Internet Engineering Task Force (IETF)                         J. Schaad
Request for Comments: 9053                                August Cellars
Obsoletes: 8152                                              August 2022
Category: Informational
ISSN: 2070-1721


    CBOR Object Signing and Encryption (COSE): Initial Algorithms

Abstract

  Concise Binary Object Representation (CBOR) is a data format designed
  for small code size and small message size.  There is a need to be
  able to define basic security services for this data format.  This
  document defines a set of algorithms that can be used with the CBOR
  Object Signing and Encryption (COSE) protocol (RFC 9052).

  This document, along with RFC 9052, obsoletes RFC 8152.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9053.

Copyright Notice

  Copyright (c) 2022 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Requirements Terminology
    1.2.  Changes from RFC 8152
    1.3.  Document Terminology
    1.4.  CDDL Grammar for CBOR Data Structures
    1.5.  Examples
  2.  Signature Algorithms
    2.1.  ECDSA
      2.1.1.  Security Considerations for ECDSA
    2.2.  Edwards-Curve Digital Signature Algorithm (EdDSA)
      2.2.1.  Security Considerations for EdDSA
  3.  Message Authentication Code (MAC) Algorithms
    3.1.  Hash-Based Message Authentication Codes (HMACs)
      3.1.1.  Security Considerations for HMAC
    3.2.  AES Message Authentication Code (AES-CBC-MAC)
      3.2.1.  Security Considerations for AES-CBC-MAC
  4.  Content Encryption Algorithms
    4.1.  AES-GCM
      4.1.1.  Security Considerations for AES-GCM
    4.2.  AES-CCM
      4.2.1.  Security Considerations for AES-CCM
    4.3.  ChaCha20 and Poly1305
      4.3.1.  Security Considerations for ChaCha20/Poly1305
  5.  Key Derivation Functions (KDFs)
    5.1.  HMAC-Based Extract-and-Expand Key Derivation Function
          (HKDF)
    5.2.  Context Information Structure
  6.  Content Key Distribution Methods
    6.1.  Direct Encryption
      6.1.1.  Direct Key
      6.1.2.  Direct Key with KDF
    6.2.  Key Wrap
      6.2.1.  AES Key Wrap
    6.3.  Direct Key Agreement
      6.3.1.  Direct ECDH
    6.4.  Key Agreement with Key Wrap
      6.4.1.  ECDH with Key Wrap
  7.  Key Object Parameters
    7.1.  Elliptic Curve Keys
      7.1.1.  Double Coordinate Curves
    7.2.  Octet Key Pair
    7.3.  Symmetric Keys
  8.  COSE Capabilities
    8.1.  Assignments for Existing Algorithms
    8.2.  Assignments for Existing Key Types
    8.3.  Examples
  9.  CBOR Encoding Restrictions
  10. IANA Considerations
    10.1.  Changes to the "COSE Key Types" Registry
    10.2.  Changes to the "COSE Algorithms" Registry
    10.3.  Changes to the "COSE Key Type Parameters" Registry
    10.4.  Expert Review Instructions
  11. Security Considerations
  12. References
    12.1.  Normative References
    12.2.  Informative References
  Acknowledgments
  Author's Address

1.  Introduction

  There has been an increased focus on small, constrained devices that
  make up the Internet of Things (IoT).  One of the standards that has
  come out of this process is "Concise Binary Object Representation
  (CBOR)" [STD94].  CBOR extended the data model of JavaScript Object
  Notation (JSON) [STD90] by allowing for binary data, among other
  changes.  CBOR has been adopted by several of the IETF working groups
  dealing with the IoT world as their method of encoding data
  structures.  CBOR was designed specifically to be small in terms of
  both messages transported and implementation size and to have a
  schema-free decoder.  A need exists to provide message security
  services for IoT, and using CBOR as the message-encoding format makes
  sense.

  The core COSE specification consists of two documents.  [RFC9052]
  contains the serialization structures and the procedures for using
  the different cryptographic algorithms.  This document provides an
  initial set of algorithms for use with those structures.

1.1.  Requirements Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.2.  Changes from RFC 8152

  *  Extracted the sections dealing with specific algorithms and placed
     them into this document.  The sections dealing with structure and
     general processing rules are placed in [RFC9052].

