Internet Engineering Task Force (IETF)                        S. Previdi
Request for Comments: 9086                           Huawei Technologies
Category: Standards Track                             K. Talaulikar, Ed.
ISSN: 2070-1721                                              C. Filsfils
                                                    Cisco Systems, Inc.
                                                               K. Patel
                                                           Arrcus, Inc.
                                                                 S. Ray
                                                             Individual
                                                                J. Dong
                                                    Huawei Technologies
                                                            August 2021


 Border Gateway Protocol - Link State (BGP-LS) Extensions for Segment
                 Routing BGP Egress Peer Engineering

Abstract

  A node steers a packet through a controlled set of instructions,
  called segments, by prepending the packet with a list of segment
  identifiers (SIDs).  A segment can represent any instruction,
  topological or service based.  SR segments allow steering a flow
  through any topological path and service chain while maintaining per-
  flow state only at the ingress node of the SR domain.

  This document describes an extension to Border Gateway Protocol -
  Link State (BGP-LS) for advertisement of BGP Peering Segments along
  with their BGP peering node information so that efficient BGP Egress
  Peer Engineering (EPE) policies and strategies can be computed based
  on Segment Routing.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9086.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Requirements Language
  3.  BGP Peering Segments
  4.  BGP-LS NLRI Advertisement for BGP Protocol
    4.1.  BGP Router-ID and Member AS Number
    4.2.  Mandatory BGP Node Descriptors
    4.3.  Optional BGP Node Descriptors
  5.  BGP-LS Attributes for BGP Peering Segments
    5.1.  Advertisement of the PeerNode SID
    5.2.  Advertisement of the PeerAdj SID
    5.3.  Advertisement of the PeerSet SID
  6.  IANA Considerations
    6.1.  New BGP-LS Protocol-ID
    6.2.  Node Descriptors and Link Attribute TLVs
  7.  Manageability Considerations
  8.  Security Considerations
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  Segment Routing (SR) leverages source routing.  A node steers a
  packet through a controlled set of instructions, called segments, by
  prepending the packet with a list of segment identifiers (SIDs).  A
  SID can represent any instruction, topological or service based.  SR
  segments allows to enforce a flow through any topological path or
  service function while maintaining per-flow state only at the ingress
  node of the SR domain.

  The SR architecture [RFC8402] defines three types of BGP Peering
  Segments that may be instantiated at a BGP node:

  *  Peer Node Segment (PeerNode SID) : instruction to steer to a
     specific peer node

  *  Peer Adjacency Segment (PeerAdj SID) : instruction to steer over a
     specific local interface towards a specific peer node

  *  Peer Set Segment (PeerSet SID) : instruction to load-balance to a
     set of specific peer nodes

  SR can be directly applied to either an MPLS data plane (SR-MPLS)
  with no change on the forwarding plane or to a modified IPv6
  forwarding plane (SRv6).

  This document describes extensions to the BGP - Link State Network
  Layer Reachability Information (BGP-LS NLRI) and the BGP-LS Attribute
  defined for BGP-LS [RFC7752] for advertising BGP peering segments
  from a BGP node along with its peering topology information (i.e.,
  its peers, interfaces, and peering Autonomous Systems (ASes)) to
  enable computation of efficient BGP Egress Peer Engineering (BGP-EPE)
  policies and strategies using the SR-MPLS data plane.  The
  corresponding extensions for SRv6 are specified in [BGPLS-SRV6].

  [RFC9087] illustrates a centralized controller-based BGP Egress Peer
  Engineering solution involving SR path computation using the BGP
  Peering Segments.  This use case comprises a centralized controller
  that learns the BGP Peering SIDs via BGP-LS and then uses this
  information to program a BGP-EPE policy at any node in the domain to
  perform traffic steering via a specific BGP egress node to specific
  External BGP (EBGP) peer(s) optionally also over a specific
  interface.  The BGP-EPE policy can be realized using the SR Policy
  framework [SR-POLICY].

