Independent Submission                                       V. Dukhovni
Request for Comments: 9102                                     Two Sigma
Category: Experimental                                          S. Huque
ISSN: 2070-1721                                               Salesforce
                                                              W. Toorop
                                                             NLnet Labs
                                                             P. Wouters
                                                                  Aiven
                                                               M. Shore
                                                                 Fastly
                                                            August 2021


                      TLS DNSSEC Chain Extension

Abstract

  This document describes an experimental TLS extension for the in-band
  transport of the complete set of records that can be validated by
  DNSSEC and that are needed to perform DNS-Based Authentication of
  Named Entities (DANE) of a TLS server.  This extension obviates the
  need to perform separate, out-of-band DNS lookups.  When the
  requisite DNS records do not exist, the extension conveys a denial-
  of-existence proof that can be validated.

  This experimental extension is developed outside the IETF and is
  published here to guide implementation of the extension and to ensure
  interoperability among implementations.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This is a contribution to the RFC Series, independently
  of any other RFC stream.  The RFC Editor has chosen to publish this
  document at its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9102.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
    1.1.  Scope of the Experiment
    1.2.  Requirements Notation
  2.  DNSSEC Authentication Chain Extension
    2.1.  Protocol, TLS 1.2
    2.2.  Protocol, TLS 1.3
    2.3.  DNSSEC Authentication Chain Data
      2.3.1.  Authenticated Denial of Existence
  3.  Construction of Serialized Authentication Chains
  4.  Caching and Regeneration of the Authentication Chain
  5.  Expired Signatures in the Authentication Chain
  6.  Verification
  7.  Extension Pinning
  8.  Trust Anchor Maintenance
  9.  Virtual Hosting
  10. Operational Considerations
  11. Security Considerations
  12. IANA Considerations
  13. References
    13.1.  Normative References
    13.2.  Informative References
  Appendix A.  Test Vectors
    A.1.  "_443._tcp.www.example.com"
    A.2.  "_25._tcp.example.com" NSEC Wildcard
    A.3.  "_25._tcp.example.org" NSEC3 Wildcard
    A.4.  "_443._tcp.www.example.org" CNAME
    A.5.  "_443._tcp.www.example.net" DNAME
    A.6.  "_25._tcp.smtp.example.com" NSEC Denial of Existence
    A.7.  "_25._tcp.smtp.example.org" NSEC3 Denial of Existence
    A.8.  "_443._tcp.www.insecure.example" NSEC3 Opt-Out Insecure
          Delegation
  Acknowledgments
  Authors' Addresses

1.  Introduction

  This document describes an experimental TLS [RFC5246] [RFC8446]
  extension for in-band transport of the complete set of resource
  records (RRs) validated by DNSSEC [RFC4033] [RFC4034] [RFC4035].
  This extension enables a TLS client to perform DANE authentication
  [RFC6698] [RFC7671] of a TLS server without the need to perform out-
  of-band DNS lookups.  Retrieval of the required DNS records may be
  unavailable to the client [DISCOVERY] or may incur undesirable
  additional latency.

  The extension described here allows a TLS client to request that the
  TLS server return the DNSSEC authentication chain corresponding to
  its DNSSEC-validated DANE TLSA resource record set (RRset) or
  authenticated denial of existence of such an RRset (as described in
  Section 2.3.1).  If the server supports this extension, it performs
  the appropriate DNS queries, builds the authentication chain, and
  returns it to the client.  The server will typically use a previously
  cached authentication chain, but it will need to rebuild it
  periodically as described in Section 4.  The client then
  authenticates the chain using a preconfigured DNSSEC trust anchor.

  In the absence of TLSA records, this extension conveys the required
  authenticated denial of existence.  Such proofs are needed to
  securely signal that specified TLSA records are not available so that
  TLS clients can safely fall back to authentication based on Public
  Key Infrastructure X.509 (PKIX, sometimes called WebPKI) if allowed
  by local policy.  These proofs are also needed to avoid downgrade
  from opportunistic authenticated TLS (when DANE TLSA records are
  present) to unauthenticated opportunistic TLS (in the absence of
  DANE).  Denial-of-existence records are also used by the TLS client
  to clear extension pins that are no longer relevant, as described in
  Section 7.

  This extension supports DANE authentication of either X.509
  certificates or raw public keys, as described in the DANE
  specification [RFC6698] [RFC7671] [RFC7250].

  This extension also mitigates against an unknown key share (UKS)
  attack [DANE-UKS] when using raw public keys since the server commits
  to its DNS name (normally found in its certificate) via the content
  of the returned TLSA RRset.

  This experimental extension is developed outside the IETF and is
  published here to guide implementation of the extension and to ensure
  interoperability among implementations.

1.1.  Scope of the Experiment

  The mechanism described in this document is intended to be used with
  applications on the wider internet.  One application of TLS well
  suited for the TLS DNSSEC Chain extension is DNS over TLS [RFC7858].
  In fact, one of the authentication methods for DNS over TLS _is_ the
  mechanism described in this document, as specified in Section 8.2.2
  of [RFC8310].

  The need for this mechanism when using DANE to authenticate a DNS-
  over-TLS resolver is obvious, since DNS may not be available to
  perform the required DNS lookups.  Other applications of TLS would
  benefit from using this mechanism as well.  The client sides of those
  applications would not be required to be used on endpoints with a
  working DNSSEC resolver in order for them to use the DANE
  authentication of the TLS service.  Therefore, we invite other TLS
  services to try out this mechanism as well.

  In the TLS Working Group, concerns have been raised that the pinning
  technique as described in Section 7 would complicate deployability of
  the TLS DNSSEC chain extension.  The goal of the experiment is to
  study these complications in real-world deployments.  This experiment
  hopefully will give the TLS Working Group some insight into whether
  or not this is a problem.

  If the experiment is successful, it is expected that the findings of
  the experiment will result in an updated document for Standards Track
  approval.

1.2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  DNSSEC Authentication Chain Extension

2.1.  Protocol, TLS 1.2

  A client MAY include an extension of type "dnssec_chain" in the
  (extended) ClientHello.  The "extension_data" field of this extension
  consists of the server's 16-bit TCP port number in network (big-
  endian) byte order.  Clients sending this extension MUST also send
  the Server Name Identification (SNI) extension [RFC6066].  Together,
  these make it possible for the TLS server to determine which
  authenticated TLSA RRset chain needs to be used for the
  "dnssec_chain" extension.

  When a server that implements (and is configured to enable the use
  of) this extension receives a "dnssec_chain" extension in the
  ClientHello, it MUST first check whether the requested TLSA RRset
  (based on the port number in this extension and hostname in the SNI
  extension) is associated with the server.  If the extension, the SNI
  hostname, or the port number is unsupported, the server's extended
  ServerHello message MUST NOT include the "dnssec_chain" extension.

  Otherwise, the server's extended ServerHello message MUST contain a
  serialized authentication chain using the format described below.  If
  the server does not have access to the requested DNS chain -- for
  example, due to a misconfiguration or expired chain -- the server
  MUST omit the extension rather than send an incomplete chain.
  Clients that are expecting this extension MUST interpret this as a
  downgrade attack and MUST abort the TLS connection.  Therefore,
  servers MUST send denial-of-existence proofs unless, for the
  particular application protocol or service, clients are expected to
  continue even in the absence of such a proof.  As with all TLS
  extensions, if the server does not support this extension, it will
  not return any authentication chain.

  The set of supported combinations of a port number and SNI name may
  be configured explicitly by server administrators or could be
  inferred from the available certificates combined with a list of
  supported ports.  It is important to note that the client's notional
  port number may be different from the actual port on which the server
  is receiving connections.

  Differences between the client's notional port number and the actual
  port at the server could be a result of intermediate systems
  performing network address translation or a result of a redirect via
  HTTPS or SVCB records (both defined in [DNSOP-SVCB-HTTPS]).

  Though a DNS zone's HTTPS or SVCB records may be signed, a client
  using this protocol might not have direct access to a validating
  resolver and might not be able to check the authenticity of the
  target port number or hostname.  In order to avoid downgrade attacks
  via forged DNS records, the SNI name and port number inside the
  client extension MUST be based on the original SNI name and port and
  MUST NOT be taken from the encountered HTTPS or SVCB record.  The
  client supporting this document and HTTPS or SVCB records MUST still
  use the HTTPS or SVCB records to select the target transport
  endpoint.  Servers supporting this extension that are targets of
  HTTPS or SVCB records MUST be provisioned to process client
  extensions based on the client's logical service endpoint's SNI name
  and port as it is prior to HTTPS or SVCB indirection.

2.2.  Protocol, TLS 1.3

  In TLS 1.3 [RFC8446], when the server receives the "dnssec_chain"
  extension, it adds its "dnssec_chain" extension to the extension
  block of the Certificate message containing the end-entity
  certificate being validated rather than to the extended ServerHello
  message.

  The extension protocol behavior otherwise follows that specified for
  TLS version 1.2 [RFC5246].

2.3.  DNSSEC Authentication Chain Data

  The "extension_data" field of the client's "dnssec_chain" extension
  MUST contain the server's 16-bit TCP port number in network (big-
  endian) byte order:

      struct {
          uint16 PortNumber;
      } DnssecChainExtension;

  The "extension_data" field of the server's "dnssec_chain" extension
  MUST contain a DNSSEC authentication chain encoded in the following
  form:

      struct {
          uint16 ExtSupportLifetime;
          opaque AuthenticationChain<1..2^16-1>
      } DnssecChainExtension;

  The ExtSupportLifetime value is the number of hours that the TLS
  server has committed itself to serving this extension.  A value of
  zero prohibits the client from unilaterally requiring ongoing use of
  the extension based on prior observation of its use (extension
  pinning).  This is further described in Section 7.

