Network Working Group                                    David J. Farber
Request for Comments: 914                                   Gary S. Delp
                                                        Thomas M. Conte
                                                 University of Delaware
                                                         September 1984

                         A Thinwire Protocol
                  for connecting personal computers
                           to the INTERNET

Status of this Memo

  This RFC focuses discussion on the particular problems in the
  ARPA-Internet of low speed network interconnection with personal
  computers, and possible methods of solution.  None of the proposed
  solutions in this document are intended as standards for the
  ARPA-Internet.  Rather, it is hoped that a general consensus will
  emerge as to the appropriate solution to the problems, leading
  eventually to the adoption of standards.  Distribution of this memo
  unlimited.

What is the Problem Anyway ?

  As we connect workstations and personal computers to the INTERNET,
  many of the cost/speed communication tradeoffs change.  This has made
  us reconsider the way we juggle the protocol and hardware design
  tradeoffs.  With substantial computing power available in the $3--10K
  range, it is feasible to locate computers at their point of use,
  including in buildings, in our homes, and other places remote from
  the existing high speed connections.  Dedicated 56k baud lines are
  costly, have limited availability, and long lead time for
  installation.  High speed LAN's are not an applicable interconnection
  solution.  These two facts ensure that readily available 1200 / 2400
  baud phone modems over dialed or leased telephone lines will be an
  important part of the interconnection scheme in the near future.
  This paper will consider some of the problems and possibilities
  involved with using a "thin" (less than 9600 baud) data path.  A trio
  of "THINWIRE"  protocols for connecting a personal computer to the
  INTERNET are presented for discussion.

  Although the cost and flexibility of telephone modems is very
  attractive, their low speed produces some major problems.  As an
  example, a minimum TCP/IP Telnet packet (one character) is 41 bytes
  long.  At 1200 baud, the transmission time for such a packet would be
  around 0.3 seconds.  This is equivalent to using a 30 baud line for
  single character transmission.  (Throughout the paper, the assumption
  is made that the transmission speed is limited only by the speed of
  the communication line.  We also assume that the line will act as a
  synchronous link when calculating speed.  In reality, with interrupt,
  computational, and framing overhead, the times could be 10-50%
  worse.)

  In many cases, local echo and line editing can allow acceptable


Farber & Delp & Conte                                           [Page 1]



RFC 914                                                   September 1984
Thinwire Protocol


  Telnet behavior, but many applications will work only with character
  at a time transmission.  In addition, multiple data streams can be
  very useful for fully taking advantage of the personal
  computer/Internet link.  Thus this proposal.

  There are several forms that a solution to this problem can take.
  Three of these are listed below, followed by descriptions of possible
  solutions of each form.

  o    As a non-solution, one can learn to live with the slow
       communication (possibly a reasonable thing to do for background
       file transfer and one-time inquiries to time, date, or
       quote-of-the-day servers).

  o    Using TCP/IP, one can intercept the link level transmissions,
       and try various kinds of compression algorithms.  This provides
       for a symmetrical structure on either side of the "Thinwire".

  o    One could build an "asymmetrical" gateway which takes some of
       the transport and network communication overhead away from both
       the serial link and the personal computer.  The object would be
       to make the PC do the local work, and to make the
       interconnection with the extended network a benefit to the PC
       and not a drain on the facilities of the PC.

  The first form has the advantage of simplicity and ease of
  implementation. The disadvantages have been discussed above.  The
  second form, compression at link level, can be exploited in two ways.

     Thinwire I is a simple robust compressor, which will reduce the 41
     byte minimum TCP/IP Telnet packets to a series of 17 byte update
     packets.  This would improve the effective baud rate from 30 baud
     to 70 baud over a 1200 baud line (for single character packets).

     Thinwire II uses a considerably more complex technique, and takes
     advantage of the storage and processing power on either side of
     the thinwire link.  Thinwire II will compress packets from
     multiple TCP/IP connections from 41 bytes down to 13 bytes.  The
     increased communication rate is 95 (effective) baud for single
     character packets.

  The third form balances the characteristics of the personal computer,
  the communications line, the gateway, and the Internet protocols to
  optimize the utility of the communications and the workstation
  itself.  Instead of running full transport and internet layers on the
  PC, the PC and the gateway manage a single reliable stream,
  multiplexing data on this stream with control requests.  Without the
  interneting and flow control structures traveling over the
  communications line on a per/packet basis, the data flow can be


Farber & Delp & Conte                                           [Page 2]



RFC 914                                                   September 1984
Thinwire Protocol


  compressed a great deal.  As there is some switching overhead, and a
  reliable link level protocol is needed on the serial line, the
  average effective baud rate would be in the 900 baud range.

  Each of these Thinwire possibilities will be explored in detail.

Thinwire I

  The simplest technique for the compression of packets which have
  similar headers is for both the transmitting and receiving host to
  store the most recent packet and transmit just the changes from one
  packet to the next.  The updated information is transmitted by
  sending a packet including the updated information along with a
  description of where the information should be placed.  A series of
  descriptor-data blocks would make up the update packet.  The
  descriptor consists of the offset from the last byte changed to the
  start of the data to be changed and a count of the number of data
  bytes to be substituted into the old template.  The descriptor is one
  byte long, with two four bit fields; offsets and counts of up to 15
  bytes can be described. In the most pathological case the descriptor
  adds an extra byte for every 15 bytes (or a 6% expansion).