  This document introduces a new BGP-LS Protocol-ID for BGP and defines
  new BGP-LS Node and Link Descriptor TLVs to facilitate advertising
  BGP-LS Link NLRI to represent the BGP peering topology.  Further, it
  specifies the BGP-LS Attribute TLVs for advertisement of the BGP
  Peering Segments (i.e., PeerNode SID, PeerAdj SID, and PeerSet SID)
  to be advertised in the same BGP-LS Link NLRI.

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  BGP Peering Segments

  As described in [RFC8402], a BGP-EPE-enabled Egress Provider Edge
  (PE) node instantiates SR Segments corresponding to its attached
  peers.  These segments are called BGP Peering Segments or BGP Peering
  SIDs.  In the case of EBGP, they enable the expression of source-
  routed interdomain paths.

  An ingress border router of an AS may compose a list of SIDs to steer
  a flow along a selected path within the AS, towards a selected egress
  border router C of the AS, and to a specific EBGP peer.  At minimum,
  a BGP-EPE policy applied at an ingress PE involves two SIDs: the Node
  SID of the chosen egress PE and then the BGP Peering SID for the
  chosen egress PE peer or peering interface.

  Each BGP session MUST be described by a PeerNode SID.  The
  description of the BGP session MAY be augmented by additional PeerAdj
  SIDs.  Finally, multiple PeerNode SIDs or PeerAdj SIDs MAY be part of
  the same group/set in order to group EPE resources under a common
  PeerSet SID.  These BGP Peering SIDs and their encoding are described
  in detail in Section 5.

  The following BGP Peering SIDs need to be instantiated on a BGP
  router for each of its BGP peer sessions that are enabled for Egress
  Peer Engineering:

  *  One PeerNode SID MUST be instantiated to describe the BGP peer
     session.

  *  One or more PeerAdj SID MAY be instantiated corresponding to the
     underlying link(s) to the directly connected BGP peer session.

  *  A PeerSet SID MAY be instantiated and additionally associated and
     shared between one or more PeerNode SIDs or PeerAdj SIDs.

  While an egress point in a topology usually refers to EBGP sessions
  between external peers, there's nothing in the extensions defined in
  this document that would prevent the use of these extensions in the
  context of Internal BGP (IBGP) sessions.  However, unlike EBGP
  sessions, which are generally between directly connected BGP routers
  also along the traffic forwarding path, IBGP peer sessions may be set
  up to BGP routers that are not in the forwarding path.  As such, when
  the IBGP design includes sessions with route reflectors, a BGP router
  SHOULD NOT instantiate a BGP Peering SID for those sessions to peer
  nodes that are not in the forwarding path since the purpose of BGP
  Peering SID is to steer traffic to those specific peers.  Thus, the
  applicability for IBGP peering may be limited to only those
  deployments where the IBGP peer is also along the forwarding data
  path.

  Any BGP Peering SIDs instantiated on the node are advertised via BGP-
  LS Link NLRI type as described in the sections below.  An
  illustration of the BGP Peering SIDs' allocations in a reference BGP
  peering topology along with the information carried in the BGP-LS
  Link NLRI and its corresponding BGP-LS Attribute are described in
  [RFC9087].

4.  BGP-LS NLRI Advertisement for BGP Protocol

  This section describes the BGP-LS NLRI encodings that describe the
  BGP peering and link connectivity between BGP routers.

  This document specifies the advertisement of BGP peering topology
  information via BGP-LS Link NLRI type, which requires use of a new
  BGP-LS Protocol-ID.

           +=============+==================================+
           | Protocol-ID | NLRI Information Source Protocol |
           +=============+==================================+
           |      7      | BGP                              |
           +-------------+----------------------------------+

              Table 1: BGP-LS Protocol Identifier for BGP

  The use of a new Protocol-ID allows separation and differentiation
  between the BGP-LS NLRIs carrying BGP information from the BGP-LS
  NLRIs carrying IGP link-state information defined in [RFC7752].

  The BGP Peering information along with their Peering Segments are
  advertised using BGP-LS Link NLRI type with the Protocol-ID set to
  BGP.  BGP-LS Link NLRI type uses the Descriptor TLVs and BGP-LS
  Attribute TLVs as defined in [RFC7752].  In order to correctly
  describe BGP nodes, new TLVs are defined in this section.