  *  Made text clarifications and changes in terminology.

  *  Removed all of the details relating to countersignatures and
     placed them in [COUNTERSIGN].

1.3.  Document Terminology

  In this document, we use the following terminology:

  Byte:  A synonym for octet.

  Constrained Application Protocol (CoAP):  A specialized web transfer
     protocol for use in constrained systems.  It is defined in
     [RFC7252].

  Authenticated Encryption (AE) algorithms [RFC5116]:  Encryption
     algorithms that provide an authentication check of the contents
     along with the encryption service.  An example of an AE algorithm
     used in COSE is AES Key Wrap [RFC3394].  These algorithms are used
     for key encryption, but Authenticated Encryption with Associated
     Data (AEAD) algorithms would be preferred.

  AEAD algorithms [RFC5116]:  Encryption algorithms that provide the
     same authentication service of the content as AE algorithms do,
     and also allow associated data that is not part of the encrypted
     body to be included in the authentication service.  An example of
     an AEAD algorithm used in COSE is AES-GCM [RFC5116].  These
     algorithms are used for content encryption and can be used for key
     encryption as well.

  The term "byte string" is used for sequences of bytes, while the term
  "text string" is used for sequences of characters.

  The tables for algorithms contain the following columns:

  *  A name for the algorithm for use in documents.

  *  The value used on the wire for the algorithm.  One place this is
     used is the algorithm header parameter of a message.

  *  A short description so that the algorithm can be easily identified
     when scanning the IANA registry.

  Additional columns may be present in a table depending on the
  algorithms.

1.4.  CDDL Grammar for CBOR Data Structures

  When COSE was originally written, the Concise Data Definition
  Language (CDDL) [RFC8610] had not yet been published in an RFC, so it
  could not be used as the data description language to normatively
  describe the CBOR data structures employed by COSE.  For that reason,
  the CBOR data objects defined here are described in prose.
  Additional (non-normative) descriptions of the COSE data objects are
  provided in a subset of CDDL, described in [RFC9052].

1.5.  Examples

  A GitHub project has been created at [GitHub-Examples] that contains
  a set of testing examples.  Each example is found in a JSON file that
  contains the inputs used to create the example, some of the
  intermediate values that can be used for debugging, and the output of
  the example.  The results are encoded using both hexadecimal and CBOR
  diagnostic notation format.

  Some of the examples are designed to be failure-testing cases; these
  are clearly marked as such in the JSON file.

2.  Signature Algorithms

  Section 8.1 of [RFC9052] contains a generic description of signature
  algorithms.  This document defines signature algorithm identifiers
  for two signature algorithms.

2.1.  ECDSA

  The Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] defines
  a signature algorithm using Elliptic Curve Cryptography (ECC).
  Implementations SHOULD use a deterministic version of ECDSA such as
  the one defined in [RFC6979].  The use of a deterministic signature
  algorithm allows systems to avoid relying on random number generators
  in order to avoid generating the same value of "k" (the per-message
  random value).  Biased generation of the value "k" can be attacked,
  and collisions of this value lead to leaked keys.  It additionally
  allows performing deterministic tests for the signature algorithm.
  The use of deterministic ECDSA does not lessen the need to have good
  random number generation when creating the private key.

  The ECDSA signature algorithm is parameterized with a hash function
  (h).  In the event that the length of the hash function output is
  greater than the group of the key, the leftmost bytes of the hash
  output are used.

  The algorithms defined in this document can be found in Table 1.

             +=======+=======+=========+==================+
             | Name  | Value | Hash    | Description      |
             +=======+=======+=========+==================+
             | ES256 |   -7  | SHA-256 | ECDSA w/ SHA-256 |
             +-------+-------+---------+------------------+
             | ES384 |  -35  | SHA-384 | ECDSA w/ SHA-384 |
             +-------+-------+---------+------------------+
             | ES512 |  -36  | SHA-512 | ECDSA w/ SHA-512 |
             +-------+-------+---------+------------------+

                    Table 1: ECDSA Algorithm Values

  This document defines ECDSA as working only with the curves P-256,
  P-384, and P-521.  This document requires that the curves be encoded
  using the "EC2" (two coordinate elliptic curve) key type.
  Implementations need to check that the key type and curve are correct
  when creating and verifying a signature.  Future documents may define
  it to work with other curves and key types in the future.