  The AuthenticationChain is composed of a sequence of uncompressed
  wire format DNS RRs (including all requisite RRSIG RRs [RFC4034]) in
  no particular order.  The format of the resource record is described
  in [RFC1035], Section 3.2.1.

      RR = { owner, type, class, TTL, RDATA length, RDATA }

  The order of returned RRs is unspecified, and a TLS client MUST NOT
  assume any ordering of RRs.

  Use of DNS wire format records enables easier generation of the data
  structure on the server and easier verification of the data on the
  client by means of existing DNS library functions.

  The returned RRsets MUST contain either the TLSA RRset or the
  associated denial-of-existence proof of the configured (and
  requested) SNI name and port.  In either case, the chain of RRsets
  MUST be accompanied by the full set of DNS records needed to
  authenticate the TLSA record set or its denial of existence up the
  DNS hierarchy to either the root zone or another trust anchor
  mutually configured by the TLS server and client.

  When some subtree in the chain is subject to redirection via DNAME
  records, the associated inferred CNAME records need not be included.
  They can be inferred by the DNS validation code in the client.  Any
  applicable ordinary CNAME records that are not synthesized from DNAME
  records MUST be included along with their RRSIGs.

  In case of a server-side DNS problem, servers may be unable to
  construct the authentication chain and would then have no choice but
  to omit the extension.

  In the case of a denial-of-existence response, the authentication
  chain MUST include all DNSSEC-signed records, starting with those
  from the trust anchor zone, that chain together to reach a proof of
  either:

  *  the nonexistence of the TLSA records (possibly redirected via
     aliases) or

  *  an insecure delegation above or at the (possibly redirected) owner
     name of the requested TLSA RRset.

  Names that are aliased via CNAME and/or DNAME records may involve
  multiple branches of the DNS tree.  In this case, the authentication
  chain structure needs to include DS and DNSKEY record sets that cover
  all the necessary branches.

  The returned chain SHOULD also include the DNSKEY RRsets of all
  relevant trust anchors (typically just the root DNS zone).  Though
  the same trust anchors are presumably also preconfigured in the TLS
  client, including them in the response from the server permits TLS
  clients to use the automated trust anchor rollover mechanism defined
  in [RFC5011] to update their configured trust anchors.

  Barring prior knowledge of particular trust anchors that the server
  shares with its clients, the chain constructed by the server MUST be
  extended as closely as possible to the root zone.  Truncation of the
  chain at some intermediate trust anchor is generally only appropriate
  inside private networks where all clients and the server are expected
  to be configured with DNS trust anchors for one or more non-root
  domains.

  The following is an example of the records in the AuthenticationChain
  structure for the HTTPS server at "www.example.com", where there are
  zone cuts at "com" and "example.com" (record data are omitted here
  for brevity):

  _443._tcp.www.example.com. TLSA
  RRSIG(_443._tcp.www.example.com. TLSA)
  example.com. DNSKEY
  RRSIG(example.com. DNSKEY)
  example.com. DS
  RRSIG(example.com. DS)
  com. DNSKEY
  RRSIG(com. DNSKEY)
  com. DS
  RRSIG(com. DS)
  . DNSKEY
  RRSIG(. DNSKEY)

  The following is an example of denial of existence for a TLSA RRset
  at "_443._tcp.www.example.com".  The NSEC record in this example
  asserts the nonexistence of both the requested RRset and any
  potentially relevant wildcard records.

  www.example.com. IN NSEC example.com. A NSEC RRSIG
  RRSIG(www.example.com. NSEC)
  example.com. DNSKEY
  RRSIG(example.com. DNSKEY)
  example.com. DS
  RRSIG(example.com. DS)
  com. DNSKEY
  RRSIG(com. DNSKEY)
  com. DS
  RRSIG(com. DS)
  . DNSKEY
  RRSIG(. DNSKEY)

  The following is an example of (hypothetical) insecure delegation of
  "example.com" from the ".com" zone.  This example shows NSEC3 records
  [RFC5155] with opt-out.

  ; covers example.com
  onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3 (1 1 0 -
    onib9mgub9h0rml3cdf5bgrj59dkjhvl NS DS RRSIG)
  RRSIG(onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3)
  ; covers *.com
  3rl2r262eg0n1ap5olhae7mah2ah09hi.com. NSEC3 (1 1 0 -
    3rl2r262eg0n1ap5olhae7mah2ah09hk NS DS RRSIG)
  RRSIG(3rl2r262eg0n1ap5olhae7mah2ah09hj.com. NSEC3)
  ; closest-encloser "com"
  ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3 (1 1 0 -
    ck0pojmg874ljref7efn8430qvit8bsm.com
    NS SOA RRSIG DNSKEY NSEC3PARAM)
  RRSIG(ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3)
  com. DNSKEY
  RRSIG(com. DNSKEY)
  com. DS
  RRSIG(com. DS)
  . DNSKEY
  RRSIG(. DNSKEY)

2.3.1.  Authenticated Denial of Existence

  TLS servers that support this extension and respond to a request
  containing this extension that do not have a signed TLSA record for
  the configured (and requested) SNI name and port MUST instead return
  a DNSSEC chain that provides authenticated denial of existence for
  the configured SNI name and port.  A TLS client receiving proof of
  authenticated denial of existence MUST use an alternative method to
  verify the TLS server identity or close the connection.  Such an
  alternative could be the classic PKIX model of preinstalled root
  certificate authorities (CAs).

  Authenticated denial chains include NSEC or NSEC3 records that
  demonstrate one of the following facts:

  *  The TLSA record (after any DNSSEC-validated alias redirection)
     does not exist.

  *  There is no signed delegation to a DNS zone that is either an
     ancestor of or the same as the TLSA record name (after any DNSSEC-
     validated alias redirection).

3.  Construction of Serialized Authentication Chains

  This section describes a possible procedure for the server to use to
  build the serialized DNSSEC chain.

  When the goal is to perform DANE authentication [RFC6698] [RFC7671]
  of the server, the DNS record set to be serialized is a TLSA record
  set corresponding to the server's domain name, protocol, and port
  number.

  The domain name of the server MUST be that included in the TLS
  "server_name" (SNI) extension [RFC6066].  If the server does not
  recognize the SNI name as one of its own names but wishes to proceed
  with the handshake rather than abort the connection, the server MUST
  NOT send a "dnssec_chain" extension to the client.

  The name in the client's SNI extension MUST NOT be CNAME expanded by
  the server.  The TLSA base domain (Section 3 of [RFC6698]) SHALL be
  the hostname from the client's SNI extension, and the guidance in
  Section 7 of [RFC7671] does not apply.  See Section 9 for further
  discussion.

  The TLSA record to be queried is constructed by prepending
  underscore-prefixed port number and transport name labels to the
  domain name as described in [RFC6698].  The port number is taken from
  the client's "dnssec_chain" extension.  The transport name is "tcp"
  for TLS servers and "udp" for DTLS servers.  The port number label is
  the leftmost label, followed by the transport name label, followed by
  the server domain name (from SNI).

  The components of the authentication chain are typically built by
  starting at the target record set and its corresponding RRSIG, then
  traversing the DNS tree upwards towards the trust anchor zone
  (normally the DNS root).  For each zone cut, the DNSKEY, DS RRsets,
  and their signatures are added.  However, see Section 2.3 for
  specific processing needed for aliases.  If DNS response messages
  contain any domain names utilizing name compression [RFC1035], then
  they MUST be uncompressed prior to inclusion in the chain.

  Implementations of EDNS CHAIN query requests as specified in
  [RFC7901] may offer an easier way to obtain all of the chain data in
  one transaction with an upstream DNSSEC-aware recursive server.

4.  Caching and Regeneration of the Authentication Chain

  DNS records have Time To Live (TTL) parameters, and DNSSEC signatures
  have validity periods (specifically signature expiration times).
  After the TLS server constructs the serialized authentication chain,
  it SHOULD cache and reuse it in multiple TLS connection handshakes.
  However, it SHOULD refresh and rebuild the chain as TTL values
  require.  A server implementation could carefully track TTL
  parameters and requery component records in the chain
  correspondingly.  Alternatively, it could be configured to rebuild
  the entire chain at some predefined periodic interval that does not
  exceed the DNS TTLs of the component records in the chain.  If a
  record in the chain has a very short TTL (e.g., 0 up to a few
  seconds), the server MAY decide to serve the authentication chain a
  few seconds past the minimum TTL in the chain.  This allows an
  implementation to dedicate a process or single thread to building the
  authentication chain and reuse it for more than a single waiting TLS
  client before needing to rebuild the authentication chain.

5.  Expired Signatures in the Authentication Chain

  A server MAY look at the signature expiration of RRSIG records.
  While these should never expire before the TTL of the corresponding
  DNS record is reached, if this situation is nevertheless encountered,
  the server MAY lower the TTL to prevent serving expired RRSIGs if
  possible.  If the signatures are already expired, the server MUST
  still include these records in the authentication chain.  This allows
  the TLS client to either support a grace period for staleness or give
  a detailed error, either as a log message or a message to a potential
  interactive user of the TLS connection.  The TLS client SHOULD handle
  expired RRSIGs similarly to how it handles expired PKIX certificates.

6.  Verification

  A TLS client performing DANE-based verification might not need to use
  this extension.  For example, the TLS client could perform DNS
  lookups and DANE verification without this extension, or it could
  fetch authentication chains via another protocol.  If the TLS client
  already possesses a valid TLSA record, it MAY bypass use of this
  extension.  However, if it includes this extension, it MUST use the
  TLS server reply to update the extension pinning status of the TLS
  server's extension lifetime.  See Section 7.

