Internet Engineering Task Force (IETF)                    R. Marin-Lopez
Request for Comments: 9061                               G. Lopez-Millan
Category: Standards Track                           University of Murcia
ISSN: 2070-1721                                     F. Pereniguez-Garcia
                                              University Defense Center
                                                              July 2021


         A YANG Data Model for IPsec Flow Protection Based on
                  Software-Defined Networking (SDN)

Abstract

  This document describes how to provide IPsec-based flow protection
  (integrity and confidentiality) by means of an Interface to Network
  Security Function (I2NSF) Controller.  It considers two main well-
  known scenarios in IPsec: gateway-to-gateway and host-to-host.  The
  service described in this document allows the configuration and
  monitoring of IPsec Security Associations (IPsec SAs) from an I2NSF
  Controller to one or several flow-based Network Security Functions
  (NSFs) that rely on IPsec to protect data traffic.

  This document focuses on the I2NSF NSF-Facing Interface by providing
  YANG data models for configuring the IPsec databases, namely Security
  Policy Database (SPD), Security Association Database (SAD), Peer
  Authorization Database (PAD), and Internet Key Exchange Version 2
  (IKEv2).  This allows IPsec SA establishment with minimal
  intervention by the network administrator.  This document defines
  three YANG modules, but it does not define any new protocol.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9061.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
    2.1.  Requirements Language
  3.  SDN-Based IPsec Management Description
    3.1.  IKE Case: IKEv2/IPsec in the NSF
    3.2.  IKE-less Case: IPsec (No IKEv2) in the NSF
  4.  IKE Case vs. IKE-less Case
    4.1.  Rekeying Process
    4.2.  NSF State Loss
    4.3.  NAT Traversal
    4.4.  NSF Registration and Discovery
  5.  YANG Configuration Data Models
    5.1.  The 'ietf-i2nsf-ikec' Module
      5.1.1.  Data Model Overview
      5.1.2.  YANG Module
    5.2.  The 'ietf-i2nsf-ike' Module
      5.2.1.  Data Model Overview
      5.2.2.  Example Usage
      5.2.3.  YANG Module
    5.3.  The 'ietf-i2nsf-ikeless' Module
      5.3.1.  Data Model Overview
      5.3.2.  Example Usage
      5.3.3.  YANG Module
  6.  IANA Considerations
  7.  Security Considerations
    7.1.  IKE Case
    7.2.  IKE-less Case
    7.3.  YANG Modules
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Appendix A.  XML Configuration Example for IKE Case
          (Gateway-to-Gateway)
  Appendix B.  XML Configuration Example for IKE-less Case
          (Host-to-Host)
  Appendix C.  XML Notification Examples
  Appendix D.  Operational Use Case Examples
    D.1.  Example of IPsec SA Establishment
      D.1.1.  IKE Case
      D.1.2.  IKE-less Case
    D.2.  Example of the Rekeying Process in IKE-less Case
    D.3.  Example of Managing NSF State Loss in the IKE-less Case
  Acknowledgements
  Authors' Addresses

1.  Introduction

  Software-Defined Networking (SDN) is an architecture that enables
  administrators to directly program, orchestrate, control, and manage
  network resources through software.  The SDN paradigm relocates the
  control of network resources to a centralized entity, namely the SDN
  Controller.  SDN Controllers configure and manage distributed network
  resources and provide an abstracted view of the network resources to
  SDN applications.  SDN applications can customize and automate the
  operations (including management) of the abstracted network resources
  in a programmable manner via this interface [RFC7149] [ITU-T.Y.3300]
  [ONF-SDN-Architecture] [ONF-OpenFlow].

  Recently, several network scenarios now demand a centralized way of
  managing different security aspects, for example, Software-Defined
  WANs (SD-WANs).  SD-WANs are SDN extensions providing software
  abstractions to create secure network overlays over traditional WAN
  and branch networks.  SD-WANs utilize IPsec [RFC4301] as an
  underlying security protocol.  The goal of SD-WANs is to provide
  flexible and automated deployment from a centralized point to enable
  on-demand network security services, such as IPsec Security
  Association (IPsec SA) management.  Additionally, Section 4.3.3
  ("Client-Specific Security Policy in Cloud VPNs") of [RFC8192]
  describes another example use case for a cloud data center scenario.
  The use case in [RFC8192] states that "dynamic key management is
  critical for securing the VPN and the distribution of policies".
  These VPNs can be established using IPsec.  The management of IPsec
  SAs in data centers using a centralized entity is a scenario where
  the current specification may be applicable.

  Therefore, with the growth of SDN-based scenarios where network
  resources are deployed in an autonomous manner, a mechanism to manage
  IPsec SAs from a centralized entity becomes more relevant in the
  industry.

  In response to this need, the Interface to Network Security Functions
  (I2NSF) charter states that the goal of this working group is "to
  define a set of software interfaces and data models for controlling
  and monitoring aspects of physical and virtual NSFs".  As defined in
  [RFC8192], a Network Security Function (NSF) is "a function that is
  used to ensure integrity, confidentiality, or availability of network
  communication; to detect unwanted network activity; or to block, or
  at least mitigate, the effects of unwanted activity".  This document
  pays special attention to flow-based NSFs that ensure integrity and
  confidentiality by means of IPsec.

  In fact, Section 3.1.9 of [RFC8192] states that "there is a need for
  a controller to create, manage, and distribute various keys to
  distributed NSFs"; however, "there is a lack of a standard interface
  to provision and manage security associations".  Inspired by the SDN
  paradigm, the I2NSF framework [RFC8329] defines a centralized entity,
  the I2NSF Controller, which manages one or multiple NSFs through an
  I2NSF NSF-Facing Interface.  In this document, an architecture is
  defined for allowing the I2NSF Controller to carry out the key
  management procedures.  More specifically, three YANG data models are
  defined for the I2NSF NSF-Facing Interface, which allows the I2NSF
  Controller to configure and monitor IPsec-enabled, flow-based NSFs.

  The IPsec architecture [RFC4301] defines a clear separation between
  the processing to provide security services to IP packets and the key
  management procedures to establish the IPsec SAs, which allows
  centralizing the key management procedures in the I2NSF Controller.
  This document considers two typical scenarios to autonomously manage
  IPsec SAs: gateway-to-gateway and host-to-host [RFC6071].  In these
  cases, hosts, gateways, or both may act as NSFs.  Due to its
  complexity, consideration for the host-to-gateway scenario is out of
  scope.  The source of this complexity comes from the fact that, in
  this scenario, the host may not be under the control of the I2NSF
  Controller and, therefore, it is not configurable.  Nevertheless, the
  I2NSF interfaces defined in this document can be considered as a
  starting point to analyze and provide a solution for the host-to-
  gateway scenario.

  For the definition of the YANG data models for the I2NSF NSF-Facing
  Interface, this document considers two general cases, namely:

  1.  IKE case.  The NSF implements the Internet Key Exchange Version 2
      (IKEv2) protocol and the IPsec databases: the Security Policy
      Database (SPD), the Security Association Database (SAD), and the
      Peer Authorization Database (PAD).  The I2NSF Controller is in
      charge of provisioning the NSF with the required information in
      the SPD and PAD (e.g., IKE credentials) and the IKE protocol
      itself (e.g., parameters for the IKE_SA_INIT negotiation).

  2.  IKE-less case.  The NSF only implements the IPsec databases (no
      IKE implementation).  The I2NSF Controller will provide the
      required parameters to create valid entries in the SPD and the
      SAD of the NSF.  Therefore, the NSF will only have support for
      IPsec whereas key management functionality is moved to the I2NSF
      Controller.

  In both cases, a YANG data model for the I2NSF NSF-Facing Interface
  is required to carry out this provisioning in a secure manner between
  the I2NSF Controller and the NSF.  Using YANG data modeling language
  version 1.1 [RFC7950] and based on YANG data models defined in
  [netconf-vpn] and [TRAN-IPSECME-YANG] and the data structures defined
  in [RFC4301] and [RFC7296], this document defines the required
  interfaces with a YANG data model for configuration and state data
  for IKE, PAD, SPD, and SAD (see Sections 5.1, 5.2, and 5.3).  The
  proposed YANG data model conforms to the Network Management Datastore
  Architecture (NMDA) defined in [RFC8342].  Examples of the usage of
  these data models can be found in Appendices A, B, and C.

  In summary, the objectives of this document are:

  *  To describe the architecture for I2NSF-based IPsec management,
     which allows for the establishment and management of IPsec
     Security Associations from the I2NSF Controller in order to
     protect specific data flows between two flow-based NSFs
     implementing IPsec.

  *  To map this architecture to the I2NSF framework.

  *  To define the interfaces required to manage and monitor the IPsec
     SAs in the NSF from an I2NSF Controller.  YANG data models are
     defined for configuration and state data for IPsec and IKEv2
     management through the I2NSF NSF-Facing Interface.  The YANG data
     models can be used via existing protocols, such as the Network
     Configuration Protocol (NETCONF) [RFC6241] or RESTCONF [RFC8040].
     Thus, this document defines three YANG modules (see Section 5) but
     does not define any new protocol.

2.  Terminology

  This document uses the terminology described in [ITU-T.Y.3300],
  [RFC8192], [RFC4301], [RFC6437], [RFC7296], [RFC6241], and [RFC8329].

  The following term is defined in [ITU-T.Y.3300]:

  *  Software-Defined Networking (SDN)

  The following terms are defined in [RFC8192]:

  *  Network Security Function (NSF)

  *  flow-based NSF

  The following terms are defined in [RFC4301]:

  *  Peer Authorization Database (PAD)

  *  Security Association Database (SAD)

  *  Security Policy Database (SPD)

  The following two terms are related or have identical definition/
  usage in [RFC6437]:

  *  flow

  *  traffic flow

  The following term is defined in [RFC7296]:

  *  Internet Key Exchange Version 2 (IKEv2)

  The following terms are defined in [RFC6241]:

  *  configuration data

  *  configuration datastore

  *  state data

  *  startup configuration datastore

  *  running configuration datastore

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  SDN-Based IPsec Management Description

  As mentioned in Section 1, two cases are considered, depending on
  whether the NSF implements IKEv2 or not: the IKE case and the IKE-
  less case.

3.1.  IKE Case: IKEv2/IPsec in the NSF

  In this case, the NSF implements IPsec with IKEv2 support.  The I2NSF
  Controller is in charge of managing and applying IPsec connection
  information (determining which nodes need to start an IKEv2/IPsec
  session, identifying the type of traffic to be protected, and
  deriving and delivering IKEv2 credentials, such as a pre-shared key
  (PSK), certificates, etc.) and applying other IKEv2 configuration
  parameters (e.g., cryptographic algorithms for establishing an IKEv2
  SA) to the NSF necessary for the IKEv2 negotiation.

  With these entries, the IKEv2 implementation can operate to establish
  the IPsec SAs.  The I2NSF User establishes the IPsec requirements and
  information about the endpoints (through the I2NSF Consumer-Facing
  Interface [RFC8329]), and the I2NSF Controller translates these
  requirements into IKEv2, SPD, and PAD entries that will be installed
  into the NSF (through the I2NSF NSF-Facing Interface).  With that
  information, the NSF can just run IKEv2 to establish the required
  IPsec SA (when the traffic flow needs protection).  Figure 1 shows
  the different layers and corresponding functionality.


              +-------------------------------------------+
              |          IPsec Management System          | I2NSF User
              +-------------------------------------------+
                                      |
                                      |  I2NSF Consumer-Facing
                                      |  Interface
              +-------------------------------------------+
              | IKEv2 Configuration, PAD and SPD Entries  | I2NSF
              |               Distribution                | Controller
              +-------------------------------------------+
                                      |
                                      |  I2NSF NSF-Facing
                                      |  Interface
              +-------------------------------------------+
              |   IKEv2  |      IPsec(PAD, SPD)           | Network
              |-------------------------------------------| Security
              |    IPsec Data Protection and Forwarding   | Function
              +-------------------------------------------+

                 Figure 1: IKE Case: IKE/IPsec in the NSF

  I2NSF-based IPsec flow protection services provide dynamic and
  flexible management of IPsec SAs in flow-based NSFs.  In order to
  support this capability in the IKE case, a YANG data model for IKEv2,
  SPD, and PAD configuration data and for IKEv2 state data needs to be
  defined for the I2NSF NSF-Facing Interface (see Section 5).

3.2.  IKE-less Case: IPsec (No IKEv2) in the NSF

  In this case, the NSF does not deploy IKEv2 and, therefore, the I2NSF
  Controller has to perform the IKEv2 security functions and management
  of IPsec SAs by populating and managing the SPD and the SAD.

  As shown in Figure 2, when an I2NSF User enforces flow-based
  protection policies through the Consumer-Facing Interface, the I2NSF
  Controller translates these requirements into SPD and SAD entries,
  which are installed in the NSF.  PAD entries are not required, since
  there is no IKEv2 in the NSF.


              +-----------------------------------------+
              |         IPsec Management System         | I2NSF User
              +-----------------------------------------+
                                  |
                                  |  I2NSF Consumer-Facing Interface
                                  |
              +-----------------------------------------+
              |           SPD and SAD Entries           | I2NSF
              |              Distribution               | Controller
              +-----------------------------------------+
                                  |
                                  |  I2NSF NSF-Facing Interface
                                  |
              +-----------------------------------------+
              |             IPsec (SPD, SAD)            | Network
              |-----------------------------------------| Security
              |   IPsec Data Protection and Forwarding  | Function
              +-----------------------------------------+

           Figure 2: IKE-less Case: IPsec (No IKEv2) in the NSF

  In order to support the IKE-less case, a YANG data model for SPD and
  SAD configuration data and SAD state data MUST be defined for the
  NSF-Facing Interface (see Section 5).

  Specifically, the IKE-less case assumes that the I2NSF Controller has
  to perform some security functions that IKEv2 typically does, namely
  (non-exhaustive list):

  *  Initialization Vector (IV) generation

  *  prevention of counter resets for the same key

  *  generation of pseudorandom cryptographic keys for the IPsec SAs

  *  generation of the IPsec SAs when required based on notifications
     (i.e., sadb-acquire) from the NSF

  *  rekey of the IPsec SAs based on notifications from the NSF (i.e.,
     expire)

  *  NAT traversal discovery and management

  Additionally to these functions, another set of tasks must be
  performed by the I2NSF Controller (non-exhaustive list):

  *  IPsec SA's Security Parameter Index (SPI) random generation

  *  cryptographic algorithm selection

  *  usage of extended sequence numbers

  *  establishment of proper Traffic Selectors

4.  IKE Case vs. IKE-less Case

  In principle, the IKE case is easier to deploy than the IKE-less case
  because current flow-based NSFs (either hosts or gateways) have
  access to IKEv2 implementations.  While gateways typically deploy an
  IKEv2/IPsec implementation, hosts can easily install it.  As a
  downside, the NSF needs more resources to use IKEv2, such as memory
  for the IKEv2 implementation and computation, since each IPsec
  Security Association rekeying MAY involve a Diffie-Hellman (DH)
  exchange.

  Alternatively, the IKE-less case benefits the deployment in resource-
  constrained NSFs.  Moreover, IKEv2 does not need to be performed in
  gateway-to-gateway and host-to-host scenarios under the same I2NSF
  Controller (see Appendix D.1).  On the contrary, the complexity of
  creating and managing IPsec SAs is shifted to the I2NSF Controller
  since IKEv2 is not in the NSF.  As a consequence, this may result in
  a more complex implementation in the controller side in comparison
  with the IKE case.  For example, the I2NSF Controller has to deal
  with the latency existing in the path between the I2NSF Controller
  and the NSF (in order to solve tasks, such as rekey) or creation and
  installation of new IPsec SAs.  However, this is not specific to this
  contribution but a general aspect in any SDN-based network.  In
  summary, this complexity may create some scalability and performance
  issues when the number of NSFs is high.

  Nevertheless, literature around SDN-based network management using a
  centralized controller (like the I2NSF Controller) is aware of
  scalability and performance issues, and solutions have been already
  provided and discussed (e.g., hierarchical controllers, having
  multiple replicated controllers, dedicated high-speed management
  networks, etc.).  In the context of I2NSF-based IPsec management, one
  way to reduce the latency and alleviate some performance issues can
  be to install the IPsec policies and IPsec SAs at the same time
  (proactive mode, as described in Appendix D.1) instead of waiting for
  notifications (e.g., a sadb-acquire notification received from an NSF
  requiring a new IPsec SA) to proceed with the IPsec SA installation
  (reactive mode).  Another way to reduce the overhead and the
  potential scalability and performance issues in the I2NSF Controller
  is to apply the IKE case described in this document since the IPsec
  SAs are managed between NSFs without the involvement of the I2NSF
  Controller at all, except by the initial configuration (i.e., IKEv2,
  PAD, and SPD entries) provided by the I2NSF Controller.  Other
  solutions, such as Controller-IKE [IPSECME-CONTROLLER-IKE], have
  proposed that NSFs provide their DH public keys to the I2NSF
  Controller so that the I2NSF Controller distributes all public keys
  to all peers.  All peers can calculate a unique pairwise secret for
  each other peer, and there is no inter-NSF messages.  A rekey
  mechanism is further described in [IPSECME-CONTROLLER-IKE].

  In terms of security, the IKE case provides better security
  properties than the IKE-less case, as discussed in Section 7.  The
  main reason is that the NSFs generate the session keys and not the
  I2NSF Controller.

4.1.  Rekeying Process

  Performing a rekey for IPsec SAs is an important operation during the
  IPsec SAs management.  With the YANG data models defined in this
  document the I2NSF Controller can configure parameters of the rekey
  process (IKE case) or conduct the rekey process (IKE-less case).
  Indeed, depending on the case, the rekey process is different.

