |                                                  |
         |                                                  |
         |------------ [ EAP-Response/EAP-NOOB ] ---------->|
         |      (Type=5,PeerId,NoobId)                      |
         |                                                  |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=6,PeerId,NoobId,MACs)                 |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=6,PeerId,MACp)                        |
         |                                                  |
         |                                                  |
         |<----------- EAP-Success -------------------------|
         |                                                  |

                      Figure 6: Completion Exchange

3.2.5.  Waiting Exchange

  As explained in Section 3.2.4, the peer SHOULD probe the server for
  completion of the OOB Step.  When the combination of the peer and
  server states indicates that the OOB message has not yet been
  delivered, the server chooses the Waiting Exchange (see Section 3.2.1
  on how the server makes this decision).  The Waiting Exchange
  comprises the common handshake and one further request-response pair,
  and it always ends in EAP-Failure.

  In order to limit the rate at which peers probe the server, the
  server MAY send to the peer either in the Initial Exchange or in the
  Waiting Exchange a minimum time to wait before probing the server
  again.  A peer that has not received an OOB message SHOULD wait at
  least the server-specified minimum waiting time in seconds
  (SleepTime) before initiating EAP again with the same server.  The
  peer uses the latest SleepTime value that it has received in or after
  the Initial Exchange.  If the server has not sent any SleepTime
  value, the peer MUST wait for an application-specified minimum time
  (SleepTimeDefault).

  After the Waiting Exchange, the peer MUST discard (from its local
  ephemeral storage) Noob values that it has sent to the server in OOB
  messages that are older than the application-defined timeout
  NoobTimeout (see Section 3.2.3).  The peer SHOULD discard such
  expired Noob values even if the probing failed because of, e.g.,
  failure to connect to the EAP server or an incorrect message
  authentication code.  The timeout of peer-generated Noob values is
  defined like this in order to allow the peer to probe the server once
  after it has waited for the server-specified SleepTime.

  If the server and peer have negotiated to use only the server-to-peer
  direction for the OOB channel (Dirp=2), the peer SHOULD nevertheless
  probe the server.  The purpose of this is to keep the server informed
  about the peers that are still waiting for OOB messages.  The server
  MAY set SleepTime to a high number (e.g., 3600) to prevent the peer
  from probing the server frequently.


       EAP Peer                                        EAP Server
         |       ...continuing from common handshake        |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=4,PeerId,[SleepTime])                 |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=4,PeerId)                             |
         |                                                  |
         |                                                  |
         |<----------- EAP-Failure -------------------------|
         |                                                  |

                        Figure 7: Waiting Exchange

3.3.  Protocol Data Fields

  This section defines the various identifiers and data fields used in
  the EAP-NOOB method.

3.3.1.  Peer Identifier and NAI

  The server allocates a new peer identifier (PeerId) for the peer in
  the Initial Exchange.  The peer identifier MUST follow the syntax of
  the utf8-username specified in [RFC7542].  The server MUST generate
  the identifiers in such a way that they do not repeat and cannot be
  guessed by the peer or third parties before the server sends them to
  the peer in the Initial Exchange.  One way to generate the
  identifiers is to choose a random 16-byte identifier and to base64url
  encode it without padding [RFC4648] into a 22-character ASCII string.
  Another way to generate the identifiers is to choose a random
  22-character alphanumeric ASCII string.  It is RECOMMENDED to not use
  identifiers longer than this because they result in longer OOB
  messages.

  The peer uses the allocated PeerId to identify itself to the server
  in the subsequent exchanges.  The peer MUST copy the PeerId byte by
  byte from the message where it was allocated, and the server MUST
  perform a byte-by-byte comparison between the received and the
  previously allocated PeerID.  The peer sets the PeerId value in
  response type 1 as follows.  As stated in Section 3.2.1, when the
  peer is in the Unregistered (0) state, it SHOULD omit the PeerId from
  response type 1.  When the peer is in one of the states 1..2, it MUST
  use the PeerId that the server assigned to it in the latest Initial
  Exchange.  When the peer is in one of the persistent states 3..4, it
  MUST use the PeerId from its persistent EAP-NOOB association.  (The
  PeerId is written to the association when the peer moves to the
  Registered (4) state after a Completion Exchange.)

  The default NAI for the peer is "[email protected]".  The peer
  implementation MAY allow the user or application to configure a
  different NAI, which overrides the default NAI.  Furthermore, the
  server MAY assign a new NAI to the peer in the Initial Exchange or
  Reconnect Exchange in the NewNAI field of request types 2 and 7 to
  override any previous NAI value.  When the peer is in the
  Unregistered (0) state, or when the peer is in one of the states 1..2
  and the server did not send a NewNAI in the latest Initial Exchange,
  the peer MUST use the configured NAI or, if it does not exist, the
  default NAI.  When the peer is in one of the states 1..2 and the
  server sent a NewNAI in the latest Initial Exchange, the peer MUST
  use this server-assigned NAI.  When the peer moves to the Registered
  (4) state after the Completion Exchange, it writes to the persistent
  EAP-NOOB association the same NAI value that it used in the
  Completion Exchange.  When the peer is in the Reconnecting (3) or
  Registered (4) state, it MUST use the NAI from its persistent EAP-
  NOOB association.  When the server sends NewNAI in the Reconnect
  Exchange, the peer writes its value to the persistent EAP-NOOB
  association when it moves from the Reconnecting (3) state to the
  Registered (4) state.  All the NAI values MUST follow the syntax
  specified in [RFC7542].

  The purpose of the server-assigned NAI is to enable more flexible
  routing of the EAP sessions over the AAA infrastructure, including
  roaming scenarios (see Appendix C).  Moreover, some authenticators or
  AAA servers use the realm part of the assigned NAI to determine peer-
  specific connection parameters, such as isolating the peer to a
  specific VLAN.  On the other hand, the user- or application-
  configured NAI enables registration of new devices while roaming.  It
  also enables manufacturers to set up their own AAA servers for
  bootstrapping of new peer devices.

  The peer's PeerId and server-assigned NAI are ephemeral until a
  successful Completion Exchange takes place.  Thereafter, the values
  become parts of the persistent EAP-NOOB association until the user
  resets the peer and server or until a new NAI is assigned in the
  Reconnect Exchange.

3.3.2.  Message Data Fields

  Table 1 defines the data fields in the protocol messages.  The in-
  band messages are formatted as JSON objects [RFC8259] in UTF-8
  encoding.  The JSON member names are in the left-hand column of the
  table.

   +===============+=================================================+
   | Data Field    | Description                                     |
   +===============+=================================================+
   | Vers, Verp    | EAP-NOOB protocol versions supported by the EAP |
   |               | server and the protocol version chosen by the   |
   |               | peer.  Vers is a JSON array of unsigned         |
   |               | integers, and Verp is an unsigned integer.      |
   |               | Example values are "[1]" and "1", respectively. |
   +---------------+-------------------------------------------------+
   | PeerId        | Peer identifier, as defined in Section 3.3.1.   |
   +---------------+-------------------------------------------------+
   | NAI, NewNAI   | Peer NAI and server-assigned new peer NAI, as   |
   |               | defined in Section 3.3.1.                       |
   +---------------+-------------------------------------------------+
   | Type          | EAP-NOOB message type.  The type is an integer  |
   |               | in the range 0..9.  EAP-NOOB requests and the   |
   |               | corresponding responses share the same type     |
   |               | value.                                          |
   +---------------+-------------------------------------------------+
   | PeerState     | Peer state is an integer in the range 0..4 (see |
   |               | Figure 1).  However, only values 0..3 are ever  |
   |               | sent in the protocol messages.                  |
   +---------------+-------------------------------------------------+
   | PKs, PKp      | The public components of the ECDHE keys of the  |
   |               | server and peer.  PKs and PKp are sent in the   |
   |               | JSON Web Key (JWK) format [RFC7517].  The       |
   |               | detailed format of the JWK object is defined by |
   |               | the cryptosuite.                                |
   +---------------+-------------------------------------------------+
   | Cryptosuites, | The identifiers of cryptosuites supported by    |
   | Cryptosuitep  | the server and of the cryptosuite selected by   |
   |               | the peer.  The server-supported cryptosuites in |
   |               | Cryptosuites are formatted as a JSON array of   |
   |               | the identifier integers.  The server MUST send  |
   |               | a nonempty array with no repeating elements,    |
   |               | ordered by decreasing priority.  The peer MUST  |
   |               | respond with exactly one suite in the           |
   |               | Cryptosuitep value, formatted as an identifier  |
   |               | integer.  Mandatory-to-implement cryptosuites   |
   |               | and the registration procedure for new          |
   |               | cryptosuites are specified in Section 5.1.      |
   |               | Example values are "[1]" and "1", respectively. |
   +---------------+-------------------------------------------------+
   | Dirs, Dirp    | An integer indicating the OOB channel           |
   |               | directions supported by the server and the      |
   |               | directions selected by the peer.  The possible  |
   |               | values are 1=peer-to-server, 2=server-to-peer,  |
   |               | and 3=both directions.                          |
   +---------------+-------------------------------------------------+
   | Dir           | The actual direction of the OOB message         |
   |               | (1=peer-to-server, 2=server-to-peer).  This     |
   |               | value is not sent over any communication        |
   |               | channel, but it is included in the computation  |
   |               | of the cryptographic fingerprint Hoob.          |
   +---------------+-------------------------------------------------+
   | Ns, Np        | 32-byte nonces for the Initial Exchange.        |
   +---------------+-------------------------------------------------+
   | ServerInfo    | This field contains information about the       |
   |               | server to be passed from the EAP method to the  |
   |               | application layer in the peer.  The information |
   |               | is specific to the application or to the OOB    |
   |               | channel, and it is encoded as a JSON object of  |
   |               | at most 500 bytes.  It could include, for       |
   |               | example, the access-network name and server     |
   |               | name, a Uniform Resource Locator (URL)          |
   |               | [RFC3986], or some other information that helps |
   |               | the user deliver the OOB message to the server  |
   |               | through the out-of-band channel.                |
   +---------------+-------------------------------------------------+
   | PeerInfo      | This field contains information about the peer  |
   |               | to be passed from the EAP method to the         |
   |               | application layer in the server.  The           |
   |               | information is specific to the application or   |
   |               | to the OOB channel, and it is encoded as a JSON |
   |               | object of at most 500 bytes.  It could include, |
   |               | for example, the peer brand, model, and serial  |
   |               | number, which help the user distinguish between |
   |               | devices and deliver the OOB message to the      |
   |               | correct peer through the out-of-band channel.   |
   +---------------+-------------------------------------------------+
   | SleepTime     | The number of seconds for which the peer MUST   |
   |               | NOT start a new execution of the EAP-NOOB       |
   |               | method with the authenticator, unless the peer  |
   |               | receives the OOB message or the sending is      |
   |               | triggered by an application-specific user       |
   |               | action.  The server can use this field to limit |
   |               | the rate at which peers probe it.  SleepTime is |
   |               | an unsigned integer in the range 0..3600.       |
   +---------------+-------------------------------------------------+
   | Noob          | 16-byte secret nonce sent through the OOB       |
   |               | channel and used for the session key            |
   |               | derivation.  The endpoint that received the OOB |
   |               | message uses this secret in the Completion      |
   |               | Exchange to authenticate the exchanged key to   |
   |               | the endpoint that sent the OOB message.         |
   +---------------+-------------------------------------------------+
   | Hoob          | 16-byte cryptographic fingerprint (i.e., hash   |
   |               | value) computed from all the parameters         |
   |               | exchanged in the Initial Exchange and in the    |
   |               | OOB message.  Receiving this fingerprint over   |
   |               | the OOB channel guarantees the integrity of the |
   |               | key exchange and parameter negotiation.  Hence, |
   |               | it authenticates the exchanged key to the       |
   |               | endpoint that receives the OOB message.         |
   +---------------+-------------------------------------------------+
   | NoobId        | 16-byte identifier for the OOB message,         |
   |               | computed with a one-way function from the nonce |
   |               | Noob in the message.                            |
   +---------------+-------------------------------------------------+
   | MACs, MACp    | Message authentication codes (HMAC) for mutual  |
   |               | authentication, key confirmation, and integrity |
   |               | check on the exchanged information.  The input  |
   |               | to the HMAC is defined below, and the key for   |
   |               | the HMAC is defined in Section 3.5.             |
   +---------------+-------------------------------------------------+
   | Ns2, Np2      | 32-byte nonces for the Reconnect Exchange.      |
   +---------------+-------------------------------------------------+
   | KeyingMode    | Integer indicating the key derivation method. 0 |
   |               | in the Completion Exchange, and 1..3 in the     |
   |               | Reconnect Exchange.                             |
   +---------------+-------------------------------------------------+
   | PKs2, PKp2    | The public components of the ECDHE keys of the  |
   |               | server and peer for the Reconnect Exchange.     |
   |               | PKp2 and PKs2 are sent in the JSON Web Key      |
   |               | (JWK) format [RFC7517].  The detailed format of |
   |               | the JWK object is defined by the cryptosuite.   |
   +---------------+-------------------------------------------------+
   | MACs2, MACp2  | Message authentication codes (HMAC) for mutual  |
   |               | authentication, key confirmation, and integrity |
   |               | check on the Reconnect Exchange.  The input to  |
   |               | the HMAC is defined below, and the key for the  |
   |               | HMAC is defined in Section 3.5.                 |
   +---------------+-------------------------------------------------+
   | ErrorCode     | Integer indicating an error condition.  Defined |
   |               | in Section 5.3.                                 |
   +---------------+-------------------------------------------------+
   | ErrorInfo     | Textual error message for logging and debugging |
   |               | purposes.  A UTF-8 string of at most 500 bytes. |
   +---------------+-------------------------------------------------+