  An example of Thinwire I in action is shown in Appendix A.  A
  sequence of two single character TCP/IP Telnet packets is shown.  The
  "update" packet which would actually be transmitted is shown
  following them.  Each Telnet packet is 41 bytes long; the typical
  update is 17 bytes.  This technique is a useful improvement over
  sending entire packets.  It is also computationally simple.  It
  suffers from two problems: the compression is modest, and, if there
  is more than one class of packets being handled, the assumption of
  common header information breaks down, causing the compression of
  each class to suffer.

Thinwire II

  Both of the problems described above suggest that a more
  computationally complex protocol may be appropriate.  Any major
  improvement in data compression must depend on knowledge of the
  protocols being used.  Thinwire II uses this knowledge to accomplish
  two things.  First, the packets are sorted into classes.  The packets
  from each TCP connection using the thinwire link, would, because of
  their header similarities, make up a class of packets.  Recognizing
  these classes and sorting by them is called "matching templates".
  Second, knowledge of the protocols is used to compress the updates.
  A bitfield indicating which fields in the header have changed,
  followed only by the changed fields, is much shorter than the general
  form of change notices.  Simple arithmetic is allowed, so 32 bit




Farber & Delp & Conte                                           [Page 3]



RFC 914                                                   September 1984
Thinwire Protocol


  fields can often be updated in 8 or 16 bits.  By using the sorting,
  protocol-specific updating, Thinwire II provides significant
  compression.

  A typical transaction is described in Appendix B.  The "template
  matching" is based on the unchanging fields in each class of packet.
  A TCP/IP packet would match on the following fields: network type
  field(IP), version, type of service, protocol(TCP), and source and
  destination address and port.  Note that the 41 bytes have been
  reduced to 13 bytes.  An additional advantage is that  multiple
  classes of packets can be transported across the same line without
  affecting the compression of each other, just by matching and storing
  multiple templates.

  Some of the implications of this system are:

     o    The necessity of saving several templates (one for each
          TCP/IP connection ) means that there will be a relatively
          large memory requirement.  This requirement for current
          personal computers is reasonable.  In addition, the gateway
          must keep tables for several connections at a time.

     o    The Thinwire links are slow (that's why we call them thin);
          much slower than normal disk access.  There is no reason that
          inactive templates cannot be swapped out to disk and
          retrieved when needed if memory is limited.  (Note that as
          memory density increases, this is less and less of a
          problem.)

     o    There is state information in the connections.  If the two
          sides get out of synchronization with each other, data flow
          stops.  This means that some method of error detection and
          recovery must be provided.

     o    To minimize the problem described above, the protocol used on
          the serial line must be reliable.  See Appendix D for details
          of SLIP, Serial Line Interface Protocol, as an example of
          such a protocol.  There must also be periodic
          resynchronization.  (For example, every Nth packet would be
          transmitted in full).

     o    The asynchronous link is not, by its nature, a packet
          oriented system; a packet structure will need to be layered
          on the character at a time transfer.  However, if the
          protocol layer below thinwire (SLIP) can be trusted, the
          formation of packets is a simple matter.

     o    Thinwire II will need to be enhanced for each new protocol



Farber & Delp & Conte                                           [Page 4]



RFC 914                                                   September 1984
Thinwire Protocol


          (TCP, UDP, TP4) it is called upon to service.  Any packet
          type not recognized by the Thinwire connection will be
          transmitted in full.

  For maintaining full network service, Thinwire II or a close variant
  seems to be the solution.

Thinwire III

  When transmissions at the local network (link) level are not
  required, if only the available services are desired, then a solution
  based on Thinwire III may be appropriate.  A star network with a
  gateway in the center serving as the connection between a number of
  Personal Computers and the Internet is the key of Thinwire III.
  Rather than providing connections at the network/link level, Thinwire
  III assumes that there is a reliable serial link (SLIP or equivalent)
  beneath it and that the workstation/personal computer has better
  things to do than manage TCP state tables, timeouts, etc.  It also
  assumes that the gateway supporting the Thinwire III connections is
  powerful enough to run many TCP connections and several SLIP's at the
  same time.  The gateway fills in for the limitations of the
  communications line and the personal computer.  It provides a gateway
  to the INTERNET, managing the transport and network functions,
  providing both reliable stream and datagram service.

  In Thinwire III, the gateway starts an interpreter for each SLIP
  connection from a personal computer.  The gateway will open TCP, UDP,
  and later TP4 connections on the request of the personal computer.
  Acting as the agent for the personal computer, it will manage the
  remote negotiations and the data flow to and from the personal
  computer.  Multiple connections can be opened, with inline logical
  switches in the reliable data flow indicating which connection the
  data is destined for.  Additional escaped sequences will send error
  and informational data between the two Thinwire III communicators.