  For the IKE case, the rekeying process is carried out by IKEv2,
  following the information defined in the SPD and SAD (i.e., based on
  the IPsec SA lifetime established by the I2NSF Controller using the
  YANG data model defined in this document).  Therefore, IPsec
  connections will live unless something different is required by the
  I2NSF User or the I2NSF Controller detects something wrong.

  For the IKE-less case, the I2NSF Controller MUST take care of the
  rekeying process.  When the IPsec SA is going to expire (e.g., IPsec
  SA soft lifetime), it MUST create a new IPsec SA and it MAY remove
  the old one (e.g., when the lifetime of the old IPsec SA has not been
  defined).  This rekeying process starts when the I2NSF Controller
  receives a sadb-expire notification or, on the I2NSF Controller's
  initiative, based on lifetime state data obtained from the NSF.  How
  the I2NSF Controller implements an algorithm for the rekey process is
  out of the scope of this document.  Nevertheless, an example of how
  this rekey could be performed is described in Appendix D.2.

4.2.  NSF State Loss

  If one of the NSF restarts, it will lose the IPsec state (affected
  NSF).  By default, the I2NSF Controller can assume that all the state
  has been lost and, therefore, it will have to send IKEv2, SPD, and
  PAD information to the NSF in the IKE case and SPD and SAD
  information in the IKE-less case.

  In both cases, the I2NSF Controller is aware of the affected NSF
  (e.g., the NETCONF/TCP connection is broken with the affected NSF,
  the I2NSF Controller is receiving a sadb-bad-spi notification from a
  particular NSF, etc.).  Moreover, the I2NSF Controller keeps a list
  of NSFs that have IPsec SAs with the affected NSF.  Therefore, it
  knows the affected IPsec SAs.

  In the IKE case, the I2NSF Controller may need to configure the
  affected NSF with the new IKEv2, SPD, and PAD information.
  Alternatively, IKEv2 configuration MAY be made permanent between NSF
  reboots without compromising security by means of the startup
  configuration datastore in the NSF.  This way, each time an NSF
  reboots, it will use that configuration for each rebooting.  It would
  imply avoiding contact with the I2NSF Controller.  Finally, the I2NSF
  Controller may also need to send new parameters (e.g., a new fresh
  PSK for authentication) to the NSFs that had IKEv2 SAs and IPsec SAs
  with the affected NSF.

  In the IKE-less case, the I2NSF Controller SHOULD delete the old
  IPsec SAs in the non-failed nodes established with the affected NSF.
  Once the affected node restarts, the I2NSF Controller MUST take the
  necessary actions to reestablish IPsec-protected communication
  between the failed node and those others having IPsec SAs with the
  affected NSF.  How the I2NSF Controller implements an algorithm for
  managing a potential NSF state loss is out of the scope of this
  document.  Nevertheless, an example of how this could be performed is
  described in Appendix D.3.

4.3.  NAT Traversal

  In the IKE case, IKEv2 already provides a mechanism to detect whether
  some of the peers or both are located behind a NAT.  In this case,
  UDP or TCP encapsulation for Encapsulating Security Payload (ESP)
  packets [RFC3948] [RFC8229] is required.  Note that IPsec transport
  mode MUST NOT be used in this specification when NAT is required.

  In the IKE-less case, the NSF does not have the assistance of the
  IKEv2 implementation to detect if it is located behind a NAT.  If the
  NSF does not have any other mechanism to detect this situation, the
  I2NSF Controller SHOULD implement a mechanism to detect that case.
  The SDN paradigm generally assumes the I2NSF Controller has a view of
  the network under its control.  This view is built either by
  requesting information from the NSFs under its control or information
  pushed from the NSFs to the I2NSF Controller.  Based on this
  information, the I2NSF Controller MAY guess if there is a NAT
  configured between two hosts and apply the required policies to both
  NSFs besides activating the usage of UDP or TCP encapsulation of ESP
  packets [RFC3948] [RFC8229].  The interface for discovering if the
  NSF is behind a NAT is out of scope of this document.

  If the I2NSF Controller does not have any mechanism to know whether a
  host is behind a NAT or not, then the IKE case MUST be used and not
  the IKE-less case.

4.4.  NSF Registration and Discovery

  NSF registration refers to the process of providing the I2NSF
  Controller information about a valid NSF, such as certificate, IP
  address, etc.  This information is incorporated in a list of NSFs
  under its control.

  The assumption in this document is that, for both cases, before an
  NSF can operate in this system, it MUST be registered in the I2NSF
  Controller.  In this way, when the NSF starts and establishes a
  connection to the I2NSF Controller, it knows that the NSF is valid
  for joining the system.

  Either during this registration process or when the NSF connects with
  the I2NSF Controller, the I2NSF Controller MUST discover certain
  capabilities of this NSF, such as what are the cryptographic suites
  supported, the authentication method, the support of the IKE case
  and/or the IKE-less case, etc.

  The registration and discovery processes are out of the scope of this
  document.

5.  YANG Configuration Data Models

  In order to support the IKE and IKE-less cases, models are provided
  for the different parameters and values that must be configured to
  manage IPsec SAs.  Specifically, the IKE case requires modeling IKEv2
  configuration parameters, SPD and PAD, while the IKE-less case
  requires configuration YANG data models for the SPD and SAD.  Three
  modules have been defined: ietf-i2nsf-ikec (Section 5.1, common to
  both cases), ietf-i2nsf-ike (Section 5.2, IKE case), and ietf-i2nsf-
  ikeless (Section 5.3, IKE-less case).  Since the module ietf-i2nsf-
  ikec has only typedef and groupings common to the other modules, a
  simplified view of the ietf-i2nsf-ike and ietf-i2nsf-ikeless modules
  is shown.

5.1.  The 'ietf-i2nsf-ikec' Module

5.1.1.  Data Model Overview

  The module ietf-i2nsf-ikec only has definitions of data types
  (typedef) and groupings that are common to the other modules.

5.1.2.  YANG Module

  This module has normative references to [RFC3947], [RFC4301],
  [RFC4303], [RFC8174], [RFC8221], [RFC3948], [RFC8229], [RFC6991],
  [IANA-Protocols-Number], [IKEv2-Parameters],
  [IKEv2-Transform-Type-1], and [IKEv2-Transform-Type-3].

  <CODE BEGINS> file "[email protected]"
  module ietf-i2nsf-ikec {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec";
    prefix nsfikec;

    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991: Common YANG Data Types.";
    }

    organization
      "IETF I2NSF Working Group";
    contact
      "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
       WG List: <mailto:[email protected]>

       Author: Rafael Marin-Lopez
                 <mailto:[email protected]>

       Author: Gabriel Lopez-Millan
                 <mailto:[email protected]>

       Author: Fernando Pereniguez-Garcia
                 <mailto:[email protected]>
      ";
    description
      "Common data model for the IKE and IKE-less cases
       defined by the SDN-based IPsec flow protection service.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
       document are to be interpreted as described in BCP 14
       (RFC 2119) (RFC 8174) when, and only when, they appear
       in all capitals, as shown here.

       Copyright (c) 2021 IETF Trust and the persons
       identified as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9061; see
       the RFC itself for full legal notices.";

    revision 2021-07-14 {
      description
        "Initial version.";
      reference
        "RFC 9061: A YANG Data Model for IPsec Flow Protection
                   Based on Software-Defined Networking (SDN).";
    }

    typedef encr-alg-t {
      type uint16;
      description
        "The encryption algorithm is specified with a 16-bit
         number extracted from the IANA registry.  The acceptable
         values MUST follow the requirement levels for
         encryption algorithms for ESP and IKEv2.";
      reference
        "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
               IKEv2 Transform Attribute Types, Transform Type 1 -
               Encryption Algorithm Transform IDs
         RFC 8221: Cryptographic Algorithm Implementation
                   Requirements and Usage Guidance for Encapsulating
                   Security Payload (ESP) and Authentication Header
                   (AH)
         RFC 8247: Algorithm Implementation Requirements and Usage
                   Guidance for the Internet Key Exchange Protocol
                   Version 2 (IKEv2).";
    }

    typedef intr-alg-t {
      type uint16;
      description
        "The integrity algorithm is specified with a 16-bit
         number extracted from the IANA registry.
         The acceptable values MUST follow the requirement
         levels for integrity algorithms for ESP and IKEv2.";
      reference
        "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
               IKEv2 Transform Attribute Types, Transform Type 3 -
               Integrity Algorithm Transform IDs
         RFC 8221: Cryptographic Algorithm Implementation
                   Requirements and Usage Guidance for Encapsulating
                   Security Payload (ESP) and Authentication Header
                   (AH)
         RFC 8247: Algorithm Implementation Requirements and Usage
                   Guidance for the Internet Key Exchange Protocol
                   Version 2 (IKEv2).";
    }

    typedef ipsec-mode {
      type enumeration {
        enum transport {
          description
            "IPsec transport mode.  No Network Address
             Translation (NAT) support.";
        }
        enum tunnel {
          description
            "IPsec tunnel mode.";
        }
      }
      description
        "Type definition of IPsec mode: transport or
         tunnel.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 3.2.";
    }

    typedef esp-encap {
      type enumeration {
        enum espintcp {
          description
            "ESP in TCP encapsulation.";
          reference
            "RFC 8229: TCP Encapsulation of IKE and
                       IPsec Packets.";
        }
        enum espinudp {
          description
            "ESP in UDP encapsulation.";
          reference
            "RFC 3948: UDP Encapsulation of IPsec ESP
                       Packets.";
        }
        enum none {
          description
            "No ESP encapsulation.";
        }
      }
      description
        "Types of ESP encapsulation when Network Address
         Translation (NAT) may be present between two NSFs.";
      reference
        "RFC 8229: TCP Encapsulation of IKE and IPsec Packets
         RFC 3948: UDP Encapsulation of IPsec ESP Packets.";
    }

    typedef ipsec-protocol-params {
      type enumeration {
        enum esp {
          description
            "IPsec ESP protocol.";
        }
      }
      description
        "Only the Encapsulation Security Protocol (ESP) is
         supported, but it could be extended in the future.";
      reference
        "RFC 4303: IP Encapsulating Security Payload (ESP).";
    }

    typedef lifetime-action {
      type enumeration {
        enum terminate-clear {
          description
            "Terminates the IPsec SA and allows the
             packets through.";
        }
        enum terminate-hold {
          description
            "Terminates the IPsec SA and drops the
             packets.";
        }
        enum replace {
          description
            "Replaces the IPsec SA with a new one:
             rekey.";
        }
      }
      description
        "When the lifetime of an IPsec SA expires, an action
         needs to be performed for the IPsec SA that
         reached the lifetime.  There are three possible
         options: terminate-clear, terminate-hold, and
         replace.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.5.";
    }

    typedef ipsec-traffic-direction {
      type enumeration {
        enum inbound {
          description
            "Inbound traffic.";
        }
        enum outbound {
          description
            "Outbound traffic.";
        }
      }
      description
        "IPsec traffic direction is defined in
         two directions: inbound and outbound.
         From an NSF perspective, inbound and
         outbound are defined as mentioned
         in Section 3.1 in RFC 4301.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 3.1.";
    }

    typedef ipsec-spd-action {
      type enumeration {
        enum protect {
          description
            "PROTECT the traffic with IPsec.";
        }
        enum bypass {
          description
            "BYPASS the traffic.  The packet is forwarded
             without IPsec protection.";
        }
        enum discard {
          description
            "DISCARD the traffic.  The IP packet is
             discarded.";
        }
      }
      description
        "The action when traffic matches an IPsec security
         policy.  According to RFC 4301, there are three
         possible values: BYPASS, PROTECT, and DISCARD.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.";
    }

    typedef ipsec-inner-protocol {
      type union {
        type uint8;
        type enumeration {
          enum any {
            value 256;
            description
              "Any IP protocol number value.";
          }
        }
      }
      default "any";
      description
        "IPsec protection can be applied to specific IP
         traffic and Layer 4 traffic (TCP, UDP, SCTP, etc.)
         or ANY protocol in the IP packet payload.
         The IP protocol number is specified with a uint8
         or ANY defining an enumerate with value 256 to
         indicate the protocol number.  Note that in case
         of IPv6, the protocol in the IP packet payload
         is indicated in the Next Header field of the IPv6
         packet.";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.1
         IANA: Protocol Numbers.";
    }

    grouping encap {
      description
        "This group of nodes allows defining of the type of
         encapsulation in case NAT traversal is
         required and includes port information.";
      leaf espencap {
        type esp-encap;
        default "none";
        description
          "ESP in TCP, ESP in UDP, or ESP in TLS.";
      }
      leaf sport {
        type inet:port-number;
        default "4500";
        description
          "Encapsulation source port.";
      }
      leaf dport {
        type inet:port-number;
        default "4500";
        description
          "Encapsulation destination port.";
      }
      leaf-list oaddr {
        type inet:ip-address;
        description
          "If required, this is the original address that
           was used before NAT was applied over the packet.";
      }
      reference
        "RFC 3947: Negotiation of NAT-Traversal in the IKE
         RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
    }

    grouping lifetime {
      description
        "Different lifetime values limited to an IPsec SA.";
      leaf time {
        type uint32;
        units "seconds";
        default "0";
        description
          "Time in seconds since the IPsec SA was added.
           For example, if this value is 180 seconds, it
           means the IPsec SA expires in 180 seconds since
           it was added.  The value 0 implies infinite.";
      }
      leaf bytes {
        type uint64;
        default "0";
        description
          "If the IPsec SA processes the number of bytes
           expressed in this leaf, the IPsec SA expires and
           SHOULD be rekeyed.  The value 0 implies
           infinite.";
      }
      leaf packets {
        type uint32;
        default "0";
        description
          "If the IPsec SA processes the number of packets
           expressed in this leaf, the IPsec SA expires and
           SHOULD be rekeyed.  The value 0 implies
           infinite.";
      }
      leaf idle {
        type uint32;
        units "seconds";
        default "0";
        description
          "When an NSF stores an IPsec SA, it
           consumes system resources.  For an idle IPsec SA, this
           is a waste of resources.  If the IPsec SA is idle
           during this number of seconds, the IPsec SA
           SHOULD be removed.  The value 0 implies
           infinite.";
      }
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.2.1.";
    }

    grouping port-range {
      description
        "This grouping defines a port range, such as that
         expressed in RFC 4301, for example, 1500 (Start
         Port Number)-1600 (End Port Number).
         A port range is used in the Traffic Selector.";
      leaf start {
        type inet:port-number;
        description
          "Start port number.";
      }
      leaf end {
        type inet:port-number;
        must '. >= ../start' {
          error-message
            "The end port number MUST be equal or greater
             than the start port number.";
        }
        description
          "End port number.  To express a single port, set
           the same value as start and end.";
      }
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }

    grouping tunnel-grouping {
      description
        "The parameters required to define the IP tunnel
         endpoints when IPsec SA requires tunnel mode.  The
         tunnel is defined by two endpoints: the local IP
         address and the remote IP address.";
      leaf local {
        type inet:ip-address;
        mandatory true;
        description
          "Local IP address' tunnel endpoint.";
      }
      leaf remote {
        type inet:ip-address;
        mandatory true;
        description
          "Remote IP address' tunnel endpoint.";
      }
      leaf df-bit {
        type enumeration {
          enum clear {
            description
              "Disable the Don't Fragment (DF) bit
               in the outer header.  This is the
               default value.";
          }
          enum set {
            description
              "Enable the DF bit in the outer header.";
          }
          enum copy {
            description
              "Copy the DF bit to the outer header.";
          }
        }
        default "clear";
        description
          "Allow configuring the DF bit when encapsulating
           tunnel mode IPsec traffic.  RFC 4301 describes
           three options to handle the DF bit during
           tunnel encapsulation: clear, set, and copy from
           the inner IP header.  This MUST be ignored or
           has no meaning when the local/remote
           IP addresses are IPv6 addresses.";
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 8.1.";
      }
      leaf bypass-dscp {
        type boolean;
        default "true";
        description
          "If true, to copy the Differentiated Services Code
           Point (DSCP) value from inner header to outer header.
           If false, to map DSCP values
           from an inner header to values in an outer header
           following ../dscp-mapping.";
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.1.2.";
      }
      list dscp-mapping {
        must '../bypass-dscp = "false"';
        key "id";
        ordered-by user;
        leaf id {
          type uint8;
          description
            "The index of list with the
             different mappings.";
        }
        leaf inner-dscp {
          type inet:dscp;
          description
            "The DSCP value of the inner IP packet.  If this
             leaf is not defined, it means ANY inner DSCP value.";
        }
        leaf outer-dscp {
          type inet:dscp;
          default "0";
          description
            "The DSCP value of the outer IP packet.";
        }
        description
          "A list that represents an array with the mapping from the
           inner DSCP value to outer DSCP value when bypass-dscp is
           false.  To express a default mapping in the list where any
           other inner dscp value is not matching a node in the list,
           a new node has to be included at the end of the list where
           the leaf inner-dscp is not defined (ANY) and the leaf
           outer-dscp includes the value of the mapping.  If there is
           no value set in the leaf outer-dscp, the default value for
           this leaf is 0.";
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.1.2 and Appendix C.";
      }
    }

    grouping selector-grouping {
      description
        "This grouping contains the definition of a Traffic
         Selector, which is used in the IPsec policies and
         IPsec SAs.";
      leaf local-prefix {
        type inet:ip-prefix;
        mandatory true;
        description
          "Local IP address prefix.";
      }
      leaf remote-prefix {
        type inet:ip-prefix;
        mandatory true;
        description
          "Remote IP address prefix.";
      }
      leaf inner-protocol {
        type ipsec-inner-protocol;
        default "any";
        description
          "Inner protocol that is going to be
           protected with IPsec.";
      }
      list local-ports {
        key "start end";
        uses port-range;
        description
          "List of local ports. When the inner
           protocol is ICMP, this 16-bit value
           represents code and type.
           If this list is not defined,
           it is assumed that start and
           end are 0 by default (any port).";
      }
      list remote-ports {
        key "start end";
        uses port-range;
        description
          "List of remote ports. When the upper layer
           protocol is ICMP, this 16-bit value represents
           code and type.  If this list is not defined,
           it is assumed that start and end are 0 by
           default (any port).";
      }
      reference
        "RFC 4301: Security Architecture for the Internet Protocol,
                   Section 4.4.1.2.";
    }