  [RFC7752] defines BGP-LS Link NLRI type as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+
  |  Protocol-ID  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Identifier                          |
  |                            (64 bits)                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  //      Local Node Descriptors                                 //
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  //      Remote Node Descriptors                                //
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  //      Link Descriptors                                       //
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 1: BGP-LS Link NLRI

     Node Descriptors and Link Descriptors are defined in [RFC7752].

4.1.  BGP Router-ID and Member AS Number

  Two new Node Descriptor TLVs are defined in this document:

  *  BGP Router Identifier (BGP Router-ID):

        Type: 516

        Length: 4 octets

        Value: 4-octet unsigned non-zero integer representing the BGP
        Identifier as defined in [RFC6286]

  *  Member-AS Number (Member-ASN)

        Type: 517

        Length: 4 octets

        Value: 4-octet unsigned non-zero integer representing the
        Member-AS Number [RFC5065]

4.2.  Mandatory BGP Node Descriptors

  The following Node Descriptor TLVs MUST be included in BGP-LS NLRI as
  Local Node Descriptors when distributing BGP information:

  *  BGP Router-ID (TLV 516), which contains a valid BGP Identifier of
     the local BGP node.

  *  Autonomous System Number (TLV 512) [RFC7752], which contains the
     Autonomous System Number (ASN) or AS Confederation Identifier (an
     ASN) [RFC5065], if confederations are used, of the local BGP node.

  Note that Section 2.1 of [RFC6286] requires the BGP identifier
  (Router-ID) to be unique within an Autonomous System and non-zero.
  Therefore, the <ASN, BGP Router-ID> tuple is globally unique.  Their
  use in the Node Descriptor helps map Link-State NLRIs with BGP
  protocol-ID to a unique BGP router in the administrative domain where
  BGP-LS is enabled.

  The following Node Descriptor TLVs MUST be included in BGP-LS Link
  NLRI as Remote Node Descriptors when distributing BGP information:

  *  BGP Router-ID (TLV 516), which contains the valid BGP Identifier
     of the peer BGP node.

  *  Autonomous System Number (TLV 512) [RFC7752], which contains the
     ASN or the AS Confederation Identifier (an ASN) [RFC5065], if
     confederations are used, of the peer BGP node.

4.3.  Optional BGP Node Descriptors

  The following Node Descriptor TLVs MAY be included in BGP-LS NLRI as
  Local Node Descriptors when distributing BGP information:

  *  Member-ASN (TLV 517), which contains the ASN of the confederation
     member (i.e., Member-AS Number), if BGP confederations are used,
     of the local BGP node.

  *  Node Descriptors as defined in [RFC7752].

  The following Node Descriptor TLVs MAY be included in BGP-LS Link
  NLRI as Remote Node Descriptors when distributing BGP information:

  *  Member-ASN (TLV 517), which contains the ASN of the confederation
     member (i.e., Member-AS Number), if BGP confederations are used,
     of the peer BGP node.

  *  Node Descriptors as defined in [RFC7752].

5.  BGP-LS Attributes for BGP Peering Segments

  This section defines the BGP-LS Attributes corresponding to the
  following BGP Peer Segment SIDs:

  *  Peer Node Segment Identifier (PeerNode SID)

  *  Peer Adjacency Segment Identifier (PeerAdj SID)

  *  Peer Set Segment Identifier (PeerSet SID)

  The following new BGP-LS Link Attribute TLVs are defined for use with
  BGP-LS Link NLRI for advertising BGP Peering SIDs:

                    +================+==============+
                    | TLV Code Point | Description  |
                    +================+==============+
                    | 1101           | PeerNode SID |
                    +----------------+--------------+
                    | 1102           | PeerAdj SID  |
                    +----------------+--------------+
                    | 1103           | PeerSet SID  |
                    +----------------+--------------+

                         Table 2: BGP-LS TLV Code
                            Points for BGP-EPE


  PeerNode SID, PeerAdj SID, and PeerSet SID all have the same format
  as defined below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Type            |              Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Flags         |     Weight    |             Reserved          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   SID/Label/Index (variable)                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 2: BGP Peering SIDs TLV Format

  *  Type: 1101, 1102, or 1103 as listed in Table 2

  *  Length: variable.  Valid values are either 7 or 8 based on whether
     the encoding is done as a SID Index or a label.