                       Table 1: Message Data Fields

  It is RECOMMENDED for servers to support both OOB channel directions
  (Dirs=3) unless the type of the OOB channel limits them to one
  direction (Dirs=1 or Dirs=2).  On the other hand, it is RECOMMENDED
  that the peer selects only one direction (Dirp=1 or Dirp=2) even when
  both directions (Dirp=3) would be technically possible.  The reason
  is that, if value 3 is negotiated, the user may be presented with two
  OOB messages, one for each direction, even though only one of them
  needs to be delivered.  This can be confusing to the user.
  Nevertheless, the EAP-NOOB protocol is designed to also cope with the
  value 3; in which case, it uses the first delivered OOB message.  In
  the unlikely case of simultaneously delivered OOB messages, the
  protocol prioritizes the server-to-peer direction.

  The nonces in the in-band messages (Ns, Np, Ns2, Np2) are 32-byte
  fresh random byte strings, and the secret nonce Noob is a 16-byte
  fresh random byte string.  All the nonces are generated by the
  endpoint that sends the message.

  The fingerprint Hoob and the identifier NoobId are computed with the
  cryptographic hash function H, which is specified in the negotiated
  cryptosuite and truncated to the 16 leftmost bytes of the output.
  The message authentication codes (MACs, MACp, MACs2, MACp2) are
  computed with the function HMAC, which is the hashed message
  authentication code [RFC2104] based on the cryptographic hash
  function H and truncated to the 32 leftmost bytes of the output.

  The inputs to the hash function for computing the fingerprint Hoob
  and to the HMAC for computing MACs, MACp, MACs2, and MACp2 are JSON
  arrays containing a fixed number (17) of elements.  The array
  elements MUST be copied to the array verbatim from the sent and
  received in-band messages.  When the element is a JSON object, its
  members MUST NOT be reordered or reencoded.  White space MUST NOT be
  added anywhere in the JSON structure.  Implementers should check that
  their JSON library copies the elements as UTF-8 strings, does not
  modify them in any way, and does not add white space to the HMAC
  input.

  The inputs for computing the fingerprint and message authentication
  codes are the following:

  Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
  Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

  NoobId = H("NoobId",Noob).

  MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
  Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

  MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,
  Cryptosuitep,Dirp,NAI,PeerInfo,0,PKs,Ns,PKp,Np,Noob).

  MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
  Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

  MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo],
  Cryptosuitep,"",NAI,[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],Np2,"")

  The inputs denoted with "" above are not present, and the values in
  brackets [] are optional.  Both kinds of missing input values are
  represented by empty strings "" in the HMAC input (JSON array).  The
  NAI included in the inputs is the NAI value that will be in the
  persistent EAP-NOOB association if the Completion Exchange or
  Reconnect Exchange succeeds.  In the Completion Exchange, the NAI is
  the NewNAI value assigned by the server in the preceding Initial
  Exchange or, if no NewNAI was sent, the NAI used by the client in the
  Initial Exchange.  In the Reconnect Exchange, the NAI is the NewNAI
  value assigned by the server in the same Reconnect Exchange or, if no
  NewNAI was sent, the unchanged NAI from the persistent EAP-NOOB
  association.  Each of the values in brackets for the computation of
  Macs2 and Macp2 MUST be included if it was sent or received in the
  same Reconnect Exchange; otherwise, the value is replaced by an empty
  string "".

  The parameter Dir indicates the direction in which the OOB message
  containing the Noob value is being sent (1=peer-to-server, 2=server-
  to-peer).  This field is included in the Hoob input to prevent the
  user from accidentally delivering the OOB message back to its
  originator in the rare cases where both OOB directions have been
  negotiated.  The keys (Kms, Kmp, Kms2, and Kmp2) for the HMACs are
  defined in Section 3.5.

  The nonces (Ns, Np, Ns2, Np2, and Noob) and the hash value (NoobId)
  MUST be base64url encoded [RFC4648] when they are used as input to
  the cryptographic functions H or HMAC.  These values and the message
  authentication codes (MACs, MACp, MACs2, and MACp2) MUST also be
  base64url encoded when they are sent as JSON strings in the in-band
  messages.  The values Noob and Hoob in the OOB channel MAY be
  base64url encoded if that is appropriate for the application and the
  OOB channel.  All base64url encoding is done without padding.  The
  base64url-encoded values will naturally consume more space than the
  number of bytes specified above (e.g., a 22-character string for a
  16-byte nonce and a 43-character string for a 32-byte nonce or
  message authentication code).  In the key derivation in Section 3.5,
  on the other hand, the unencoded nonces (raw bytes) are used as input
  to the key derivation function.

  The ServerInfo and PeerInfo are JSON objects with UTF-8 encoding.
  The length of either encoded object as a byte array MUST NOT exceed
  500 bytes.  The format and semantics of these objects MUST be defined
  by the application that uses the EAP-NOOB method.

3.4.  Fast Reconnect and Rekeying

  EAP-NOOB implements fast reconnect ([RFC3748], Section 7.2.1), which
  avoids repeated use of the user-assisted OOB channel.

  The rekeying and the Reconnect Exchange may be needed for several
  reasons.  New EAP output values Main Session Key (MSK) and Extended
  Main Session Key (EMSK) may be needed because of mobility or timeout
  of session keys.  Software or hardware failure or user action may
  also cause the authenticator, EAP server, or peer to lose its
  nonpersistent state data.  The failure would typically be detected by
  the peer or authenticator when session keys are no longer accepted by
  the other endpoint.  Changes in the supported cryptosuites in the EAP
  server or peer may also cause the need for a new key exchange.  When
  the EAP server or peer detects any one of these events, it MUST
  change from the Registered (4) state to the Reconnecting (3) state.
  These state transitions are labeled Mobility/Timeout/Failure in
  Figure 1.  The EAP-NOOB method will then perform the Reconnect
  Exchange the next time when EAP is triggered.

3.4.1.  Persistent EAP-NOOB Association

  To enable rekeying, the EAP server and peer store the session state
  in persistent memory after a successful Completion Exchange.  This
  state data, called "persistent EAP-NOOB association", MUST include at
  least the data fields shown in Table 2.  They are used for
  identifying and authenticating the peer in the Reconnect Exchange.
  When a persistent EAP-NOOB association exists, the EAP server and
  peer are in the Registered (4) state or Reconnecting (3) state, as
  shown in Figure 1.

   +==================+==========================+===================+
   | Data Field       | Value                    | Type              |
   +==================+==========================+===================+
   | PeerId           | Peer identifier          | UTF-8 string      |
   |                  | allocated by server      | (typically 22     |
   |                  |                          | ASCII characters) |
   +------------------+--------------------------+-------------------+
   | Verp             | Negotiated protocol      | integer           |
   |                  | version                  |                   |
   +------------------+--------------------------+-------------------+
   | Cryptosuitep     | Negotiated cryptosuite   | integer           |
   +------------------+--------------------------+-------------------+
   | CryptosuitepPrev | Previous cryptosuite     | integer           |
   | (at peer only)   |                          |                   |
   +------------------+--------------------------+-------------------+
   | NAI              | NAI assigned by the      | UTF-8 string      |
   |                  | server or configured by  |                   |
   |                  | the user or the default  |                   |
   |                  | NAI "[email protected]" |                   |
   +------------------+--------------------------+-------------------+
   | Kz               | Persistent key material  | 32 bytes          |
   +------------------+--------------------------+-------------------+
   | KzPrev (at peer  | Previous Kz value        | 32 bytes          |
   | only)            |                          |                   |
   +------------------+--------------------------+-------------------+

                 Table 2: Persistent EAP-NOOB Association

3.4.2.  Reconnect Exchange

  The server chooses the Reconnect Exchange when both the peer and the
  server are in a persistent state and fast reconnection is needed (see
  Section 3.2.1 for details).

  The Reconnect Exchange comprises the common handshake and three
  further EAP-NOOB request-response pairs: one for cryptosuite and
  parameter negotiation, another for the nonce and ECDHE key exchange,
  and the last one for exchanging message authentication codes.  In the
  first request and response (Type=7), the server and peer negotiate a
  protocol version and cryptosuite in the same way as in the Initial
  Exchange.  The server SHOULD NOT offer and the peer MUST NOT accept
  protocol versions or cryptosuites that it knows to be weaker than the
  one currently in the Cryptosuitep field of the persistent EAP-NOOB
  association.  The server SHOULD NOT needlessly change the
  cryptosuites it offers to the same peer because peer devices may have
  limited ability to update their persistent storage.  However, if the
  peer has different values in the Cryptosuitep and CryptosuitepPrev
  fields, it SHOULD also accept offers that are not weaker than
  CryptosuitepPrev.  Note that Cryptosuitep and CryptosuitePrev from
  the persistent EAP-NOOB association are only used to support the
  negotiation as described above; all actual cryptographic operations
  use the newly negotiated cryptosuite.  The request and response
  (Type=7) MAY additionally contain PeerInfo and ServerInfo objects.

  The server then determines the KeyingMode (defined in Section 3.5)
  based on changes in the negotiated cryptosuite and whether it desires
  to achieve forward secrecy or not.  The server SHOULD only select
  KeyingMode 3 when the negotiated cryptosuite differs from the
  Cryptosuitep in the server's persistent EAP-NOOB association,
  although it is technically possible to select this value without
  changing the cryptosuite.  In the second request and response
  (Type=8), the server informs the peer about the KeyingMode and the
  server and peer exchange nonces (Ns2, Np2).  When KeyingMode is 2 or
  3 (rekeying with ECDHE), they also exchange public components of
  ECDHE keys (PKs2, PKp2).  The server ECDHE key MUST be fresh, i.e.,
  not previously used with the same peer, and the peer ECDHE key SHOULD
  be fresh, i.e., not previously used.

  In the third and final request and response (Type=9), the server and
  peer exchange message authentication codes.  Both sides MUST compute
  the keys Kms2 and Kmp2, as defined in Section 3.5, and the message
  authentication codes MACs2 and MACp2, as defined in Section 3.3.2.
  Both sides MUST compare the received message authentication code with
  a locally computed value.

  The rules by which the peer compares the received MACs2 are
  nontrivial because, in addition to authenticating the current
  exchange, MACs2 may confirm the success or failure of a recent
  cryptosuite upgrade.  The peer processes the final request (Type=9)
  as follows:

  1.  The peer first compares the received MACs2 value with one it
      computed using the Kz stored in the persistent EAP-NOOB
      association.  If the received and computed values match, the peer
      deletes any data stored in the CryptosuitepPrev and KzPrev fields
      of the persistent EAP-NOOB association.  It does this because the
      received MACs2 confirms that the peer and server share the same
      Cryptosuitep and Kz, and any previous values must no longer be
      accepted.

  2.  On the other hand, if the peer finds that the received MACs2
      value does not match the one it computed locally with Kz, the
      peer checks whether the KzPrev field in the persistent EAP-NOOB
      association stores a key.  If it does, the peer repeats the key
      derivation (Section 3.5) and local MACs2 computation
      (Section 3.3.2) using KzPrev in place of Kz.  If this second
      computed MACs2 matches the received value, the match indicates
      synchronization failure caused by the loss of the last response
      (Type=9) in a previously attempted cryptosuite upgrade.  In this
      case, the peer rolls back that upgrade by overwriting
      Cryptosuitep with CryptosuitepPrev and Kz with KzPrev in the
      persistent EAP-NOOB association.  It also clears the
      CryptosuitepPrev and KzPrev fields.