  A TLS client making use of this specification that receives a valid
  DNSSEC authentication chain extension from a TLS server MUST use this
  information to perform DANE authentication of the TLS server.  In
  order to perform the validation, it uses the mechanism specified by
  the DNSSEC protocol [RFC4035] [RFC5155].  This mechanism is sometimes
  implemented in a DNSSEC validation engine or library.

  If the authentication chain validates, the TLS client then performs
  DANE authentication of the server according to the DANE TLS protocol
  [RFC6698] [RFC7671].

  Clients MAY cache the server's validated TLSA RRset to amortize the
  cost of receiving and validating the chain over multiple connections.
  The period of such caching MUST NOT exceed the TTL associated with
  those records.  A client that possesses a validated and unexpired
  TLSA RRset or the full chain in its cache does not need to send the
  "dnssec_chain" extension for subsequent connections to the same TLS
  server.  It can use the cached information to perform DANE
  authentication.

  Note that when a client and server perform TLS session resumption,
  the server sends no "dnssec_chain".  This is particularly clear with
  TLS 1.3, where the certificate message to which the chain might be
  attached is also not sent on resumption.

7.  Extension Pinning

  TLS applications can be designed to unconditionally mandate this
  extension.  Such TLS clients requesting this extension would abort a
  connection to a TLS server that does not respond with an extension
  reply that can be validated.

  However, in a mixed-use deployment of PKIX and DANE, there is the
  possibility that the security of a TLS client is downgraded from DANE
  to PKIX.  This can happen when a TLS client connection is intercepted
  and redirected to a rogue TLS server presenting a TLS certificate
  that is considered valid from a PKIX point of view but does not match
  the legitimate server's TLSA records.  By omitting this extension,
  such a rogue TLS server could downgrade the TLS client to validate
  the mis-issued certificate using only PKIX and not via DANE, provided
  the TLS client is also not able to fetch the TLSA records directly
  from DNS.

  The ExtSupportLifetime element of the extension provides a
  countermeasure against such downgrade attacks.  Its value represents
  the number of hours that the TLS server (or cluster of servers
  serving the same server name) commits to serving this extension in
  the future.  This is referred to as the "pinning time" or "extension
  pin" of the extension.  A non-zero extension pin value received MUST
  ONLY be used if the extension also contains a valid TLSA
  authentication chain that matches the server's certificate chain (the
  server passes DANE authentication based on the enclosed TLSA RRset).

  Any existing extension pin for the server instance (name and port)
  MUST be cleared on receipt of a valid denial of existence for the
  associated TLSA RRset.  The same also applies if the client obtained
  the denial-of-existence proof via another method, such as through
  direct DNS queries.  Based on the TLS client's local policy, it MAY
  then terminate the connection or MAY continue using PKIX-based server
  authentication.

  Extension pins MUST also be cleared upon the completion of a DANE-
  authenticated handshake with a server that returns a "dnssec_chain"
  extension with a zero ExtSupportLifetime.

  Upon completion of a fully validated handshake with a server that
  returns a "dnssec_chain" extension with a non-zero ExtSupport
  lifetime, the client MUST update any existing pin lifetime for the
  service (name and port) to a value that is not longer than that
  indicated by the server.  The client MAY, subject to local policy,
  create a previously nonexistent pin, again for a lifetime that is not
  longer than that indicated by the server.

  The extension support lifetime is not constrained by any DNS TTLs or
  RRSIG expirations in the returned chain.  The extension support
  lifetime is the time for which the TLS server is committing itself to
  serve the extension; it is not a validity time for the returned chain
  data.  During this period, the DNSSEC chain may be updated.
  Therefore, the ExtSupportLifetime value is not constrained by any DNS
  TTLs or RRSIG expirations in the returned chain.

  Clients MAY implement support for a subset of DANE certificate
  usages.  For example, clients may support only DANE-EE(3) and DANE-
  TA(2) [RFC7218], only PKIX-EE(1) and PKIX-TA(0), or all four.
  Clients that implement DANE-EE(3) and DANE-TA(2) MUST implement the
  relevant updates in [RFC7671].

  For a non-zero saved value ("pin") of the ExtSupportLifetime element
  of the extension, TLS clients that do not have a cached TLSA RRset
  with an unexpired TTL MUST use the extension for the associated name
  and port to obtain this information from the TLS server.  This TLS
  client then MUST require that the TLS server respond with this
  extension, which MUST contain a valid TLSA RRset or proof of
  nonexistence of the TLSA RRset that covers the requested name and
  port.  Note that a nonexistence proof or proof of insecure delegation
  will clear the pin.  The TLS client MUST require this for as long as
  the time period specified by the pin value, independent of the DNS
  TTLs.  During this process, if the TLS client fails to receive this
  information, it MUST either abort the connection or delay
  communication with the server via the TLS connection until it is able
  to obtain valid TLSA records (or proof of nonexistence) out of band,
  such as via direct DNS lookups.  If attempts to obtain the TLSA RRset
  out of band fail, the client MUST abort the TLS connection.  It MAY
  try a new TLS connection again (for example, using an exponential
  back-off timer) in an attempt to reach a different TLS server
  instance that does properly serve the extension.

  A TLS client that has a cached validated TLSA RRset and a valid non-
  zero extension pin time MAY still refrain from requesting the
  extension as long as it uses the cached TLSA RRset to authenticate
  the TLS server.  This RRset MUST NOT be used beyond its received TTL.
  Once the TLSA RRset's TTL has expired, the TLS client with a valid
  non-zero extension pin time MUST request the extension and MUST abort
  the TLS connection if the server responds without the extension.  A
  TLS client MAY attempt to obtain the valid TLSA RRset by some other
  means before initiating a new TLS connection.

  Note that requiring the extension is NOT the same as requiring the
  use of DANE TLSA records or even DNSSEC.  A DNS zone operator may at
  any time delete the TLSA records or even remove the DS records to
  disable the secure delegation of the server's DNS zone.  The TLS
  server will replace the chain with the corresponding denial-of-
  existence chain when it updates its cached TLSA authentication chain.
  The server's only obligation is continued support for this extension.

8.  Trust Anchor Maintenance

  The trust anchor may change periodically, e.g., when the operator of
  the trust anchor zone performs a DNSSEC key rollover.  TLS clients
  using this specification MUST implement a mechanism to keep their
  trust anchors up to date.  They could use the method defined in
  [RFC5011] to perform trust anchor updates in-band in TLS by tracking
  the introduction of new keys seen in the trust anchor DNSKEY RRset.
  However, alternative mechanisms external to TLS may also be utilized.
  Some operating systems may have a system-wide service to maintain and
  keep the root trust anchor up to date.  In such cases, the TLS client
  application could simply reference that as its trust anchor,
  periodically checking whether it has changed.  Some applications may
  prefer to implement trust anchor updates as part of their automated
  software updates.

9.  Virtual Hosting

  Delivery of application services is often provided by a third party
  on behalf of the domain owner (hosting customer).  Since the domain
  owner may want to be able to move the service between providers, non-
  zero support lifetimes for this extension should only be enabled by
  mutual agreement between the provider and domain owner.

  When CNAME records are employed to redirect network connections to
  the provider's network, as mentioned in Section 3, the server uses
  the client's SNI hostname as the TLSA base domain without CNAME
  expansion.  When the certificate chain for the service is managed by
  the provider, it is impractical to coordinate certificate changes by
  the provider with updates in the hosting customer's DNS.  Therefore,
  the TLSA RRset for the hosted domain is best configured as a CNAME
  from the customer's domain to a TLSA RRset that is managed by the
  provider as part of delivering the hosted service.  For example:

  ; Customer DNS
  www.example.com. IN CNAME node1.provider.example.
  _443._tcp.www.example.com. IN CNAME _dane443.node1.provider.example.
  ; Provider DNS
  node1.provider.example. IN A 192.0.2.1
  _dane443.node1.provider.example. IN TLSA 1 1 1 ...

  Clients that obtain TLSA records directly from DNS, bypassing this
  extension, may perform CNAME expansion as in Section 7 of [RFC7671].
  If TLSA records are associated with the fully expanded name, that
  name may be used as the TLSA base domain and SNI name for the TLS
  handshake.

  To avoid confusion, it is RECOMMENDED that server operators not
  publish TLSA RRs (_port._tcp. + base domain) based on the expanded
  CNAMEs used to locate their network addresses.  Instead, the server
  operator SHOULD publish TLSA RRs at an alternative DNS node (as in
  the example above), to which the hosting customer will publish a
  CNAME alias.  This results in all clients (whether they obtain TLSA
  records from DNS directly or employ this extension) seeing the same
  TLSA records and sending the same SNI name.

10.  Operational Considerations

  When DANE is being introduced incrementally into an existing PKIX
  environment, there may be scenarios in which DANE authentication for
  a server fails but PKIX succeeds, or vice versa.  What happens here
  depends on TLS client policy.  If DANE authentication fails, the
  client may decide to fall back to regular PKIX authentication.  In
  order to do so efficiently within the same TLS handshake, the TLS
  server needs to have provided the full X.509 certificate chain.  When
  TLS servers only support DANE-EE or DANE-TA modes, they have the
  option to send a much smaller certificate chain: just the EE
  certificate for the former and a short certificate chain from the
  DANE trust anchor to the EE certificate for the latter.  If the TLS
  server supports both DANE and regular PKIX and wants to allow
  efficient PKIX fallback within the same handshake, they should always
  provide the full X.509 certificate chain.