  This protocol is not symmetric.  The gateway will open connections to
  the INTERNET world as an agent for the personal computer, but the
  gateway will not be able to open inbound connections to the personal
  computer, as the personal computer is perceived as a stub host.  The
  personal computer may however passively open connections on the
  gateway to act as a server.  Extended control sequences are specified
  to handle the multiple connection negotiation that this server
  ability will entail.

  This protocol seems to ignore the problem of flow control. Our
  thought is that the processing on either side of the communication
  link will be much speedier than the link itself.  The buffering for
  the communication line and the user process blocking for this will



Farber & Delp & Conte                                           [Page 5]



RFC 914                                                   September 1984
Thinwire Protocol


  provide most of the flow control.  For the rare instances that this
  is not sufficient, there are control messages to delay the flow to a
  port or all data flow.

  A tentative specification for Thinwire III is attached as Appendix C.

The authors acknowledge the shoulders upon which they stand, and
apologize for the toes they step on.  Ongoing work is being done by Eric
Thayer, Guru Parulkar, and John Jaggers.  Special thanks are extended to
Peter vonGlahn, Jon Postel and Helen Delp for their helpful comments on
earlier drafts.  Responses will be greatly appreciated at the following
addresses:

  Dave Farber <Farber@udel-ee>
  Gary Delp <Delp@udel-ee>
  Tom Conte <Conte@udel-ee>



































Farber & Delp & Conte                                           [Page 6]



RFC 914                                                   September 1984
Thinwire Protocol


Appendix A -- Example of Thinwire I Compression

  Here is an example of how Thinwire I would operate in a common
  situation.  The connection is a TCP/IP Telnet connection.  The first
  TCP/IP Telnet packet is on the next page; it simulates the typing of
  the character "a".  The second packet would be produced by typing
  "d"; it is shown on the following page.  The compressed version is on
  the third page following.

  [NOTE: The checksums pictured have not been calculated.  Binary in
  MSB to LSB format]








































Farber & Delp & Conte                                           [Page 7]



RFC 914                                                   September 1984
Thinwire Protocol


       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
header:|Version|  IHL  |Type of Service|          Total Length         |
      |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
P      |   4   |   5   |       0       |               41              |
a      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
c      |       Identification          |Flags|      Fragment Offset    |
k      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
e      |                1              |  0  |            0            |
t      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-      |  Time to live |   Protocol    |       Header Checksum         |
1      |0 1 1 0 0 1 0 1|0 0 0 0 0 1 1 0|0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0|
      |      101      |       6       |             nnn               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Source Address                            |
      |1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0|
      |    192.       |       5.      |     39.       |      20       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Destination Address                         |
      |0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0|
      |     10.       |       2.      |      0.       |      52       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
TCP    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
header:|         Source Port           |       Destination Port        |
      |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|
      |             1025              |               27              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0|
      |                              300                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Acknowledgement Number                    |
      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0|
      |                              100                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |offset | Reserved  |U A P R S F|            Window             |
      |0 1 0 1|0 0 0 0 0 0|0 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
      |   5   |     0     |     16    |             512               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |         Urgent Pointer        |
      |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
      |             nnn               |               0               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Data                               |
      |0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
      |        "a"                                                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Farber & Delp & Conte                                           [Page 8]



RFC 914                                                   September 1984
Thinwire Protocol


       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
header:|Version|  IHL  |Type of Service|          Total Length         |
      |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
      |   4   |   5   |       0       |               41              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
P      |       Identification*         |Flags|      Fragment Offset    |
a      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
c      |                2              |  0  |            0            |
k      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
e      |  Time to live*|   Protocol    |       Header Checksum*        |
t      |0 1 1 0 0 1 1 0|0 0 0 0 0 1 1 0|0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0|
-      |      102      |       6       |             nnn               |
2      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Source Address                            |
      |1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0|
      |    192.       |       5.      |     39.       |      20       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Destination Address                         |
      |0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0|
      |     10.       |       2.      |      0.       |      52       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
TCP    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
header:|         Source Port           |       Destination Port        |
      |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1|
      |             1025              |               27              |
* 's   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
show   |                        Sequence Number*                       |
changed|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1|
fields |                              301                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Acknowledgement Number*                   |
      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1|
      |                              101                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |offset | Reserved  |U A P R S F|            Window             |
      |0 1 0 1|0 0 0 0 0 0|0 1 0 0 0 0|0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0|
      |   5   |     0     |     16    |             512               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum*           |         Urgent Pointer        |
      |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
      |             nnn               |               0               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Data*                              |
      |0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
      |        "d"                                                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Farber & Delp & Conte                                           [Page 9]



RFC 914                                                   September 1984
Thinwire Protocol


  The Thinwire Driver finds the template (which is the previous packet
  sent), compares the template to the packet and creates a change
  message (field names of change record data have been added for
  comparison):