  3.  If the received MACs2 matched one of the locally computed values,
      the peer proceeds to send the final response (Type=9).  The peer
      also moves to the Registered (4) state.  When KeyingMode is 1 or
      2, the peer stops here.  When KeyingMode is 3, the peer also
      updates the persistent EAP-NOOB association with the negotiated
      Cryptosuitep and the newly derived Kz value.  To prepare for
      possible synchronization failure caused by the loss of the final
      response (Type=9) during cryptosuite upgrade, the peer copies the
      old Cryptosuitep and Kz values in the persistent EAP-NOOB
      association to the CryptosuitepPrev and KzPrev fields.

  4.  Finally, if the peer finds that the received MACs2 does not match
      either of the two values that it computed locally (or one value
      if no KzPrev was stored), the peer sends an error message (error
      code 4001, see Section 3.6.5), which causes the Reconnect
      Exchange to end in EAP-Failure.

  The server rules for processing the final message are simpler than
  the peer rules because the server does not store previous keys and it
  never rolls back a cryptosuite upgrade.  Upon receiving the final
  response (Type=9), the server compares the received value of MACp2
  with one it computes locally.  If the values match, the Reconnect
  Exchange ends in EAP-Success.  When KeyingMode is 3, the server also
  updates Cryptosuitep and Kz in the persistent EAP-NOOB association.
  On the other hand, if the server finds that the values do not match,
  it sends an error message (error code 4001), and the Reconnect
  Exchange ends in EAP-Failure.

  The endpoints MAY send updated NewNAI, ServerInfo, and PeerInfo
  objects in the Reconnect Exchange.  When there is no update to the
  values, they SHOULD omit this information from the messages.  If the
  NewNAI was sent, each side updates NAI in the persistent EAP-NOOB
  association when moving to the Registered (4) state.

       EAP Peer                                        EAP Server
         |       ...continuing from common handshake        |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=7,Vers,PeerId,Cryptosuites,           |
         |       [NewNAI],[ServerInfo])                     |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=7,Verp,PeerId,Cryptosuitep,[PeerInfo])|
         |                                                  |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=8,PeerId,KeyingMode,[PKs2],Ns2)       |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=8,PeerId,[PKp2],Np2)                  |
         |                                                  |
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |      (Type=9,PeerId,MACs2)                       |
         |                                                  |
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |      (Type=9,PeerId,MACp2)                       |
         |                                                  |
         |                                                  |
         |<----------- EAP-Success -------------------------|
         |                                                  |

                       Figure 8: Reconnect Exchange

3.4.3.  User Reset

  As shown in the association state machine in Figure 1, the only
  specified way for the association to return from the Registered (4)
  state to the Unregistered (0) state is through user-initiated reset.
  After the reset, a new OOB message will be needed to establish a new
  association between the EAP server and peer.  Typical situations in
  which the user reset is required are when the other side has
  accidentally lost the persistent EAP-NOOB association data or when
  the peer device is decommissioned.

  The server could detect that the peer is in the Registered or
  Reconnecting state, but the server itself is in one of the ephemeral
  states 0..2 (including situations where the server does not recognize
  the PeerId).  In this case, effort should be made to recover the
  persistent server state, for example, from a backup storage --
  especially if many peer devices are similarly affected.  If that is
  not possible, the EAP server SHOULD log the error or notify an
  administrator.  The only way to continue from such a situation is by
  having the user reset the peer device.

  On the other hand, if the peer is in any of the ephemeral states
  0..2, including the Unregistered state, the server will treat the
  peer as a new peer device and allocate a new PeerId to it.  The
  PeerInfo can be used by the user as a clue to which physical device
  has lost its state.  However, there is no secure way of matching the
  "new" peer with the old PeerId without repeating the OOB Step.  This
  situation will be resolved when the user performs the OOB Step and
  thus identifies the physical peer device.  The server user interface
  MAY support situations where the "new" peer is actually a previously
  registered peer that has been reset by a user or otherwise lost its
  persistent data.  In those cases, the user could choose to merge the
  new peer identity with the old one in the server.  The alternative is
  to treat the device just like a new peer.

3.5.  Key Derivation

  EAP-NOOB derives the EAP output values MSK and EMSK and other secret
  keying material from the output of an Ephemeral Elliptic Curve
  Diffie-Hellman (ECDHE) algorithm following the NIST specification
  [NIST-DH].  In NIST terminology, we use a C(2e, 0s, ECC CDH) scheme,
  i.e., two ephemeral keys and no static keys.  In the Initial Exchange
  and Reconnect Exchange, the server and peer compute the ECDHE shared
  secret Z, as defined in Section 6.1.2 of the NIST specification
  [NIST-DH].  In the Completion Exchange and Reconnect Exchange, the
  server and peer compute the secret keying material from Z with the
  one-step key derivation function (KDF) defined in Section 5.8.2.1 of
  the NIST specification.  The auxiliary function H is a hash function,
  and it is taken from the negotiated cryptosuite.

       +============+============================================+
       | KeyingMode | Description                                |
       +============+============================================+
       | 0          | Completion Exchange (always with ECDHE)    |
       +------------+--------------------------------------------+
       | 1          | Reconnect Exchange, rekeying without ECDHE |
       +------------+--------------------------------------------+
       | 2          | Reconnect Exchange, rekeying with ECHDE,   |
       |            | no change in cryptosuite                   |
       +------------+--------------------------------------------+
       | 3          | Reconnect Exchange, rekeying with ECDHE,   |
       |            | new cryptosuite negotiated                 |
       +------------+--------------------------------------------+

                          Table 3: Keying Modes

  The key derivation has four different modes (KeyingMode), which are
  specified in Table 3.  Table 4 defines the inputs to KDF in each
  KeyingMode.

  In the Completion Exchange (KeyingMode=0), the input Z comes from the
  preceding Initial exchange.  The KDF takes some additional inputs
  (FixedInfo), for which we use the concatenation format defined in
  Section 5.8.2.1.1 of the NIST specification [NIST-DH].  FixedInfo
  consists of the AlgorithmId, PartyUInfo, PartyVInfo, and SuppPrivInfo
  fields.  The first three fields are fixed-length bit strings, and
  SuppPrivInfo is a variable-length string with a one-byte Datalength
  counter.  AlgorithmId is the fixed-length, 8-byte ASCII string "EAP-
  NOOB".  The other input values are the server and peer nonces.  In
  the Completion Exchange, the inputs also include the secret nonce
  Noob from the OOB message.

  In the simplest form of the Reconnect Exchange (KeyingMode=1), fresh
  nonces are exchanged, but no ECDHE keys are sent.  In this case,
  input Z to the KDF is replaced with the shared key Kz from the
  persistent EAP-NOOB association.  The result is rekeying without the
  computational cost of the ECDHE exchange but also without forward
  secrecy.

  When forward secrecy is desired in the Reconnect Exchange
  (KeyingMode=2 or KeyingMode=3), both nonces and ECDHE keys are
  exchanged.  Input Z is the fresh shared secret from the ECDHE
  exchange with PKs2 and PKp2.  The inputs also include the shared
  secret Kz from the persistent EAP-NOOB association.  This binds the
  rekeying output to the previously authenticated keys.

  +=========================+==============+===============+==========+
  | KeyingMode              | KDF input    | Value         | Length   |
  |                         | field        |               | (bytes)  |
  +=========================+==============+===============+==========+
  | 0 Completion            | Z            | ECDHE shared  | variable |
  |                         |              | secret from   |          |
  |                         |              | PKs and PKp   |          |
  |                         +--------------+---------------+----------+
  |                         | AlgorithmId  | "EAP-NOOB"    | 8        |
  |                         +--------------+---------------+----------+
  |                         | PartyUInfo   | Np            | 32       |
  |                         +--------------+---------------+----------+
  |                         | PartyVInfo   | Ns            | 32       |
  |                         +--------------+---------------+----------+
  |                         | SuppPubInfo  | (not          |          |
  |                         |              | allowed)      |          |
  |                         +--------------+---------------+----------+
  |                         | SuppPrivInfo | Noob          | 16       |
  +-------------------------+--------------+---------------+----------+
  | 1 Reconnect, rekeying   | Z            | Kz            | 32       |
  | without ECDHE           +--------------+---------------+----------+
  |                         | AlgorithmId  | "EAP-NOOB"    | 8        |
  |                         +--------------+---------------+----------+
  |                         | PartyUInfo   | Np2           | 32       |
  |                         +--------------+---------------+----------+
  |                         | PartyVInfo   | Ns2           | 32       |
  |                         +--------------+---------------+----------+
  |                         | SuppPubInfo  | (not          |          |
  |                         |              | allowed)      |          |
  |                         +--------------+---------------+----------+
  |                         | SuppPrivInfo | (null)        | 0        |
  +-------------------------+--------------+---------------+----------+
  | 2 or 3 Reconnect,       | Z            | ECDHE shared  | variable |
  | rekeying, with ECDHE,   |              | secret from   |          |
  | same or new cryptosuite |              | PKs2 and      |          |
  |                         |              | PKp2          |          |
  |                         +--------------+---------------+----------+
  |                         | AlgorithmId  | "EAP-NOOB"    | 8        |
  |                         +--------------+---------------+----------+
  |                         | PartyUInfo   | Np2           | 32       |
  |                         +--------------+---------------+----------+
  |                         | PartyVInfo   | Ns2           | 32       |
  |                         +--------------+---------------+----------+
  |                         | SuppPubInfo  | (not          |          |
  |                         |              | allowed)      |          |
  |                         +--------------+---------------+----------+
  |                         | SuppPrivInfo | Kz            | 32       |
  +-------------------------+--------------+---------------+----------+

                      Table 4: Key Derivation Input

  Table 5 defines how the output bytes of the KDF are used.  In
  addition to the EAP output values MSK and EMSK, the server and peer
  derive another shared secret key AMSK (Application Main Session Key),
  which MAY be used for application-layer security.  Further output
  bytes are used internally by EAP-NOOB for the message authentication
  keys (Kms, Kmp, Kms2, and Kmp2).

  The Completion Exchange (KeyingMode=0) produces the shared secret Kz,
  which the server and peer store in the persistent EAP-NOOB
  association.  When a new cryptosuite is negotiated in the Reconnect
  Exchange (KeyingMode=3), it similarly produces a new Kz.  In that
  case, the server and peer update both the cryptosuite and Kz in the
  persistent EAP-NOOB association.  Additionally, the peer stores the
  previous Cryptosuitep and Kz values in the CryptosuitepPrev and
  KzPrev fields of the persistent EAP-NOOB association.

   +==============================+============+==========+=========+
   | KeyingMode                   | KDF output | Used as  | Length  |
   |                              | bytes      |          | (bytes) |
   +==============================+============+==========+=========+
   | 0 Completion                 | 0..63      | MSK      | 64      |
   |                              +------------+----------+---------+
   |                              | 64..127    | EMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 128..191   | AMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 192..223   | MethodId | 32      |
   |                              +------------+----------+---------+
   |                              | 224..255   | Kms      | 32      |
   |                              +------------+----------+---------+
   |                              | 256..287   | Kmp      | 32      |
   |                              +------------+----------+---------+
   |                              | 288..319   | Kz       | 32      |
   +------------------------------+------------+----------+---------+
   | 1 or 2 Reconnect, rekeying   | 0..63      | MSK      | 64      |
   | without ECDHE, or with ECDHE +------------+----------+---------+
   | and unchanged cryptosuite    | 64..127    | EMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 128..191   | AMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 192..223   | MethodId | 32      |
   |                              +------------+----------+---------+
   |                              | 224..255   | Kms2     | 32      |
   |                              +------------+----------+---------+
   |                              | 256..287   | Kmp2     | 32      |
   +------------------------------+------------+----------+---------+
   | 3 Reconnect, rekeying with   | 0..63      | MSK      | 64      |
   | ECDHE, new cryptosuite       +------------+----------+---------+
   |                              | 64..127    | EMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 128..191   | AMSK     | 64      |
   |                              +------------+----------+---------+
   |                              | 192..223   | MethodId | 32      |
   |                              +------------+----------+---------+
   |                              | 224..255   | Kms2     | 32      |
   |                              +------------+----------+---------+
   |                              | 256..287   | Kmp2     | 32      |
   |                              +------------+----------+---------+
   |                              | 288..319   | Kz       | 32      |
   +------------------------------+------------+----------+---------+

                     Table 5: Key Derivation Output

  Finally, every EAP method must export a Server-Id, Peer-Id, and
  Session-Id [RFC5247].  In EAP-NOOB, the exported Peer-Id is the
  PeerId that the server has assigned to the peer.  The exported
  Server-Id is a zero-length string (i.e., null string) because EAP-
  NOOB neither knows nor assigns any server identifier.  The exported
  Session-Id is created by concatenating the one-byte Type-Code 0x38
  (decimal value 56) with the MethodId, which is obtained from the KDF
  output, as shown in Table 5.