    grouping ipsec-policy-grouping {
      description
        "Holds configuration information for an IPsec SPD
         entry.";
      leaf anti-replay-window-size {
        type uint32;
        default "64";
        description
          "To set the anti-replay window size.
           The default value is set
           to 64, following the recommendation in RFC 4303.";
        reference
          "RFC 4303: IP Encapsulating Security Payload (ESP),
                     Section 3.4.3.";
      }
      container traffic-selector {
        description
          "Packets are selected for
           processing actions based on Traffic Selector
           values, which refer to IP and inner protocol
           header information.";
        uses selector-grouping;
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.4.1.";
      }
      container processing-info {
        description
          "SPD processing.  If the required processing
           action is protect, it contains the required
           information to process the packet.";
        leaf action {
          type ipsec-spd-action;
          default "discard";
          description
            "If bypass or discard, container
             ipsec-sa-cfg is empty.";
        }
        container ipsec-sa-cfg {
          when "../action = 'protect'";
          description
            "IPsec SA configuration included in the SPD
             entry.";
          leaf pfp-flag {
            type boolean;
            default "false";
            description
              "Each selector has a Populate From
               Packet (PFP) flag.  If asserted for a
               given selector X, the flag indicates
               that the IPsec SA to be created should
               take its value (local IP address,
               remote IP address, Next Layer
               Protocol, etc.) for X from the value
               in the packet.  Otherwise, the IPsec SA
               should take its value(s) for X from
               the value(s) in the SPD entry.";
          }
          leaf ext-seq-num {
            type boolean;
            default "false";
            description
              "True if this IPsec SA is using extended
               sequence numbers.  If true, the 64-bit
               extended sequence number counter is used;
               if false, the normal 32-bit sequence
               number counter is used.";
          }
          leaf seq-overflow {
            type boolean;
            default "false";
            description
              "The flag indicating whether
               overflow of the sequence number
               counter should prevent transmission
               of additional packets on the IPsec
               SA (false) and, therefore, needs to
               be rekeyed or whether rollover is
               permitted (true).  If Authenticated
               Encryption with Associated Data
               (AEAD) is used (leaf
               esp-algorithms/encryption/algorithm-type),
               this flag MUST be false.  Setting this
               flag to true is strongly discouraged.";
          }
          leaf stateful-frag-check {
            type boolean;
            default "false";
            description
              "Indicates whether (true) or not (false)
               stateful fragment checking applies to
               the IPsec SA to be created.";
          }
          leaf mode {
            type ipsec-mode;
            default "transport";
            description
              "IPsec SA has to be processed in
               transport or tunnel mode.";
          }
          leaf protocol-parameters {
            type ipsec-protocol-params;
            default "esp";
            description
              "Security protocol of the IPsec SA.
               Only ESP is supported, but it could be
               extended in the future.";
          }
          container esp-algorithms {
            when "../protocol-parameters = 'esp'";
            description
              "Configuration of Encapsulating
               Security Payload (ESP) parameters and
               algorithms.";
            leaf-list integrity {
              type intr-alg-t;
              default "0";
              ordered-by user;
              description
                "Configuration of ESP authentication
                 based on the specified integrity
                 algorithm.  With AEAD encryption
                 algorithms, the integrity node is
                 not used.";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Section 3.2.";
            }
            list encryption {
              key "id";
              ordered-by user;
              leaf id {
                type uint16;
                description
                  "An identifier that unequivocally identifies each
                   entry of the list, i.e., an encryption algorithm
                   and its key length (if required).";
              }
              leaf algorithm-type {
                type encr-alg-t;
                default "20";
                description
                  "Default value 20 (ENCR_AES_GCM_16).";
              }
              leaf key-length {
                type uint16;
                default "128";
                description
                  "By default, key length is 128
                   bits.";
              }
              description
                "Encryption or AEAD algorithm for the
                 IPsec SAs.  This list is ordered
                 following from the higher priority to
                 lower priority.  First node of the
                 list will be the algorithm with
                 higher priority.  In case the list
                 is empty, then no encryption algorithm
                 is applied (NULL).";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Section 3.2.";
            }
            leaf tfc-pad {
              type boolean;
              default "false";
              description
                "If Traffic Flow Confidentiality
                 (TFC) padding for ESP encryption
                 can be used (true) or not (false).";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Section 2.7.";
            }
            reference
              "RFC 4303: IP Encapsulating Security Payload (ESP).";
          }
          container tunnel {
            when "../mode = 'tunnel'";
            uses tunnel-grouping;
            description
              "IPsec tunnel endpoints definition.";
          }
        }
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.1.2.";
      }
    }
  }
  <CODE ENDS>

5.2.  The 'ietf-i2nsf-ike' Module

  In this section, the YANG module for the IKE case is described.

5.2.1.  Data Model Overview

  The model related to IKEv2 has been extracted from reading the IKEv2
  standard in [RFC7296] and observing some open source implementations,
  such as strongSwan [strongswan] or Libreswan [libreswan].

  The definition of the PAD model has been extracted from the
  specification in Section 4.4.3 of [RFC4301].  (Note that many
  implementations integrate PAD configuration as part of the IKEv2
  configuration.)

  The definition of the SPD model has been mainly extracted from the
  specification in Section 4.4.1 and Appendix D of [RFC4301].

  The YANG data model for the IKE case is defined by the module "ietf-
  i2nsf-ike".  Its structure is depicted in the following diagram,
  using the notation syntax for YANG tree diagrams [RFC8340].

  module: ietf-i2nsf-ike
    +--rw ipsec-ike
      +--rw pad
      |  +--rw pad-entry* [name]
      |     +--rw name                           string
      |     +--rw (identity)
      |     |  +--:(ipv4-address)
      |     |  |  +--rw ipv4-address?            inet:ipv4-address
      |     |  +--:(ipv6-address)
      |     |  |  +--rw ipv6-address?            inet:ipv6-address
      |     |  +--:(fqdn-string)
      |     |  |  +--rw fqdn-string?             inet:domain-name
      |     |  +--:(rfc822-address-string)
      |     |  |  +--rw rfc822-address-string?   string
      |     |  +--:(dnx509)
      |     |  |  +--rw dnx509?                  binary
      |     |  +--:(gnx509)
      |     |  |  +--rw gnx509?                  binary
      |     |  +--:(id-key)
      |     |  |  +--rw id-key?                  binary
      |     |  +--:(id-null)
      |     |     +--rw id-null?                 empty
      |     +--rw auth-protocol?                 auth-protocol-type
      |     +--rw peer-authentication
      |        +--rw auth-method?         auth-method-type
      |        +--rw eap-method
      |        |  +--rw eap-type    uint64
      |        +--rw pre-shared
      |        |  +--rw secret?   yang:hex-string
      |        +--rw digital-signature
      |           +--rw ds-algorithm?           uint8
      |           +--rw (public-key)?
      |           |  +--:(raw-public-key)
      |           |  |  +--rw raw-public-key?   binary
      |           |  +--:(cert-data)
      |           |     +--rw cert-data?        binary
      |           +--rw private-key?            binary
      |           +--rw ca-data*                binary
      |           +--rw crl-data?               binary
      |           +--rw crl-uri?                inet:uri
      |           +--rw oscp-uri?               inet:uri
      +--rw conn-entry* [name]
      |  +--rw name                             string
      |  +--rw autostartup?                     autostartup-type
      |  +--rw initial-contact?                 boolean
      |  +--rw version?                         auth-protocol-type
      |  +--rw fragmentation
      |  |  +--rw enabled?   boolean
      |  |  +--rw mtu?      uint16
      |  +--rw ike-sa-lifetime-soft
      |  |  +--rw rekey-time?    uint32
      |  |  +--rw reauth-time?   uint32
      |  +--rw ike-sa-lifetime-hard
      |  |  +--rw over-time?   uint32
      |  +--rw ike-sa-intr-alg*  nsfikec:intr-alg-t
      |  +--rw ike-sa-encr-alg* [id]
      |  |  +--rw id                uint16
      |  |  +--rw algorithm-type?   nsfikec:encr-alg-t
      |  |  +--rw key-length?       uint16
      |  +--rw dh-group?                            fs-group
      |  +--rw half-open-ike-sa-timer?              uint32
      |  +--rw half-open-ike-sa-cookie-threshold?   uint32
      |  +--rw local
      |  |  +--rw local-pad-entry-name    string
      |  +--rw remote
      |  |  +--rw remote-pad-entry-name    string
      |  +--rw encapsulation-type
      |  |  +--rw espencap?   esp-encap
      |  |  +--rw sport?      inet:port-number
      |  |  +--rw dport?      inet:port-number
      |  |  +--rw oaddr*      inet:ip-address
      |  +--rw spd
      |  |  +--rw spd-entry* [name]
      |  |    +--rw name                   string
      |  |    +--rw ipsec-policy-config
      |  |      +--rw anti-replay-window-size?   uint32
      |  |      +--rw traffic-selector
      |  |      |  +--rw local-prefix      inet:ip-prefix
      |  |      |  +--rw remote-prefix     inet:ip-prefix
      |  |      |  +--rw inner-protocol?   ipsec-inner-protocol
      |  |      |  +--rw local-ports* [start end]
      |  |      |  |  +--rw start    inet:port-number
      |  |      |  |  +--rw end      inet:port-number
      |  |      |  +--rw remote-ports* [start end]
      |  |      |     +--rw start    inet:port-number
      |  |      |     +--rw end      inet:port-number
      |  |      +--rw processing-info
      |  |        +--rw action?         ipsec-spd-action
      |  |        +--rw ipsec-sa-cfg
      |  |         +--rw pfp-flag?              boolean
      |  |         +--rw ext-seq-num?           boolean
      |  |         +--rw seq-overflow?          boolean
      |  |         +--rw stateful-frag-check?   boolean
      |  |         +--rw mode?                  ipsec-mode
      |  |         +--rw protocol-parameters? ipsec-protocol-params
      |  |              +--rw esp-algorithms
      |  |              |  +--rw integrity*    intr-alg-t
      |  |              |  +--rw encryption* [id]
      |  |              |  |  +--rw id                uint16
      |  |              |  |  +--rw algorithm-type?   encr-alg-t
      |  |              |  |  +--rw key-length?       uint16
      |  |              |  +--rw tfc-pad?      boolean
      |  |              +--rw tunnel
      |  |                 +--rw local           inet:ip-address
      |  |                 +--rw remote          inet:ip-address
      |  |                 +--rw df-bit?         enumeration
      |  |                 +--rw bypass-dscp?    boolean
      |  |                 +--rw dscp-mapping* [id]
      |  |                    +--rw id            uint8
      |  |                    +--rw inner-dscp?   inet:dscp
      |  |                    +--rw outer-dscp?   inet:dscp
      |  +--rw child-sa-info
      |  |  +--rw fs-groups*                fs-group
      |  |  +--rw child-sa-lifetime-soft
      |  |  |  +--rw time?      uint32
      |  |  |  +--rw bytes?     yang:counter64
      |  |  |  +--rw packets?   uint32
      |  |  |  +--rw idle?      uint32
      |  |  |  +--rw action?    nsfikec:lifetime-action
      |  |  +--rw child-sa-lifetime-hard
      |  |     +--rw time?      uint32
      |  |     +--rw bytes?     yang:counter64
      |  |     +--rw packets?   uint32
      |  |     +--rw idle?      uint32
      |  +--ro state
      |     +--ro initiator?             boolean
      |     +--ro initiator-ikesa-spi?   ike-spi
      |     +--ro responder-ikesa-spi?   ike-spi
      |     +--ro nat-local?             boolean
      |     +--ro nat-remote?            boolean
      |     +--ro encapsulation-type
      |     |  +--ro espencap?   esp-encap
      |     |  +--ro sport?      inet:port-number
      |     |  +--ro dport?      inet:port-number
      |     |  +--ro oaddr*      inet:ip-address
      |     +--ro established?           uint64
      |     +--ro current-rekey-time?    uint64
      |     +--ro current-reauth-time?   uint64
      +--ro number-ike-sas
          +--ro total?               yang:gauge64
          +--ro half-open?           yang:gauge64
          +--ro half-open-cookies?   yang:gauge64

  The YANG data model consists of a unique "ipsec-ike" container
  defined as follows.  Firstly, it contains a "pad" container that
  serves to configure the Peer Authentication Database with
  authentication information about local and remote peers (NSFs).  More
  precisely, it consists of a list of entries, each one indicating the
  identity, authentication method, and credentials that a particular
  peer (local or remote) will use.  Therefore, each entry contains
  identity, authentication information, and credentials of either the
  local NSF or the remote NSF.  As a consequence, the I2NF Controller
  can store identity, authentication information, and credentials for
  the local NSF and the remote NSF.

  Next, a list "conn-entry" is defined with information about the
  different IKE connections a peer can maintain with others.  Each
  connection entry is composed of a wide number of parameters to
  configure different aspects of a particular IKE connection between
  two peers: local and remote peer authentication information, IKE SA
  configuration (soft and hard lifetimes, cryptographic algorithms,
  etc.), a list of IPsec policies describing the type of network
  traffic to be secured (local/remote subnet and ports, etc.) and how
  it must be protected (ESP, tunnel/transport, cryptographic
  algorithms, etc.), Child SA configuration (soft and hard lifetimes),
  and state information of the IKE connection (SPIs, usage of NAT,
  current expiration times, etc.).

  Lastly, the "ipsec-ike" container declares a "number-ike-sas"
  container to specify state information reported by the IKE software
  related to the amount of IKE connections established.

5.2.2.  Example Usage

  Appendix A shows an example of IKE case configuration for an NSF, in
  tunnel mode (gateway-to-gateway), with NSF authentication based on
  X.509 certificates.

5.2.3.  YANG Module

  This YANG module has normative references to [RFC5280], [RFC4301],
  [RFC5915], [RFC6991], [RFC7296], [RFC7383], [RFC7427], [RFC7619],
  [RFC8017], [ITU-T.X.690], [RFC5322], [RFC8229], [RFC8174], [RFC6960],
  [IKEv2-Auth-Method], [IKEv2-Transform-Type-4], [IKEv2-Parameters],
  and [IANA-Method-Type].

  <CODE BEGINS> file "[email protected]"
  module ietf-i2nsf-ike {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike";
    prefix nsfike;

    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-yang-types {
      prefix yang;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-i2nsf-ikec {
      prefix nsfikec;
      reference
        "RFC 9061: A YANG Data Model for IPsec Flow Protection
                   Based on Software-Defined Networking (SDN).";
    }
    import ietf-netconf-acm {
      prefix nacm;
      reference
        "RFC 8341: Network Configuration Access Control
                   Model.";
    }

    organization
      "IETF I2NSF Working Group";
    contact
      "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
       WG List: <mailto:[email protected]>

       Author: Rafael Marin-Lopez
                 <mailto:[email protected]>

       Author: Gabriel Lopez-Millan
                 <mailto:[email protected]>

       Author: Fernando Pereniguez-Garcia
                 <mailto:[email protected]>
      ";
    description
      "This module contains the IPsec IKE case model for the SDN-based
       IPsec flow protection service.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
       document are to be interpreted as described in BCP 14
       (RFC 2119) (RFC 8174) when, and only when, they appear
       in all capitals, as shown here.