  *  Flags: one octet of flags with the following definition:

      0 1 2 3 4 5 6 7
     +-+-+-+-+-+-+-+-+
     |V|L|B|P| Rsvd  |
     +-+-+-+-+-+-+-+-+

                   Figure 3: Peering SID TLV Flags Format

     -  V-Flag: Value Flag.  If set, then the SID carries a label
        value.  By default, the flag is SET.

     -  L-Flag: Local Flag.  If set, then the value/index carried by
        the SID has local significance.  By default, the flag is SET.

     -  B-Flag: Backup Flag.  If set, the SID refers to a path that is
        eligible for protection using fast reroute (FRR).  The
        computation of the backup forwarding path and its association
        with the BGP Peering SID forwarding entry is implementation
        specific.  Section 3.6 of [RFC9087] discusses some of the
        possible ways of identifying backup paths for BGP Peering SIDs.

     -  P-Flag: Persistent Flag: If set, the SID is persistently
        allocated, i.e., the SID value remains consistent across router
        restart and session/interface flap.

     -  Rsvd bits: Reserved for future use and MUST be zero when
        originated and ignored when received.

  *  Weight: 1 octet.  The value represents the weight of the SID for
     the purpose of load balancing.  An example use of the weight is
     described in [RFC8402].

  *  SID/Index/Label.  According to the TLV length and the V- and
     L-Flag settings, it contains either:

     -  A 3-octet local label where the 20 rightmost bits are used for
        encoding the label value.  In this case, the V- and L-Flags
        MUST be SET.

     -  A 4-octet index defining the offset in the Segment Routing
        Global Block (SRGB) [RFC8402] advertised by this router.  In
        this case, the SRGB MUST be advertised using the extensions
        defined in [RFC9085].

  The values of the PeerNode SID, PeerAdj SID, and PeerSet SID Sub-TLVs
  SHOULD be persistent across router restart.

  When enabled for Egress Peer Engineering, the BGP router MUST include
  the PeerNode SID TLV in the BGP-LS Attribute for the BGP-LS Link NLRI
  corresponding to its BGP peering sessions.  The PeerAdj SID and
  PeerSet SID TLVs MAY be included in the BGP-LS Attribute for the BGP-
  LS Link NLRI.

  Additional BGP-LS Link Attribute TLVs as defined in [RFC7752] MAY be
  included with the BGP-LS Link NLRI in order to advertise the
  characteristics of the peering link, e.g., one or more interface
  addresses (TLV 259 or TLV 261) of the underlying link(s) over which a
  multi-hop BGP peering session is set up may be included in the BGP-LS
  Attribute along with the PeerNode SID TLV.

5.1.  Advertisement of the PeerNode SID

  The PeerNode SID TLV includes a SID associated with the BGP peer node
  that is described by a BGP-LS Link NLRI as specified in Section 4.

  The PeerNode SID, at the BGP node advertising it, has the following
  semantics (as defined in [RFC8402]):

  *  SR operation: NEXT

  *  Next-Hop: the connected peering node to which the segment is
     associated

  The PeerNode SID is advertised with a BGP-LS Link NLRI, where:

  *  Local Node Descriptors include:

     -  Local BGP Router-ID (TLV 516) of the BGP-EPE-enabled Egress PE

     -  Local ASN (TLV 512)

  *  Remote Node Descriptors include:

     -  Peer BGP Router-ID (TLV 516) (i.e., the peer BGP ID used in the
        BGP session)

     -  Peer ASN (TLV 512)

  *  Link Descriptors include the addresses used by the BGP session
     encoded using TLVs as defined in [RFC7752]:

     -  IPv4 Interface Address (TLV 259) contains the BGP session IPv4
        local address.

     -  IPv4 Neighbor Address (TLV 260) contains the BGP session IPv4
        peer address.

     -  IPv6 Interface Address (TLV 261) contains the BGP session IPv6
        local address.

     -  IPv6 Neighbor Address (TLV 262) contains the BGP session IPv6
        peer address.