3.6.  Error Handling

  Various error conditions in EAP-NOOB are handled by sending an error
  notification message (Type=0) instead of a next EAP request or
  response message.  Both the EAP server and the peer may send the
  error notification, as shown in Figures 9 and 10.  After sending or
  receiving an error notification, the server MUST send an EAP-Failure
  (as required by [RFC3748], Section 4.2).  The notification MAY
  contain an ErrorInfo field, which is a UTF-8-encoded text string with
  a maximum length of 500 bytes.  It is used for sending descriptive
  information about the error for logging and debugging purposes.

       EAP Peer                                        EAP Server
         ...                                                ...
         |                                                  |
         |<----------- EAP-Request/EAP-NOOB ----------------|
         |        (Type=0,[PeerId],ErrorCode,[ErrorInfo])   |
         |                                                  |
         |                                                  |
         |<----------- EAP-Failure -------------------------|
         |                                                  |

             Figure 9: Error Notification from Server to Peer

       EAP Peer                                        EAP Server
         ...                                                ...
         |                                                  |
         |------------ EAP-Response/EAP-NOOB -------------->|
         |        (Type=0,[PeerId],ErrorCode,[ErrorInfo])   |
         |                                                  |
         |                                                  |
         |<----------- EAP-Failure -------------------------|
         |                                                  |

            Figure 10: Error Notification from Peer to Server

  After the exchange fails due to an error notification, the server and
  peer set the association state as follows.  In the Initial Exchange,
  both the sender and recipient of the error notification MUST set the
  association state to the Unregistered (0) state.  In the Waiting
  Exchange and Completion Exchange, each side MUST remain in its old
  state as if the failed exchange had not taken place, with the
  exception that the recipient of error code 2003 processes it as
  specified in Section 3.2.4.  In the Reconnect Exchange, both sides
  MUST set the association state to the Reconnecting (3) state.

  Errors that occur in the OOB channel are not explicitly notified in-
  band.

3.6.1.  Invalid Messages

  If the NAI structure is invalid, the server SHOULD send the error
  code 1001 to the peer.  The recipient of an EAP-NOOB request or
  response SHOULD send the following error codes back to the sender:
  1002 if it cannot parse the message as a JSON object or the top-level
  JSON object has missing or unrecognized members; 1003 if a data field
  has an invalid value, such as an integer out of range, and there is
  no more specific error code available; 1004 if the received message
  type was unexpected in the current state; 2004 if the PeerId has an
  unexpected value; 2003 if the NoobId is not recognized; and 1005 if
  the ECDHE key is invalid.

3.6.2.  Unwanted Peer

  The preferred way for the EAP server to rate limit EAP-NOOB
  connections from a peer is to use the SleepTime parameter in the
  Waiting Exchange.  However, if the EAP server receives repeated EAP-
  NOOB connections from a peer that apparently should not connect to
  this server, the server MAY indicate that the connections are
  unwanted by sending the error code 2001.  After receiving this error
  message, the peer MAY refrain from reconnecting to the same EAP
  server, and, if possible, both the EAP server and peer SHOULD
  indicate this error condition to the user or server administrator.
  However, in order to avoid persistent denial of service, peer devices
  that are unable to alert a user SHOULD continue to try to reconnect
  infrequently (e.g., approximately every 3600 seconds).

3.6.3.  State Mismatch

  In the states indicated by "-" in Table 14 in Appendix A, user action
  is required to reset the association state or to recover it, for
  example, from backup storage.  In those cases, the server sends the
  error code 2002 to the peer.  If possible, both the EAP server and
  peer SHOULD indicate this error condition to the user or server
  administrator.

3.6.4.  Negotiation Failure

  If there is no matching protocol version, the peer sends the error
  code 3001 to the server.  If there is no matching cryptosuite, the
  peer sends the error code 3002 to the server.  If there is no
  matching OOB direction, the peer sends the error code 3003 to the
  server.

  In practice, there is no way of recovering from these errors without
  software or hardware changes.  If possible, both the EAP server and
  peer SHOULD indicate these error conditions to the user.

3.6.5.  Cryptographic Verification Failure

  If the receiver of the OOB message detects an unrecognized PeerId or
  incorrect fingerprint (Hoob) in the OOB message, the receiver MUST
  remain in the Waiting for OOB (1) state as if no OOB message was
  received.  The receiver SHOULD indicate the failure to accept the OOB
  message to the user.  No in-band error message is sent.

  Note that if the OOB message was delivered from the server to the
  peer and the peer does not recognize the PeerId, the likely cause is
  that the user has unintentionally delivered the OOB message to the
  wrong peer device.  If possible, the peer SHOULD indicate this to the
  user; however, the peer device may not have the capability for many
  different error indications to the user, and it MAY use the same
  indication as in the case of an incorrect fingerprint.

  The rationale for the above is that the invalid OOB message could
  have been presented to the receiver by mistake or intentionally by a
  malicious party; thus, it should be ignored in the hope that the
  honest user will soon deliver a correct OOB message.

  If the EAP server or peer detects an incorrect message authentication
  code (MACs, MACp, MACs2, or MACp2), it sends the error code 4001 to
  the other side.  As specified in the beginning of Section 3.6, the
  failed Completion Exchange will not result in server or peer state
  changes, while an error in the Reconnect Exchange will put both sides
  to the Reconnecting (3) state and thus lead to another reconnect
  attempt.

  The rationale for this is that the invalid cryptographic message may
  have been spoofed by a malicious party; thus, it should be ignored.
  In particular, a spoofed message on the in-band channel should not
  force the honest user to perform the OOB Step again.  In practice,
  however, the error may be caused by other failures, such as a
  software bug.  For this reason, the EAP server MAY limit the rate of
  peer connections with SleepTime after the above error.  Also, there
  SHOULD be a way for the user to reset the peer to the Unregistered
  (0) state so that the OOB Step can be repeated as the last resort.

3.6.6.  Application-Specific Failure

  Applications MAY define new error messages for failures that are
  specific to the application or to one type of OOB channel.  They MAY
  also use the generic application-specific error code 5001 or the
  error codes 5002 and 5004, which have been reserved for indicating
  invalid data in the ServerInfo and PeerInfo fields, respectively.
  Additionally, anticipating OOB channels that make use of a URL, the
  error code 5003 has been reserved for indicating an invalid server
  URL.

4.  ServerInfo and PeerInfo Contents

  The ServerInfo and PeerInfo fields in the Initial Exchange and
  Reconnect Exchange enable the server and peer, respectively, to send
  information about themselves to the other endpoint.  They contain
  JSON objects whose structure may be specified separately for each
  application and each type of OOB channel.  ServerInfo and PeerInfo
  MAY contain auxiliary data needed for the OOB channel messaging and
  for EAP channel binding (see Section 6.7).  This section describes
  the optional initial data fields for ServerInfo and PeerInfo
  registered by this specification.  Further specifications may request
  new application-specific ServerInfo and PeerInfo data fields from
  IANA (see Sections 5.4 and 5.5).

  +================+=================================================+
  | Data Field     | Description                                     |
  +================+=================================================+
  | Type           | Type-tag string that can be used by the peer as |
  |                | a hint for how to interpret the ServerInfo      |
  |                | contents.                                       |
  +----------------+-------------------------------------------------+
  | ServerName     | String that may be used to aid human            |
  |                | identification of the server.                   |
  +----------------+-------------------------------------------------+
  | ServerURL      | Prefix string when the OOB message is formatted |
  |                | as a URL, as suggested in Appendix D.           |
  +----------------+-------------------------------------------------+
  | SSIDList       | List of IEEE 802.11 wireless network service    |
  |                | set identifier (SSID) strings used for roaming  |
  |                | support, as suggested in Appendix C.  JSON      |
  |                | array of ASCII-encoded SSID strings.            |
  +----------------+-------------------------------------------------+
  | Base64SSIDList | List of IEEE 802.11 wireless network identifier |
  |                | (SSID) strings used for roaming support, as     |
  |                | suggested in Appendix C.  JSON array of SSIDs,  |
  |                | each of which is base64url-encoded without      |
  |                | padding.  Peers SHOULD send at most one of the  |
  |                | fields SSIDList and Base64SSIDList in PeerInfo, |
  |                | and the server SHOULD ignore SSIDList if        |
  |                | Base64SSIDList is included.                     |
  +----------------+-------------------------------------------------+

                    Table 6: ServerInfo Data Fields

  +==============+===================================================+
  | Data Field   | Description                                       |
  +==============+===================================================+
  | Type         | Type-tag string that can be used by the server as |
  |              | a hint for how to interpret the PeerInfo          |
  |              | contents.                                         |
  +--------------+---------------------------------------------------+
  | PeerName     | String that may be used to aid human              |
  |              | identification of the peer.                       |
  +--------------+---------------------------------------------------+
  | Manufacturer | Manufacturer or brand string.                     |
  +--------------+---------------------------------------------------+
  | Model        | Manufacturer-specified model string.              |
  +--------------+---------------------------------------------------+
  | SerialNumber | Manufacturer-assigned serial number.              |
  +--------------+---------------------------------------------------+
  | MACAddress   | Peer link-layer 48-bit extended unique identifier |
  |              | (EUI-48) in the 12-digit base-16 form [EUI-48].   |
  |              | The string MAY be in upper or lower case and MAY  |
  |              | include additional colon ':' or dash '-'          |
  |              | characters that MUST be ignored by the server.    |
  +--------------+---------------------------------------------------+
  | SSID         | IEEE 802.11 network SSID for channel binding.     |
  |              | The SSID is an ASCII string.                      |
  +--------------+---------------------------------------------------+
  | Base64SSID   | IEEE 802.11 network SSID for channel binding.     |
  |              | The SSID is base64url encoded.  Peer SHOULD send  |
  |              | at most one of the fields SSID and Base64SSID in  |
  |              | PeerInfo, and the server SHOULD ignore SSID if    |
  |              | Base64SSID is included.                           |
  +--------------+---------------------------------------------------+
  | BSSID        | Wireless network basic service set identifier     |
  |              | (BSSID) (EUI-48) in the 12-digit base-16 form     |
  |              | [EUI-48] for channel binding.  The string MAY be  |
  |              | in upper or lower case and MAY include additional |
  |              | colon ':' or dash '-' characters that MUST be     |
  |              | ignored by the server.                            |
  +--------------+---------------------------------------------------+

                     Table 7: PeerInfo Data Fields

5.  IANA Considerations

  This section provides information regarding registration of values
  related to the EAP-NOOB method, in accordance with [RFC8126].

  The EAP Method Type for EAP-NOOB (value 56) has been assigned in the
  "Method Types" subregistry of the "Extensible Authentication Protocol
  (EAP) Registry".

  Per this memo, IANA has created and will maintain a new registry
  entitled "Nimble Out-of-Band Authentication for EAP Parameters (EAP-
  NOOB)" in the Extensible Authentication Protocol (EAP) category.
  Also, IANA has created and will maintain the subregistries defined in
  the following subsections.