  When a TLS server operator wishes to no longer deploy this extension,
  it must properly decommission its use.  If a non-zero pin lifetime is
  presently advertised, it must first be changed to 0.  The extension
  can be disabled once all previously advertised pin lifetimes have
  expired.  Removal of TLSA records or even DNSSEC signing of the zone
  can be done at any time, but the server MUST still be able to return
  the associated denial-of-existence proofs to any clients that have
  unexpired pins.

  TLS clients MAY reduce the received extension pin value to a maximum
  set by local policy.  This can mitigate a theoretical yet unlikely
  attack where a compromised TLS server is modified to advertise a pin
  value set to the maximum of 7 years.  Care should be taken not to set
  a local maximum that is too short as that would reduce the downgrade
  attack protection that the extension pin offers.

  If the hosting provider intends to use end-entity TLSA records
  (certificate usage PKIX-EE(1) or DANE-EE(3)), then the simplest
  approach is to use the same key pair for all the certificates at a
  given hosting node and publish "1 1 1" or "3 1 1" RRs matching the
  common public key.  Since key rollover cannot be simultaneous across
  multiple certificate updates, there will be times when multiple "1 1
  1" (or "3 1 1") records will be required to match all the extant
  certificates.  Multiple TLSA records are, in any case, needed a few
  TTLs before certificate updates as explained in Section 8 of
  [RFC7671].

  If the hosting provider intends to use trust anchor TLSA records
  (certificate usage PKIX-TA(0) or DANE-TA(2)), then the same TLSA
  record can match all end-entity certificates issues by the
  certification authority in question and continues to work across end-
  entity certificate updates so long as the issuer certificate or
  public keys remain unchanged.  This can be easier to implement at the
  cost of greater reliance on the security of the selected
  certification authority.

  The provider can, of course, publish separate TLSA records for each
  customer, which increases the number of such RRsets that need to be
  managed but makes each one independent of the rest.

11.  Security Considerations

  The security considerations of the normatively referenced RFCs all
  pertain to this extension.  Since the server is delivering a chain of
  DNS records and signatures to the client, it MUST rebuild the chain
  in accordance with TTL and signature expiration of the chain
  components as described in Section 4.  TLS clients need roughly
  accurate time in order to properly authenticate these signatures.
  This could be achieved by running a time synchronization protocol
  like NTP [RFC5905] or SNTP [RFC5905], which are already widely used
  today.  TLS clients MUST support a mechanism to track and roll over
  the trust anchor key or be able to avail themselves of a service that
  does this, as described in Section 8.  Security considerations
  related to mandating the use of this extension are described in
  Section 7.

  The received DNSSEC chain could contain DNS RRs that are not related
  to the TLSA verification of the intended DNS name.  If such an
  unrelated RR is not DNSSEC signed, it MUST be discarded.  If the
  unrelated RRset is DNSSEC signed, the TLS client MAY decide to add
  these RRsets and their DNSSEC signatures to its cache.  It MAY even
  pass this data to the local system resolver for caching outside the
  application.  However, care must be taken because caching these
  records could be used for timing and caching attacks to de-anonymize
  the TLS client or its user.  A TLS client that wants to present the
  strongest anonymity protection to their users MUST refrain from using
  and caching all unrelated RRs.

12.  IANA Considerations

  IANA has made the following assignment in the "TLS ExtensionType
  Values" registry:

     +=======+================+=========+=============+===========+
     | Value | Extension Name | TLS 1.3 | Recommended | Reference |
     +=======+================+=========+=============+===========+
     |    59 | dnssec_chain   | CH      | No          | RFC 9102  |
     +-------+----------------+---------+-------------+-----------+

                                Table 1

13.  References

13.1.  Normative References

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
             November 1987, <https://www.rfc-editor.org/info/rfc1035>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4033]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
             Rose, "DNS Security Introduction and Requirements",
             RFC 4033, DOI 10.17487/RFC4033, March 2005,
             <https://www.rfc-editor.org/info/rfc4033>.

  [RFC4034]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
             Rose, "Resource Records for the DNS Security Extensions",
             RFC 4034, DOI 10.17487/RFC4034, March 2005,
             <https://www.rfc-editor.org/info/rfc4034>.

  [RFC4035]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
             Rose, "Protocol Modifications for the DNS Security
             Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
             <https://www.rfc-editor.org/info/rfc4035>.

  [RFC5155]  Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
             Security (DNSSEC) Hashed Authenticated Denial of
             Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
             <https://www.rfc-editor.org/info/rfc5155>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
             Extensions: Extension Definitions", RFC 6066,
             DOI 10.17487/RFC6066, January 2011,
             <https://www.rfc-editor.org/info/rfc6066>.

  [RFC6698]  Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
             of Named Entities (DANE) Transport Layer Security (TLS)
             Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
             2012, <https://www.rfc-editor.org/info/rfc6698>.

  [RFC7218]  Gudmundsson, O., "Adding Acronyms to Simplify
             Conversations about DNS-Based Authentication of Named
             Entities (DANE)", RFC 7218, DOI 10.17487/RFC7218, April
             2014, <https://www.rfc-editor.org/info/rfc7218>.

  [RFC7671]  Dukhovni, V. and W. Hardaker, "The DNS-Based
             Authentication of Named Entities (DANE) Protocol: Updates
             and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
             October 2015, <https://www.rfc-editor.org/info/rfc7671>.

  [RFC7858]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
             and P. Hoffman, "Specification for DNS over Transport
             Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
             2016, <https://www.rfc-editor.org/info/rfc7858>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8310]  Dickinson, S., Gillmor, D., and T. Reddy, "Usage Profiles
             for DNS over TLS and DNS over DTLS", RFC 8310,
             DOI 10.17487/RFC8310, March 2018,
             <https://www.rfc-editor.org/info/rfc8310>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

13.2.  Informative References

  [DANE-UKS] Barnes, R., Thomson, M., and E. Rescorla, "Unknown Key-
             Share Attacks on DNS-Based Authentications of Named
             Entities (DANE)", Work in Progress, Internet-Draft, draft-
             barnes-dane-uks-00, 9 October 2016,
             <https://datatracker.ietf.org/doc/html/draft-barnes-dane-
             uks-00>.

  [DISCOVERY]
             Gorjon, X. and W. Toorop, "Discovery method for a DNSSEC
             validating stub resolver", 14 July 2015,
             <https://www.nlnetlabs.nl/downloads/publications/
             os3-2015-rp2-xavier-torrent-gorjon.pdf>.

  [DNSOP-SVCB-HTTPS]
             Schwartz, B., Bishop, M., and E. Nygren, "Service Binding
             and Parameter Specification via the DNS (DNS SVCB and
             HTTPS RRs)", Work in Progress, Internet-Draft, draft-ietf-
             dnsop-svcb-https-07, 16 June 2021,
             <https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-
             svcb-https-07>.

  [RFC5011]  StJohns, M., "Automated Updates of DNS Security (DNSSEC)
             Trust Anchors", STD 74, RFC 5011, DOI 10.17487/RFC5011,
             September 2007, <https://www.rfc-editor.org/info/rfc5011>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
             Weiler, S., and T. Kivinen, "Using Raw Public Keys in
             Transport Layer Security (TLS) and Datagram Transport
             Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
             June 2014, <https://www.rfc-editor.org/info/rfc7250>.

  [RFC7901]  Wouters, P., "CHAIN Query Requests in DNS", RFC 7901,
             DOI 10.17487/RFC7901, June 2016,
             <https://www.rfc-editor.org/info/rfc7901>.

  [SERIALIZECHAIN]
             Langley, A., "Serializing DNS Records with DNSSEC
             Authentication", Work in Progress, Internet-Draft, draft-
             agl-dane-serializechain-01, 1 July 2011,
             <https://datatracker.ietf.org/doc/html/draft-agl-dane-
             serializechain-01>.

Appendix A.  Test Vectors

  The test vectors in this appendix are representations of the content
  of the "opaque AuthenticationChain" field in DNS presentation format
  and, except for the "extension_data" in Appendix A.1, do not contain
  the "uint16 ExtSupportLifetime" field.

  For brevity and reproducibility, all DNS zones involved with the test
  vectors are signed using keys with algorithm 13 (ECDSA Curve P-256
  with SHA-256).

  To reflect operational practice, different zones in the examples are
  in different phases of rolling their signing keys:

  *  All zones use a Key Signing Key (KSK) and Zone Signing Key (ZSK),
     except for the "example.com" and "example.net" zones, which use a
     Combined Signing Key (CSK).

  *  The root and org zones are rolling their ZSKs.

  *  The com and org zones are rolling their KSKs.