  *  Link Attribute TLVs include the PeerNode SID TLV as defined in
     Figure 2.

5.2.  Advertisement of the PeerAdj SID

  The PeerAdj SID TLV includes a SID associated with the underlying
  link to the BGP peer node that is described by a BGP-LS Link NLRI as
  specified in Section 4.

  The PeerAdj SID, at the BGP node advertising it, has the following
  semantics (as defined in [RFC8402]):

  *  SR operation: NEXT

  *  Next-Hop: the interface peer address

  The PeerAdj SID is advertised with a BGP-LS Link NLRI, where:

  *  Local Node Descriptors include:

     -  Local BGP Router-ID (TLV 516) of the BGP-EPE-enabled Egress PE

     -  Local ASN (TLV 512)

  *  Remote Node Descriptors include:

     -  Peer BGP Router-ID (TLV 516) (i.e., the peer BGP ID used in the
        BGP session)

     -  Peer ASN (TLV 512)

  *  Link Descriptors MUST include the following TLV, as defined in
     [RFC7752]:

     -  Link Local/Remote Identifiers (TLV 258) contains the 4-octet
        Link Local Identifier followed by the 4-octet Link Remote
        Identifier.  The value 0 is used by default when the link
        remote identifier is unknown.

  *  Additional Link Descriptors TLVs, as defined in [RFC7752], MAY
     also be included to describe the addresses corresponding to the
     link between the BGP routers:

     -  IPv4 Interface Address (Sub-TLV 259) contains the address of
        the local interface through which the BGP session is
        established.

     -  IPv6 Interface Address (Sub-TLV 261) contains the address of
        the local interface through which the BGP session is
        established.

     -  IPv4 Neighbor Address (Sub-TLV 260) contains the IPv4 address
        of the peer interface used by the BGP session.

     -  IPv6 Neighbor Address (Sub-TLV 262) contains the IPv6 address
        of the peer interface used by the BGP session.

  *  Link Attribute TLVs include the PeerAdj SID TLV as defined in
     Figure 2.

5.3.  Advertisement of the PeerSet SID

  The PeerSet SID TLV includes a SID that is shared amongst BGP peer
  nodes or the underlying links that are described by BGP-LS Link NLRI
  as specified in Section 4.

  The PeerSet SID, at the BGP node advertising it, has the following
  semantics (as defined in [RFC8402]):

  *  SR operation: NEXT

  *  Next-Hop: load-balance across any connected interface to any peer
     in the associated peer set

  The PeerSet SID TLV containing the same SID value (encoded as defined
  in Figure 2) is included in the BGP-LS Attribute for all of the BGP-
  LS Link NLRI corresponding to the PeerNode or PeerAdj segments
  associated with the peer set.

6.  IANA Considerations

  This document defines:

  *  A new Protocol-ID: BGP.  The code point is from the "BGP-LS
     Protocol-IDs" registry.

  *  Two new TLVs: BGP-Router-ID and BGP Confederation Member.  The
     code points are in the "BGP-LS Node Descriptor, Link Descriptor,
     Prefix Descriptor, and Attribute TLVs" registry.

  *  Three new BGP-LS Attribute TLVs: PeerNode SID, PeerAdj SID, and
     PeerSet SID.  The code points are in the "BGP-LS Node Descriptor,
     Link Descriptor, Prefix Descriptor, and Attribute TLVs" registry.

6.1.  New BGP-LS Protocol-ID

  This document defines a new value in the registry "BGP-LS Protocol-
  IDs":

     +=============+==================================+===========+
     | Protocol-ID | NLRI information source protocol | Reference |
     +=============+==================================+===========+
     | 7           | BGP                              | RFC 9086  |
     +-------------+----------------------------------+-----------+

                      Table 3: BGP-LS Protocol-ID

6.2.  Node Descriptors and Link Attribute TLVs

  This document defines five new TLVs in the registry "BGP-LS Node
  Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs":

  *  Two new Node Descriptor TLVs

  *  Three new Link Attribute TLVs

  All five of the new code points are in the same registry: "BGP-LS
  Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute
  TLVs".