5.1.  Cryptosuites

  IANA has created and will maintain a new subregistry entitled "EAP-
  NOOB Cryptosuites" in the "Nimble Out-of-Band Authentication for EAP
  Parameters (EAP-NOOB)" registry.  Cryptosuites are identified by an
  integer.  Each cryptosuite MUST specify an ECDHE curve for the key
  exchange, encoding of the ECDHE public key as a JWK object, and a
  cryptographic hash function for the fingerprint and HMAC computation
  and key derivation.  The hash value output by the cryptographic hash
  function MUST be at least 32 bytes in length.  The initial values for
  this registry are:

     +=============+===============================================+
     | Cryptosuite | Algorithms                                    |
     +=============+===============================================+
     | 0           | Reserved                                      |
     +-------------+-----------------------------------------------+
     | 1           | ECDHE curve Curve25519 [RFC7748], public-key  |
     |             | format [RFC7517], hash function SHA-256       |
     |             | [RFC6234].  The JWK encoding of Curve25519    |
     |             | public key is defined in [RFC8037].  For      |
     |             | clarity, the "crv" parameter is "X25519", the |
     |             | "kty" parameter is "OKP", and the public-key  |
     |             | encoding contains only an x-coordinate.       |
     +-------------+-----------------------------------------------+
     | 2           | ECDHE curve NIST P-256 [FIPS186-4], public-   |
     |             | key format [RFC7517], hash function SHA-256   |
     |             | [RFC6234].  The JWK encoding of NIST P-256    |
     |             | public key is defined in [RFC7518].  For      |
     |             | clarity, the "crv" parameter is "P-256", the  |
     |             | "kty" parameter is "EC", and the public-key   |
     |             | encoding has both an x and y coordinate, as   |
     |             | defined in Section 6.2.1 of [RFC7518].        |
     +-------------+-----------------------------------------------+

                      Table 8: EAP-NOOB Cryptosuites

  EAP-NOOB implementations MUST support Cryptosuite 1.  Support for
  Cryptosuite 2 is RECOMMENDED.  An example of a Cryptosuite 1 public-
  key encoded as a JWK object is given below.  (Line breaks are for
  readability only.)

  "jwk":{"kty":"OKP","crv":"X25519","x":"3p7bfXt9wbTTW2HC7OQ1Nz-
  DQ8hbeGdNrfx-FG-IK08"}

  Assignment of new values for new cryptosuites MUST be done through
  IANA with "Specification Required", as defined in [RFC8126].

5.2.  Message Types

  IANA has created and will maintain a new subregistry entitled "EAP-
  NOOB Message Types" in the "Nimble Out-of-Band Authentication for EAP
  Parameters (EAP-NOOB)" registry.  EAP-NOOB request and response pairs
  are identified by an integer Message Type.  The initial values for
  this registry are:

    +=========+============+========================================+
    | Message | Used in    | Purpose                                |
    | Type    | Exchange   |                                        |
    +=========+============+========================================+
    | 0       | Error      | Error notification                     |
    +---------+------------+----------------------------------------+
    | 1       | All        | PeerId and PeerState discovery         |
    |         | exchanges  |                                        |
    +---------+------------+----------------------------------------+
    | 2       | Initial    | Version, cryptosuite, and parameter    |
    |         |            | negotiation                            |
    +---------+------------+----------------------------------------+
    | 3       | Initial    | Exchange of ECDHE keys and nonces      |
    +---------+------------+----------------------------------------+
    | 4       | Waiting    | Indication to the peer that the server |
    |         |            | has not yet received an OOB message    |
    +---------+------------+----------------------------------------+
    | 5       | Completion | NoobId discovery                       |
    +---------+------------+----------------------------------------+
    | 6       | Completion | Authentication and key confirmation    |
    |         |            | with HMAC                              |
    +---------+------------+----------------------------------------+
    | 7       | Reconnect  | Version, cryptosuite, and parameter    |
    |         |            | negotiation                            |
    +---------+------------+----------------------------------------+
    | 8       | Reconnect  | Exchange of ECDHE keys and nonces      |
    +---------+------------+----------------------------------------+
    | 9       | Reconnect  | Authentication and key confirmation    |
    |         |            | with HMAC                              |
    +---------+------------+----------------------------------------+

                     Table 9: EAP-NOOB Message Types

  Assignment of new values for new Message Types MUST be done through
  IANA with "Specification Required", as defined in [RFC8126].

5.3.  Error Codes

  IANA has created and will maintain a new subregistry entitled "EAP-
  NOOB Error codes" in the "Nimble Out-of-Band Authentication for EAP
  Parameters (EAP-NOOB)" registry.  Cryptosuites are identified by an
  integer.  The initial values for this registry are:

       +============+===========================================+
       | Error code | Purpose                                   |
       +============+===========================================+
       | 1001       | Invalid NAI                               |
       +------------+-------------------------------------------+
       | 1002       | Invalid message structure                 |
       +------------+-------------------------------------------+
       | 1003       | Invalid data                              |
       +------------+-------------------------------------------+
       | 1004       | Unexpected message type                   |
       +------------+-------------------------------------------+
       | 1005       | Invalid ECDHE key                         |
       +------------+-------------------------------------------+
       | 2001       | Unwanted peer                             |
       +------------+-------------------------------------------+
       | 2002       | State mismatch, user action required      |
       +------------+-------------------------------------------+
       | 2003       | Unrecognized OOB message identifier       |
       +------------+-------------------------------------------+
       | 2004       | Unexpected peer identifier                |
       +------------+-------------------------------------------+
       | 3001       | No mutually supported protocol version    |
       +------------+-------------------------------------------+
       | 3002       | No mutually supported cryptosuite         |
       +------------+-------------------------------------------+
       | 3003       | No mutually supported OOB direction       |
       +------------+-------------------------------------------+
       | 4001       | HMAC verification failure                 |
       +------------+-------------------------------------------+
       | 5001       | Application-specific error                |
       +------------+-------------------------------------------+
       | 5002       | Invalid server info                       |
       +------------+-------------------------------------------+
       | 5003       | Invalid server URL                        |
       +------------+-------------------------------------------+
       | 5004       | Invalid peer info                         |
       +------------+-------------------------------------------+
       | 6001-6999  | Reserved for Private and Experimental Use |
       +------------+-------------------------------------------+

                     Table 10: EAP-NOOB Error Codes

  Assignment of new error codes MUST be done through IANA with
  "Specification Required", as defined in [RFC8126], except for the
  range 6001-6999.  This range is reserved for "Private Use" and
  "Experimental Use", both locally and on the open Internet.

5.4.  ServerInfo Data Fields

  IANA has created and will maintain a new subregistry entitled "EAP-
  NOOB ServerInfo Data Fields" in the "Nimble Out-of-Band
  Authentication for EAP Parameters (EAP-NOOB)" registry.  The initial
  values for this registry are:

                +================+=====================+
                | Data Field     | Specification       |
                +================+=====================+
                | Type           | RFC 9140, Section 4 |
                +----------------+---------------------+
                | ServerName     | RFC 9140, Section 4 |
                +----------------+---------------------+
                | ServerURL      | RFC 9140, Section 4 |
                +----------------+---------------------+
                | SSIDList       | RFC 9140, Section 4 |
                +----------------+---------------------+
                | Base64SSIDList | RFC 9140, Section 4 |
                +----------------+---------------------+

                    Table 11: ServerInfo Data Fields

  Assignment of new values for new ServerInfo data fields MUST be done
  through IANA with "Specification Required", as defined in [RFC8126].

5.5.  PeerInfo Data Fields

  IANA is requested to create and maintain a new subregistry entitled
  "EAP-NOOB PeerInfo Data Fields" in the "Nimble Out-of-Band
  Authentication for EAP Parameters (EAP-NOOB)" registry.  The initial
  values for this registry are:

                 +==============+=====================+
                 | Data Field   | Specification       |
                 +==============+=====================+
                 | Type         | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | PeerName     | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | Manufacturer | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | Model        | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | SerialNumber | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | MACAddress   | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | SSID         | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | Base64SSID   | RFC 9140, Section 4 |
                 +--------------+---------------------+
                 | BSSID        | RFC 9140, Section 4 |
                 +--------------+---------------------+

                     Table 12: PeerInfo Data Fields

  Assignment of new values for new PeerInfo data fields MUST be done
  through IANA with "Specification Required", as defined in [RFC8126].

5.6.  Domain Name Reservation

  The special-use domain "eap-noob.arpa" has been registered in the
  .arpa registry (https://www.iana.org/domains/arpa) and the "Special-
  Use Domain Names" registry (https://www.iana.org/assignments/special-
  use-domain-names).

5.7.  Guidance for Designated Experts

  Experts SHOULD be conservative in the allocation of new Cryptosuites.
  Experts MUST ascertain that the requested values match the current
  Crypto Forum Research Group (CFRG) guidance on cryptographic
  algorithm security.  Experts MUST ensure that any new Cryptosuites
  fully specify the encoding of the ECDHE public key and should include
  details, such as the value of the "kty" (key type) parameter when JWK
  [RFC7517] encoding is used.

  Experts SHOULD be conservative in the allocation of new Message
  Types.  Experts SHOULD ascertain that a well-defined specification
  for the new Message Type is permanently and publicly available.

  Experts SHOULD be conservative in the allocation of new Error codes,
  since the 6001-6999 range is already reserved for private and
  experimental use.

  Experts MAY be liberal in the allocation of new ServerInfo and
  PeerInfo data fields.  Experts MUST ensure that the data field
  requested has a unique name that is not easily confused with existing
  registrations.  For example, requests for a new PeerInfo data field
  "ssid" should be rejected even though it is unique because it can be
  confused with the existing registration of "SSID".  Experts MUST
  ensure that a suitable Description for the data field is available.

6.  Security Considerations

  EAP-NOOB is an authentication and key derivation protocol; thus,
  security considerations can be found in most sections of this
  specification.  In the following, we explain the protocol design and
  highlight some other special considerations.

6.1.  Authentication Principle

  EAP-NOOB establishes a shared secret with an authenticated ECDHE key
  exchange.  The mutual authentication in EAP-NOOB is based on two
  separate features, both conveyed in the OOB message.  The first
  authentication feature is the secret nonce Noob.  The peer and server
  use this secret in the Completion Exchange to mutually authenticate
  the session key previously created with ECDHE.  The message
  authentication codes computed with the secret nonce Noob are alone
  sufficient for authenticating the key exchange.  The second
  authentication feature is the integrity-protecting fingerprint Hoob.
  Its purpose is to prevent impersonation attacks even in situations
  where the attacker is able to eavesdrop on the OOB channel and the
  nonce Noob is compromised.  In some human-assisted OOB channels, such
  as human-perceptible audio or a user-typed URL, it may be easier to
  detect tampering than disclosure of the OOB message, and such
  applications benefit from the second authentication feature.

  The additional security provided by the cryptographic fingerprint
  Hoob is somewhat intricate to understand.  The endpoint that receives
  the OOB message uses Hoob to verify the integrity of the ECDHE
  exchange.  Thus, the OOB receiver can detect impersonation attacks
  that may have happened on the in-band channel.  The other endpoint,
  however, is not equally protected because the OOB message and
  fingerprint are sent only in one direction.  Some protection to the
  OOB sender is afforded by the fact that the user may notice the
  failure of the association at the OOB receiver and therefore reset
  the OOB sender.  Other device-pairing protocols have solved similar
  situations by requiring the user to confirm to the OOB sender that
  the association was accepted by the OOB receiver, e.g., with a button
  press on the sender side.  Applications MAY implement EAP-NOOB in
  this way.  Nevertheless, since EAP-NOOB was designed to work with
  strictly one-directional OOB communication and the fingerprint is
  only the second authentication feature, the EAP-NOOB specification
  does not mandate such explicit confirmation to the OOB sender.

  To summarize, EAP-NOOB uses the combined protection of the secret
  nonce Noob and the cryptographic fingerprint Hoob, both conveyed in
  the OOB message.  The secret nonce Noob alone is sufficient for
  mutual authentication unless the attacker can eavesdrop on it from
  the OOB channel.  Even if an attacker is able to eavesdrop on the
  secret nonce Noob, it nevertheless cannot perform a full
  impersonation attack on the in-band channel because a mismatching
  fingerprint would alert the OOB receiver, which would reject the OOB
  message.  The attacker that eavesdropped on the secret nonce can
  impersonate the OOB receiver to the OOB sender.  If it does, the
  association will appear to be complete only on the OOB sender side,
  and such situations have to be resolved by the user by resetting the
  OOB sender to the initial state.

  The expected use cases for EAP-NOOB are ones where it replaces a
  user-entered access credential in IoT appliances.  In wireless
  network access without EAP, the user-entered credential is often a
  passphrase that is shared by all the network stations.  The advantage
  of an EAP-based solution, including EAP-NOOB, is that it establishes
  a different shared secret for each peer device, which makes the
  system more resilient against device compromise.  Another advantage
  is that it is possible to revoke the security association for an
  individual device on the server side.