  The test vectors are DNSSEC valid in the same period as the
  certificate is valid, which is between November 28, 2018 and December
  2, 2020 with the following root trust anchor:

  .  IN  DS  ( 47005 13 2 2eb6e9f2480126691594d649a5a613de3052e37861634
          641bb568746f2ffc4d4 )

  The test vectors will authenticate the certificate used with
  "https://example.com/", "https://example.net/", and
  "https://example.org/" at the time of writing:

  -----BEGIN CERTIFICATE-----
  MIIHQDCCBiigAwIBAgIQD9B43Ujxor1NDyupa2A4/jANBgkqhkiG9w0BAQsFADBN
  MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMScwJQYDVQQDEx5E
  aWdpQ2VydCBTSEEyIFNlY3VyZSBTZXJ2ZXIgQ0EwHhcNMTgxMTI4MDAwMDAwWhcN
  MjAxMjAyMTIwMDAwWjCBpTELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju
  aWExFDASBgNVBAcTC0xvcyBBbmdlbGVzMTwwOgYDVQQKEzNJbnRlcm5ldCBDb3Jw
  b3JhdGlvbiBmb3IgQXNzaWduZWQgTmFtZXMgYW5kIE51bWJlcnMxEzARBgNVBAsT
  ClRlY2hub2xvZ3kxGDAWBgNVBAMTD3d3dy5leGFtcGxlLm9yZzCCASIwDQYJKoZI
  hvcNAQEBBQADggEPADCCAQoCggEBANDwEnSgliByCGUZElpdStA6jGaPoCkrp9vV
  rAzPpXGSFUIVsAeSdjF11yeOTVBqddF7U14nqu3rpGA68o5FGGtFM1yFEaogEv5g
  rJ1MRY/d0w4+dw8JwoVlNMci+3QTuUKf9yH28JxEdG3J37Mfj2C3cREGkGNBnY80
  eyRJRqzy8I0LSPTTkhr3okXuzOXXg38ugr1x3SgZWDNuEaE6oGpyYJIBWZ9jF3pJ
  QnucP9vTBejMh374qvyd0QVQq3WxHrogy4nUbWw3gihMxT98wRD1oKVma1NTydvt
  hcNtBfhkp8kO64/hxLHrLWgOFT/l4tz8IWQt7mkrBHjbd2XLVPkCAwEAAaOCA8Ew
  ggO9MB8GA1UdIwQYMBaAFA+AYRyCMWHVLyjnjUY4tCzhxtniMB0GA1UdDgQWBBRm
  mGIC4AmRp9njNvt2xrC/oW2nvjCBgQYDVR0RBHoweIIPd3d3LmV4YW1wbGUub3Jn
  ggtleGFtcGxlLmNvbYILZXhhbXBsZS5lZHWCC2V4YW1wbGUubmV0ggtleGFtcGxl
  Lm9yZ4IPd3d3LmV4YW1wbGUuY29tgg93d3cuZXhhbXBsZS5lZHWCD3d3dy5leGFt
  cGxlLm5ldDAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
  AQUFBwMCMGsGA1UdHwRkMGIwL6AtoCuGKWh0dHA6Ly9jcmwzLmRpZ2ljZXJ0LmNv
  bS9zc2NhLXNoYTItZzYuY3JsMC+gLaArhilodHRwOi8vY3JsNC5kaWdpY2VydC5j
  b20vc3NjYS1zaGEyLWc2LmNybDBMBgNVHSAERTBDMDcGCWCGSAGG/WwBATAqMCgG
  CCsGAQUFBwIBFhxodHRwczovL3d3dy5kaWdpY2VydC5jb20vQ1BTMAgGBmeBDAEC
  AjB8BggrBgEFBQcBAQRwMG4wJAYIKwYBBQUHMAGGGGh0dHA6Ly9vY3NwLmRpZ2lj
  ZXJ0LmNvbTBGBggrBgEFBQcwAoY6aHR0cDovL2NhY2VydHMuZGlnaWNlcnQuY29t
  L0RpZ2lDZXJ0U0hBMlNlY3VyZVNlcnZlckNBLmNydDAMBgNVHRMBAf8EAjAAMIIB
  fwYKKwYBBAHWeQIEAgSCAW8EggFrAWkAdwCkuQmQtBhYFIe7E6LMZ3AKPDWYBPkb
  37jjd80OyA3cEAAAAWdcMZVGAAAEAwBIMEYCIQCEZIG3IR36Gkj1dq5L6EaGVycX
  sHvpO7dKV0JsooTEbAIhALuTtf4wxGTkFkx8blhTV+7sf6pFT78ORo7+cP39jkJC
  AHYAh3W/51l8+IxDmV+9827/Vo1HVjb/SrVgwbTq/16ggw8AAAFnXDGWFQAABAMA
  RzBFAiBvqnfSHKeUwGMtLrOG3UGLQIoaL3+uZsGTX3MfSJNQEQIhANL5nUiGBR6g
  l0QlCzzqzvorGXyB/yd7nttYttzo8EpOAHYAb1N2rDHwMRnYmQCkURX/dxUcEdkC
  wQApBo2yCJo32RMAAAFnXDGWnAAABAMARzBFAiEA5Hn7Q4SOyqHkT+kDsHq7ku7z
  RDuM7P4UDX2ft2Mpny0CIE13WtxJAUr0aASFYZ/XjSAMMfrB0/RxClvWVss9LHKM
  MA0GCSqGSIb3DQEBCwUAA4IBAQBzcIXvQEGnakPVeJx7VUjmvGuZhrr7DQOLeP4R
  8CmgDM1pFAvGBHiyzvCH1QGdxFl6cf7wbp7BoLCRLR/qPVXFMwUMzcE1GLBqaGZM
  v1Yh2lvZSLmMNSGRXdx113pGLCInpm/TOhfrvr0TxRImc8BdozWJavsn1N2qdHQu
  N+UBO6bQMLCD0KHEdSGFsuX6ZwAworxTg02/1qiDu7zW7RyzHvFYA4IAjpzvkPIa
  X6KjBtpdvp/aXabmL95YgBjT8WJ7pqOfrqhpcmOBZa6Cg6O1l4qbIFH/Gj9hQB5I
  0Gs4+eH6F9h3SojmPTYkT+8KuZ9w84Mn+M8qBXUQoYoKgIjN
  -----END CERTIFICATE-----

A.1.  "_443._tcp.www.example.com"

  _443._tcp.www.example.com.  3600  IN  TLSA  ( 3 1 1
          8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
          922 )
  _443._tcp.www.example.com.  3600  IN  RRSIG  ( TLSA 13 5 3600
          20201202000000 20181128000000 1870 example.com.
          rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S
          z2BhaswpGLVVuoijuVdzxYjmw== )
  example.com.  3600  IN  DNSKEY  ( 257 3 13
          JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
          /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870
  example.com.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 1870 example.com.
          nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
          QHPGSpvRxTUC4tZi62z1UgGDw== )
  example.com.  172800  IN  DS  ( 1870 13 2 e9b533a049798e900b5c29c90cd
         25a986e8a44f319ac3cd302bafc08f5b81e16)
  example.com.  172800  IN  RRSIG  ( DS 13 2 172800
          20201202000000 20181128000000 34327 com.
          sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
          J1hhWSB6jgubEVl17rGNOA/YQ== )
  com.  172800  IN  DNSKEY  ( 256 3 13
          7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
          3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327
  com.  172800  IN  DNSKEY  ( 257 3 13
          RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
          Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931
  com.  172800  IN  DNSKEY  ( 257 3 13
          szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
          DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 18931 com.
          LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
          7LFdPKpcvb8BvhM+GqKWGBEsg== )
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 28809 com.
          sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
          mDXqz6KEhhQjT+aQWDt6WFHlA== )
  com.  86400  IN  DS  ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
          f9eabb94487e658c188e7bcb52115 )
  com.  86400  IN  DS  ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
          70643bbde681db342a9e5cf2bb380 )
  com.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
          vBKTf6pk8JRCqnfzlo2QY+WXA== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

  A hex dump of the "extension_data" of the server's "dnssec_chain"
  extension representation of this with an ExtSupportLifetime value of
  0 is:

  0000:  00 00 04 5f 34 34 33 04  5f 74 63 70 03 77 77 77
  0010:  07 65 78 61 6d 70 6c 65  03 63 6f 6d 00 00 34 00
  0020:  01 00 00 0e 10 00 23 03  01 01 8b d1 da 95 27 2f
  0030:  7f a4 ff b2 41 37 fc 0e  d0 3a ae 67 e5 c4 d8 b3
  0040:  c5 07 34 e1 05 0a 79 20  b9 22 04 5f 34 34 33 04
  0050:  5f 74 63 70 03 77 77 77  07 65 78 61 6d 70 6c 65
  0060:  03 63 6f 6d 00 00 2e 00  01 00 00 0e 10 00 5f 00
  0070:  34 0d 05 00 00 0e 10 5f  c6 d9 00 5b fd da 80 07
  0080:  4e 07 65 78 61 6d 70 6c  65 03 63 6f 6d 00 ce 1d
  0090:  3a de b7 dc 7c ee 65 6d  61 cf b4 72 c5 97 7c 8c
  00a0:  9c ae ae 9b 76 51 55 c5  18 fb 10 7b 6a 1f e0 35
  00b0:  5f ba af 75 3c 19 28 32  fa 62 1f a7 3a 8b 85 ed
  00c0:  79 d3 74 11 73 87 59 8f  cc 81 2e 1e f3 fb 07 65
  00d0:  78 61 6d 70 6c 65 03 63  6f 6d 00 00 30 00 01 00
  00e0:  00 0e 10 00 44 01 01 03  0d 26 70 35 5e 0c 89 4d
  00f0:  9c fe a6 c5 af 6e b7 d4  58 b5 7a 50 ba 88 27 25
  0100:  12 d8 24 1d 85 41 fd 54  ad f9 6e c9 56 78 9a 51
  0110:  ce b9 71 09 4b 3b b3 f4  ec 49 f6 4c 68 65 95 be
  0120:  5b 2e 89 e8 79 9c 77 17  cc 07 65 78 61 6d 70 6c
  0130:  65 03 63 6f 6d 00 00 2e  00 01 00 00 0e 10 00 5f
  0140:  00 30 0d 02 00 00 0e 10  5f c6 d9 00 5b fd da 80
  0150:  07 4e 07 65 78 61 6d 70  6c 65 03 63 6f 6d 00 46
  0160:  28 38 30 75 b8 e3 4b 74  3a 20 9b 27 ae 14 8d 11
  0170:  0d 4e 1a 24 61 38 a9 10  83 24 9c b4 a1 2a 2d 9b
  0180:  c4 c2 d7 ab 5e b3 af b9  f5 d1 03 7e 4d 5d a8 33
  0190:  9c 16 2a 92 98 e9 be 18  07 41 a8 ca 74 ac cc 07
  01a0:  65 78 61 6d 70 6c 65 03  63 6f 6d 00 00 2b 00 01
  01b0:  00 02 a3 00 00 24 07 4e  0d 02 e9 b5 33 a0 49 79
  01c0:  8e 90 0b 5c 29 c9 0c d2  5a 98 6e 8a 44 f3 19 ac
  01d0:  3c d3 02 ba fc 08 f5 b8  1e 16 07 65 78 61 6d 70
  01e0:  6c 65 03 63 6f 6d 00 00  2e 00 01 00 02 a3 00 00
  01f0:  57 00 2b 0d 02 00 02 a3  00 5f c6 d9 00 5b fd da
  0200:  80 86 17 03 63 6f 6d 00  a2 03 e7 04 a6 fa cb eb
  0210:  13 fc 93 84 fd d6 de 6b  50 de 56 59 27 1f 38 ce
  0220:  81 49 86 84 e6 36 31 72  d4 7e 23 19 fd b4 a2 2a
  0230:  58 a2 31 ed c2 f1 ff 4f  b2 81 1a 18 07 be 72 cb
  0240:  52 41 aa 26 fd ae e0 39  03 63 6f 6d 00 00 30 00
  0250:  01 00 02 a3 00 00 44 01  00 03 0d ec 82 04 e4 3a
  0260:  25 f2 34 8c 52 a1 d3 bc  e3 a2 65 aa 5d 11 b4 3d
  0270:  c2 a4 71 16 2f f3 41 c4  9d b9 f5 0a 2e 1a 41 ca
  0280:  f2 e9 cd 20 10 4e a0 96  8f 75 11 21 9f 0b dc 56
  0290:  b6 80 12 cc 39 95 33 67  51 90 0b 03 63 6f 6d 00
  02a0:  00 30 00 01 00 02 a3 00  00 44 01 01 03 0d 45 b9
  02b0:  1c 3b ef 7a 5d 99 a7 a7  c8 d8 22 e3 38 96 bc 80
  02c0:  a7 77 a0 42 34 a6 05 a4  a8 88 0e c7 ef a4 e6 d1
  02d0:  12 c7 3c d3 d4 c6 55 64  fa 74 34 7c 87 37 23 cc
  02e0:  5f 64 33 70 f1 66 b4 3d  ed ff 83 64 00 ff 03 63
  02f0:  6f 6d 00 00 30 00 01 00  02 a3 00 00 44 01 01 03
  0300:  0d b3 37 3b 6e 22 e8 e4  9e 0e 1e 59 1a 9f 5b d9
  0310:  ac 5e 1a 0f 86 18 7f e3  47 03 f1 80 a9 d3 6c 95
  0320:  8f 71 c4 af 48 ce 0e bc  5c 79 2a 72 4e 11 b4 38
  0330:  95 93 7e e5 34 04 26 81  29 47 6e b1 ae d3 23 93
  0340:  90 03 63 6f 6d 00 00 2e  00 01 00 02 a3 00 00 57
  0350:  00 30 0d 01 00 02 a3 00  5f c6 d9 00 5b fd da 80
  0360:  49 f3 03 63 6f 6d 00 18  a9 48 eb 23 d4 4f 80 ab
  0370:  c9 92 38 fc b4 3c 5a 18  de be 57 00 4f 73 43 59
  0380:  3f 6d eb 6e d7 1e 04 65  4a 43 3f 7a a1 97 21 30
  0390:  d9 bd 92 1c 73 dc f6 3f  cf 66 5f 2f 05 a0 aa eb
  03a0:  af b0 59 dc 12 c9 65 03  63 6f 6d 00 00 2e 00 01
  03b0:  00 02 a3 00 00 57 00 30  0d 01 00 02 a3 00 5f c6
  03c0:  d9 00 5b fd da 80 70 89  03 63 6f 6d 00 61 70 e6
  03d0:  95 9b d9 ed 6e 57 58 37  b6 f5 80 bd 99 db d2 4a
  03e0:  44 68 2b 0a 35 96 26 a2  46 b1 81 2f 5f 90 96 b7
  03f0:  5e 15 7e 77 84 8f 06 8a  e0 08 5e 1a 60 9f c1 92
  0400:  98 c3 3b 73 68 63 fb cc  d4 d8 1f 5e b2 03 63 6f
  0410:  6d 00 00 2b 00 01 00 01  51 80 00 24 49 f3 0d 02
  0420:  20 f7 a9 db 42 d0 e2 04  2f bb b9 f9 ea 01 59 41
  0430:  20 2f 9e ab b9 44 87 e6  58 c1 88 e7 bc b5 21 15
  0440:  03 63 6f 6d 00 00 2b 00  01 00 01 51 80 00 24 70
  0450:  89 0d 02 ad 66 b3 27 6f  79 62 23 aa 45 ed a7 73
  0460:  e9 2c 6d 98 e7 06 43 bb  de 68 1d b3 42 a9 e5 cf
  0470:  2b b3 80 03 63 6f 6d 00  00 2e 00 01 00 01 51 80
  0480:  00 53 00 2b 0d 01 00 01  51 80 5f c6 d9 00 5b fd
  0490:  da 80 7c ae 00 12 2e 27  6d 45 d9 e9 81 6f 79 22
  04a0:  ad 6e a2 e7 3e 82 d2 6f  ce 0a 4b 71 86 25 f3 14
  04b0:  53 1a c9 2f 8a e8 24 18  df 9b 89 8f 98 9d 32 e8
  04c0:  0b c4 de ab a7 c4 a7 c8  f1 72 ad b5 7c ed 7f b5
  04d0:  e7 7a 78 4b 07 00 00 30  00 01 00 01 51 80 00 44
  04e0:  01 00 03 0d cc ac fe 0c  25 a4 34 0f ef ba 17 a2
  04f0:  54 f7 06 aa c1 f8 d1 4f  38 29 90 25 ac c4 48 ca
  0500:  8c e3 f5 61 f3 7f c3 ec  16 9f e8 47 c8 fc be 68
  0510:  e3 58 ff 7c 71 bb 5e e1  df 0d be 51 8b c7 36 d4
  0520:  ce 8d fe 14 00 00 30 00  01 00 01 51 80 00 44 01
  0530:  00 03 0d f3 03 19 67 89  73 1d dc 8a 67 87 ef f2
  0540:  4c ac fe dd d0 32 58 2f  11 a7 5b b1 bc aa 5a b3
  0550:  21 c1 d7 52 5c 26 58 19  1a ec 01 b3 e9 8a b7 91
  0560:  5b 16 d5 71 dd 55 b4 ea  e5 14 17 11 0c c4 cd d1
  0570:  1d 17 11 00 00 30 00 01  00 01 51 80 00 44 01 01
  0580:  03 0d ca f5 fe 54 d4 d4  8f 16 62 1a fb 6b d3 ad
  0590:  21 55 ba cf 57 d1 fa ad  5b ac 42 d1 7d 94 8c 42
  05a0:  17 36 d9 38 9c 4c 40 11  66 6e a9 5c f1 77 25 bd
  05b0:  0f a0 0c e5 e7 14 e4 ec  82 cf df ac c9 b1 c8 63
  05c0:  ad 46 00 00 2e 00 01 00  01 51 80 00 53 00 30 0d
  05d0:  00 00 01 51 80 5f c6 d9  00 5b fd da 80 b7 9d 00
  05e0:  de 7a 67 40 ee ec ba 4b  da 1e 5c 2d d4 89 9b 2c
  05f0:  96 58 93 f3 78 6c e7 47  f4 1e 50 d9 de 8c 0a 72
  0600:  df 82 56 0d fb 48 d7 14  de 32 83 ae 99 a4 9c 0f
  0610:  cb 50 d3 aa ad b1 a3 fc  62 ee 3a 8a 09 88 b6 be

A.2.  "_25._tcp.example.com" NSEC Wildcard

  _25._tcp.example.com.  3600  IN  TLSA  ( 3 1 1
          8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
          922 )
  _25._tcp.example.com.  3600  IN  RRSIG  ( TLSA 13 3 3600
          20201202000000 20181128000000 1870 example.com.
          BZawXvte5SyF8hnXviKDWqll5E2v+RMXqaSE+NOcAMlZOrSMUkfyPqvkv53K2
          rfL4DFP8rO3VMgI0v+ogrox0w== )
  *._tcp.example.com.  3600  IN  NSEC  ( smtp.example.com. RRSIG
          NSEC TLSA )
  *._tcp.example.com.  3600  IN  RRSIG  ( NSEC 13 3 3600
          20201202000000 20181128000000 1870 example.com.
          K6u8KrR8ca5bjtbce3w8yjMXr9vw12225lAwyIHpxptY43OMLCUCenwpYW5qd
          mpFvAacqj4+tSkKiN279SI9pA== )
  example.com.  3600  IN  DNSKEY  ( 257 3 13
          JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
          /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870
  example.com.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 1870 example.com.
          nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
          QHPGSpvRxTUC4tZi62z1UgGDw== )
  example.com.  172800  IN  DS  ( 1870 13 2 e9b533a049798e900b5c29c90cd
          25a986e8a44f319ac3cd302bafc08f5b81e16 )
  example.com.  172800  IN  RRSIG  ( DS 13 2 172800
          20201202000000 20181128000000 34327 com.
          sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
          J1hhWSB6jgubEVl17rGNOA/YQ== )
  com.  172800  IN  DNSKEY  ( 256 3 13
          7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
          3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327
  com.  172800  IN  DNSKEY  ( 257 3 13
          RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
          Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931
  com.  172800  IN  DNSKEY  ( 257 3 13
          szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
          DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 18931 com.
          LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
          7LFdPKpcvb8BvhM+GqKWGBEsg== )
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 28809 com.
          sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
          mDXqz6KEhhQjT+aQWDt6WFHlA== )
  com.  86400  IN  DS  ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
          f9eabb94487e658c188e7bcb52115 )
  com.  86400  IN  DS  ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
          70643bbde681db342a9e5cf2bb380 )
  com.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
          vBKTf6pk8JRCqnfzlo2QY+WXA== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