  The following new Node Descriptor TLVs are defined:

        +================+==========================+===========+
        | TLV Code Point | Description              | Reference |
        +================+==========================+===========+
        | 516            | BGP Router-ID            | RFC 9086  |
        +----------------+--------------------------+-----------+
        | 517            | BGP Confederation Member | RFC 9086  |
        +----------------+--------------------------+-----------+

                Table 4: BGP-LS Descriptor TLV Code Points

  The following new Link Attribute TLVs are defined:

              +================+==============+===========+
              | TLV Code Point | Description  | Reference |
              +================+==============+===========+
              | 1101           | PeerNode SID | RFC 9086  |
              +----------------+--------------+-----------+
              | 1102           | PeerAdj SID  | RFC 9086  |
              +----------------+--------------+-----------+
              | 1103           | PeerSet SID  | RFC 9086  |
              +----------------+--------------+-----------+

                Table 5: BGP-LS Attribute TLV Code Points

7.  Manageability Considerations

  The new protocol extensions introduced in this document augment the
  existing IGP topology information BGP-LS distribution [RFC7752] by
  adding support for distribution of BGP peering topology information.
  As such, Section 6 of [RFC7752] (Manageability Considerations)
  applies to these new extensions as well.

  Specifically, the malformed Link-State NLRI and BGP-LS Attribute
  tests for syntactic checks in Section 6.2.2 of [RFC7752] (Fault
  Management) now apply to the TLVs defined in this document.  The
  semantic or content checking for the TLVs specified in this document
  and their association with the BGP-LS NLRI types or their associated
  BGP-LS Attributes is left to the consumer of the BGP-LS information
  (e.g., an application or a controller) and not the BGP protocol.

  A consumer of the BGP-LS information retrieves this information from
  a BGP Speaker, over a BGP-LS session (refer to Sections 1 and 2 of
  [RFC7752]).  The handling of semantic or content errors by the
  consumer would be dictated by the nature of its application usage and
  is hence beyond the scope of this document.  It may be expected that
  an error detected in the NLRI Descriptor TLVs would result in that
  specific NLRI update being unusable and hence its update to be
  discarded along with an error log, whereas an error in Attribute TLVs
  would result in only that specific attribute being discarded with an
  error log.

  The operator MUST be provided with the options of configuring,
  enabling, and disabling the advertisement of each of the PeerNode
  SID, PeerAdj SID, and PeerSet SID as well as control of which
  information is advertised to which internal or external peer.  This
  is not different from what is required by a BGP speaker in terms of
  information origination and advertisement.

  BGP Peering Segments are associated with the normal BGP routing
  peering sessions.  However, the BGP peering information along with
  these Peering Segments themselves are advertised via a distinct BGP-
  LS peering session.  It is expected that this isolation as described
  in [RFC7752] is followed when advertising BGP peering topology
  information via BGP-LS.

  BGP-EPE functionality enables the capability for instantiation of an
  SR path for traffic engineering a flow via an egress BGP router to a
  specific peer, bypassing the normal BGP best-path routing for that
  flow and any routing policies implemented in BGP on that egress BGP
  router.  As with any traffic-engineering solution, the controller or
  application implementing the policy needs to ensure that there is no
  looping or misrouting of traffic.  Traffic counters corresponding to
  the MPLS label of the BGP Peering SID on the router would indicate
  the traffic being forwarded based on the specific EPE path.
  Monitoring these counters and the flows hitting the corresponding
  MPLS forwarding entry would help identify issues, if any, with
  traffic engineering over the EPE paths.  Errors in the encoding or
  decoding of the SR information in the TLVs defined in this document
  may result in the unavailability of such information to a Centralized
  EPE Controller or incorrect information being made available to it.
  This may result in the controller not being able to perform the
  desired SR-based optimization functionality or performing it in an
  unexpected or inconsistent manner.  The handling of such errors by
  applications like such a controller may be implementation specific
  and out of scope of this document.

8.  Security Considerations

  [RFC7752] defines BGP-LS NLRI to which the extensions defined in this
  document apply.  Section 8 of [RFC7752] also applies to these
  extensions.  The procedures and new TLVs defined in this document, by
  themselves, do not affect the BGP-LS security model discussed in
  [RFC7752].