  Forward secrecy during fast reconnect in EAP-NOOB is optional.  The
  Reconnect Exchange in EAP-NOOB provides forward secrecy only if both
  the server and peer send their fresh ECDHE keys.  This allows both
  the server and peer to limit the frequency of the costly computation
  that is required for forward secrecy.  The server MAY adjust the
  frequency of its attempts at ECDHE rekeying based on what it knows
  about the peer's computational capabilities.

  Another way in which some servers may control their computational
  load is to reuse the same ECDHE key for all peers over a short
  server-specific time window.  In that case, forward secrecy will be
  achieved only after the server updates its ECDHE key, which may be a
  reasonable trade-off between security and performance.  However, the
  server MUST NOT reuse the same ECDHE key with the same peer when
  rekeying with ECDHE (KeyingMode=2 or KeyingMode=3).  Instead, it can
  simply not send an ECDHE key (KeyingMode=1).

  The users delivering the OOB messages will often authenticate
  themselves to the EAP server, e.g., by logging into a secure web page
  or API.  In this case, the server can associate the peer device with
  the user account.  Applications that make use of EAP-NOOB can use
  this information for configuring the initial owner of the freshly
  registered device.

6.2.  Identifying Correct Endpoints

  Potential weaknesses in EAP-NOOB arise from the fact that the user
  must physically identify the correct peer device.  If the user
  mistakenly delivers the OOB message from the wrong peer device to the
  server, the server may create an association with the wrong peer.
  The reliance on the user in identifying the correct endpoints is an
  inherent property of user-assisted, out-of-band authentication.  To
  understand the potential consequences of the user mistake, we need to
  consider a few different scenarios.  In the first scenario, there is
  no malicious party, and the user makes an accidental mistake between
  two out-of-the-box devices that are both ready to be registered to a
  server.  If the user delivers the OOB message from the wrong device
  to the server, confusion may arise but usually no security issues.
  In the second scenario, an attacker intentionally tricks the user,
  for example, by substituting the original peer device with a
  compromised one.  This is essentially a supply chain attack where the
  user accepts a compromised physical device.

  There is also a third scenario, in which an opportunistic attacker
  tries to take advantage of the user's accidental mistake.  For
  example, the user could play an audio or a blinking LED message to a
  device that is not expecting to receive it.  In simple security
  bootstrapping solutions that transfer a primary key to the device via
  the OOB channel, the device could misuse or leak the accidentally
  received primary key.  EAP-NOOB is not vulnerable to such
  opportunistic attackers because the OOB message has no value to
  anyone who did not take part in the corresponding Initial Exchange.

  One mechanism that can mitigate user mistakes is certification of
  peer devices.  A certificate or an attestation token (e.g., [TLS-CWT]
  and [RATS-EAT]) can convey to the server authentic identifiers and
  attributes, such as model and serial number, of the peer device.
  Compared to a fully certificate-based authentication, however, EAP-
  NOOB can be used without trusted third parties and does not require
  the user to know any identifier of the peer device; physical access
  to the device is sufficient for bootstrapping with EAP-NOOB.

  Similarly, the attacker can try to trick the user into delivering the
  OOB message to the wrong server so that the peer device becomes
  associated with the wrong server.  If the EAP server is accessed
  through a web user interface, the attack is akin to phishing attacks
  where the user is tricked into accessing the wrong URL and wrong web
  page.  OOB implementation with a dedicated app on a mobile device,
  which communicates with a server API at a preconfigured URL, can
  protect against such attacks.

  After the device registration, an attacker could clone the device
  identity by copying the keys from the persistent EAP-NOOB association
  into another device.  The attacker can be an outsider who gains
  access to the keys or the device owner who wants to have two devices
  matching the same registration.  The cloning threats can be mitigated
  by creating the cryptographic keys and storing the persistent EAP-
  NOOB association on the peer device in a secure hardware component
  such as a trusted execution environment (TEE).  Furthermore, remote
  attestation on the application level could provide assurance to the
  server that the device has not been cloned.  Reconnect Exchange with
  a new cryptosuite (KeyingMode=3) will also disconnect all but the
  first clone that performs the update.

6.3.  Trusted Path Issues and Misbinding Attacks

  Another potential threat is spoofed user input or output on the peer
  device.  When the user is delivering the OOB message to or from the
  correct peer device, a trusted path between the user and the peer
  device is needed.  That is, the user must communicate directly with
  an authentic operating system and EAP-NOOB implementation in the peer
  device and not with a spoofed user interface.  Otherwise, a
  registered device that is under the control of the attacker could
  emulate the behavior of an unregistered device.  The secure path can
  be implemented, for example, by having the user press a reset button
  to return the device to the Unregistered (0) state and to invoke a
  trusted UI.  The problem with such trusted paths is that they are not
  standardized across devices.

  Another potential consequence of a spoofed UI is the misbinding
  attack where the user tries to register a correct but compromised
  device, which tricks the user into registering another
  (uncompromised) device instead.  For example, the compromised device
  might have a malicious, full-screen app running, which presents to
  the user QR codes copied, in real time, from another device's screen.
  If the unwitting user scans the QR code and delivers the OOB message
  in it to the server, the wrong device may become registered in the
  server.  Such misbinding vulnerabilities arise because the user does
  not have any secure way of verifying that the in-band cryptographic
  handshake and the out-of-band physical access are terminated at the
  same physical device.  Sethi et al.  [Sethi19] analyze the misbinding
  threat against device-pairing protocols and also EAP-NOOB.
  Essentially, all protocols where the authentication relies on the
  user's physical access to the device are vulnerable to misbinding,
  including EAP-NOOB.

  A standardized trusted path for communicating directly with the
  trusted computing base in a physical device would mitigate the
  misbinding threat, but such paths rarely exist in practice.  Careful
  asset tracking on the server side can also prevent most misbinding
  attacks if the peer device sends its identifiers or attributes in the
  PeerInfo field and the server compares them with the expected values.
  The wrong but uncompromised device's PeerInfo will not match the
  expected values.  Device certification by the manufacturer can
  further strengthen the asset tracking.

6.4.  Peer Identifiers and Attributes

  The PeerId value in the protocol is a server-allocated identifier for
  its association with the peer and SHOULD NOT be shown to the user
  because its value is initially ephemeral.  Since the PeerId is
  allocated by the server and the scope of the identifier is the single
  server, the so-called identifier squatting attacks, where a malicious
  peer could reserve another peer's identifier, are not possible in
  EAP-NOOB.  The server SHOULD assign a random or pseudorandom PeerId
  to each new peer.  It SHOULD NOT select the PeerId based on any peer
  characteristics that it may know, such as the peer's link-layer
  network address.

  User reset or failure in the OOB Step can cause the peer to perform
  many Initial Exchanges with the server, which allocates many PeerId
  values and stores the ephemeral protocol state for them.  The peer
  will typically only remember the latest ones.  EAP-NOOB leaves it to
  the implementation to decide when to delete these ephemeral
  associations.  There is no security reason to delete them early, and
  the server does not have any way to verify that the peers are
  actually the same one.  Thus, it is safest to store the ephemeral
  states on the server for at least one day.  If the OOB messages are
  sent only in the server-to-peer direction, the server SHOULD NOT
  delete the ephemeral state before all the related Noob values have
  expired.

  After completion of EAP-NOOB, the server may store the PeerInfo data,
  and the user may use it to identify the peer and its attributes, such
  as the make and model or serial number.  A compromised peer could lie
  in the PeerInfo that it sends to the server.  If the server stores
  any information about the peer, it is important that this information
  is approved by the user during or after the OOB Step.  Without
  verification by the user or authentication on the application level,
  the PeerInfo is not authenticated information and should not be
  relied on.  One possible use for the PeerInfo field is EAP channel
  binding (see Section 6.7).

6.5.  Downgrading Threats

  The fingerprint Hoob protects all the information exchanged in the
  Initial Exchange, including the cryptosuite negotiation.  The message
  authentication codes MACs and MACp also protect the same information.
  The message authentication codes MACs2 and MACp2 protect information
  exchanged during key renegotiation in the Reconnect Exchange.  This
  prevents downgrading attacks to weaker cryptosuites, as long as the
  possible attacks take more time than the maximum time allowed for the
  EAP-NOOB completion.  This is typically the case for recently
  discovered cryptanalytic attacks.

  As an additional precaution, the EAP server and peer MUST check for
  downgrading attacks in the Reconnect Exchange as follows.  As long as
  the server or peer saves any information about the other endpoint, it
  MUST also remember the previously negotiated cryptosuite and MUST NOT
  accept renegotiation of any cryptosuite that is known to be weaker
  than the previous one, such as a deprecated cryptosuite.  Determining
  the relative strength of the cryptosuites is out of scope of this
  specification and may be managed by implementations or by local
  policies at the peer and server.

  Integrity of the direction negotiation cannot be verified in the same
  way as the integrity of the cryptosuite negotiation.  That is, if the
  OOB channel used in an application is critically insecure in one
  direction, an on-path attacker could modify the negotiation messages
  and thereby cause that direction to be used.  Applications that
  support OOB messages in both directions SHOULD, therefore, ensure
  that the OOB channel has sufficiently strong security in both
  directions.  While this is a theoretical vulnerability, it could
  arise in practice if EAP-NOOB is deployed in new applications.
  Currently, we expect most peer devices to support only one OOB
  direction; in which case, interfering with the direction negotiation
  can only prevent the completion of the protocol.

  The long-term shared key material Kz in the persistent EAP-NOOB
  association is established with an ECDHE key exchange when the peer
  and server are first associated.  It is a weaker secret than a
  manually configured random shared key because advances in
  cryptanalysis against the used ECDHE curve could eventually enable
  the attacker to recover Kz.  EAP-NOOB protects against such attacks
  by allowing cryptosuite upgrades in the Reconnect Exchange and by
  updating the shared key material Kz whenever the cryptosuite is
  upgraded.  We do not expect the cryptosuite upgrades to be frequent,
  but, if an upgrade becomes necessary, it can be done without manual
  reset and reassociation of the peer devices.

6.6.  Protected Success and Failure Indications

  Section 7.16 of [RFC3748] allows EAP methods to specify protected
  result indications because EAP-Success and EAP-Failure packets are
  neither acknowledged nor integrity protected.  [RFC3748] notes that
  these indications may be explicit or implicit.

  EAP-NOOB relies on implicit, protected success indicators in the
  Completion Exchange and Reconnect Exchange.  Successful verification
  of MACs and MACs2 in the EAP-Request message from the server (message
  type 6 and message type 9, respectively) acts as an implicit,
  protected success indication to the peer.  Similarly, successful
  verification of MACp and MACp2 in the EAP-Response message from the
  peer (message type 6 and message type 9, respectively) act as an
  implicit, protected success indication to the server.

  EAP-NOOB failure messages are not protected.  Protected failure
  result indications would not significantly improve availability since
  EAP-NOOB reacts to most malformed data by ending the current EAP
  conversation in EAP-Failure.  However, since EAP-NOOB spans multiple
  conversations, failure in one conversation usually means no state
  change on the level of the EAP-NOOB state machine.

6.7.  Channel Binding

  EAP channel binding, defined in [RFC6677], means that the endpoints
  compare their perceptions of network properties, such as lower-layer
  identifiers, over the secure channel established by EAP
  authentication.  Section 4.1 of [RFC6677] defines two approaches to
  channel binding.  EAP-NOOB follows the first approach, in which the
  peer and server exchange plaintext information about the network over
  a channel that is integrity protected with keys derived during the
  EAP execution.  More specifically, channel information is exchanged
  in the plaintext PeerInfo and ServerInfo objects and is later
  verified with message authentication codes (MACp, MACs, MACp2, and
  MACs2).  This allows policy-based comparison with locally perceived
  network properties on either side, as well as logging for debugging
  purposes.  The peer MAY include in PeerInfo any data items that it
  wants to bind to the EAP-NOOB association and to the exported keys.
  These can be properties of the authenticator or the access link, such
  as the SSID and BSSID of the wireless network (see Table 6).  As
  noted in Section 4.3 of [RFC6677], the scope of the channel binding
  varies between deployments.  For example, the server may have less
  link-layer information available from roaming networks than from a
  local enterprise network, and it may be unable to verify all the
  network properties received in PeerInfo.  There are also privacy
  considerations related to exchanging the ServerInfo and PeerInfo
  while roaming (see Section 6.10).