A.3.  "_25._tcp.example.org" NSEC3 Wildcard

  _25._tcp.example.org.  3600  IN  TLSA  ( 3 1 1
          8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
          922 )
  _25._tcp.example.org.  3600  IN  RRSIG  ( TLSA 13 3 3600
          20201202000000 20181128000000 56566 example.org.
          lNp6th/CJel5WsYlLsLadcQ/YdSTJAIOttzYKnNkNzeZ0jxtDyEP818Q1R4lL
          cYzJ7vCvqb9gFCiCJjK2gAamw== )
  dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org.  3600  IN  NSEC3  (
          1 0 1 - t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA )
  dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org.  3600  IN  RRSIG  (
          NSEC3 13 3 3600 20201202000000 20181128000000 56566
          example.org.
          guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE
          X38cWzEQOpreJu3t4WAfPsxdg== )
  example.org.  3600  IN  DNSKEY  ( 256 3 13
          NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
          UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566
  example.org.  3600  IN  DNSKEY  ( 257 3 13
          uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
          Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384
  example.org.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 44384 example.org.
          ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
          6OPPvyHjVXMAsvk0tqV0B+/ag== )
  example.org.  86400  IN  DS  ( 44384 13 2 ec307e2efc8f0117ed96ab48a51
          3c8003e1d9121f1ff11a08b4cdd348d090aa6 )
  example.org.  86400  IN  RRSIG  ( DS 13 2 86400 20201202000000
          20181128000000 9523 org.
          m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
          clpAfvZHx59Ackst4X+zXYpUA== )
  org.  86400  IN  DNSKEY  ( 256 3 13
          fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
          HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417
  org.  86400  IN  DNSKEY  ( 256 3 13
          zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy
          mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523
  org.  86400  IN  DNSKEY  ( 257 3 13
          Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
          Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352
  org.  86400  IN  DNSKEY  ( 257 3 13
          0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
          HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 12651 org.
          Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
          us0pUgWngbT/OWXskdMYXZU4A== )
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 49352 org.
          VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
          vZEMj1YXD+dIqb2nUK9PGBAXw== )
  org.  86400  IN  DS  ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
          9db5c24a75743eb1e704b97a9fabc )
  org.  86400  IN  DS  ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
          f4a2f18920db5f58710dd767c293b )
  org.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
          EemgaE357S4pX5D0tVZzeZJ6A== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

A.4.  "_443._tcp.www.example.org" CNAME

  _443._tcp.www.example.org.  3600  IN  CNAME  (
          dane311.example.org. )
  _443._tcp.www.example.org.  3600  IN  RRSIG  ( CNAME 13 5 3600
          20201202000000 20181128000000 56566 example.org.
          R0dUe6Rt4G+2ablrQH9Zw8j9NhBLMgNYTI5+H7nO8SNz5Nm8w0NZrXv3Qp7gx
          Qb/a90O696120NsYaZX2+ebBA== )
  dane311.example.org.  3600  IN  TLSA  ( 3 1 1
          8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
          922 )
  dane311.example.org.  3600  IN  RRSIG  ( TLSA 13 3 3600
          20201202000000 20181128000000 56566 example.org.
          f6TbTZTpu3h6MYpLkKQwWILAkYQ3EUY+Nsoa6any6yt+aeuunMUjw+IJB2QLm
          0x0PrD7m39JA3NUSkUp9riNNQ== )
  example.org.  3600  IN  DNSKEY  ( 256 3 13
          NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
          UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566
  example.org.  3600  IN  DNSKEY  ( 257 3 13
          uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
          Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384
  example.org.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 44384 example.org.
          ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
          6OPPvyHjVXMAsvk0tqV0B+/ag== )
  example.org.  86400  IN  DS  ( 44384 13 2 ec307e2efc8f0117ed96ab48a51
          3c8003e1d9121f1ff11a08b4cdd348d090aa6 )
  example.org.  86400  IN  RRSIG  ( DS 13 2 86400 20201202000000
          20181128000000 9523 org.
          m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
          clpAfvZHx59Ackst4X+zXYpUA== )
  org.  86400  IN  DNSKEY  ( 256 3 13
          fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
          HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417
  org.  86400  IN  DNSKEY  ( 256 3 13
          zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy
          mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523
  org.  86400  IN  DNSKEY  ( 257 3 13
          Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
          Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352
  org.  86400  IN  DNSKEY  ( 257 3 13
          0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
          HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 12651 org.
          Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
          us0pUgWngbT/OWXskdMYXZU4A== )
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 49352 org.
          VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
          vZEMj1YXD+dIqb2nUK9PGBAXw== )
  org.  86400  IN  DS  ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
          9db5c24a75743eb1e704b97a9fabc )
  org.  86400  IN  DS  ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
          f4a2f18920db5f58710dd767c293b )
  org.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
          EemgaE357S4pX5D0tVZzeZJ6A== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

A.5.  "_443._tcp.www.example.net" DNAME

  example.net.  3600  IN  DNAME  example.com.
  example.net.  3600  IN  RRSIG  ( DNAME 13 2 3600 20201202000000
          20181128000000 48085 example.net.
          o3uV5k5Ewp5fdrOZt0n4QuH+/Hpku2Lo3CzGRt9/MS2zZt2Qb/AXz435UFQBx
          OI/pDnjJcLSd/gBLtqR52WLMA== )
  ; _443._tcp.www.example.net.  3600  IN  CNAME  (
  ;         _443._tcp.www.example.com. )
  _443._tcp.www.example.com.  3600  IN  TLSA  ( 3 1 1
          8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
          922 )
  _443._tcp.www.example.com.  3600  IN  RRSIG  ( TLSA 13 5 3600
          20201202000000 20181128000000 1870 example.com.
          rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S
          z2BhaswpGLVVuoijuVdzxYjmw== )
  example.net.  3600  IN  DNSKEY  ( 257 3 13
          X9GHpJcS7bqKVEsLiVAbddHUHTZqqBbVa3mzIQmdp+5cTJk7qDazwH68Kts8d
          9MvN55HddWgsmeRhgzePz6hMg== ) ; Key ID = 48085
  example.net.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 48085 example.net.
          CkwqgEt1p97oMa3w5LctIjKIuG5XVSapKrfwuHhb5p04fWXRMNsXasG/kd2F/
          wlmMWiq38gOQaYCLNm+cjQzpQ== )
  example.net.  172800  IN  DS  ( 48085 13 2 7c1998ce683df60e2fa41460c4
          53f88f463dac8cd5d074277b4a7c04502921be )
  example.net.  172800  IN  RRSIG  ( DS 13 2 172800
          20201202000000 20181128000000 10713 net.
          w0JxDeiBJZNlpCdxKtRENlqfTpSxcs6Vftscsyfo/hyeTPYcIt4yItDkYsYK+
          KQ6FYAVE4nisA3vDQoZVL4wow== )
  net.  172800  IN  DNSKEY  ( 256 3 13
          061EoQs4sBcDsPiz17vt4nFSGLmXAGguqLStOesmKNCimi4/lw/vtyfqALuLF
          JiFjtCK3HMPi8HQ1jbGEwbGCA== ) ; Key ID = 10713
  net.  172800  IN  DNSKEY  ( 257 3 13
          LkNCPE+v3S4MVnsOqZFhn8n2NSwtLYOZLZjjgVsAKgu4XZncaDgq1R/7ZXRO5
          oVx2zthxuu2i+mGbRrycAaCvA== ) ; Key ID = 485
  net.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 485 net.
          031jXg06zSuDwI5zqYuYFJg1O5p+zy85csMXagvRxB9W2lL/wJRi6Gn9BcaCV
          RnDId5WR+yCADhsbKfSrrd9vQ== )
  net.  86400  IN  DS  ( 485 13 2 ab25a2941aa7f1eb8688bb783b25587515a0c
          d8c247769b23adb13ca234d1c05 )
  net.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          vOXoTjxggGTYKIwssQ3kpML0ag6D0Hcm+Syy7++4zT7gaFHfRH9a6uZekIWdb
          oss8y7q4onW4rxKdtw2S28hwQ== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )
  example.com.  3600  IN  DNSKEY  ( 257 3 13
          JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
          /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870
  example.com.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 1870 example.com.
          nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
          QHPGSpvRxTUC4tZi62z1UgGDw== )
  example.com.  172800  IN  DS  ( 1870 13 2 e9b533a049798e900b5c29c90cd
          25a986e8a44f319ac3cd302bafc08f5b81e16 )
  example.com.  172800  IN  RRSIG  ( DS 13 2 172800
          20201202000000 20181128000000 34327 com.
          sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
          J1hhWSB6jgubEVl17rGNOA/YQ== )
  com.  172800  IN  DNSKEY  ( 256 3 13
          7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
          3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327
  com.  172800  IN  DNSKEY  ( 257 3 13
          RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
          Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931
  com.  172800  IN  DNSKEY  ( 257 3 13
          szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
          DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 18931 com.
          LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
          7LFdPKpcvb8BvhM+GqKWGBEsg== )
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 28809 com.
          sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
          mDXqz6KEhhQjT+aQWDt6WFHlA== )
  com.  86400  IN  DS  ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
          f9eabb94487e658c188e7bcb52115 )
  com.  86400  IN  DS  ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
          70643bbde681db342a9e5cf2bb380 )
  com.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
          vBKTf6pk8JRCqnfzlo2QY+WXA== )