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Descriptor byte|   Data:       |Descriptor byte|  Data:        |
     |offset |length | Identification|offset |length |  Time to live |
     |0 0 1 0|0 0 0 1|0 0 0 0 0 0 1 0|0 0 1 0|0 0 0 1|0 1 1 1 0 1 1 0|
     |   2   |   1   |      2        |   2   |   1   |     102       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Descriptor byte|   Data:                       |Descriptor byte|
     | offset| length|         Header Checksum       |offset |length |
     |0 0 1 0|0 0 1 0|1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0|1 1 1 1|0 0 1 0|
     |    2  |   2   |              nn               |  15   |   2   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Data:       |Descriptor byte|   Data:       |Descriptor byte|
     |   Seq Number  |offset |length |   Ack Number  |offset |length |
     |0 0 1 0 1 1 0 1|0 0 1 1|0 0 0 1|0 1 1 0 0 1 0 1|0 1 1 1|0 0 1 0|
     |      301      |   3   |   1   |      101      |   7   |   2   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Data:                       |Descriptor byte|   Data:       |
     |       -- TCP Checksum --      |offset |length |     data      |
     |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0|0 0 0 1|0 1 1 0 0 1 0 0|
     |             nn                |   2   |   1   |     "d"       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Descriptor byte|
     |offset |length |
     |0 0 0 0|0 0 0 0|  the 0 0 offset/length record ends the update.
     |   0   |   0   |
     +-+-+-+-+-+-+-+-+

  Thinwire I then sends this message over the line where the previous
  packet is updated to form the new packet.  Note: One can see that a
  series of null descriptor bytes will reset the connection.















Farber & Delp & Conte                                          [Page 10]



RFC 914                                                   September 1984
Thinwire Protocol


Appendix B -- Examples of Thinwire II Compression

  This Appendix provides an example of how the Thinwire II would
  operate in a common situation.  The same original packets are used as
  in Appendix A, so only the updates are shown.

  As the later field definitions depend on the contents of earlier
  fields, a field by field analysis of the update packets will be
  useful.

                   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     Thinwire II  |U|L|Template no| Len of change | Type of Packet|
      minimum     |0|0|0 0 0 1 0 1|0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 1|
      header:     |N N|     5     |          41   |     TCP/IP    |
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The first bit is the UPDATE bit. If it is a 0 this packet
     describes a new template, and the entire new packet is included,
     following the header.  If there was a previous template with the
     same number, it will be cleared and replaced by the new template.
     If the UPDATE bit is a 1, then this packet should be used to
     update the template with the number given in the template number
     field.

     The second bit is the LONG bit. If it is a 1 it indicates a LONG
     packet.  This means that the update length field will be 16 bits
     instead of 8 bits.

     The remaining 6 bits in the first byte indicate the template
     number that this packet is an update to.

     The template number is followed by 1 or 2 bytes (depending on the
     value of the LONG bit) which give the length of the packet. This
     is the number of data bytes following the variable length header.

     If the UPDATE bit is 0 on this packet, the next byte will be a
     flag telling what type of packet the sender thinks this packet is.
     The flag will be saved by the receiver to interpret the update
     packets.  Type 0 is for unknown types. If the type 0 flag is set,
     there will be no updates to this template number.  Type 1 is
     TCP/IP; the method of updating will be described below.  Type 2 is
     UDP/IP; the method of update is not described at this time.

  At this time we have enough information to encode packet 1 of the
  example. Assuming for the moment that this is the first packet for
  this connection, the UPDATE bit would be set to 0.  As the packet has
  a length of 41 and so can be described in 8 bits, the LONG bit would
  be set to 0.  A template number not in use (or the oldest in use


Farber & Delp & Conte                                          [Page 11]



RFC 914                                                   September 1984
Thinwire Protocol


  template number) would be assigned to this packet.  The number 5 is
  illustrated.  The Length of Packet would be given as 41, and the Type
  Flag set to TCP/IP (1).  The 41 bytes of the packet would follow.

  The transmission of packet 2 requires the specification of Type 1
  (TCP/IP) updating.  There are portions of the packets which will
  always be the same; these are described in the body of the paper, and
  are used to match the template.  These do not need to be transmitted
  for an update.  There are portions of the packet which will always
  (well almost always) change.  These are the IP Header checksum, the
  IP Identification number, and the TCP checksum.  These are
  transmitted, in that order, with each template update immediately
  after the packet length byte/bytes.  Following the invariant portion
  of the header are updates to the fields which change some of the
  time.  Which fields are different is indicated with a bitfield
  describing the changes.

  The Bitfield is used to indicate which fields (of those that may stay
  the same) have changed.  The technique for updating the field varies
  with the field description.  The specifications for TCP/IP are shown
  in Table B-1.

          0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Thin-  |U|L|Template no| Len of change | Type of Packet|
wire II|0|0|0 0 0 1 0 1|0 0 0 1 1 0 0 1|0 0 0 0 0 0 0 1|
header:|N N|     5     |          41   |     TCP/IP    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IP     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
header:|Version|  IHL  |Type of Service|          Total Length         |
      |0 1 0 0|0 1 0 1|0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0|
P      |   4   |   5   |       0       |               44              |
a      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
c      |       Identification          |Flags|      Fragment Offset    |
k      |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0|
e      |                1              |  0  |            0            |
t      +~+~+~+~+~.~+~+~+~+~+~+~+~+~+~+.+~+~+~+~+~+~+~+~+~+~+~.~+~+~+~+~+
-                .                    .                      .
1                .                    .                      .
      +~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+~+
      |           Checksum            |         Urgent Pointer        |
      |0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
      |             nnn               |               0               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Data       |
      |0 1 1 0 0 0 0 1|
      |        "a"    |
      +-+-+-+-+-+-+-+-+


Farber & Delp & Conte                                          [Page 12]



RFC 914                                                   September 1984
Thinwire Protocol


  The changed field update information is added to the update header in
  the order that the bits appear in the field.  That is, if both the IP
  packet length bit and the Time to Live  bit are set, the 2 new bytes
  of the IP Packet length will precede the 1 new byte of the Time to
  Live field.