  Channel binding to secure channels, defined in [RFC5056], binds
  authentication at a higher protocol layer to a secure channel at a
  lower layer.  Like most EAP methods, EAP-NOOB exports the session
  keys MSK and EMSK, and an outer tunnel or a higher-layer protocol can
  bind its authentication to these keys.  Additionally, EAP-NOOB
  exports the key AMSK, which may be used to bind application-layer
  authentication to the secure channel created by EAP-NOOB and to the
  session keys MSK and EMSK.

6.8.  Denial of Service

  While denial-of-service (DoS) attacks by on-link attackers cannot be
  fully prevented, the design goal in EAP-NOOB is to void long-lasting
  failure caused by an attacker who is present only temporarily or
  intermittently.  The main defense mechanism is the persistent EAP-
  NOOB association, which is never deleted automatically due to in-band
  messages or error indications.  Thus, the endpoints can always use
  the persistent association for reconnecting after the DoS attacker
  leaves the network.  In this sense, the persistent association serves
  the same function in EAP-NOOB as a permanent primary key or
  certificate in other authentication protocols.  We discuss logical
  attacks against the updates of the persistent association in
  Section 6.9.

  In addition to logical DoS attacks, it is necessary to consider
  resource exhaustion attacks against the EAP server.  The number of
  persistent EAP-NOOB associations created in the server is limited by
  the need for a user to assist in delivering the OOB message.  The
  users can be authenticated for the input or output of the OOB message
  at the EAP server, and any users who create excessive numbers of
  persistent associations can be held accountable and their
  associations can be deleted by the server administrator.  What the
  attacker can do without user authentication is to perform the Initial
  Exchange repeatedly and create a large number of ephemeral
  associations (server in Waiting for OOB (1) state) without ever
  delivering the OOB message.  In Section 6.4, it was suggested that
  the server should store the ephemeral states for at least a day.
  This may require off-loading the state storage from memory to disk
  during a DoS attack.  However, if the server implementation is unable
  to keep up with a rate of Initial Exchanges performed by a DoS
  attacker and needs to drop some ephemeral states, no damage is caused
  to already-created persistent associations, and the honest users can
  resume registering new peers when the DoS attacker leaves the
  network.

  There are some trade-offs in the protocol design between politely
  backing off and giving way to DoS attackers.  An on-link DoS attacker
  could spoof the SleepTime value in the Initial Exchange or Waiting
  Exchange to cause denial of service against a specific peer device.
  There is an upper limit on the SleepTime (3600 seconds) to mitigate
  the spoofing threat.  This means that, in the presence of an on-link
  DoS attacker who spoofs the SleepTime, it could take up to one hour
  after the delivery of the OOB message before the device performs the
  Completion Exchange and becomes functional.  Similarly, the Unwanted
  peer error (error code 2001) could cause the peer to stop connecting
  to the network.  If the peer device is able to alert the user about
  the error condition, it can safely stop connecting to the server and
  wait for the user to trigger a reconnection attempt, e.g., by
  resetting the device.  As mentioned in Section 3.6.2, peer devices
  that are unable to alert the user should continue to retry the
  Initial Exchange infrequently to avoid a permanent DoS condition.  We
  believe a maximum backoff time of 3600 seconds is reasonable for a
  new protocol because malfunctioning or misconfigured peer
  implementations are at least as great a concern as DoS attacks, and
  politely backing off within some reasonable limits will increase the
  acceptance of the protocol.  The maximum backoff times could be
  updated to be shorter as the protocol implementations mature.

6.9.  Recovery from Loss of Last Message

  The EAP-NOOB Completion Exchange, as well as the Reconnect Exchange
  with cryptosuite update, results in a persistent state change that
  should take place either on both endpoints or on neither; otherwise,
  the result is a state mismatch that requires user action to resolve.
  The state mismatch can occur if the final EAP response of the
  exchanges is lost.  In the Completion Exchange, the loss of the final
  response (Type=6) results in the peer moving to the Registered (4)
  state and creating a persistent EAP-NOOB association while the server
  stays in an ephemeral state (1 or 2).  In the Reconnect Exchange, the
  loss of the final response (Type=9) results in the peer moving to the
  Registered (4) state and updating its persistent key material Kz
  while the server stays in the Reconnecting (3) state and keeps the
  old key material.

  The state mismatch is an example of an unavoidable problem in
  distributed systems: it is theoretically impossible to guarantee
  synchronous state changes in endpoints that communicate
  asynchronously.  The protocol will always have one critical message
  that may get lost, so that one side commits to the state change and
  the other side does not.  In EAP, the critical message is the final
  response from the peer to the server.  While the final response is
  normally followed by EAP-Success, [RFC3748], Section 4.2 states that
  the peer MAY assume that the EAP-Success was lost and the
  authentication was successful.  Furthermore, EAP method
  implementations in the peer do not receive notification of the EAP-
  Success message from the parent EAP state machine [RFC4137].  For
  these reasons, EAP-NOOB on the peer side commits to a state change
  already when it sends the final response.

  The best available solution to the loss of the critical message is to
  keep trying.  EAP retransmission behavior defined in Section 4.3 of
  [RFC3748] suggests 3-5 retransmissions.  In the absence of an
  attacker, this would be sufficient to reduce the probability of
  failure to an acceptable level.  However, a determined attacker on
  the in-band channel can drop the final EAP-Response message and all
  subsequent retransmissions.  In the Completion Exchange
  (KeyingMode=0) and Reconnect Exchange with cryptosuite upgrade
  (KeyingMode=3), this could result in a state mismatch and persistent
  denial of service until the user resets the peer state.

  EAP-NOOB implements its own recovery mechanism that allows unlimited
  retries of the Reconnect Exchange.  When the DoS attacker eventually
  stops dropping packets on the in-band channel, the protocol will
  recover.  The logic for this recovery mechanism is specified in
  Section 3.4.2.

  EAP-NOOB does not implement the same kind of retry mechanism in the
  Completion Exchange.  The reason is that there is always a user
  involved in the initial association process, and the user can repeat
  the OOB Step to complete the association after the DoS attacker has
  left.  On the other hand, Reconnect Exchange needs to work without
  user involvement.

6.10.  Privacy Considerations

  There are privacy considerations related to performing the Reconnect
  Exchange while roaming.  The peer and server may send updated
  PeerInfo and ServerInfo fields in the Reconnect Exchange.  This data
  is sent unencrypted between the peer and the EAP authenticator, such
  as a wireless access point.  Thus, it can be observed by both
  outsiders and the access network.  The PeerInfo field contains
  identifiers and other information about the peer device (see
  Table 6).  While the information refers to the peer device and not
  directly to the user, it can leak information about the user to the
  access network and to outside observers.  The ServerInfo, on the
  other hand, can leak information about the peer's affiliation with
  the home network.  For this reason, the optional PeerInfo and
  ServerInfo in the Reconnect Exchange SHOULD be omitted unless some
  critical data has changed and it cannot be updated on the application
  layer.

  Peer devices that randomize their Layer 2 address to prevent tracking
  can do this whenever the user resets the EAP-NOOB association.
  During the lifetime of the association, the PeerId is a unique
  identifier that can be used to track the peer in the access network.
  Later versions of this specification may consider updating the PeerId
  at each Reconnect Exchange.  In that case, it is necessary to
  consider how the authenticator and access-network administrators can
  recognize and add misbehaving peer devices to a deny list, as well as
  how to avoid loss of synchronization between the server and the peer
  if messages are lost during the identifier update.

  To enable stronger identity protection in later versions of EAP-NOOB,
  the optional server-assigned NAI (NewNAI) SHOULD have a constant
  username part.  The RECOMMENDED username is "noob".  The server MAY,
  however, send a different username in NewNAI to avoid username
  collisions within its realm or to conform to a local policy on
  usernames.

6.11.  EAP Security Claims

  EAP security claims are defined in Section 7.2.1 of [RFC3748].  The
  security claims for EAP-NOOB are listed in Table 13.

  +=================+=================================================+
  | Security        | EAP-NOOB Claim                                  |
  | Property        |                                                 |
  +=================+=================================================+
  | Authentication  | ECDHE key exchange with out-of-band             |
  | mechanism       | authentication                                  |
  +-----------------+-------------------------------------------------+
  | Protected       | yes                                             |
  | cryptosuite     |                                                 |
  | negotiation     |                                                 |
  +-----------------+-------------------------------------------------+
  | Mutual          | yes                                             |
  | authentication  |                                                 |
  +-----------------+-------------------------------------------------+
  | Integrity       | yes                                             |
  | protection      |                                                 |
  +-----------------+-------------------------------------------------+
  | Replay          | yes                                             |
  | protection      |                                                 |
  +-----------------+-------------------------------------------------+
  | Confidentiality | no                                              |
  +-----------------+-------------------------------------------------+
  | Key derivation  | yes                                             |
  +-----------------+-------------------------------------------------+
  | Key strength    | The specified cryptosuites provide              |
  |                 | key strength of at least 128 bits.              |
  +-----------------+-------------------------------------------------+
  | Dictionary      | yes                                             |
  | attack          |                                                 |
  | protection      |                                                 |
  +-----------------+-------------------------------------------------+
  | Fast reconnect  | yes                                             |
  +-----------------+-------------------------------------------------+
  | Cryptographic   | not applicable                                  |
  | binding         |                                                 |
  +-----------------+-------------------------------------------------+
  | Session         | yes                                             |
  | independence    |                                                 |
  +-----------------+-------------------------------------------------+
  | Fragmentation   | no                                              |
  +-----------------+-------------------------------------------------+
  | Channel binding | yes (The ServerInfo and PeerInfo can            |
  |                 | be used to convey integrity-protected           |
  |                 | channel properties, such as network             |
  |                 | SSID or peer MAC address.)                      |
  +-----------------+-------------------------------------------------+

                      Table 13: EAP Security Claims

7.  References

7.1.  Normative References

  [EUI-48]   IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks: Overview and Architecture",
             DOI 10.1109/IEEESTD.2014.6847097, IEEE Standard 802-2014,
             June 2014, <https://doi.org/10.1109/IEEESTD.2014.6847097>.

  [FIPS186-4]
             National Institute of Standards and Technology (NIST),
             "Digital Signature Standard (DSS)",
             DOI 10.6028/NIST.FIPS.186-4, FIPS 186-4, July 2013,
             <https://doi.org/10.6028/NIST.FIPS.186-4>.

  [NIST-DH]  Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
             Davis, "Recommendation for Pair-Wise Key-Establishment
             Schemes Using Discrete Logarithm Cryptography",
             DOI 10.6028/NIST.SP.800-56Ar3, NIST Special
             Publication 800-56A Revision 3, April 2018,
             <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
             NIST.SP.800-56Ar3.pdf>.

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <https://www.rfc-editor.org/info/rfc2104>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
             Levkowetz, Ed., "Extensible Authentication Protocol
             (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
             <https://www.rfc-editor.org/info/rfc3748>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <https://www.rfc-editor.org/info/rfc4648>.

  [RFC5247]  Aboba, B., Simon, D., and P. Eronen, "Extensible
             Authentication Protocol (EAP) Key Management Framework",
             RFC 5247, DOI 10.17487/RFC5247, August 2008,
             <https://www.rfc-editor.org/info/rfc5247>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <https://www.rfc-editor.org/info/rfc6234>.

  [RFC7517]  Jones, M., "JSON Web Key (JWK)", RFC 7517,
             DOI 10.17487/RFC7517, May 2015,
             <https://www.rfc-editor.org/info/rfc7517>.

  [RFC7518]  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
             DOI 10.17487/RFC7518, May 2015,
             <https://www.rfc-editor.org/info/rfc7518>.

  [RFC7542]  DeKok, A., "The Network Access Identifier", RFC 7542,
             DOI 10.17487/RFC7542, May 2015,
             <https://www.rfc-editor.org/info/rfc7542>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <https://www.rfc-editor.org/info/rfc7748>.

  [RFC8037]  Liusvaara, I., "CFRG Elliptic Curve Diffie-Hellman (ECDH)
             and Signatures in JSON Object Signing and Encryption
             (JOSE)", RFC 8037, DOI 10.17487/RFC8037, January 2017,
             <https://www.rfc-editor.org/info/rfc8037>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

7.2.  Informative References

  [Bluetooth]
             Bluetooth Special Interest Group, "Bluetooth Core
             Specification Version 5.3", July 2021,
             <https://www.bluetooth.com/specifications/bluetooth-core-
             specification>.

  [IEEE-802.1X]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks--Port-Based Network Access Control", IEEE
             Standard 802.1X-2020, February 2020.