A.6.  "_25._tcp.smtp.example.com" NSEC Denial of Existence

  smtp.example.com.  3600  IN  NSEC  ( www.example.com. A AAAA
          RRSIG NSEC )
  smtp.example.com.  3600  IN  RRSIG  ( NSEC 13 3 3600
          20201202000000 20181128000000 1870 example.com.
          rH/K4wghCOm4jpEHwQKiyZzvFIa7qpFySuKIGGetW4SE4O2Mh5jPxcEzf78Hf
          crlsQZmnAUlfmBNCygxAd7JNw== )
  example.com.  3600  IN  DNSKEY  ( 257 3 13
          JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
          /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870
  example.com.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 1870 example.com.
          nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
          QHPGSpvRxTUC4tZi62z1UgGDw== )
  example.com.  172800  IN  DS  ( 1870 13 2 e9b533a049798e900b5c29c90cd
          25a986e8a44f319ac3cd302bafc08f5b81e16 )
  example.com.  172800  IN  RRSIG  ( DS 13 2 172800
          20201202000000 20181128000000 34327 com.
          sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
          J1hhWSB6jgubEVl17rGNOA/YQ== )
  com.  172800  IN  DNSKEY  ( 256 3 13
          7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
          3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327
  com.  172800  IN  DNSKEY  ( 257 3 13
          RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
          Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931
  com.  172800  IN  DNSKEY  ( 257 3 13
          szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
          DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 18931 com.
          LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
          7LFdPKpcvb8BvhM+GqKWGBEsg== )
  com.  172800  IN  RRSIG  ( DNSKEY 13 1 172800 20201202000000
          20181128000000 28809 com.
          sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
          mDXqz6KEhhQjT+aQWDt6WFHlA== )
  com.  86400  IN  DS  ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
          f9eabb94487e658c188e7bcb52115 )
  com.  86400  IN  DS  ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
          70643bbde681db342a9e5cf2bb380 )
  com.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
          vBKTf6pk8JRCqnfzlo2QY+WXA== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

A.7.  "_25._tcp.smtp.example.org" NSEC3 Denial of Existence

  vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org.  3600  IN  NSEC3  (
          1 0 1 - 93u63bg57ppj6649al2n31l92iedkjd6 A AAAA RRSIG )
  vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org.  3600  IN  RRSIG  (
          NSEC3 13 3 3600 20201202000000 20181128000000 56566
          example.org.
          wn3cePVdc5VPPniYzGp+1CBPOY2m83/A3cjnAb7FTZuwL45B25fwVUyjKQksh
          gQeV5KgP1cdvPt1BEowKqK4Sw== )
  dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org.  3600  IN  NSEC3  (
          1 0 1 - t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA )
  dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org.  3600  IN  RRSIG  (
          NSEC3 13 3 3600 20201202000000 20181128000000 56566
          example.org.
          guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE
          X38cWzEQOpreJu3t4WAfPsxdg== )
  a73bi8coh6dvf1arqdeuogf95r0828mk.example.org.  3600  IN  NSEC3  (
          1 0 1 - c1p0lp7l1l8gdn0jl13pp1o41h35untj CNAME RRSIG )
  a73bi8coh6dvf1arqdeuogf95r0828mk.example.org.  3600  IN  RRSIG  (
          NSEC3 13 3 3600 20201202000000 20181128000000 56566
          example.org.
          ePBUuWdj8Bc+/41gHBm2Bx/IK/j/Q4W7A5uTgSj/0Sd57mP/NTWRZq3p8yBNe
          FPC2mBJ2oWQFi6/V9dmyiBh2A== )
  example.org.  3600  IN  DNSKEY  ( 256 3 13
          NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
          UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566
  example.org.  3600  IN  DNSKEY  ( 257 3 13
          uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
          Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384
  example.org.  3600  IN  RRSIG  ( DNSKEY 13 2 3600
          20201202000000 20181128000000 44384 example.org.
          ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
          6OPPvyHjVXMAsvk0tqV0B+/ag== )
  example.org.  86400  IN  DS  ( 44384 13 2 ec307e2efc8f0117ed96ab48a51
          3c8003e1d9121f1ff11a08b4cdd348d090aa6 )
  example.org.  86400  IN  RRSIG  ( DS 13 2 86400 20201202000000
          20181128000000 9523 org.
          m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
          clpAfvZHx59Ackst4X+zXYpUA== )
  org.  86400  IN  DNSKEY  ( 256 3 13
          fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
          HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417
  org.  86400  IN  DNSKEY  ( 256 3 13
          zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy
          mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523
  org.  86400  IN  DNSKEY  ( 257 3 13
          Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
          Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352
  org.  86400  IN  DNSKEY  ( 257 3 13
          0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
          HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 12651 org.
          Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
          us0pUgWngbT/OWXskdMYXZU4A== )
  org.  86400  IN  RRSIG  ( DNSKEY 13 1 86400 20201202000000
          20181128000000 49352 org.
          VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
          vZEMj1YXD+dIqb2nUK9PGBAXw== )
  org.  86400  IN  DS  ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
          9db5c24a75743eb1e704b97a9fabc )
  org.  86400  IN  DS  ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
          f4a2f18920db5f58710dd767c293b )
  org.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
          EemgaE357S4pX5D0tVZzeZJ6A== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

A.8.  "_443._tcp.www.insecure.example" NSEC3 Opt-Out Insecure Delegation

  c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example.  43200  IN  NSEC3  (
          1 1 1 - shn05itmoa45mmnv74lc4p0nnfmimtjt NS SOA RRSIG DNSKEY
          NSEC3PARAM )
  c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example.  43200  IN  RRSIG  (
          NSEC3 13 2 43200 20201202000000 20181128000000 15903
          example.
          pW16gQOLhLpKYgXpGt4XB4o92W/QoPYyG5CjQ+t+g7LBVcCiPQv8ars1j9UOg
          RpXUsJhZBDax2dfDhK7zOk7ow== )
  shn05itmoa45mmnv74lc4p0nnfmimtjt.example.  43200  IN  NSEC3  (
          1 1 1 - a3ib1dvf1bdtfmd91usrdem5fiiepi6p NS DS RRSIG )
  shn05itmoa45mmnv74lc4p0nnfmimtjt.example.  43200  IN  RRSIG  (
          NSEC3 13 2 43200 20201202000000 20181128000000 15903
          example.
          5Aq//A8bsWNwcXbT91pMX2Oqf8VpJQRjqH4D2yZElW00wKmt85mhgu2qYPrvH
          QwGEB4STMz2Nefq01/GY6NHKg== )
  example.  432000  IN  DNSKEY  ( 257 3 13
          yrkqXSbVwXOoUxCjr/E9yg8XUzbZNlwPllVsoUPd73TLOnBQQ+03Qw4/k+Nme
          /66WIw+ZTlHYcTNalxiGYm0uQ== ) ; Key ID = 15903
  example.  432000  IN  RRSIG  ( DNSKEY 13 1 432000
          20201202000000 20181128000000 15903 example.
          wwEo3ri6JBuCqx5b33w8axFWOhIen1l+/mm0Isyc9FciuLhBiP+IqSgt+Igc8
          9nR8zRpJpo1D6XR/qJxZgnfaA== )
  example.  86400  IN  DS  ( 15903 13 2 7e0ebaf1cc0d309d4a73ca7d711719d
          d940f4da87b3d72865167650fc73ea577 )
  example.  86400  IN  RRSIG  ( DS 13 1 86400 20201202000000
          20181128000000 31918 .
          B5vx4zZaS+bOYfz0PzpaPfk9VxxBvYbGjIvGhpUZV3diXzfCguXxN4JIT1Sz8
          eJX6BYT5QPIrbG/N35U1sIskw== )
  .  86400  IN  DNSKEY  ( 256 3 13
          zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
          P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918
  .  86400  IN  DNSKEY  ( 256 3 13
          8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
          xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635
  .  86400  IN  DNSKEY  ( 257 3 13
          yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
          Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005
  .  86400  IN  RRSIG  ( DNSKEY 13 0 86400 20201202000000
          20181128000000 47005 .
          0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
          nBT1dtNjIczvLG9pQTnOKUsHQ== )

Acknowledgments

  Many thanks to Adam Langley for laying the groundwork for this
  extension in [SERIALIZECHAIN].  The original idea is his, but our
  acknowledgment in no way implies his endorsement.  This document also
  benefited from discussions with and review from the following people:
  Daniel Kahn Gillmor, Jeff Hodges, Allison Mankin, Patrick McManus,
  Rick van Rein, Ilari Liusvaara, Eric Rescorla, Gowri Visweswaran,
  Duane Wessels, Nico Williams, and Richard Barnes.

Authors' Addresses

  Viktor Dukhovni
  Two Sigma

  Email: [email protected]


  Shumon Huque
  Salesforce
  3rd Floor
  415 Mission Street
  San Francisco, CA 94105
  United States of America

  Email: [email protected]


  Willem Toorop
  NLnet Labs
  Science Park 400
  1098 XH Amsterdam
  Netherlands

  Email: [email protected]


  Paul Wouters
  Aiven
  Toronto
  Canada

  Email: [email protected]


  Melinda Shore
  Fastly

  Email: [email protected]