  BGP-EPE enables engineering of traffic when leaving the
  administrative domain via an egress BGP router.  Therefore,
  precaution is necessary to ensure that the BGP peering information
  collected via BGP-LS is limited to specific consumers in a secure
  manner.  Segment Routing operates within a trusted domain [RFC8402],
  and its security considerations also apply to BGP Peering Segments.
  The BGP-EPE policies are expected to be used entirely within this
  trusted SR domain (e.g., between multiple AS/domains within a single
  provider network).

  The isolation of BGP-LS peering sessions is also required to ensure
  that BGP-LS topology information (including the newly added BGP
  peering topology) is not advertised to an external BGP peering
  session outside an administrative domain.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5065]  Traina, P., McPherson, D., and J. Scudder, "Autonomous
             System Confederations for BGP", RFC 5065,
             DOI 10.17487/RFC5065, August 2007,
             <https://www.rfc-editor.org/info/rfc5065>.

  [RFC6286]  Chen, E. and J. Yuan, "Autonomous-System-Wide Unique BGP
             Identifier for BGP-4", RFC 6286, DOI 10.17487/RFC6286,
             June 2011, <https://www.rfc-editor.org/info/rfc6286>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <https://www.rfc-editor.org/info/rfc7752>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC9085]  Previdi, S., Talaulikar, K., Ed., Filsfils, C., Gredler,
             H., and M. Chen, "Border Gateway Protocol - Link State
             (BGP-LS) Extensions for Segment Routing", RFC 9085,
             DOI 10.17487/RFC9085, August 2021,
             <https://www.rfc-editor.org/info/rfc9085>.

9.2.  Informative References

  [BGPLS-SRV6]
             Dawra, G., Filsfils, C., Talaulikar, K., Chen, M.,
             Bernier, D., and B. Decraene, "BGP Link State Extensions
             for SRv6", Work in Progress, Internet-Draft, draft-ietf-
             idr-bgpls-srv6-ext-08, 8 June 2021,
             <https://datatracker.ietf.org/doc/html/draft-ietf-idr-
             bgpls-srv6-ext-08>.

  [RFC9087]  Filsfils, C., Ed., Previdi, S., Dawra, G., Ed., Aries, E.,
             and D. Afanasiev, "Segment Routing Centralized BGP Egress
             Peer Engineering", RFC 9087, DOI 10.17487/RFC9087, August
             2021, <https://www.rfc-editor.org/info/rfc9087>.

  [SR-POLICY]
             Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and
             P. Mattes, "Segment Routing Policy Architecture", Work in
             Progress, Internet-Draft, draft-ietf-spring-segment-
             routing-policy-13, 28 May 2021,
             <https://datatracker.ietf.org/doc/html/draft-ietf-spring-
             segment-routing-policy-13>.

Acknowledgements

  The authors would like to thank Jakob Heitz, Howard Yang, Hannes
  Gredler, Peter Psenak, Arjun Sreekantiah, and Bruno Decraene for
  their feedback and comments.  Susan Hares helped in improving the
  clarity of the document with her substantial contributions during her
  shepherd's review.  The authors would also like to thank Alvaro
  Retana for his extensive review and comments, which helped correct
  issues and improve the document.

Contributors

  Mach(Guoyi) Chen
  Huawei Technologies
  China

  Email: [email protected]


  Acee Lindem
  Cisco Systems Inc.
  United States of America

  Email: [email protected]


Authors' Addresses

  Stefano Previdi
  Huawei Technologies

  Email: [email protected]


  Ketan Talaulikar (editor)
  Cisco Systems, Inc.
  India

  Email: [email protected]


  Clarence Filsfils
  Cisco Systems, Inc.
  Brussels
  Belgium

  Email: [email protected]


  Keyur Patel
  Arrcus, Inc.

  Email: [email protected]


  Saikat Ray
  Individual

  Email: [email protected]


  Jie Dong
  Huawei Technologies
  Huawei Campus, No. 156 Beiqing Rd.
  Beijing
  100095
  China

  Email: [email protected]