       Copyright (c) 2021 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (http://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9061; see
       the RFC itself for full legal notices.";

    revision 2021-07-14 {
      description
        "Initial version.";
      reference
        "RFC 9061: A YANG Data Model for IPsec Flow Protection
                   Based on Software-Defined Networking (SDN).";
    }

    typedef ike-spi {
      type uint64 {
        range "0..max";
      }
      description
        "Security Parameter Index (SPI)'s IKE SA.";
      reference
        "RFC 7296: Internet Key Exchange Protocol Version 2
                   (IKEv2), Section 2.6.";
    }

    typedef autostartup-type {
      type enumeration {
        enum add {
          description
            "IKE/IPsec configuration is only loaded into
             IKE implementation, but IKE/IPsec SA is not
             started.";
        }
        enum on-demand {
          description
            "IKE/IPsec configuration is loaded
             into IKE implementation.  The IPsec policies
             are transferred to the NSF, but the
             IPsec SAs are not established immediately.
             The IKE implementation will negotiate the
             IPsec SAs when they are required
             (i.e., through an ACQUIRE notification).";
        }
        enum start {
          description
            "IKE/IPsec configuration is loaded
             and transferred to the NSF's kernel, and the
             IKEv2-based IPsec SAs are established
             immediately without waiting for any packet.";
        }
      }
      description
        "Different policies to set IPsec SA configuration
         into NSF's kernel when IKEv2 implementation has
         started.";
    }

    typedef fs-group {
      type uint16;
      description
        "DH groups for IKE and IPsec SA rekey.";
      reference
        "IANA: Internet Key Exchange Version 2 (IKEv2) Parameters,
               IKEv2 Transform Attribute Types, Transform Type 4 -
               Diffie-Hellman Group Transform IDs
         RFC 7296: Internet Key Exchange Protocol Version 2
                   (IKEv2), Section 3.3.2.";
    }

    typedef auth-protocol-type {
      type enumeration {
        enum ikev2 {
          value 2;
          description
            "IKEv2 authentication protocol.  It is the
             only one defined right now.  An enum is
             used for further extensibility.";
        }
      }
      description
        "IKE authentication protocol version specified in the
         Peer Authorization Database (PAD).  It is defined as
         enumerated to allow new IKE versions in the
         future.";
      reference
        "RFC 7296: Internet Key Exchange Protocol Version 2
                   (IKEv2).";
    }

    typedef auth-method-type {
      type enumeration {
        enum pre-shared {
          description
            "Select pre-shared key as the
             authentication method.";
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2).";
        }
        enum eap {
          description
            "Select the Extensible Authentication Protocol (EAP) as
             the authentication method.";
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2).";
        }
        enum digital-signature {
          description
            "Select digital signature as the authentication method.";
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2)
             RFC 7427: Signature Authentication in the Internet Key
                       Exchange Version 2 (IKEv2).";
        }
        enum null {
          description
            "Null authentication.";
          reference
            "RFC 7619: The NULL Authentication Method in the Internet
                       Key Exchange Protocol Version 2 (IKEv2).";
        }
      }
      description
        "Peer authentication method specified in the Peer
         Authorization Database (PAD).";
    }

    container ipsec-ike {
      description
        "IKE configuration for an NSF.  It includes PAD
         parameters, IKE connection information, and state
         data.";
      container pad {
        description
          "Configuration of the Peer Authorization Database
           (PAD).  Each entry of PAD contains authentication
           information of either the local peer or the remote peer.
           Therefore, the I2NSF Controller stores authentication
           information (and credentials) not only for the remote NSF
           but also for the local NSF.  The local NSF MAY use the
           same identity for different types of authentication
           and credentials.  Pointing to the entry for a local NSF
           (e.g., A) and the entry for remote NSF (e.g., B)
           is possible to specify all the required information to
           carry out the authentication between A and B (see
           ../conn-entry/local and ../conn-entry/remote).";
        list pad-entry {
          key "name";
          ordered-by user;
          description
            "Peer Authorization Database (PAD) entry.  It
             is a list of PAD entries ordered by the
             I2NSF Controller, and each entry is
             unequivocally identified by a name.";
          leaf name {
            type string;
            description
              "PAD-unique name to identify this
               entry.";
          }
          choice identity {
            mandatory true;
            description
              "A particular IKE peer will be
               identified by one of these identities.
               This peer can be a remote peer or local
               peer (this NSF).";
            reference
              "RFC 4301: Security Architecture for the Internet
                         Protocol, Section 4.4.3.1.";
            case ipv4-address {
              leaf ipv4-address {
                type inet:ipv4-address;
                description
                  "Specifies the identity as
                   a single 4-octet IPv4 address.";
              }
            }
            case ipv6-address {
              leaf ipv6-address {
                type inet:ipv6-address;
                description
                  "Specifies the identity as a
                   single 16-octet IPv6
                   address.  An example is
                   2001:db8::8:800:200c:417a.";
              }
            }
            case fqdn-string {
              leaf fqdn-string {
                type inet:domain-name;
                description
                  "Specifies the identity as a
                   Fully Qualified Domain Name
                   (FQDN) string.  An example is
                   example.com.  The string MUST
                   NOT contain any terminators
                   (e.g., NULL, Carriage Return
                   (CR), etc.).";
              }
            }
            case rfc822-address-string {
              leaf rfc822-address-string {
                type string;
                description
                  "Specifies the identity as a
                   fully qualified  email address
                   string (RFC 5322).  An example is
                   [email protected].  The string
                   MUST NOT contain any
                   terminators (e.g., NULL, CR,
                   etc.).";
                reference
                  "RFC 5322: Internet Message Format.";
              }
            }
            case dnx509 {
              leaf dnx509 {
                type binary;
                description
                  "The binary
                   Distinguished Encoding Rules (DER)
                   encoding of an ASN.1 X.500
                   Distinguished Name, as specified in IKEv2.";
                reference
                  "RFC 5280: Internet X.509 Public Key Infrastructure
                             Certificate and Certificate Revocation
                             List (CRL) Profile
                   RFC 7296: Internet Key Exchange Protocol Version 2
                             (IKEv2), Section 3.5.";
              }
            }
            case gnx509 {
              leaf gnx509 {
                type binary;
                description
                  "ASN.1 X.509 GeneralName structure,
                   as specified in RFC 5280, encoded
                   using ASN.1 Distinguished Encoding Rules
                   (DER), as specified in ITU-T X.690.";
                reference
                  "RFC 5280: Internet X.509 Public Key Infrastructure
                             Certificate and Certificate Revocation
                             List (CRL) Profile.";
              }
            }
            case id-key {
              leaf id-key {
                type binary;
                description
                  "Opaque octet stream that may be
                   used to pass vendor-specific
                   information for proprietary
                   types of identification.";
                reference
                  "RFC 7296: Internet Key Exchange Protocol Version 2
                             (IKEv2), Section 3.5.";
              }
            }
            case id-null {
              leaf id-null {
                type empty;
                description
                  "The ID_NULL identification is used
                   when the IKE identification payload
                   is not used.";
                reference
                  "RFC 7619: The NULL Authentication Method in the
                             Internet Key Exchange Protocol Version 2
                             (IKEv2).";
              }
            }
          }
          leaf auth-protocol {
            type auth-protocol-type;
            default "ikev2";
            description
              "Only IKEv2 is supported right now, but
               other authentication protocols may be
               supported in the future.";
          }
          container peer-authentication {
            description
              "This container allows the security
               controller to configure the
               authentication method (pre-shared key,
               eap, digital-signature, null) that
               will be used with a particular peer and
               the credentials to use, which will
               depend on the selected authentication
               method.";
            leaf auth-method {
              type auth-method-type;
              default "pre-shared";
              description
                "Type of authentication method
                 (pre-shared key, eap, digital signature,
                 null).";
              reference
                "RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 2.15.";
            }
            container eap-method {
              when "../auth-method = 'eap'";
              leaf eap-type {
                type uint32 {
                  range "1 .. 4294967295";
                }
                mandatory true;
                description
                  "EAP method type specified with
                   a value extracted from the
                   IANA registry.  This
                   information provides the
                   particular EAP method to be
                   used.  Depending on the EAP
                   method, pre-shared keys or
                   certificates may be used.";
              }
              description
                "EAP method description used when
                 authentication method is 'eap'.";
              reference
                "IANA: Extensible Authentication Protocol (EAP)
                       Registry, Method Types
                 RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 2.16.";
            }
            container pre-shared {
              when "../auth-method[.='pre-shared' or
                    .='eap']";
              leaf secret {
                nacm:default-deny-all;
                type yang:hex-string;
                description
                  "Pre-shared secret value.  The
                   NSF has to prevent read access
                   to this value for security
                   reasons.  This value MUST be
                   set if the EAP method uses a
                   pre-shared key or pre-shared
                   authentication has been chosen.";
              }
              description
                "Shared secret value for PSK or
                 EAP method authentication based on
                 PSK.";
            }
            container digital-signature {
              when "../auth-method[.='digital-signature'
                    or .='eap']";
              leaf ds-algorithm {
                type uint8;
                default "14";
                description
                  "The digital signature
                   algorithm is specified with a
                   value extracted from the IANA
                   registry.  Default is the generic
                   digital signature method.  Depending
                   on the algorithm, the following leafs
                   MUST contain information.  For
                   example, if digital signature or the
                   EAP method involves a certificate,
                   then leaves 'cert-data' and 'private-key'
                   will contain this information.";
                reference
                  "IANA: Internet Key Exchange Version 2 (IKEv2)
                         Parameters, IKEv2 Authentication Method.";
              }
              choice public-key {
                leaf raw-public-key {
                  type binary;
                  description
                    "A binary that contains the
                     value of the public key.  The
                     interpretation of the content
                     is defined by the digital
                     signature algorithm.  For
                     example, an RSA key is
                     represented as RSAPublicKey, as
                     defined in RFC 8017, and an
                     Elliptic Curve Cryptography
                     (ECC) key is represented
                     using the 'publicKey'
                     described in RFC 5915.";
                  reference
                    "RFC 5915: Elliptic Curve Private Key
                               Structure
                     RFC 8017: PKCS #1: RSA Cryptography
                               Specifications Version 2.2.";
                }
                leaf cert-data {
                  type binary;
                  description
                    "X.509 certificate data in DER
                     format.  If raw-public-key is
                     defined, this leaf is empty.";
                  reference
                    "RFC 5280: Internet X.509 Public Key
                               Infrastructure Certificate
                               and Certificate Revocation
                               List (CRL) Profile.";
                }
                description
                  "If the I2NSF Controller
                   knows that the NSF
                   already owns a private key
                   associated to this public key
                   (e.g., the NSF generated the pair
                   public key/private key out of
                   band), it will only configure
                   one of the leaves of this
                   choice but not the leaf
                   private-key.  The NSF, based on
                   the public key value, can know
                   the private key to be used.";
              }
              leaf private-key {
                nacm:default-deny-all;
                type binary;
                description
                  "A binary that contains the
                   value of the private key.  The
                   interpretation of the content
                   is defined by the digital
                   signature algorithm.  For
                   example, an RSA key is
                   represented as RSAPrivateKey, as
                   defined in RFC 8017, and an
                   Elliptic Curve Cryptography
                   (ECC) key is represented as
                   ECPrivateKey, as defined in RFC
                   5915.  This value is set
                   if public key is defined and the
                   I2NSF Controller is in charge
                   of configuring the
                   private key.  Otherwise, it is
                   not set and the value is
                   kept in secret.";
                reference
                  "RFC 5915: Elliptic Curve Private Key
                             Structure
                   RFC 8017: PKCS #1: RSA Cryptography
                             Specifications Version 2.2.";
              }
              leaf-list ca-data {
                type binary;
                description
                  "List of trusted Certification
                   Authorities (CAs) certificates
                   encoded using ASN.1
                   Distinguished Encoding Rules
                   (DER).  If it is not defined,
                   the default value is empty.";
              }
              leaf crl-data {
                type binary;
                description
                  "A CertificateList structure, as
                   specified in RFC 5280,
                   encoded using ASN.1
                   Distinguished Encoding Rules
                   (DER), as specified in ITU-T
                   X.690.  If it is not defined,
                   the default value is empty.";
                reference
                  "RFC 5280: Internet X.509 Public Key Infrastructure
                             Certificate and Certificate Revocation
                             List (CRL) Profile.";
              }
              leaf crl-uri {
                type inet:uri;
                description
                  "X.509 Certificate Revocation List
                   (CRL) certificate URI.
                   If it is not defined,
                   the default value is empty.";
                reference
                  "RFC 5280: Internet X.509 Public Key Infrastructure
                             Certificate and Certificate Revocation
                             List (CRL) Profile.";
              }
              leaf oscp-uri {
                type inet:uri;
                description
                  "Online Certificate Status Protocol
                   (OCSP) URI.  If it is not defined,
                   the default value is empty.";
                reference
                  "RFC 6960: X.509 Internet Public Key Infrastructure
                             Online Certificate Status Protocol - OCSP
                   RFC 5280: Internet X.509 Public Key Infrastructure
                             Certificate and Certificate Revocation
                             List (CRL) Profile.";
              }
              description
                "digital-signature container.";
            } /*container digital-signature*/
          } /*container peer-authentication*/
        }
      }
      list conn-entry {
        key "name";
        description
          "IKE peer connection information.  This list
           contains the IKE connection for this peer
           with other peers.  This will create, in
           real time, IKE Security Associations
           established with these nodes.";
        leaf name {
          type string;
          description
            "Identifier for this connection
             entry.";
        }
        leaf autostartup {
          type autostartup-type;
          default "add";
          description
            "By default, only add configuration
             without starting the security
             association.";
        }
        leaf initial-contact {
          type boolean;
          default "false";
          description
            "The goal of this value is to deactivate the
             usage of INITIAL_CONTACT notification
             (true).  If this flag remains set to false, it
             means the usage of the INITIAL_CONTACT
             notification will depend on the IKEv2
             implementation.";
        }
        leaf version {
          type auth-protocol-type;
          default "ikev2";
          description
            "IKE version.  Only version 2 is supported.";
        }
        container fragmentation {
          leaf enabled {
            type boolean;
            default "false";
            description
              "Whether or not to enable IKEv2
               fragmentation (true or false).";
            reference
              "RFC 7383: Internet Key Exchange Protocol Version 2
                         (IKEv2) Message Fragmentation.";
          }
          leaf mtu {
            when "../enabled='true'";
            type uint16 {
              range "68..65535";
            }
            description
              "MTU that IKEv2 can use
               for IKEv2 fragmentation.";
            reference
              "RFC 7383: Internet Key Exchange Protocol Version 2
                         (IKEv2) Message Fragmentation.";
          }
          description
            "IKEv2 fragmentation, as per RFC 7383.  If the
             IKEv2 fragmentation is enabled, it is possible
             to specify the MTU.";
        }
        container ike-sa-lifetime-soft {
          description
            "IKE SA lifetime soft.  Two lifetime values
             can be configured: either rekey time of the
             IKE SA or reauth time of the IKE SA.  When
             the rekey lifetime expires, a rekey of the
             IKE SA starts.  When reauth lifetime
             expires, an IKE SA reauthentication starts.";
          leaf rekey-time {
            type uint32;
            units "seconds";
            default "0";
            description
              "Time in seconds between each IKE SA
               rekey.  The value 0 means infinite.";
          }
          leaf reauth-time {
            type uint32;
            units "seconds";
            default "0";
            description
              "Time in seconds between each IKE SA
               reauthentication.  The value 0 means
               infinite.";
          }
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.8.";
        }
        container ike-sa-lifetime-hard {
          description
            "Hard IKE SA lifetime.  When this
             time is reached, the IKE SA is removed.";
          leaf over-time {
            type uint32;
            units "seconds";
            default "0";
            description
              "Time in seconds before the IKE SA is
               removed.  The value 0 means infinite.";
          }
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2).";
        }
        leaf-list ike-sa-intr-alg {
          type nsfikec:intr-alg-t;
          default "12";
          ordered-by user;
          description
            "Integrity algorithm for establishing
             the IKE SA.  This list is ordered following
             from the higher priority to lower priority.
             The first node of the list will be the
             algorithm with higher priority.
             Default value 12 (AUTH_HMAC_SHA2_256_128).";
        }
        list ike-sa-encr-alg {
          key "id";
          min-elements 1;
          ordered-by user;
          leaf id {
            type uint16;
            description
              "An identifier that unequivocally
               identifies each entry of the list,
               i.e., an encryption algorithm and
               its key length (if required).";
          }
          leaf algorithm-type {
            type nsfikec:encr-alg-t;
            default "12";
            description
              "Default value 12 (ENCR_AES_CBC).";
          }
          leaf key-length {
            type uint16;
            default "128";
            description
              "By default, key length is 128 bits.";
          }
          description
            "Encryption or AEAD algorithm for the IKE
             SAs.  This list is ordered following
             from the higher priority to lower priority.
             The first node of the list will be the
             algorithm with higher priority.";
        }
        leaf dh-group {
          type fs-group;
          default "14";
          description
            "Group number for Diffie-Hellman
             Exponentiation used during IKE_SA_INIT
             for the IKE SA key exchange.";
        }
        leaf half-open-ike-sa-timer {
          type uint32;
          units "seconds";
          default "0";
          description
            "Set the half-open IKE SA timeout
             duration.  The value 0 implies infinite.";
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.";
        }
        leaf half-open-ike-sa-cookie-threshold {
          type uint32;
          default "0";
          description
            "Number of half-open IKE SAs that activate
             the cookie mechanism.  The value 0 implies
             infinite.";
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.6.";
        }
        container local {
          leaf local-pad-entry-name {
            type string;
            mandatory true;
            description
              "Local peer authentication information.
               This node points to a specific entry in
               the PAD where the authorization
               information about this particular local
               peer is stored.  It MUST match a
               pad-entry-name.";
          }
          description
            "Local peer authentication information.";
        }
        container remote {
          leaf remote-pad-entry-name {
            type string;
            mandatory true;
            description
              "Remote peer authentication information.
               This node points to a specific entry in
               the PAD where the authorization
               information about this particular
               remote peer is stored.  It MUST match a
               pad-entry-name.";
          }
          description
            "Remote peer authentication information.";
        }
        container encapsulation-type {
          uses nsfikec:encap;
          description
            "This container carries configuration
             information about the source and destination
             ports of encapsulation that IKE should use
             and the type of encapsulation that
             should be used when NAT traversal is required.
             However, this is just a best effort since
             the IKE implementation may need to use a
             different encapsulation, as described in
             RFC 8229.";
          reference
            "RFC 8229: TCP Encapsulation of IKE and IPsec
                       Packets.";
        }
        container spd {
          description
            "Configuration of the Security Policy
             Database (SPD).  This main information is
             placed in the grouping
             ipsec-policy-grouping.";
          list spd-entry {
            key "name";
            ordered-by user;
            leaf name {
              type string;
              description
                "SPD-entry-unique name to identify
                 the IPsec policy.";
            }
            container ipsec-policy-config {
              description
                "This container carries the
                 configuration of an IPsec policy.";
              uses nsfikec:ipsec-policy-grouping;
            }
            description
              "List of entries that will constitute
               the representation of the SPD.  In this
               case, since the NSF implements IKE, it
               is only required to send an IPsec policy
               from this NSF where 'local' is this NSF
               and 'remote' the other NSF.  The IKE
               implementation will install IPsec
               policies in the NSF's kernel in both
               directions (inbound and outbound) and
               their corresponding IPsec SAs based on
               the information in this SPD entry.";
          }
          reference
            "RFC 7296: Internet Key Exchange Protocol Version 2
                       (IKEv2), Section 2.9.";
        }
        container child-sa-info {
          leaf-list fs-groups {
            type fs-group;
            default "0";
            ordered-by user;
            description
              "If non-zero, forward secrecy is
               required when a new IPsec SA is being
               created, the (non-zero) value indicates
               the group number to use for the key
               exchange process used to achieve forward
               secrecy.
               This list is ordered following from the
               higher priority to lower priority.  The
               first node of the list will be the
               algorithm with higher priority.";
          }
          container child-sa-lifetime-soft {
            description
              "Soft IPsec SA lifetime.
               After the lifetime, the action is
               defined in this container
               in the leaf action.";
            uses nsfikec:lifetime;
            leaf action {
              type nsfikec:lifetime-action;
              default "replace";
              description
                "When the lifetime of an IPsec SA
                 expires, an action needs to be
                 performed over the IPsec SA that
                 reached the lifetime.  There are
                 three possible options:
                 terminate-clear, terminate-hold, and
                 replace.";
              reference
                "RFC 4301: Security Architecture for the Internet
                           Protocol, Section 4.5
                 RFC 7296: Internet Key Exchange Protocol Version 2
                           (IKEv2), Section 2.8.";
            }
          }
          container child-sa-lifetime-hard {
            description
              "IPsec SA lifetime hard.  The action will
               be to terminate the IPsec SA.";
            uses nsfikec:lifetime;
            reference
              "RFC 7296: Internet Key Exchange Protocol Version 2
                         (IKEv2), Section 2.8.";
          }
          description
            "Specific information for IPsec SAs.
             It includes the Perfect Forward Secrecy (PFS)
             group and IPsec SAs rekey lifetimes.";
        }
        container state {
          config false;
          leaf initiator {
            type boolean;
            description
              "It is acting as an initiator for this
               connection.";
          }
          leaf initiator-ikesa-spi {
            type ike-spi;
            description
              "Initiator's IKE SA SPI.";
          }
          leaf responder-ikesa-spi {
            type ike-spi;
            description
              "Responder's IKE SA SPI.";
          }
          leaf nat-local {
            type boolean;
            description
              "True if local endpoint is behind a
               NAT.";
          }
          leaf nat-remote {
            type boolean;
            description
              "True if remote endpoint is behind
               a NAT.";
          }
          container encapsulation-type {
            uses nsfikec:encap;
            description
              "This container provides information
               about the source and destination
               ports of encapsulation that IKE is
               using and the type of encapsulation
               when NAT traversal is required.";
            reference
              "RFC 8229: TCP Encapsulation of IKE and IPsec Packets.";
          }
          leaf established {
            type uint64;
            units "seconds";
            description
              "Seconds since this IKE SA has been
               established.";
          }
          leaf current-rekey-time {
            type uint64;
            units "seconds";
            description
              "Seconds before IKE SA is rekeyed.";
          }
          leaf current-reauth-time {
            type uint64;
            units "seconds";
            description
              "Seconds before IKE SA is
               reauthenticated.";
          }
          description
            "IKE state data for a particular
             connection.";
        } /* ike-sa-state */
      } /* ike-conn-entries */
      container number-ike-sas {
        config false;
        leaf total {
          type yang:gauge64;
          description
            "Total number of active IKE SAs.";
        }
        leaf half-open {
          type yang:gauge64;
          description
            "Number of half-open active IKE SAs.";
        }
        leaf half-open-cookies {
          type yang:gauge64;
          description
            "Number of half-open active IKE SAs with
             cookie activated.";
        }
        description
          "General information about the IKE SAs.  In
           particular, it provides the current number of
           IKE SAs.";
      }
    } /* container ipsec-ike */
  }
  <CODE ENDS>