  The update for packet 2 is shown below. Note that this is an update
  to template 5, the length of update is 8 bits with a value of 1.  The
  new checksums and IP Identification Number are included, and the
  flags are set to indicate changes to the following fields: Time to
  Live, Add 8 bits to Sequence and Acknowledgement Numbers.  The new
  data is one byte following the header.

  Thinwire II would send this message over the line where it would be
  reassembled into the correct packet.

  Note: For purposes of synchronization, if three 0 length, template 0,
  type 0 packets are received, the next non-zero byte should be treated
  as a start of packet, and the template tables cleared.

 ____________________________________________________________________

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|L|Template no| Len of change |   IP  Header  Checksum        |
  |1|0|0 0 0 1 0 1|0 0 0 0 0 0 0 1|0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0|
  |Y|N|     5     |       1       |           nnn                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   IP Identification number    |      TCP  Checksum            |
  |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0|
  |           2                   |           nnn                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Bitfield     |  Time to Live |add to Seq no. | add to Ack Num|
  |0 0 1 0 1 0 0 0|0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 1|
  |    T Ad8      |       1       |        1      |      1        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    data       |
  |0 0 0 1 0 1 1 1|
  |      "d"      |
  +-+-+-+-+-+-+-+-+

                     Packet 2. Thinwire II update

 ____________________________________________________________________







Farber & Delp & Conte                                          [Page 13]



RFC 914                                                   September 1984
Thinwire Protocol


Appendix C -- Tentative Specification for Thinwire III

  Thinwire III, as stated in the body of this paper, provides multiple
  virtual connections over a single physical connection.  As Thinwire
  III is based on a single point to point connection, much of the
  per/datagram information (routing and sequencing) of other transport
  systems can be eliminated.  In the steady state any bytes received by
  thinwire III are sent to the default higher level protocol
  connection.  There are escaped control sequences which allow the
  creation of additional connections, the switching of the default
  connection, the packetizing of datagrams, and the passing of
  information between the gateway and the personal computer.  The
  gateway and the personal computer manage a single full duplex stream,
  multiplexing control requests and streams of data through the use of
  embedded logical switches.

  The ascii character "z" (binary 01011011 ) is used as the escape
  character.  The byte following the "z" is interpreted to determine
  the command.  Table C-1 shows the general classes the  bytes (Request
  codes) can fall into.

  In order to transmit the character "z", two "z"'s are transmitted.
  The first is interpreted as an escape, the second as the lower case
  letter "z" to be transmitted to the default connection.  The letter z
  was chosen as the escape for its low occurrence in text and control
  data streams, because it should pass easily through any lower level
  protocols, and for its generally innocuous behavior.

  Descriptions of specifications of each of the Request codes are
  below.

  Starting with the range 0-31; these Request codes change the default
  connection. After a connection has been established, any characters
  which come across the line that are not part of a Request code
  sequence are transmitted to one of the connections.  To begin with
  this connection defaults to Zero, but when the "Switch Default
  Connection" command is received, characters are sent to the
  connection named in the request until a new request is received.
  Zero is a special diagnostic connection; anything received on
  connection number Zero should be echoed back to the sender on
  connection number One.  Anything received on connection number One
  should be placed on the diagnostic output of the receiving host.  Any
  other connection number indicates data which should be sent out the
  numbered connection.  If the numbered connection has not been opened,
  the data can be thrown away, and an Error Control Message returned to
  the sender.

  Escapes followed by numbers 32 through 255 are for new connections,
  requests for information, and error messages.  The escape will be


Farber & Delp & Conte                                          [Page 14]



RFC 914                                                   September 1984
Thinwire Protocol


  followed by a Request code, a one byte Request Sequence Number (so
  that the Reply to Request can be asynchronously associated with the
  Request), and the arguments for the specific request.  (The length of
  the argument field will be determined by the Request code.)  The
  format of the request will be as pictured below:

     "z" <Request Code> <Request Sequence Number> [ <Arguments> ... ]

  At this time the Request codes 32-63 are reserved.

  The Request codes 64-127 are for stream server open requests.  For
  the purposes of compression, many of the common servers are assigned
  single byte codes.  See Table C-2.

  Request code 68 is to a connection to the default hostname server
  used by the gateway.  It takes 3 bytes for this request. It has the
  form:

     "z" < 68 > < Request Sequence Number >

  Request code 95 is to open any specified TCP Port at the specified
  address.  It takes 9 bytes for this request.  It has the form:

     "z" < 95 > < Request Sequence Number > < 4 bytes of IP address> <
     2 bytes of TCP Port >

  Request codes 96-127  are RESERVED for alternate transport protocols.