  [RATS-EAT] Lundblade, L., Mandyam, G., and J. O'Donoghue, "The Entity
             Attestation Token (EAT)", Work in Progress, Internet-
             Draft, draft-ietf-rats-eat-11, 24 October 2021,
             <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
             eat-11>.

  [RFC2904]  Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L.,
             Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and
             D. Spence, "AAA Authorization Framework", RFC 2904,
             DOI 10.17487/RFC2904, August 2000,
             <https://www.rfc-editor.org/info/rfc2904>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.

  [RFC4137]  Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
             "State Machines for Extensible Authentication Protocol
             (EAP) Peer and Authenticator", RFC 4137,
             DOI 10.17487/RFC4137, August 2005,
             <https://www.rfc-editor.org/info/rfc4137>.

  [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure
             Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
             <https://www.rfc-editor.org/info/rfc5056>.

  [RFC5216]  Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
             Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
             March 2008, <https://www.rfc-editor.org/info/rfc5216>.

  [RFC6677]  Hartman, S., Ed., Clancy, T., and K. Hoeper, "Channel-
             Binding Support for Extensible Authentication Protocol
             (EAP) Methods", RFC 6677, DOI 10.17487/RFC6677, July 2012,
             <https://www.rfc-editor.org/info/rfc6677>.

  [Sethi14]  Sethi, M., Oat, E., Di Francesco, M., and T. Aura, "Secure
             bootstrapping of cloud-managed ubiquitous displays",
             Proceedings of ACM International Joint Conference on
             Pervasive and Ubiquitous Computing (UbiComp 2014), pp.
             739-750, Seattle, USA, DOI 10.1145/2632048.2632049,
             September 2014,
             <http://dx.doi.org/10.1145/2632048.2632049>.

  [Sethi19]  Sethi, M., Peltonen, A., and T. Aura, "Misbinding Attacks
             on Secure Device Pairing and Bootstrapping",
             DOI 10.1145/3321705.3329813, February 2019,
             <https://arxiv.org/abs/1902.07550>.

  [TLS-CWT]  Tschofenig, H. and M. Brossard, "Using CBOR Web Tokens
             (CWTs) in Transport Layer Security (TLS) and Datagram
             Transport Layer Security (DTLS)", Work in Progress,
             Internet-Draft, draft-tschofenig-tls-cwt-02, 13 July 2020,
             <https://datatracker.ietf.org/doc/html/draft-tschofenig-
             tls-cwt-02>.

Appendix A.  Exchanges and Events per State

  Table 14 shows how the EAP server chooses the exchange type depending
  on the server and peer states.  In the state combinations marked with
  hyphen "-", there is no possible exchange and user action is required
  to make progress.  Note that peer state 4 is omitted from the table
  because the peer never connects to the server when the peer is in
  that state.  The table also shows the handling of errors in each
  exchange.  A notable detail is that the recipient of error code 2003
  moves to state 1.

   +=============+===============================+==================+
   | Peer States | Exchange Chosen by the Server | Next Peer and    |
   |             |                               | Server States    |
   +=============+===============================+==================+
   |                 Server State: Unregistered (0)                 |
   +-------------+-------------------------------+------------------+
   | 0..2        | Initial Exchange              | both 1 (0 on     |
   |             |                               | error)           |
   +-------------+-------------------------------+------------------+
   | 3           | -                             | no change,       |
   |             |                               | notify user      |
   +-------------+-------------------------------+------------------+
   |               Server State: Waiting for OOB (1)                |
   +-------------+-------------------------------+------------------+
   | 0           | Initial Exchange              | both 1 (0 on     |
   |             |                               | error)           |
   +-------------+-------------------------------+------------------+
   | 1           | Waiting Exchange              | both 1 (no       |
   |             |                               | change on error) |
   +-------------+-------------------------------+------------------+
   | 2           | Completion Exchange           | both 4 (A)       |
   +-------------+-------------------------------+------------------+
   | 3           | -                             | no change,       |
   |             |                               | notify user      |
   +-------------+-------------------------------+------------------+
   |                 Server State: OOB Received (2)                 |
   +-------------+-------------------------------+------------------+
   | 0           | Initial Exchange              | both 1 (0 on     |
   |             |                               | error)           |
   +-------------+-------------------------------+------------------+
   | 1           | Completion Exchange           | both 4 (B)       |
   +-------------+-------------------------------+------------------+
   | 2           | Completion Exchange           | both 4 (A)       |
   +-------------+-------------------------------+------------------+
   | 3           | -                             | no change,       |
   |             |                               | notify user      |
   +-------------+-------------------------------+------------------+
   |        Server State: Reconnecting (3) or Registered (4)        |
   +-------------+-------------------------------+------------------+
   | 0..2        | -                             | no change,       |
   |             |                               | notify user      |
   +-------------+-------------------------------+------------------+
   | 3           | Reconnect Exchange            | both 4 (3 on     |
   |             |                               | error)           |
   +-------------+-------------------------------+------------------+

           Table 14: How the Server Chooses the Exchange Type

  (A)  peer to 1 on error 2003; no other changes on error

  (B)  server to 1 on error 2003; no other changes on error

  Table 15 lists the local events that can take place in the server or
  peer.  Both the server and peer output and accept OOB messages in
  association state 1, leading the receiver to state 2.  Communication
  errors and timeouts in states 0..2 lead back to state 0, while
  similar errors in states 3..4 lead to state 3.  An application
  request for rekeying (e.g., to refresh session keys or to upgrade
  cryptosuite) also takes the association from state 3..4 to state 3.
  The user can always reset the association state to 0.  Recovering
  association data, e.g., from a backup, leads to state 3.

        +===================+========================+=========+
        | Server/Peer State | Possible Local Events  | Next    |
        |                   | in the Server and Peer | State   |
        +===================+========================+=========+
        | 1                 | OOB Output             | 1       |
        +-------------------+------------------------+---------+
        | 1                 | OOB Input              | 2 (1 on |
        |                   |                        | error)  |
        +-------------------+------------------------+---------+
        | 0..2              | Mobility/timeout/      | 0       |
        |                   | network failure        |         |
        +-------------------+------------------------+---------+
        | 3..4              | Mobility/timeout/      | 3       |
        |                   | network failure        |         |
        +-------------------+------------------------+---------+
        | 3..4              | Rekeying request       | 3       |
        +-------------------+------------------------+---------+
        | 0..4              | User resets            | 0       |
        |                   | association            |         |
        +-------------------+------------------------+---------+
        | 0..4              | Association state      | 3       |
        |                   | recovery               |         |
        +-------------------+------------------------+---------+

             Table 15: Local Events in the Server and Peer

Appendix B.  Application-Specific Parameters

  Table 16 lists OOB channel parameters that need to be specified in
  each application that makes use of EAP-NOOB.  The list is not
  exhaustive and is included for the convenience of implementers only.

    +====================+=========================================+
    | Parameter          | Description                             |
    +====================+=========================================+
    | OobDirs            | Allowed directions of the OOB channel.  |
    +--------------------+-----------------------------------------+
    | OobMessageEncoding | How the OOB message data fields are     |
    |                    | encoded for the OOB channel.            |
    +--------------------+-----------------------------------------+
    | SleepTimeDefault   | Default minimum time in seconds that    |
    |                    | the peer should sleep before the next   |
    |                    | Waiting Exchange.                       |
    +--------------------+-----------------------------------------+
    | OobRetries         | Number of received OOB messages with    |
    |                    | invalid Hoob, after which the receiver  |
    |                    | moves to Unregistered (0) state.  When  |
    |                    | the OOB channel has error detection or  |
    |                    | correction, the RECOMMENDED value is 5. |
    +--------------------+-----------------------------------------+
    | NoobTimeout        | How many seconds the sender of the OOB  |
    |                    | message remembers the sent Noob value.  |
    |                    | The RECOMMENDED value is 3600 seconds.  |
    +--------------------+-----------------------------------------+
    | ServerInfoType     | The value of the Type field and the     |
    |                    | other required fields in ServerInfo.    |
    +--------------------+-----------------------------------------+
    | PeerInfoType       | The value of the Type field and the     |
    |                    | other required fields in PeerInfo.      |
    +--------------------+-----------------------------------------+

                 Table 16: OOB Channel Characteristics

Appendix C.  EAP-NOOB Roaming

  AAA architectures [RFC2904] allow for roaming of network-connected
  appliances that are authenticated over EAP.  While the peer is
  roaming in a visited network, authentication still takes place
  between the peer and an authentication server at its home network.
  EAP-NOOB supports such roaming by allowing the server to assign a NAI
  to the peer.  After the NAI has been assigned, it enables the visited
  network to route the EAP session to the peer's home AAA server.

  A peer device that is new or has gone through a hard reset should be
  connected first to the home network and establish an EAP-NOOB
  association with its home AAA server before it is able to roam.
  After that, it can perform the Reconnect Exchange from the visited
  network.

  Alternatively, the device may provide some method for the user to
  configure the NAI of the home network.  This is the user or
  application-configured NAI mentioned in Section 3.3.1.  In that case,
  the EAP-NOOB association can be created while roaming.  The
  configured NAI enables the EAP messages to be routed correctly to the
  home AAA server.

  While roaming, the device needs to identify the networks where the
  EAP-NOOB association can be used to gain network access.  For 802.11
  access networks, the server MAY send a list of SSID strings in the
  ServerInfo field, called either SSIDList or Base64SSIDList.  The list
  is formatted as explained in Table 6.  If present, the peer MAY use
  this list as a hint to determine the networks where the EAP-NOOB
  association can be used for access authorization, in addition to the
  access network where the Initial Exchange took place.

Appendix D.  OOB Message as a URL

  While EAP-NOOB does not mandate any particular OOB communication
  channel, typical OOB channels include graphical displays and emulated
  NFC tags.  In the peer-to-server direction, it may be convenient to
  encode the OOB message as a URL, which is then encoded as a QR code
  for displays and printers or as an NFC Data Exchange Format (NDEF)
  record for dynamic NFC tags.  A user can then simply scan the QR code
  or NFC tag and open the URL, which causes the OOB message to be
  delivered to the authentication server.  The URL MUST specify https
  or another server-authenticated scheme so that there is a secure
  connection to the server and the on-path attacker cannot read or
  modify the OOB message.

  The ServerInfo in this case includes a field called ServerURL of the
  following format with a RECOMMENDED length of at most 60 characters:

  https://<host>[:<port>]/[<path>]

  To this, the peer appends the OOB message fields (PeerId, Noob, and
  Hoob) as a query string.  PeerId is provided to the peer by the
  server and might be a 22-character ASCII string.  The peer base64url
  encodes, without padding, the 16-byte values Noob and Hoob into
  22-character ASCII strings.  The query parameters MAY be in any
  order.  The resulting URL is of the following format:

  https://<host>[:<port>]/[<path>]?P=<PeerId>&N=<Noob>&H=<Hoob>

  The following is an example of a well-formed URL encoding the OOB
  message (without line breaks):

  https://aaa.example.com/eapnoob?P=mcm5BSCDZ45cYPlAr1ghNw&N=rMinS0-F4E
  fCU8D9ljxX_A&H=QvnMp4UGxuQVFaXPW_14UW

Acknowledgments

  Max Crone, Shiva Prasad TP, and Raghavendra MS implemented parts of
  this protocol with wpa_supplicant and hostapd.  Eduardo Inglés and
  Dan Garcia-Carrillo were involved in the implementation of this
  protocol on Contiki.  Their inputs helped us in improving the
  specification.

  The authors would like to thank Rhys Smith and Josh Howlett for
  providing valuable feedback, as well as new use cases and
  requirements for the protocol.  Thanks to Eric Rescorla, Alan Dekok,
  Darshak Thakore, Stefan Winter, Hannes Tschofenig, Daniel Migault,
  Roman Danyliw, Benjamin Kaduk, Francesca Palombini, Steve Hanna, Lars
  Eggert, and Éric Vyncke for their comments and reviews.

  We would also like to express our sincere gratitude to Dave Thaler
  for his thorough review of the document.

Authors' Addresses

  Tuomas Aura
  Aalto University
  FI-00076 Aalto
  Finland

  Email: [email protected]


  Mohit Sethi
  Ericsson
  FI-02420 Jorvas
  Finland

  Email: [email protected]


  Aleksi Peltonen
  Aalto University
  FI-00076 Aalto
  Finland

  Email: [email protected]