5.3.  The 'ietf-i2nsf-ikeless' Module

  In this section, the YANG module for the IKE-less case is described.

5.3.1.  Data Model Overview

  For this case, the definition of the SPD model has been mainly
  extracted from the specification in Section 4.4.1 and Appendix D in
  [RFC4301], though with some changes, namely:

  *  For simplicity, each IPsec policy (spd-entry) contains one Traffic
     Selector, instead of a list of them.  The reason is that actual
     kernel implementations only admit a single Traffic Selector per
     IPsec policy.

  *  Each IPsec policy contains an identifier (reqid) to relate the
     policy with the IPsec SA.  This is common in Linux-based systems.

  *  Each IPsec policy has only one name and not a list of names.

  *  Combined algorithms have been removed because encryption
     algorithms MAY include Authenticated Encryption with Associated
     Data (AEAD).

  *  Tunnel information has been extended with information about DSCP
     mapping.  The reason is that certain kernel implementations accept
     configuration of these values.

  The definition of the SAD model has been mainly extracted from the
  specification in Section 4.4.2 of [RFC4301], though with some
  changes, namely:

  *  For simplicity, each IPsec SA (sad-entry) contains one Traffic
     Selector, instead of a list of them.  The reason is that actual
     kernel implementations only admit a single Traffic Selector per
     IPsec SA.

  *  Each IPsec SA contains an identifier (reqid) to relate the IPsec
     SA with the IPsec policy.  The reason is that real kernel
     implementations allow this value to be included.

  *  Each IPsec SA is also named in the same way as IPsec policies.

  *  The model allows specifying the algorithm for encryption.  This
     can be Authenticated Encryption with Associated Data (AEAD) or
     non-AEAD.  If an AEAD algorithm is specified, the integrity
     algorithm is not required.  If a non-AEAD algorithm is specified,
     the integrity algorithm is required [RFC8221].

  *  Tunnel information has been extended with information about
     Differentiated Services Code Point (DSCP) mapping.  It is assumed
     that NSFs involved in this document provide ECN full functionality
     to prevent discarding of ECN congestion indications [RFC6040].

  *  The lifetime of the IPsec SAs also includes idle time and the
     number of IP packets as a threshold to trigger the lifetime.  The
     reason is that actual kernel implementations allow for setting
     these types of lifetimes.

  *  Information to configure the type of encapsulation (encapsulation-
     type) for IPsec ESP packets in UDP [RFC3948] or TCP [RFC8229] has
     been included.

  The notifications model has been defined using, as reference, the
  PF_KEYv2 specification in [RFC2367].

  The YANG data model for the IKE-less case is defined by the module
  "ietf-i2nsf-ikeless".  Its structure is depicted in the following
  diagram, using the notation syntax for YANG tree diagrams [RFC8340].

  module: ietf-i2nsf-ikeless
    +--rw ipsec-ikeless
      +--rw spd
      |  +--rw spd-entry* [name]
      |     +--rw name  string
      |     +--rw direction nsfikec:ipsec-traffic-direction
      |     +--rw reqid? uint64
      |     +--rw ipsec-policy-config
      |        +--rw anti-replay-window-size?   uint32
      |        +--rw traffic-selector
      |        |  +--rw local-prefix      inet:ip-prefix
      |        |  +--rw remote-prefix     inet:ip-prefix
      |        |  +--rw inner-protocol?   ipsec-inner-protocol
      |        |  +--rw local-ports* [start end]
      |        |  |  +--rw start    inet:port-number
      |        |  |  +--rw end      inet:port-number
      |        |  +--rw remote-ports* [start end]
      |        |     +--rw start    inet:port-number
      |        |     +--rw end      inet:port-number
      |        +--rw processing-info
      |           +--rw action?         ipsec-spd-action
      |           +--rw ipsec-sa-cfg
      |             +--rw pfp-flag?              boolean
      |             +--rw ext-seq-num?           boolean
      |             +--rw seq-overflow?          boolean
      |             +--rw stateful-frag-check?   boolean
      |             +--rw mode?                  ipsec-mode
      |             +--rw protocol-parameters? ipsec-protocol-params
      |              +--rw esp-algorithms
      |              |  +--rw integrity*    intr-alg-t
      |              |  +--rw encryption* [id]
      |              |  |  +--rw id                uint16
      |              |  |  +--rw algorithm-type?   encr-alg-t
      |              |  |  +--rw key-length?       uint16
      |              |  +--rw tfc-pad?      boolean
      |              +--rw tunnel
      |                 +--rw local           inet:ip-address
      |                 +--rw remote          inet:ip-address
      |                 +--rw df-bit?         enumeration
      |                 +--rw bypass-dscp?    boolean
      |                 +--rw dscp-mapping* [id]
      |                    +--rw id            uint8
      |                    +--rw inner-dscp?   inet:dscp
      |                    +--rw outer-dscp?   inet:dscp
      +--rw sad
        +--rw sad-entry* [name]
         +--rw name               string
         +--rw reqid?             uint64
         +--rw ipsec-sa-config
         |  +--rw spi                        uint32
         |  +--rw ext-seq-num?               boolean
         |  +--rw seq-overflow?              boolean
         |  +--rw anti-replay-window-size?   uint32
         |  +--rw traffic-selector
         |  |  +--rw local-prefix      inet:ip-prefix
         |  |  +--rw remote-prefix     inet:ip-prefix
         |  |  +--rw inner-protocol?   ipsec-inner-protocol
         |  |  +--rw local-ports* [start end]
         |  |  |  +--rw start    inet:port-number
         |  |  |  +--rw end      inet:port-number
         |  |  +--rw remote-ports* [start end]
         |  |     +--rw start    inet:port-number
         |  |     +--rw end      inet:port-number
         |  +--rw protocol-parameters? nsfikec:ipsec-protocol-params
         |  +--rw mode?                      nsfikec:ipsec-mode
         |  +--rw esp-sa
         |  |  +--rw encryption
         |  |  |  +--rw encryption-algorithm?   nsfikec:encr-alg-t
         |  |  |  +--rw key?                    yang:hex-string
         |  |  |  +--rw iv?                     yang:hex-string
         |  |  +--rw integrity
         |  |     +--rw integrity-algorithm?   nsfikec:intr-alg-t
         |  |     +--rw key?                   yang:hex-string
         |  +--rw sa-lifetime-hard
         |  |  +--rw time?      uint32
         |  |  +--rw bytes?     yang:counter64
         |  |  +--rw packets?   uint32
         |  |  +--rw idle?      uint32
         |  +--rw sa-lifetime-soft
         |  |  +--rw time?      uint32
         |  |  +--rw bytes?     yang:counter64
         |  |  +--rw packets?   uint32
         |  |  +--rw idle?      uint32
         |  |  +--rw action?    nsfikec:lifetime-action
         |  +--rw tunnel
         |  |  +--rw local           inet:ip-address
         |  |  +--rw remote          inet:ip-address
         |  |  +--rw df-bit?         enumeration
         |  |  +--rw bypass-dscp?    boolean
         |  |  +--rw dscp-mapping* [id]
         |  |  |  +--rw id            uint8
         |  |  |  +--rw inner-dscp?   inet:dscp
         |  |  |  +--rw outer-dscp?   inet:dscp
         |  |  +--rw dscp-values*    inet:dscp
         |  +--rw encapsulation-type
         |     +--rw espencap?   esp-encap
         |     +--rw sport?      inet:port-number
         |     +--rw dport?      inet:port-number
         |     +--rw oaddr*      inet:ip-address
         +--ro ipsec-sa-state
            +--ro sa-lifetime-current
            |  +--ro time?      uint32
            |  +--ro bytes?     yang:counter64
            |  +--ro packets?   uint32
            |  +--ro idle?      uint32
            +--ro replay-stats
               +--ro replay-window
               |  +--ro w?   uint32
               |  +--ro t?   uint64
               |  +--ro b?   uint64
               +--ro packet-dropped?       yang:counter64
               +--ro failed?               yang:counter64
               +--ro seq-number-counter?   uint64

     notifications:
       +---n sadb-acquire {ikeless-notification}?
       |  +--ro ipsec-policy-name    string
       |  +--ro traffic-selector
       |     +--ro local-prefix      inet:ip-prefix
       |     +--ro remote-prefix     inet:ip-prefix
       |     +--ro inner-protocol?   ipsec-inner-protocol
       |     +--ro local-ports* [start end]
       |     |  +--ro start    inet:port-number
       |     |  +--ro end      inet:port-number
       |     +--ro remote-ports* [start end]
       |        +--ro start    inet:port-number
       |        +--ro end      inet:port-number
       +---n sadb-expire {ikeless-notification}?
       |  +--ro ipsec-sa-name           string
       |  +--ro soft-lifetime-expire?   boolean
       |  +--ro lifetime-current
       |     +--ro time?      uint32
       |     +--ro bytes?     yang:counter64
       |     +--ro packets?   uint32
       |     +--ro idle?      uint32
       +---n sadb-seq-overflow {ikeless-notification}?
       |  +--ro ipsec-sa-name    string
       +---n sadb-bad-spi {ikeless-notification}?
          +--ro spi    uint32

  The YANG data model consists of a unique "ipsec-ikeless" container,
  which, in turn, is composed of two additional containers: "spd" and
  "sad".  The "spd" container consists of a list of entries that form
  the Security Policy Database.  Compared to the IKE case YANG data
  model, this part specifies a few additional parameters necessary due
  to the absence of an IKE software in the NSF: traffic direction to
  apply the IPsec policy and a "reqid" value to link an IPsec policy
  with its associated IPsec SAs since it is otherwise a little hard to
  find by searching.  The "sad" container is a list of entries that
  form the Security Association Database.  In general, each entry
  allows specifying both configuration information (SPI, Traffic
  Selectors, tunnel/transport mode, cryptographic algorithms and keying
  material, soft/hard lifetimes, etc.) as well as stating information
  (time to expire, replay statistics, etc.) of a concrete IPsec SA.

  In addition, the module defines a set of notifications to allow the
  NSF to inform the I2NSF Controller about relevant events, such as
  IPsec SA expiration, sequence number overflow, or bad SPI in a
  received packet.

5.3.2.  Example Usage

  Appendix B shows an example of an IKE-less case configuration for an
  NSF in transport mode (host-to-host).  Additionally, Appendix C shows
  examples of IPsec SA expire, acquire, sequence number overflow, and
  bad SPI notifications.

5.3.3.  YANG Module

  This YANG module has normative references to [RFC4301], [RFC4303],
  [RFC6991], [RFC8174] and [RFC8341].

  <CODE BEGINS> file "[email protected]"
  module ietf-i2nsf-ikeless {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless";
    prefix nsfikels;

    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-yang-types {
      prefix yang;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-i2nsf-ikec {
      prefix nsfikec;
      reference
        "RFC 9061: A YANG Data Model for IPsec Flow Protection
                   Based on Software-Defined Networking (SDN).";
    }
    import ietf-netconf-acm {
      prefix nacm;
      reference
        "RFC 8341: Network Configuration Access Control
                   Model.";
    }

    organization
      "IETF I2NSF Working Group";
    contact
      "WG Web:  <https://datatracker.ietf.org/wg/i2nsf/>
       WG List: <mailto:[email protected]>

       Author: Rafael Marin-Lopez
                <mailto:[email protected]>

       Author: Gabriel Lopez-Millan
                <mailto:[email protected]>

       Author: Fernando Pereniguez-Garcia
                <mailto:[email protected]>
      ";
    description
      "Data model for IKE-less case in the SDN-based IPsec flow
       protection service.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
       document are to be interpreted as described in BCP 14
       (RFC 2119) (RFC 8174) when, and only when, they appear
       in all capitals, as shown here.

       Copyright (c) 2021 IETF Trust and the persons
       identified as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9061; see
       the RFC itself for full legal notices.";

    revision 2021-07-14 {
      description
        "Initial version.";
      reference
        "RFC 9061: A YANG Data Model for IPsec Flow Protection
                   Based on Software-Defined Networking (SDN).";
    }

    feature ikeless-notification {
      description
        "This feature indicates that the server supports
         generating notifications in the ikeless module.

         To ensure broader applicability of this module,
         the notifications are marked as a feature.
         For the implementation of the IKE-less case,
         the NSF is expected to implement this
         feature.";
    }