  The Request codes 128-191 are used for framing Datagrams and opening
  new Datagram connections.  The code 128 is the Start of Datagram
  code.  The format is:

     "z" <128> <Length of Datagram (2 bytes)> <Socket> Data ...

  As with the Stream opens, there are a number of assigned ports with
  codes for them.  They are listed in Table C-3.

  The Request Codes 192-254 are control, status and informational
  requests.  These are still under development, but will include:

     -flow control
     -get host/server/protocol by entry/name/number.
     -additional error messages
     -overall reset
     -open passive connection

  The Request Code 252 is the request to close a connection.  This
  Code, followed by the connection number, indicates that no more data



Farber & Delp & Conte                                          [Page 15]



RFC 914                                                   September 1984
Thinwire Protocol


  will be sent out this connection number.  A second request with the
  same connection number will indicate that no more data will be
  accepted on this connection.

  The Request Code 253 is the information request for a connection. The
  protocol, status, and port number of the connection should be
  returned. The format of this reply has yet to be specified.

  The Request code 254 is an error notification.  These are to be
  acknowledged with their Request Sequence Numbers.  Error codes are
  under development.

  The Request code 255 is the Reply to Request. The Request Sequence
  Number identifies the request being replied to.  The format is:

     "z" <255> <Request Sequence Number (in reply to)> <Length of reply
     (1 byte)> Reply...

  The Thinwire Drivers on each side will wait at their inbound sockets,
  and relay across the thinwire link
  character-by-character/packet-by-packet for the stream/datagram
  connections.

  Thinwire III is labeled as a tentative specification, because at this
  time, in order to publish this RFC in a timely fashion, several minor
  issues are still unresolved.  An example is the scheduling of serial
  line use. Short messages could be given priority over long packets,
  or priority schemes could be changed during the session, depending
  upon the interactive desire of the user.  Addition issues will be
  resolved in the future.





















Farber & Delp & Conte                                          [Page 16]



RFC 914                                                   September 1984
Thinwire Protocol


Appendix D -- Serial Line Interface Protocol (SLIP)

  Initial Specifications and Implementation Suggestions

  PHILOSOPHY

     The world is a dangerous place for bits.  Data transmission can be
     an time consuming business when one has to make sure that bits
     don't get lost, destroyed, or forgotten.  To reduce such problems,
     the Serial Line Interface Protocol (SLIP) maintains an attitude
     toward the world that includes both a mistrust of serial lines and
     a margin of laziness.  Examples of this approach include how SLIP
     recovers from errors and how SLIP handles the problem of
     resequencing (see PROTOCOL SPECIFICATIONS and IMPLEMENTATION
     SUGGESTIONS).

  THE MESSAGE FORMAT

     Both the Sender Task and the Receiver Task communicate using a
     standard message format and the Sender and Receiver Task of one
     machine's SLIP communicate using a shared buffer.  The message
     begins with a 1 byte Start of Header token (StH, 11111111) and is
     followed by a sequence number of four bits (SEQ) and an
     acknowledgement number of four bits (ACK).  Following the StH, SEQ
     and ACK, is a 5 bit length field which specifies the length of the
     data contained in the message. Following the length is a three bit
     field of flags.  The first bit is used to indicate that the a
     receive error has occurred, and the ACK is actually a repeat of
     the Last Acknowledged message (a LACK).  The second bit is used to
     indicate a Synchronize Sequence Numbers message (SSNM), and the
     third bit is used to indicate a Start of Control Message (SOCM);
     all three of these flags are explained below. Finally, at the end
     of the message is an exclusive-or checksum.  The message format is
     shown in figure D-1.

           ________________________________________________

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|     StH       |  SEQ  |  ACK  |  Length |Flags|...Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
The maximum data length is 32 bytes.                0 1 2 3 4 5 6 7
This limits the vulnerability of receiver       ...-+-+-+-+-+-+-+-+-+-+
timeout errors occurring because of bit error .Data...|   Checksum    |
in the length field.                            ...-+-+-+-+-+-+-+-+-+-+

                   Figure D-1. SLIP Message Format

           ________________________________________________


Farber & Delp & Conte                                          [Page 17]



RFC 914                                                   September 1984
Thinwire Protocol


     The Sender, when idle but needing to acknowledge, will send out
     short messages of the same format as a regular message but with
     the SOCM flag set and the data field omitted.  ( This short
     message is called a SOCM, and is used instead of a zero length
     message to avoid the problem of continually ACK'ing ACK's ). The
     Sender Task, when originating a connection (see STARTING UP AND
     FINISHING OFF COMMUNICATIONS), will send out another short message
     but with the SSNM flag set and the data omitted.  This message (a
     SSNM) used for a TCP-style 3 way startup handshake.

  PROTOCOL SPECIFICATIONS and SUGGESTIONS

     The SLIP module, when called with data to send, prepends its
     header (SEE ABOVE) to the data, calculates a checksum and appends
     the checksum at the end.  (This creates a message.)  The message
     has a sequence number associated with it which represents the
     position of the message in the Sender SLIP's buffers.  The
     sequence number for the message can range from 0 to 15 and is
     returned in the ACK field of the other machine's Sender SLIP
     messages to acknowledge receipt.

     There are two scenarios for transmission.  In the first, both
     SLIP's will be transmitting to each other.  To send an
     acknowledgement, the Receiver SLIP uses the ACK field in its next
     outgoing message. To receive an acknowledgement, the Sender checks
     the ACK field of its Receiver's incoming messages.  In the second
     scenario, one SLIP may have no data to transmit for a long time.
     Then, as stated above, to acknowledge a received message, the
     Receiver has its Sender send out a short message, the SOCM (SEE
     ABOVE) which specifies the message it is acknowledging.  The SOCM
     includes a checksum of its total contents.  If there is a checksum
     error, THE SOCM IS IGNORED.

     When there is a checksum error on a received normal message, the
     Receiver asks its Sender to send out a SOCM with the LACK flag
     set, or set the LACK flag on its next message.  The Sender sends
     this flag ONCE then ceases to increment the acknowledgement number
     (the ACK) while the Receiver continues to check incoming messages
     for the sequence number of the message with a checksum error.
     (Note that it continues to react to the acknowledgement field in
     the incoming messages.) When it finds the needed message, it
     resumes accepting the data in new messages and increments the
     acknowledgement number transmitted accordingly.

     The sending SLIP must never send a message greater than four past
     the last message for which it has received an acknowledgement
     (effectively a window size of four). Under normal processing
     loads, a window size greater than four should not be needed, and
     this decreases the probability of random errors creating valid


Farber & Delp & Conte                                          [Page 18]



RFC 914                                                   September 1984
Thinwire Protocol


     acknowledgement or sequence numbers.  If the Sender has four
     unacknowledged messages outstanding, it will retransmit the old
     messages, starting from the oldest unacknowledged message.  If it
     receives an acknowledgement with the LACK flag set, it transmits
     the message following the LACK number and continues to transmit
     the messages from that one on.  Thus a LACK is a message asking
     the Sender to please the Receiver.  If the Sender times out on any
     message not logically greater than four past the last acknowledged
     message, it should retransmit the message that timed out and then
     continues to transmit messages following the timed out message.

     The following describes a partial implementation of SLIP.  System
     dependent subjects like buffer management, timer handling and
     calling conventions are discussed.

     The SLIP implementation is subdivided into four modules and two
     sets of input/output interfaces.  The four modules are: The Sender
     Task, The Receiver Task, the buffer Manager, and SLIPTIME (the
     timer). The two interfaces are to the higher protocol and to the
     lower protocol (the UARTian, an interrupt driven device driver for
     the serial lines).

  OPERATIONS OF THE SENDER TASK

     The Sender Task takes a relatively noncomplex approach to
     transmitting.  It sends message zero, sets a timer (using the
     SLIPTIME Task) on the message, and proceeds to send and set timers
     for messages one, two, and three.  When the Receiver Task tells
     the Sender Task that a message has been acknowledged, the Sender
     Task then clears the timer for that message, and marks it
     acknowledged.  When the Sender Task has finished sending a
     message, it checks several conditions to decide what to do next.
     It first checks to see if a LACK has been received. If it has then
     it clears all the timers, and begins retransmitting messages
     (updating the acknowledgement field and checksum) starting from
     the one after the LACK'ed message.  If there is not a LACK waiting
     for the Sender Task, it checks to see if any messages have timed
     out.  If a message has timed out, the Sender Task again will clear
     the timers and begin retransmitting from the message number which
     timed out.  If neither of these conditions are true, the Sender
     Task checks to see if, because it has looped back to retransmit,
     it has any previously formulated messages to send.  If so, it send
     the first of these messages. If it does not have previously
     formulated messages, it checks to see if it is more than three
     past the last acknowledged message.  If so, it restarts from the
     message after the last acknowledged message.  If none of these are
     true, then it checks to see if there is more data waiting to be
     transmitted.  If there is more data available, it forms the
     largest packet it can, and begins to transmit it.  If there is no


Farber & Delp & Conte                                          [Page 19]



RFC 914                                                   September 1984
Thinwire Protocol


     more data to transmit, it checks to see if it needs to acknowledge
     a message received from the other side.  If so then it sends a
     SOCM.  If none of the above conditions create work for the Sender
     Task, the task suspends itself.

     Note that the Sender Task uses the Receiver Task to find out about
     acknowledgements and the Receiver Task uses the Sender Task to
     send acknowledgements to the other SLIP on the other side (via the
     ACK field in the Sender Task's message). The two tasks on one
     machine communicate through a small buffer. Because
     acknowledgements need to be passed back to the Sender Task
     quickly, the Receiver Task can wake up the Sender Task (unblock
     it).

  OPERATIONS OF THE RECEIVER TASK

     The Receiver Task checks the checksums of the messages coming into
     it.  When it gets a checksum error, it tells the Sender Task to
     mark the next acknowledgement as a LACK.  It then throws away all
     messages coming into it that don't match the message it wants and
     continues to acknowledge with the last ACK until it gets the
     message it wants.  As a checksum error could be the result of a
     crashed packet, and the StH character can occur within the packet,
     when a checksum error does occur, the recovery includes scanning
     forward from the last StH character for the next StH character
     then attempting to verify a packet beginning from it.  A valid
     message includes a valid checksum, and sequence and
     acknowledgement numbers within the active window of numbers.  This
     eliminates the need for the resequencing of messages, because the
     Receiver Task throws away anything that would make information in
     its buffers out of sequence.