    container ipsec-ikeless {
      description
        "Container for configuration of the IKE-less
         case. The container contains two additional
         containers: 'spd' and 'sad'.  The first allows the
         I2NSF Controller to configure IPsec policies in
         the Security Policy Database (SPD), and the second
         allows the I2NSF Controller to configure IPsec
         Security Associations (IPsec SAs) in the Security
         Association Database (SAD).";
      reference
        "RFC 4301: Security Architecture for the Internet Protocol.";
      container spd {
        description
          "Configuration of the Security Policy Database
           (SPD).";
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.1.2.";
        list spd-entry {
          key "name";
          ordered-by user;
          leaf name {
            type string;
            description
              "SPD-entry-unique name to identify this
               entry.";
          }
          leaf direction {
            type nsfikec:ipsec-traffic-direction;
            mandatory true;
            description
              "Inbound traffic or outbound
               traffic.  In the IKE-less case, the
               I2NSF Controller needs to
               specify the policy direction to be
               applied in the NSF.  In the IKE case,
               this direction does not need to be
               specified, since IKE
               will determine the direction that the
               IPsec policy will require.";
          }
          leaf reqid {
            type uint64;
            default "0";
            description
              "This value allows linking this
               IPsec policy with IPsec SAs with the
               same reqid.  It is only required in
               the IKE-less model since, in the IKE
               case, this link is handled internally
               by IKE.";
          }
          container ipsec-policy-config {
            description
              "This container carries the
               configuration of an IPsec policy.";
            uses nsfikec:ipsec-policy-grouping;
          }
          description
            "The SPD is represented as a list of SPD
             entries, where each SPD entry represents an
             IPsec policy.";
        } /*list spd-entry*/
      } /*container spd*/
      container sad {
        description
          "Configuration of the IPsec Security Association
           Database (SAD).";
        reference
          "RFC 4301: Security Architecture for the Internet Protocol,
                     Section 4.4.2.1.";
        list sad-entry {
          key "name";
          ordered-by user;
          leaf name {
            type string;
            description
              "SAD-entry-unique name to identify this
               entry.";
          }
          leaf reqid {
            type uint64;
            default "0";
            description
              "This value allows linking this
               IPsec SA with an IPsec policy with
               the same reqid.";
          }
          container ipsec-sa-config {
            description
              "This container allows configuring
               details of an IPsec SA.";
            leaf spi {
              type uint32 {
                range "0..max";
              }
              mandatory true;
              description
                "IPsec SA of Security Parameter Index (SPI).";
            }
            leaf ext-seq-num {
              type boolean;
              default "true";
              description
                "True if this IPsec SA is using extended
                 sequence numbers.  If true, the 64-bit
                 extended sequence number counter is used;
                 if false, the normal 32-bit sequence
                 number counter is used.";
            }
            leaf seq-overflow {
              type boolean;
              default "false";
              description
                "The flag indicating whether
                 overflow of the sequence number
                 counter should prevent transmission
                 of additional packets on the IPsec
                 SA (false) and, therefore, needs to
                 be rekeyed or whether rollover is
                 permitted (true).  If Authenticated
                 Encryption with Associated Data
                 (AEAD) is used (leaf
                 esp-algorithms/encryption/algorithm-type),
                 this flag MUST BE false. Setting this
                 flag to true is strongly discouraged.";
            }
            leaf anti-replay-window-size {
              type uint32;
              default "64";
              description
                "To set the anti-replay window size.
                 The default value is set to 64,
                 following the recommendation in RFC 4303.";
              reference
                "RFC 4303: IP Encapsulating Security Payload (ESP),
                           Section 3.4.3.";
            }
            container traffic-selector {
              uses nsfikec:selector-grouping;
              description
                "The IPsec SA Traffic Selector.";
            }
            leaf protocol-parameters {
              type nsfikec:ipsec-protocol-params;
              default "esp";
              description
                "Security protocol of IPsec SA, only
                 ESP so far.";
            }
            leaf mode {
              type nsfikec:ipsec-mode;
              default "transport";
              description
                "Tunnel or transport mode.";
            }
            container esp-sa {
              when "../protocol-parameters = 'esp'";
              description
                "In case the IPsec SA is an
                 Encapsulation Security Payload
                 (ESP), it is required to specify
                 encryption and integrity
                 algorithms and key materials.";
              container encryption {
                description
                  "Configuration of encryption or
                   AEAD algorithm for IPsec
                   Encapsulation Security Payload
                   (ESP).";
                leaf encryption-algorithm {
                  type nsfikec:encr-alg-t;
                  default "12";
                  description
                    "Configuration of ESP
                     encryption.  With AEAD
                     algorithms, the integrity-algorithm
                     leaf is not used.";
                }
                leaf key {
                  nacm:default-deny-all;
                  type yang:hex-string;
                  description
                    "ESP encryption key value.
                     If this leaf is not defined,
                     the key is not defined
                     (e.g., encryption is NULL).
                     The key length is
                     determined by the
                     length of the key set in
                     this leaf.  By default, it is
                     128 bits.";
                }
                leaf iv {
                  nacm:default-deny-all;
                  type yang:hex-string;
                  description
                    "ESP encryption IV value.  If
                     this leaf is not defined, the
                     IV is not defined (e.g.,
                     encryption is NULL).";
                }
              }
              container integrity {
                description
                  "Configuration of integrity for
                   IPsec Encapsulation Security
                   Payload (ESP).  This container
                   allows configuration of integrity
                   algorithms when no AEAD
                   algorithms are used and
                   integrity is required.";
                leaf integrity-algorithm {
                  type nsfikec:intr-alg-t;
                  default "12";
                  description
                    "Message Authentication Code
                     (MAC) algorithm to provide
                     integrity in ESP (default
                     AUTH_HMAC_SHA2_256_128).
                     With AEAD algorithms,
                     the integrity leaf is not
                     used.";
                }
                leaf key {
                  nacm:default-deny-all;
                  type yang:hex-string;
                  description
                    "ESP integrity key value.
                     If this leaf is not defined,
                     the key is not defined (e.g.,
                     AEAD algorithm is chosen and
                     integrity algorithm is not
                     required).  The key length is
                     determined by the length of
                     the key configured.";
                }
              }
            } /*container esp-sa*/
            container sa-lifetime-hard {
              description
                "IPsec SA hard lifetime.  The action
                 associated is terminate and hold.";
              uses nsfikec:lifetime;
            }
            container sa-lifetime-soft {
              description
                "IPsec SA soft lifetime.";
              uses nsfikec:lifetime;
              leaf action {
                type nsfikec:lifetime-action;
                description
                  "Action lifetime: terminate-clear,
                   terminate-hold, or replace.";
              }
            }
            container tunnel {
              when "../mode = 'tunnel'";
              uses nsfikec:tunnel-grouping;
              leaf-list dscp-values {
                type inet:dscp;
                description
                  "DSCP values allowed for ingress packets carried
                   over this IPsec SA.  If no values are specified, no
                   DSCP-specific filtering is applied.  When
                   ../bypass-dscp is false and a dscp-mapping is
                   defined, each value here would be the same as the
                   'inner' DSCP value for the DSCP mapping (list
                   dscp-mapping).";
                reference
                  "RFC 4301: Security Architecture for the Internet
                             Protocol, Section 4.4.2.1.";
              }
              description
                "Endpoints of the IPsec tunnel.";
            }
            container encapsulation-type {
              uses nsfikec:encap;
              description
                "This container carries
                 configuration information about
                 the source and destination ports
                 that will be used for ESP
                 encapsulation of ESP packets and
                 the type of encapsulation when NAT
                 traversal is in place.";
            }
          } /*ipsec-sa-config*/
          container ipsec-sa-state {
            config false;
            description
              "Container describing IPsec SA state
               data.";
            container sa-lifetime-current {
              uses nsfikec:lifetime;
              description
                "SAD lifetime current.";
            }
            container replay-stats {
              description
                "State data about the anti-replay
                 window.";
              container replay-window {
                leaf w {
                  type uint32;
                  description
                    "Size of the replay window.";
                }
                leaf t {
                  type uint64;
                  description
                    "Highest sequence number
                     authenticated so far,
                     upper bound of window.";
                }
                leaf b {
                  type uint64;
                  description
                    "Lower bound of window.";
                }
                description
                  "This container contains three
                   parameters that define the state
                   of the replay window: window size (w),
                   highest sequence number authenticated (t),
                   and lower bound of the window (b), according
                   to Appendix A2.1 in RFC 4303 (w = t - b + 1).";
                reference
                  "RFC 4303: IP Encapsulating Security Payload (ESP),
                             Appendix A.";
              }
              leaf packet-dropped {
                type yang:counter64;
                description
                  "Packets dropped
                   because they are
                   replay packets.";
              }
              leaf failed {
                type yang:counter64;
                description
                  "Number of packets detected out
                   of the replay window.";
              }
              leaf seq-number-counter {
                type uint64;
                description
                  "A 64-bit counter when this
                   IPsec SA is using Extended
                   Sequence Number or 32-bit
                   counter when it is not.
                   Current value of sequence
                   number.";
              }
            } /* container replay-stats*/
          } /*ipsec-sa-state*/
          description
            "List of SAD entries that form the SAD.";
        } /*list sad-entry*/
      } /*container sad*/
    } /*container ipsec-ikeless*/

    /* Notifications */

    notification sadb-acquire {
      if-feature "ikeless-notification";
      description
        "The NSF detects and notifies that
         an IPsec SA is required for an
         outbound IP packet that has matched an SPD entry.
         The traffic-selector container in this
         notification contains information about
         the IP packet that triggered this
         notification.";
      leaf ipsec-policy-name {
        type string;
        mandatory true;
        description
          "It contains the SPD entry name (unique) of
           the IPsec policy that hits the IP-packet-required
           IPsec SA.  It is assumed the
           I2NSF Controller will have a copy of the
           information of this policy so it can
           extract all the information with this
           unique identifier.  The type of IPsec SA is
           defined in the policy so the security
           controller can also know the type of IPsec
           SA that MUST be generated.";
      }
      container traffic-selector {
        description
          "The IP packet that triggered the acquire
           and requires an IPsec SA.  Specifically, it
           will contain the IP source/mask and IP
           destination/mask, protocol (udp, tcp,
           etc.), and source and destination
           ports.";
        uses nsfikec:selector-grouping;
      }
    }

    notification sadb-expire {
      if-feature "ikeless-notification";
      description
        "An IPsec SA expiration (soft or hard).";
      leaf ipsec-sa-name {
        type string;
        mandatory true;
        description
          "It contains the SAD entry name (unique) of
           the IPsec SA that is about to expire.  It is assumed
           the I2NSF Controller will have a copy of the
           IPsec SA information (except the cryptographic
           material and state data) indexed by this name
           (unique identifier) so it can know all the
           information (crypto algorithms, etc.) about
           the IPsec SA that has expired in order to
           perform a rekey (soft lifetime) or delete it
           (hard lifetime) with this unique identifier.";
      }
      leaf soft-lifetime-expire {
        type boolean;
        default "true";
        description
          "If this value is true, the lifetime expired is
           soft.  If it is false, the lifetime is hard.";
      }
      container lifetime-current {
        description
          "IPsec SA current lifetime.  If
           soft-lifetime-expired is true,
           this container is set with the
           lifetime information about current
           soft lifetime.
           It can help the NSF Controller
           to know which of the (soft) lifetime
           limits raised the event: time, bytes,
           packets, or idle.";
        uses nsfikec:lifetime;
      }
    }

    notification sadb-seq-overflow {
      if-feature "ikeless-notification";
      description
        "Sequence overflow notification.";
      leaf ipsec-sa-name {
        type string;
        mandatory true;
        description
          "It contains the SAD entry name (unique) of
           the IPsec SA that is about to have a sequence
           number overflow, and rollover is not permitted.
           When the NSF issues this event before reaching
           a sequence number, overflow is implementation
           specific and out of scope of this specification.
           It is assumed the I2NSF Controller will have a
           copy of the IPsec SA information (except the
           cryptographic material and state data) indexed
           by this name (unique identifier) so it can
           know all the information (crypto algorithms,
           etc.) about the IPsec SA in
           order to perform a rekey of the IPsec SA.";
      }
    }

    notification sadb-bad-spi {
      if-feature "ikeless-notification";
      description
        "Notify when the NSF receives a packet with an
         incorrect SPI (i.e., not present in the SAD).";
      leaf spi {
        type uint32 {
          range "0..max";
        }
        mandatory true;
        description
          "SPI number contained in the erroneous IPsec
           packet.";
      }
    }
  }
  <CODE ENDS>

6.  IANA Considerations

  IANA has registered the following namespaces in the "ns" subregistry
  within the "IETF XML Registry" [RFC3688]:

  URI:  urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec
  Registrant Contact:  The IESG.
  XML:  N/A, the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike
  Registrant Contact:  The IESG.
  XML:  N/A, the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless
  Registrant Contact:  The IESG.
  XML:  N/A, the requested URI is an XML namespace.

  IANA has registered the following YANG modules in the "YANG Module
  Names" registry [RFC6020]:

  Name:         ietf-i2nsf-ikec
  Maintained by IANA:  N
  Namespace:    urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikec
  Prefix:       nsfikec
  Reference:    RFC 9061

  Name:         ietf-i2nsf-ike
  Maintained by IANA:  N
  Namespace:    urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike
  Prefix:       nsfike
  Reference:    RFC 9061

  Name:         ietf-i2nsf-ikeless
  Maintained by IANA:  N
  Namespace:    urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless
  Prefix:       nsfikels
  Reference:    RFC 9061

7.  Security Considerations

  First of all, this document shares all the security issues of SDN
  that are specified in the Security Considerations sections of
  [ITU-T.Y.3300] and [RFC7426].

  On the one hand, it is important to note that there MUST exist a
  security association between the I2NSF Controller and the NSFs to
  protect the critical information (cryptographic keys, configuration
  parameter, etc.) exchanged between these entities.  The nature of and
  means to create that security association is out of the scope of this
  document (i.e., it is part of device provisioning or onboarding).

  On the other hand, if encryption is mandatory for all traffic of an
  NSF, its default policy MUST be to drop (DISCARD) packets to prevent
  cleartext packet leaks.  This default policy MUST be preconfigured in
  the startup configuration datastore in the NSF before the NSF
  contacts the I2NSF Controller.  Moreover, the startup configuration
  datastore MUST be also preconfigured with the required ALLOW policies
  that allow the NSF to communicate with the I2NSF Controller once the
  NSF is deployed.  This preconfiguration step is not carried out by
  the I2NSF Controller but by some other entity before the NSF
  deployment.  In this manner, when the NSF starts/reboots, it will
  always first apply the configuration in the startup configuration
  before contacting the I2NSF Controller.

  Finally, this section is divided in two parts in order to analyze
  different security considerations for both cases: NSF with IKEv2 (IKE
  case) and NSF without IKEv2 (IKE-less case).  In general, the I2NSF
  Controller, as typically in the SDN paradigm, is a target for
  different type of attacks; see [SDNSecServ] and [SDNSecurity].  Thus,
  the I2NSF Controller is a key entity in the infrastructure and MUST
  be protected accordingly.  In particular, the I2NSF Controller will
  handle cryptographic material; thus, the attacker may try to access
  this information.  The impact is different depending on the IKE case
  or the IKE-less case.

7.1.  IKE Case

  In the IKE case, the I2NSF Controller sends IKEv2 credentials (PSK,
  public/private keys, certificates, etc.) to the NSFs using the
  security association between the I2NSF Controller and NSFs.  The
  I2NSF Controller MUST NOT store the IKEv2 credentials after
  distributing them.  Moreover, the NSFs MUST NOT allow the reading of
  these values once they have been applied by the I2NSF Controller
  (i.e., write-only operations).  One option is to always return the
  same value (i.e., all 0s) if a read operation is carried out.

  If the attacker has access to the I2NSF Controller during the period
  of time that key material is generated, it might have access to the
  key material.  Since these values are used during NSF authentication
  in IKEv2, it may impersonate the affected NSFs.  Several
  recommendations are important.

  *  IKEv2 configurations SHOULD adhere to the recommendations in
     [RFC8247].

  *  If PSK authentication is used in IKEv2, the I2NSF Controller MUST
     remove the PSK immediately after generating and distributing it.

  *  When public/private keys are used, the I2NSF Controller MAY
     generate both public key and private key.  In such a case, the
     I2NSF Controller MUST remove the associated private key
     immediately after distributing them to the NSFs.  Alternatively,
     the NSF MAY generate the private key and export only the public
     key to the I2NSF Controller.  How the NSF generates these
     cryptographic materials (public key/ private keys) and exports the
     public key is out of scope of this document.

  *  If certificates are used, the NSF MAY generate the private key and
     export the public key for certification to the I2NSF Controller.
     How the NSF generates these cryptographic material (public key/
     private keys) and exports the public key is out of scope of this
     document.

7.2.  IKE-less Case

  In the IKE-less case, the I2NSF Controller sends the IPsec SA
  information to the NSF's SAD that includes the private session keys
  required for integrity and encryption.  The I2NSF Controller MUST NOT
  store the keys after distributing them.  Moreover, the NSFs receiving
  private key material MUST NOT allow the reading of these values by
  any other entity (including the I2NSF Controller itself) once they
  have been applied (i.e., write-only operations) into the NSFs.
  Nevertheless, if the attacker has access to the I2NSF Controller
  during the period of time that key material is generated, it may
  obtain these values.  In other words, the attacker might be able to
  observe the IPsec traffic and decrypt, or even modify and re-encrypt,
  the traffic between peers.

  Finally, the security association between the I2NSF Controller and
  the NSFs MUST provide, at least, the same degree of protection as the
  one achieved by the IPsec SAs configured in the NSFs.  In particular,
  the security association between the I2NSF Controller and the NSFs
  MUST provide forward secrecy if this property is to be achieved in
  the IPsec SAs that the I2NSF Controller configures in the NSFs.
  Similarly, the encryption algorithms used in the security association
  between the I2NSF Controller and the NSF MUST have, at least, the
  same strength (minimum strength of a 128-bit key) as the algorithms
  used to establish the IPsec SAs.

7.3.  YANG Modules

  The YANG modules specified in this document define a schema for data
  that is designed to be accessed via network management protocols such
  as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
  is the secure transport layer, and the mandatory-to-implement secure
  transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in these YANG modules that
  are writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  These are the subtrees and data nodes
  and their sensitivity/vulnerability:

  For the IKE case (ietf-i2nsf-ike):
     /ipsec-ike:  The entire container in this module is sensitive to
        write operations.  An attacker may add/modify the credentials
        to be used for the authentication (e.g., to impersonate an
        NSF), for the trust root (e.g., changing the trusted CA
        certificates), for the cryptographic algorithms (allowing a
        downgrading attack), for the IPsec policies (e.g., by allowing
        leaking of data traffic by changing to an allow policy), and in
        general, changing the IKE SA conditions and credentials between
        any NSF.

  For the IKE-less case (ietf-i2nsf-ikeless):
     /ipsec-ikeless:  The entire container in this module is sensitive
        to write operations.  An attacker may add/modify/delete any
        IPsec policies (e.g., by allowing leaking of data traffic by
        changing to an allow policy) in the /ipsec-ikeless/spd
        container, add/modify/delete any IPsec SAs between two NSF by
        means of /ipsec-ikeless/sad container, and, in general, change
        any IPsec SAs and IPsec policies between any NSF.

  Some of the readable data nodes in these YANG modules may be
  considered sensitive or vulnerable in some network environments.  It
  is thus important to control read access (e.g., via get, get-config,
  or notification) to these data nodes.  These are the subtrees and
  data nodes and their sensitivity/vulnerability:

  For the IKE case (ietf-i2nsf-ike):
     /ipsec-ike/pad:  This container includes sensitive information to
        read operations.  This information MUST NOT be returned to a
        client.  For example, cryptographic material configured in the
        NSFs (peer-authentication/pre-shared/secret and peer-
        authentication/digital-signature/private-key) are already
        protected by the NACM extension "default-deny-all" in this
        document.

  For the IKE-less case (ietf-i2nsf-ikeless):
     /ipsec-ikeless/sad/sad-entry/ipsec-sa-config/esp-sa:  This
        container includes symmetric keys for the IPsec SAs.  For
        example, encryption/key contains an ESP encryption key value
        and encryption/iv contains an Initialization Vector value.
        Similarly, integrity/key has an ESP integrity key value.  Those
        values MUST NOT be read by anyone and are protected by the NACM
        extension "default-deny-all" in this document.