  OPERATIONS OF SLIPTIME

     The timer task will maintain and update a table of timers for each
     request.  Its functions should be called with the timer length and
     the sequence number to associate with the timer.  Its functions
     can also be called with a request to delete a timer.  An
     interrupt-driven mechanism is used to update the running timers
     and to wake up the Sender when an alarm goes off.











Farber & Delp & Conte                                          [Page 20]



RFC 914                                                   September 1984
Thinwire Protocol


  THE INPUT AND OUTPUT INTERFACES

     To force SLIP to do something, the higher protocol should create a
     buffer and then call SLIP, passing it a pointer to the buffer.
     SLIP will then read the buffer and begin sending it.  The call to
     SLIP will return the number of bytes written, negative number
     indicates to the caller that SLIP could not do the request.  Exact
     error numbers will be assigned in the future.  To ask SLIP to
     receive something, one would call SLIP and SLIP would immediately
     return the number of bytes received or a negative number for an
     error (nothing ready to receive, for example).

     SLIP, when it wants to talk to the underworld of the serial
     interface, will do much the same thing only through a buffer
     written to by the UARTian (for received data) and read from by the
     UARTian (for sent data).

  OPERATIONS OF THE BUFFER/WINDOW MANAGER

     The Manager tends a continuous, circular buffer for the Sender
     Task in which data to be sent (from the downcalling protocol) is
     stored.  This buffer is called the INPUT-DATA BUFFER (IDBuff).
     The Manager also manages a SENDER TASK'S OUTPUT-DATA BUFFER
     (SODBuff), which is its output buffer to the UARTian.

     The IDBuff has associated with it some parameters.  These
     parameters include: START OF MEMORY (SOM), the start of memory
     reserved for the IDBuff; END OF MEMORY (EOM), the end of memory
     reserved; START OF DATA (SOD), the beginning of the used portion
     of the IDBuff; and END OF DATA (EOD), the end of data in the
     IDBuff.  The SOM and EOM are constants whereas the SOD and EOD are
     variables.

     The SODBuff is composed of four buffers for four outbound messages
     (less the checksum).  The buffers can be freed up to be
     overwritten when the message that they contain is acknowledged by
     the SLIP on the other side of the line.  When a message is in the
     SODBuff, it has associated with it a sequence number (which is the
     message's sequence number).  The Sender Task can reference the
     data in the SODBuff and reference acknowledgements via this
     sequence number.

     When the application has data to be transmitted, it is placed in
     the IDBuff by the application using functions from the Manager and
     the EOD is incremented.  If the data the application wants to send
     won't fit in the buffer, no data is written, and the application
     can either sleep, or continue to attempt to write data until the




Farber & Delp & Conte                                          [Page 21]



RFC 914                                                   September 1984
Thinwire Protocol


     data will fit. The Sender Task calls a Manager function to fill a
     message slot in the SODBuff.  The Sender Task then sends its
     message from the SODBuff.

     The Manager also maintains a buffer set for the Receiver Task. The
     buffers are similar to those of the Sender Task.  There is a
     CHECKSUMMED OUTPUT-DATA BUFFER (CODBuff), which is the final
     output from SLIP that the higher level protocol may read.  The
     CODBuff is also controlled by the four parameters START OF MEMORY,
     END OF MEMORY, START OF DATA, and END OF DATA (SOM, EOM, SOD, and
     EOD).

     There is also an inbound circular buffer the analog of the
     SODBuff, called the RECEIVER TASK'S INPUT-DATA BUFFER (RIDBuff).

     When the UARTian gets data, it places the data in the RIDBuff.
     After this, the Receiver Task checksums the data.  If the checksum
     is good and the Receiver Task opts to acknowledge the message, it
     moves the data to the CODBuff, increments EOD, and frees up space
     in the RIDBuff.  The higher level application can then take data
     off on the CODBuff, incrementing SOD as it does so.

  STARTING UP AND FINISHING OFF COMMUNICATIONS

     The problem is that the SLIP's on either side need to know (and
     keep knowing) the sequence number of the other SLIP.  The easiest
     way to solve most of these problems is to have the SLIP check the
     Request to Send and Clear to Send Lines to see if the other SLIP
     is active. On startup, or if it has reason to believe the other
     side has died, the SLIP assumes: all connections are closed, no
     data from any connection has been sent, and both its SEQ and the
     SEQ of the other SLIP are zero.  To start up a connection, the
     instigating SLIP sends a SSNM with its starting sequence number in
     it.  The receiving SLIP acknowledges this SSNM and replies with
     its starting sequence number (combined into one message).  Then
     the sending SLIP acknowledges the receiving SLIP's starting
     sequence number and the transmission commences.  This is the three
     way handshake taken from TCP, After which data transmission can
     begin.












Farber & Delp & Conte                                          [Page 22]