8.  References

8.1.  Normative References

  [IANA-Method-Type]
             IANA, "Method Type",
             <https://www.iana.org/assignments/eap-numbers/>.

  [IANA-Protocols-Number]
             IANA, "Protocol Numbers",
             <https://www.iana.org/assignments/protocol-numbers/>.

  [IKEv2-Auth-Method]
             IANA, "IKEv2 Authentication Method",
             <https://www.iana.org/assignments/ikev2-parameters/>.

  [IKEv2-Parameters]
             IANA, "Internet Key Exchange Version 2 (IKEv2)
             Parameters",
             <https://www.iana.org/assignments/ikev2-parameters/>.

  [IKEv2-Transform-Type-1]
             IANA, "Transform Type 1 - Encryption Algorithm Transform
             IDs",
             <https://www.iana.org/assignments/ikev2-parameters/>.

  [IKEv2-Transform-Type-3]
             IANA, "Transform Type 3 - Integrity Algorithm Transform
             IDs",
             <https://www.iana.org/assignments/ikev2-parameters/>.

  [IKEv2-Transform-Type-4]
             IANA, "Transform Type 4 - Diffie-Hellman Group Transform
             IDs",
             <https://www.iana.org/assignments/ikev2-parameters/>.

  [ITU-T.X.690]
             International Telecommunication Union, "Information
             Technology - ASN.1 encoding rules: Specification of Basic
             Encoding Rules (BER), Canonical Encoding Rules (CER) and
             Distinguished Encoding Rules (DER)", ITU-T Recommendation
             X.690, ISO/IEC 8825-1, February 2021.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3947]  Kivinen, T., Swander, B., Huttunen, A., and V. Volpe,
             "Negotiation of NAT-Traversal in the IKE", RFC 3947,
             DOI 10.17487/RFC3947, January 2005,
             <https://www.rfc-editor.org/info/rfc3947>.

  [RFC3948]  Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
             Stenberg, "UDP Encapsulation of IPsec ESP Packets",
             RFC 3948, DOI 10.17487/RFC3948, January 2005,
             <https://www.rfc-editor.org/info/rfc3948>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <https://www.rfc-editor.org/info/rfc4301>.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, DOI 10.17487/RFC4303, December 2005,
             <https://www.rfc-editor.org/info/rfc4303>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC5322]  Resnick, P., Ed., "Internet Message Format", RFC 5322,
             DOI 10.17487/RFC5322, October 2008,
             <https://www.rfc-editor.org/info/rfc5322>.

  [RFC5915]  Turner, S. and D. Brown, "Elliptic Curve Private Key
             Structure", RFC 5915, DOI 10.17487/RFC5915, June 2010,
             <https://www.rfc-editor.org/info/rfc5915>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC6960]  Santesson, S., Myers, M., Ankney, R., Malpani, A.,
             Galperin, S., and C. Adams, "X.509 Internet Public Key
             Infrastructure Online Certificate Status Protocol - OCSP",
             RFC 6960, DOI 10.17487/RFC6960, June 2013,
             <https://www.rfc-editor.org/info/rfc6960>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
             2014, <https://www.rfc-editor.org/info/rfc7296>.

  [RFC7383]  Smyslov, V., "Internet Key Exchange Protocol Version 2
             (IKEv2) Message Fragmentation", RFC 7383,
             DOI 10.17487/RFC7383, November 2014,
             <https://www.rfc-editor.org/info/rfc7383>.

  [RFC7427]  Kivinen, T. and J. Snyder, "Signature Authentication in
             the Internet Key Exchange Version 2 (IKEv2)", RFC 7427,
             DOI 10.17487/RFC7427, January 2015,
             <https://www.rfc-editor.org/info/rfc7427>.

  [RFC7619]  Smyslov, V. and P. Wouters, "The NULL Authentication
             Method in the Internet Key Exchange Protocol Version 2
             (IKEv2)", RFC 7619, DOI 10.17487/RFC7619, August 2015,
             <https://www.rfc-editor.org/info/rfc7619>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
             "PKCS #1: RSA Cryptography Specifications Version 2.2",
             RFC 8017, DOI 10.17487/RFC8017, November 2016,
             <https://www.rfc-editor.org/info/rfc8017>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8221]  Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T.
             Kivinen, "Cryptographic Algorithm Implementation
             Requirements and Usage Guidance for Encapsulating Security
             Payload (ESP) and Authentication Header (AH)", RFC 8221,
             DOI 10.17487/RFC8221, October 2017,
             <https://www.rfc-editor.org/info/rfc8221>.

  [RFC8229]  Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
             of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
             August 2017, <https://www.rfc-editor.org/info/rfc8229>.

  [RFC8247]  Nir, Y., Kivinen, T., Wouters, P., and D. Migault,
             "Algorithm Implementation Requirements and Usage Guidance
             for the Internet Key Exchange Protocol Version 2 (IKEv2)",
             RFC 8247, DOI 10.17487/RFC8247, September 2017,
             <https://www.rfc-editor.org/info/rfc8247>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

8.2.  Informative References

  [IPSECME-CONTROLLER-IKE]
             Carrel, D. and B. Weis, "IPsec Key Exchange using a
             Controller", Work in Progress, Internet-Draft, draft-
             carrel-ipsecme-controller-ike-01, 10 March 2019,
             <https://datatracker.ietf.org/doc/html/draft-carrel-
             ipsecme-controller-ike-01>.

  [ITU-T.Y.3300]
             International Telecommunications Union, "Y.3300: Framework
             of software-defined networking", June 2014,
             <https://www.itu.int/rec/T-REC-Y.3300/en>.

  [libreswan]
             The Libreswan Project, "Libreswan VPN software",
             <https://libreswan.org/>.

  [netconf-vpn]
             Stefan Wallin, "Tutorial: NETCONF and YANG", January 2014,
             <https://ripe68.ripe.net/presentations/181-NETCONF-YANG-
             tutorial-43.pdf>.

  [ONF-OpenFlow]
             Open Networking Foundation, "OpenFlow Switch
             Specification", Version 1.4.0 (Wire Protocol 0x05),
             October 2013, <https://www.opennetworking.org/wp-
             content/uploads/2014/10/openflow-spec-v1.4.0.pdf>.

  [ONF-SDN-Architecture]
             Open Networking Foundation, "SDN architecture", Issue 1,
             June 2014, <https://www.opennetworking.org/wp-
             content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf>.

  [RFC2367]  McDonald, D., Metz, C., and B. Phan, "PF_KEY Key
             Management API, Version 2", RFC 2367,
             DOI 10.17487/RFC2367, July 1998,
             <https://www.rfc-editor.org/info/rfc2367>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC6040]  Briscoe, B., "Tunnelling of Explicit Congestion
             Notification", RFC 6040, DOI 10.17487/RFC6040, November
             2010, <https://www.rfc-editor.org/info/rfc6040>.

  [RFC6071]  Frankel, S. and S. Krishnan, "IP Security (IPsec) and
             Internet Key Exchange (IKE) Document Roadmap", RFC 6071,
             DOI 10.17487/RFC6071, February 2011,
             <https://www.rfc-editor.org/info/rfc6071>.

  [RFC6437]  Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
             "IPv6 Flow Label Specification", RFC 6437,
             DOI 10.17487/RFC6437, November 2011,
             <https://www.rfc-editor.org/info/rfc6437>.

  [RFC7149]  Boucadair, M. and C. Jacquenet, "Software-Defined
             Networking: A Perspective from within a Service Provider
             Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,
             <https://www.rfc-editor.org/info/rfc7149>.

  [RFC7426]  Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
             Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
             Defined Networking (SDN): Layers and Architecture
             Terminology", RFC 7426, DOI 10.17487/RFC7426, January
             2015, <https://www.rfc-editor.org/info/rfc7426>.

  [RFC8192]  Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R.,
             and J. Jeong, "Interface to Network Security Functions
             (I2NSF): Problem Statement and Use Cases", RFC 8192,
             DOI 10.17487/RFC8192, July 2017,
             <https://www.rfc-editor.org/info/rfc8192>.

  [RFC8329]  Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.
             Kumar, "Framework for Interface to Network Security
             Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018,
             <https://www.rfc-editor.org/info/rfc8329>.

  [SDNSecServ]
             Scott-Hayward, S., O'Callaghan, G., and P. Sezer, "Sdn
             Security: A Survey", 2013 IEEE SDN for Future Networks and
             Services (SDN4FNS), pp. 1-7,
             DOI 10.1109/SDN4FNS.2013.6702553, November 2013,
             <https://doi.org/10.1109/SDN4FNS.2013.6702553>.

  [SDNSecurity]
             Kreutz, D., Ramos, F., and P. Verissimo, "Towards secure
             and dependable software-defined networks", Proceedings of
             the second ACM SIGCOMM workshop on Hot Topics in software
             defined networking, pp. 55-60,
             DOI 10.1145/2491185.2491199, August 2013,
             <https://doi.org/10.1145/2491185.2491199>.

  [strongswan]
             CESNET, "strongSwan: the OpenSource IPsec-based VPN
             Solution", <https://www.strongswan.org/>.

  [TRAN-IPSECME-YANG]
             Tran, K., Wang, H., Nagaraj, V. K., and X. Chen, "Yang
             Data Model for Internet Protocol Security (IPsec)", Work
             in Progress, Internet-Draft, draft-tran-ipsecme-yang-01,
             18 March 2016, <https://datatracker.ietf.org/doc/html/
             draft-tran-ipsecme-yang-01>.

Appendix A.  XML Configuration Example for IKE Case (Gateway-to-Gateway)

  This example shows an XML configuration file sent by the I2NSF
  Controller to establish an IPsec SA between two NSFs (see Figure 3)
  in tunnel mode (gateway-to-gateway) with ESP, with authentication
  based on X.509 certificates (simplified for brevity with
  "base64encodedvalue==") and applying the IKE case.


                             +------------------+
                             | I2NSF Controller |
                             +------------------+
                      I2NSF NSF-Facing |
                             Interface |
                     /-----------------+---------------\
                    /                                   \
                   /                                     \
      +----+  +--------+                            +--------+  +----+
      | h1 |--| nsf_h1 |== IPsec_ESP_Tunnel_mode == | nsf_h2 |--| h2 |
      +----+  +--------+                            +--------+  +----+
             :1        :100                       :200       :1

   (2001:db8:1:/64)          (2001:db8:123:/64)       (2001:db8:2:/64)

    Figure 3: IKE Case, Tunnel Mode, X.509 Certificate Authentication

  <ipsec-ike xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ike"
  xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
    <pad>
      <pad-entry>
        <name>nsf_h1_pad</name>
        <ipv6-address>2001:db8:123::100</ipv6-address>
        <peer-authentication>
           <auth-method>digital-signature</auth-method>
           <digital-signature>
              <cert-data>base64encodedvalue==</cert-data>
              <private-key>base64encodedvalue==</private-key>
              <ca-data>base64encodedvalue==</ca-data>
           </digital-signature>
        </peer-authentication>
      </pad-entry>
      <pad-entry>
        <name>nsf_h2_pad</name>
        <ipv6-address>2001:db8:123::200</ipv6-address>
        <auth-protocol>ikev2</auth-protocol>
        <peer-authentication>
          <auth-method>digital-signature</auth-method>
          <digital-signature>
            <!-- RSA Digital Signature -->
            <ds-algorithm>1</ds-algorithm>
            <cert-data>base64encodedvalue==</cert-data>
            <ca-data>base64encodedvalue==</ca-data>
          </digital-signature>
        </peer-authentication>
      </pad-entry>
    </pad>
    <conn-entry>
       <name>nsf_h1-nsf_h2</name>
       <autostartup>start</autostartup>
       <version>ikev2</version>
       <initial-contact>false</initial-contact>
       <fragmentation><enabled>false</enabled></fragmentation>
       <ike-sa-lifetime-soft>
          <rekey-time>60</rekey-time>
          <reauth-time>120</reauth-time>
       </ike-sa-lifetime-soft>
       <ike-sa-lifetime-hard>
          <over-time>3600</over-time>
       </ike-sa-lifetime-hard>
       <!--AUTH_HMAC_SHA2_512_256-->
       <ike-sa-intr-alg>14</ike-sa-intr-alg>
       <!--ENCR_AES_CBC - 128 bits-->
       <ike-sa-encr-alg>
          <id>1</id>
       </ike-sa-encr-alg>
       <!--8192-bit MODP Group-->
       <dh-group>18</dh-group>
       <half-open-ike-sa-timer>30</half-open-ike-sa-timer>
       <half-open-ike-sa-cookie-threshold>
          15
       </half-open-ike-sa-cookie-threshold>
       <local>
           <local-pad-entry-name>nsf_h1_pad</local-pad-entry-name>
       </local>
       <remote>
           <remote-pad-entry-name>nsf_h2_pad</remote-pad-entry-name>
       </remote>
       <spd>
         <spd-entry>
            <name>nsf_h1-nsf_h2</name>
            <ipsec-policy-config>
              <anti-replay-window-size>64</anti-replay-window-size>
              <traffic-selector>
                 <local-prefix>2001:db8:1::0/64</local-prefix>
                 <remote-prefix>2001:db8:2::0/64</remote-prefix>
                 <inner-protocol>any</inner-protocol>
              </traffic-selector>
              <processing-info>
                 <action>protect</action>
                 <ipsec-sa-cfg>
                    <pfp-flag>false</pfp-flag>
                    <ext-seq-num>true</ext-seq-num>
                    <seq-overflow>false</seq-overflow>
                    <stateful-frag-check>false</stateful-frag-check>
                    <mode>tunnel</mode>
                    <protocol-parameters>esp</protocol-parameters>
                    <esp-algorithms>
                       <!-- AUTH_HMAC_SHA1_96 -->
                       <integrity>2</integrity>
                        <encryption>
                            <!-- ENCR_AES_CBC -->
                            <id>1</id>
                            <algorithm-type>12</algorithm-type>
                            <key-length>128</key-length>
                        </encryption>
                        <encryption>
                            <!-- ENCR_3DES-->
                            <id>2</id>
                            <algorithm-type>3</algorithm-type>
                        </encryption>
                       <tfc-pad>false</tfc-pad>
                    </esp-algorithms>
                    <tunnel>
                       <local>2001:db8:123::100</local>
                       <remote>2001:db8:123::200</remote>
                       <df-bit>clear</df-bit>
                       <bypass-dscp>true</bypass-dscp>
                   </tunnel>
                 </ipsec-sa-cfg>
              </processing-info>
            </ipsec-policy-config>
         </spd-entry>
       </spd>
       <child-sa-info>
          <!--8192-bit MODP Group -->
          <fs-groups>18</fs-groups>
          <child-sa-lifetime-soft>
             <bytes>1000000</bytes>
             <packets>1000</packets>
             <time>30</time>
             <idle>60</idle>
             <action>replace</action>
          </child-sa-lifetime-soft>
          <child-sa-lifetime-hard>
             <bytes>2000000</bytes>
             <packets>2000</packets>
             <time>60</time>
             <idle>120</idle>
          </child-sa-lifetime-hard>
       </child-sa-info>
     </conn-entry>
  </ipsec-ike>

Appendix B.  XML Configuration Example for IKE-less Case (Host-to-Host)

  This example shows an XML configuration file sent by the I2NSF
  Controller to establish an IPsec SA between two NSFs (see Figure 4)
  in transport mode (host-to-host) with ESP in the IKE-less case.


                           +------------------+
                           | I2NSF Controller |
                           +------------------+
                   I2NSF NSF-Facing |
                          Interface |
               /--------------------+-------------------\
              /                                          \
             /                                            \
        +--------+                                    +--------+
        | nsf_h1 |===== IPsec_ESP_Transport_mode =====| nsf_h2 |
        +--------+                                    +--------+
                :100        (2001:db8:123:/64)       :200

                 Figure 4: IKE-less Case, Transport Mode

  <ipsec-ikeless
    xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"
    xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
    <spd>
      <spd-entry>
          <name>
             in/trans/2001:db8:123::200/2001:db8:123::100
          </name>
          <direction>inbound</direction>
          <reqid>1</reqid>
          <ipsec-policy-config>
             <traffic-selector>
               <local-prefix>2001:db8:123::200/128</local-prefix>
               <remote-prefix>2001:db8:123::100/128</remote-prefix>
               <inner-protocol>any</inner-protocol>
             </traffic-selector>
             <processing-info>
                <action>protect</action>
                <ipsec-sa-cfg>
                  <ext-seq-num>true</ext-seq-num>
                  <seq-overflow>false</seq-overflow>
                  <mode>transport</mode>
                  <protocol-parameters>esp</protocol-parameters>
                  <esp-algorithms>
                     <!--AUTH_HMAC_SHA1_96-->
                     <integrity>2</integrity>
                     <!--ENCR_AES_CBC -->
                     <encryption>
                       <id>1</id>
                       <algorithm-type>12</algorithm-type>
                        <key-length>128</key-length>
                     </encryption>
                     <encryption>
                       <id>2</id>
                       <algorithm-type>3</algorithm-type>
                     </encryption>
                  </esp-algorithms>
                </ipsec-sa-cfg>
              </processing-info>
            </ipsec-policy-config>
          </spd-entry>
          <spd-entry>
            <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
            <direction>outbound</direction>
            <reqid>1</reqid>
            <ipsec-policy-config>
              <traffic-selector>
                <local-prefix>2001:db8:123::100/128</local-prefix>
                <remote-prefix>2001:db8:123::200/128</remote-prefix>
                <inner-protocol>any</inner-protocol>
              </traffic-selector>
              <processing-info>
                <action>protect</action>
                <ipsec-sa-cfg>
                  <ext-seq-num>true</ext-seq-num>
                  <seq-overflow>false</seq-overflow>
                  <mode>transport</mode>
                  <protocol-parameters>esp</protocol-parameters>
                  <esp-algorithms>
                    <!-- AUTH_HMAC_SHA1_96 -->
                    <integrity>2</integrity>
                    <!-- ENCR_AES_CBC -->
                    <encryption>
                       <id>1</id>
                       <algorithm-type>12</algorithm-type>
                       <key-length>128</key-length>
                    </encryption>
                    <encryption>
                       <id>2</id>
                       <algorithm-type>3</algorithm-type>
                    </encryption>
                  </esp-algorithms>
                 </ipsec-sa-cfg>
               </processing-info>
             </ipsec-policy-config>
          </spd-entry>
       </spd>
       <sad>
         <sad-entry>
           <name>out/trans/2001:db8:123::100/2001:db8:123::200</name>
           <reqid>1</reqid>
           <ipsec-sa-config>
              <spi>34501</spi>
              <ext-seq-num>true</ext-seq-num>
              <seq-overflow>false</seq-overflow>
              <anti-replay-window-size>64</anti-replay-window-size>
              <traffic-selector>
                <local-prefix>2001:db8:123::100/128</local-prefix>
                <remote-prefix>2001:db8:123::200/128</remote-prefix>
                   <inner-protocol>any</inner-protocol>
               </traffic-selector>
               <protocol-parameters>esp</protocol-parameters>
               <mode>transport</mode>
               <esp-sa>
                 <encryption>
                    <!-- //ENCR_AES_CBC -->
                    <encryption-algorithm>12</encryption-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                    <iv>01:23:45:67:89:AB:CE:DF</iv>
                 </encryption>
                 <integrity>
                    <!-- //AUTH_HMAC_SHA1_96 -->
                    <integrity-algorithm>2</integrity-algorithm>
                    <key>01:23:45:67:89:AB:CE:DF</key>
                 </integrity>
               </esp-sa>
           </ipsec-sa-config>
         </sad-entry>
         <sad-entry>
            <name>in/trans/2001:db8:123::200/2001:db8:123::100</name>
            <reqid>1</reqid>
            <ipsec-sa-config>
                <spi>34502</spi>
                <ext-seq-num>true</ext-seq-num>
                <seq-overflow>false</seq-overflow>
                <anti-replay-window-size>64</anti-replay-window-size>
                <traffic-selector>
                   <local-prefix>2001:db8:123::200/128</local-prefix>
                   <remote-prefix>2001:db8:123::100/128</remote-prefix>
                   <inner-protocol>any</inner-protocol>
                </traffic-selector>
                <protocol-parameters>esp</protocol-parameters>
                <mode>transport</mode>
                <esp-sa>
                   <encryption>
                      <!-- //ENCR_AES_CBC -->
                      <encryption-algorithm>12</encryption-algorithm>
                      <key>01:23:45:67:89:AB:CE:DF</key>
                      <iv>01:23:45:67:89:AB:CE:DF</iv>
                   </encryption>
                   <integrity>
                      <!-- //AUTH_HMAC_SHA1_96 -->
                      <integrity-algorithm>2</integrity-algorithm>
                      <key>01:23:45:67:89:AB:CE:DF</key>
                   </integrity>
                 </esp-sa>
                 <sa-lifetime-hard>
                    <bytes>2000000</bytes>
                    <packets>2000</packets>
                    <time>60</time>
                    <idle>120</idle>
                 </sa-lifetime-hard>
                 <sa-lifetime-soft>
                    <bytes>1000000</bytes>
                    <packets>1000</packets>
                    <time>30</time>
                    <idle>60</idle>
                    <action>replace</action>
                 </sa-lifetime-soft>
           </ipsec-sa-config>
         </sad-entry>
      </sad>
  </ipsec-ikeless>

Appendix C.  XML Notification Examples

  In the following, several XML files are shown to illustrate different
  types of notifications defined in the IKE-less YANG data model, which
  are sent by the NSF to the I2NSF Controller.  The notifications
  happen in the IKE-less case.

  <sadb-expire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
  <ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
  </ipsec-sa-name>
      <soft-lifetime-expire>true</soft-lifetime-expire>
         <lifetime-current>
            <bytes>1000000</bytes>
            <packets>1000</packets>
            <time>30</time>
            <idle>60</idle>
         </lifetime-current>
  </sadb-expire>

            Figure 5: Example of the sadb-expire Notification

  <sadb-acquire xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
      <ipsec-policy-name>in/trans/2001:db8:123::200/2001:db8:123::100
      </ipsec-policy-name>
      <traffic-selector>
          <local-prefix>2001:db8:123::200/128</local-prefix>
          <remote-prefix>2001:db8:123::100/128</remote-prefix>
          <inner-protocol>any</inner-protocol>
           <local-ports>
                <start>0</start>
                <end>0</end>
           </local-ports>
           <remote-ports>
                <start>0</start>
                <end>0</end>
           </remote-ports>
      </traffic-selector>
  </sadb-acquire>

            Figure 6: Example of the sadb-acquire Notification

  <sadb-seq-overflow
      xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
        <ipsec-sa-name>in/trans/2001:db8:123::200/2001:db8:123::100
        </ipsec-sa-name>
  </sadb-seq-overflow>

         Figure 7: Example of the sadb-seq-overflow Notification

  <sadb-bad-spi
           xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless">
          <spi>666</spi>
  </sadb-bad-spi>

            Figure 8: Example of the sadb-bad-spi Notification

Appendix D.  Operational Use Case Examples

D.1.  Example of IPsec SA Establishment

  This appendix exemplifies the applicability of the IKE case and IKE-
  less case to traditional IPsec configurations, that is, host-to-host
  and gateway-to-gateway.  The following examples assume the existence
  of two NSFs needing to establish an end-to-end IPsec SA to protect
  their communications.  Both NSFs could be two hosts that exchange
  traffic (host-to-host) or gateways (gateway-to-gateway), for example,
  within an enterprise that needs to protect the traffic between the
  networks of two branch offices.

  Applicability of these configurations appear in current and new
  networking scenarios.  For example, SD-WAN technologies are providing
  dynamic and on-demand VPN connections between branch offices or
  between branches and Software as a Service (SaaS) cloud services.
  Besides, Infrastructure as a Service (IaaS) services providing
  virtualization environments are deployments that often rely on IPsec
  to provide secure channels between virtual instances (host-to-host)
  and providing VPN solutions for virtualized networks (gateway-to-
  gateway).

  As can be observed in the following, the I2NSF-based IPsec management
  system (for IKE and IKE-less cases) exhibits various advantages:

  1.  It allows creating IPsec SAs among two NSFs, based only on the
      application of general flow-based protection policies at the
      I2NSF User.  Thus, administrators can manage all security
      associations in a centralized point with an abstracted view of
      the network.

  2.  Any NSF deployed in the system does not need manual
      configuration, therefore, allowing its deployment in an automated
      manner.

D.1.1.  IKE Case

                +----------------------------------------+
                |  I2NSF User  (IPsec Management System) |
                +----------------------------------------+
                          |
                 (1)    Flow-based    I2NSF Consumer-Facing
                     Protection Policy       Interface
                          |
                +---------|------------------------------+
                |         |                              |
                |         |   I2NSF Controller           |
                |         V                              |
                |   +--------------+ (2)+--------------+ |
                |   |Translate into|--->|   NETCONF/   | |
                |   |IPsec Policies|    |   RESTCONF   | |
                |   +--------------+    +--------------+ |
                |                          |     |       |
                |                          |     |       |
                +--------------------------|-----|-------+
                                           |     |
               I2NSF NSF-Facing Interface  |     |
                                           | (3) |
                 |-------------------------+     +---|
                 V                                   V
         +----------------------+         +----------------------+
         |       NSF A          |         |        NSF B         |
         | IKEv2/IPsec(SPD/PAD) |         | IKEv2/IPsec(SPD/PAD) |
         +----------------------+         +----------------------+

        Figure 9: Host-to-Host/Gateway-to-Gateway for the IKE Case

  Figure 9 describes the application of the IKE case when a data packet
  needs to be protected in the path between NSF A and NSF B:

  1.  The I2NSF User defines a general flow-based protection policy
      (e.g., protect data traffic between NSF A and B).  The I2NSF
      Controller looks for the NSFs involved (NSF A and NSF B).

  2.  The I2NSF Controller generates IKEv2 credentials for them and
      translates the policies into SPD and PAD entries.

  3.  The I2NSF Controller inserts an IKEv2 configuration that includes
      the SPD and PAD entries in both NSF A and NSF B.  If some of
      operations with NSF A and NSF B fail, the I2NSF Controller will
      stop the process and perform a rollback operation by deleting any
      IKEv2, SPD, and PAD configuration that had been successfully
      installed in NSF A or B.

  If the previous steps are successful, the flow is protected by means
  of the IPsec SA established with IKEv2 between NSF A and NSF B.

D.1.2.  IKE-less Case

                   +----------------------------------------+
                   | I2NSF User  (IPsec Management System)  |
                   +----------------------------------------+
                             |
                  (1)   Flow-based       I2NSF Consumer-Facing
                     Protection Policy      Interface
                             |
                   +---------|------------------------------+
                   |         |                              |
                   |         |   I2NSF Controller           |
                   |         V                              |
                   |  +--------------+ (2) +--------------+ |
                   |  |Translate into|---->|   NETCONF/   | |
                   |  |IPsec Policies|     |   RESTCONF   | |
                   |  +--------------+     +--------------+ |
                   |                         |     |        |
                   +-------------------------|-----|--------+
                                             |     |
                  I2NSF NSF-Facing Interface |     |
                                             | (3) |
                      |----------------------+     +--|
                      V                               V
             +----------------+             +----------------+
             |     NSF A      |             |     NSF B      |
             | IPsec(SPD/SAD) |             | IPsec(SPD/SAD) |
             +----------------+             +----------------+

     Figure 10: Host-to-Host/Gateway-to-Gateway for the IKE-less Case

  Figure 10 describes the application of the IKE-less case when a data
  packet needs to be protected in the path between NSF A and NSF B:

  1.  The I2NSF User establishes a general flow-based protection
      policy, and the I2NSF Controller looks for the involved NSFs.

  2.  The I2NSF Controller translates the flow-based security policies
      into IPsec SPD and SAD entries.

  3.  The I2NSF Controller inserts these entries in both NSF A and NSF
      B IPsec databases (i.e., SPD and SAD).  The following text
      describes how this would happen:

      *  The I2NSF Controller chooses two random values as SPIs, for
         example, SPIa1 for the inbound IPsec SA in NSF A and SPIb1 for
         the inbound IPsec SA in NSF B.  The value of the SPIa1 MUST
         NOT be the same as any inbound SPI in A.  In the same way, the
         value of the SPIb1 MUST NOT be the same as any inbound SPI in
         B.  Moreover, the SPIa1 MUST be used in B for the outbound
         IPsec SA to A, while SPIb1 MUST be used in A for the outbound
         IPsec SA to B.  It also generates fresh cryptographic material
         for the new inbound/outbound IPsec SAs and their parameters.

      *  After that, the I2NSF Controller simultaneously sends the new
         inbound IPsec SA with SPIa1 and new outbound IPsec SA with
         SPIb1 to NSF A and the new inbound IPsec SA with SPIb1 and new
         outbound IPsec SA with SPIa1 to B, together with the
         corresponding IPsec policies.

      *  Once the I2NSF Controller receives confirmation from NSF A and
         NSF B, it knows that the IPsec SAs are correctly installed and
         ready.

      Another alternative to this operation is the I2NSF Controller
      first sends the IPsec policies and new inbound IPsec SAs to A and
      B.  Once it obtains a successful confirmation of these operations
      from NSF A and NSF B, it proceeds with installing the new
      outbound IPsec SAs.  Even though this procedure may increase the
      latency to complete the process, no traffic is sent over the
      network until the IPsec SAs are completely operative.  In any
      case, other alternatives MAY be possible to implement step 3.

  4.  If some of the operations described above fail (e.g., NSF A
      reports an error when the I2NSF Controller is trying to install
      the SPD entry, the new inbound or outbound IPsec SAs), the I2NSF
      Controller MUST perform rollback operations by deleting any new
      inbound or outbound IPsec SA and SPD entry that had been
      successfully installed in any of the NSFs (e.g., NSF B) and stop
      the process.  Note that the I2NSF Controller MAY retry several
      times before giving up.

  5.  Otherwise, if the steps 1 to 3 are successful, the flow between
      NSF A and NSF B is protected by means of the IPsec SAs
      established by the I2NSF Controller.  It is worth mentioning that
      the I2NSF Controller associates a lifetime to the new IPsec SAs.
      When this lifetime expires, the NSF will send a sadb-expire
      notification to the I2NSF Controller in order to start the
      rekeying process.

  Instead of installing IPsec policies (in the SPD) and IPsec SAs (in
  the SAD) in step 3 (proactive mode), it is also possible that the
  I2NSF Controller only installs the SPD entries in step 3 (reactive
  mode).  In such a case, when a data packet requires to be protected
  with IPsec, the NSF that first saw the data packet will send a sadb-
  acquire notification that informs the I2NSF Controller that needs SAD
  entries with the IPsec SAs to process the data packet.  Again, if
  some of the operations installing the new inbound/outbound IPsec SAs
  fail, the I2NSF Controller stops the process and performs a rollback
  operation by deleting any new inbound/outbound SAs that had been
  successfully installed.

D.2.  Example of the Rekeying Process in IKE-less Case

  To explain an example of the rekeying process between two IPsec NSFs,
  A and B, assume that SPIa1 identifies the inbound IPsec SA in A and
  SPIb1 identifies the inbound IPsec SA in B.  The rekeying process
  will take the following steps:

  1.  The I2NSF Controller chooses two random values as SPI for the new
      inbound IPsec SAs, for example, SPIa2 for the inbound IPsec SA in
      A and SPIb2 for the inbound IPsec SA in B.  The value of the
      SPIa1 MUST NOT be the same as any inbound SPI in A.  In the same
      way, the value of the SPIb1 MUST NOT be the same as any inbound
      SPI in B.  Then, the I2NSF Controller creates an inbound IPsec SA
      with SPIa2 in A and another inbound IPsec SA in B with SPIb2.  It
      can send this information simultaneously to A and B.

  2.  Once the I2NSF Controller receives confirmation from A and B, the
      controller knows that the inbound IPsec SAs are correctly
      installed.  Then, it proceeds to send, in parallel to A and B,
      the outbound IPsec SAs: the outbound IPsec SA to A with SPIb2 and
      the outbound IPsec SA to B with SPIa2.  At this point, the new
      IPsec SAs are ready.

  3.  Once the I2NSF Controller receives confirmation from A and B that
      the outbound IPsec SAs have been installed, the I2NSF Controller,
      in parallel, deletes the old IPsec SAs from A (inbound SPIa1 and
      outbound SPIb1) and B (outbound SPIa1 and inbound SPIb1).

  If some of the operations in step 1 fail (e.g., NSF A reports an
  error when the I2NSF Controller is trying to install a new inbound
  IPsec SA), the I2NSF Controller MUST perform rollback operations by
  removing any new inbound SA that had been successfully installed
  during step 1.

  If step 1 is successful but some of the operations in step 2 fail
  (e.g., NSF A reports an error when the I2NSF Controller is trying to
  install the new outbound IPsec SA), the I2NSF Controller MUST perform
  a rollback operation by deleting any new outbound SA that had been
  successfully installed during step 2 and by deleting the inbound SAs
  created in step 1, in that order.

  If the steps 1 and 2 are successful but the step 3 fails, the I2NSF
  Controller will avoid any rollback of the operations carried out in
  steps 1 and 2, since new and valid IPsec SAs were created and are
  functional.  The I2NSF Controller MAY reattempt to remove the old
  inbound and outbound IPsec SAs in NSF A and NSF B several times until
  it receives a success or it gives up.  In the last case, the old
  IPsec SAs will be removed when their corresponding hard lifetime is
  reached.

D.3.  Example of Managing NSF State Loss in the IKE-less Case

  In the IKE-less case, if the I2NSF Controller detects that an NSF has
  lost the IPsec state, it could follow the next steps:

  1.  The I2NSF Controller SHOULD delete the old IPsec SAs on the non-
      failed nodes, established with the failed node.  This prevents
      the non-failed nodes from leaking plaintext.

  2.  If the affected node restarts, the I2NSF Controller configures
      the new inbound IPsec SAs between the affected node and all the
      nodes it was talking to.

  3.  After these inbound IPsec SAs have been established, the I2NSF
      Controller configures the outbound IPsec SAs in parallel.

  Steps 2 and 3 can be performed at the same time at the cost of a
  potential packet loss.  If this is not critical, then it is an
  optimization since the number of exchanges between the I2NSF
  Controller and NSFs is lower.

Acknowledgements

  Authors want to thank Paul Wouters, Valery Smyslov, Sowmini Varadhan,
  David Carrel, Yoav Nir, Tero Kivinen, Martin Bjorklund, Graham
  Bartlett, Sandeep Kampati, Linda Dunbar, Mohit Sethi, Martin
  Bjorklund, Tom Petch, Christian Hopps, Rob Wilton, Carlos
  J. Bernardos, Alejandro Perez-Mendez, Alejandro Abad-Carrascosa,
  Ignacio Martinez, Ruben Ricart, and all IESG members that have
  reviewed this document for their valuable comments.

Authors' Addresses

  Rafa Marin-Lopez
  University of Murcia
  Faculty of Computer Science
  Campus de Espinardo S/N
  30100  Murcia
  Spain

  Phone: +34 868 88 85 01
  Email: [email protected]


  Gabriel Lopez-Millan
  University of Murcia
  Faculty of Computer Science
  Campus de Espinardo S/N
  30100  Murcia
  Spain

  Phone: +34 868 88 85 04
  Email: [email protected]


  Fernando Pereniguez-Garcia
  University Defense Center
  Spanish Air Force Academy
  MDE-UPCT
  30720 San Javier Murcia
  Spain

  Phone: +34 968 18 99 46
  Email: [email protected]