  In order to promote interoperability, it is suggested that SHA-256 be
  used only with curve P-256, SHA-384 be used only with curve P-384,
  and SHA-512 be used only with curve P-521.  This is aligned with the
  recommendation in Section 4 of [RFC5480].

  The signature algorithm results in a pair of integers (R, S).  These
  integers will be the same length as the length of the key used for
  the signature process.  The signature is encoded by converting the
  integers into byte strings of the same length as the key size.  The
  length is rounded up to the nearest byte and is left padded with zero
  bits to get to the correct length.  The two integers are then
  concatenated together to form a byte string that is the resulting
  signature.

  Using the function defined in [RFC8017], the signature is:

  Signature = I2OSP(R, n) | I2OSP(S, n)

  where n = ceiling(key_length / 8)

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "EC2".

  *  If the "alg" field is present, it MUST match the ECDSA signature
     algorithm being used.

  *  If the "key_ops" field is present, it MUST include "sign" when
     creating an ECDSA signature.

  *  If the "key_ops" field is present, it MUST include "verify" when
     verifying an ECDSA signature.

2.1.1.  Security Considerations for ECDSA

  The security strength of the signature is no greater than the minimum
  of the security strength associated with the bit length of the key
  and the security strength of the hash function.

  Note: Use of a deterministic signature technique is a good idea even
  when good random number generation exists.  Doing so both reduces the
  possibility of having the same value of "k" in two signature
  operations and allows for reproducible signature values, which helps
  testing.  There have been recent attacks involving faulting the
  device in order to extract the key.  This can be addressed by
  combining both randomness and determinism [CFRG-DET-SIGS].

  There are two substitution attacks that can theoretically be mounted
  against the ECDSA signature algorithm.

  *  Changing the curve used to validate the signature: If one changes
     the curve used to validate the signature, then potentially one
     could have two messages with the same signature, each computed
     under a different curve.  The only requirements on the new curve
     are that its order be the same as the old one and that it be
     acceptable to the client.  An example would be to change from
     using the curve secp256r1 (aka P-256) to using secp256k1.  (Both
     are 256-bit curves.)  We currently do not have any way to deal
     with this version of the attack except to restrict the overall set
     of curves that can be used.

  *  Changing the hash function used to validate the signature: If one
     either has two different hash functions of the same length or can
     truncate a hash function, then one could potentially find
     collisions between the hash functions rather than within a single
     hash function.  For example, truncating SHA-512 to 256 bits might
     collide with a SHA-256 bit hash value.  As the hash algorithm is
     part of the signature algorithm identifier, this attack is
     mitigated by including a signature algorithm identifier in the
     protected-header bucket.

2.2.  Edwards-Curve Digital Signature Algorithm (EdDSA)

  [RFC8032] describes the elliptic curve signature scheme Edwards-curve
  Digital Signature Algorithm (EdDSA).  In that document, the signature
  algorithm is instantiated using parameters for the edwards25519 and
  edwards448 curves.  The document additionally describes two variants
  of the EdDSA algorithm: Pure EdDSA, where no hash function is applied
  to the content before signing, and HashEdDSA, where a hash function
  is applied to the content before signing and the result of that hash
  function is signed.  For EdDSA, the content to be signed (either the
  message or the prehash value) is processed twice inside of the
  signature algorithm.  For use with COSE, only the pure EdDSA version
  is used.  This is because it is not expected that extremely large
  contents are going to be needed and, based on the arrangement of the
  message structure, the entire message is going to need to be held in
  memory in order to create or verify a signature.  Therefore, there
  does not appear to be a need to be able to do block updates of the
  hash, followed by eliminating the message from memory.  Applications
  can provide the same features by defining the content of the message
  as a hash value and transporting the COSE object (with the hash
  value) and the content as separate items.

  The algorithm defined in this document can be found in Table 2.  A
  single signature algorithm is defined, which can be used for multiple
  curves.

                     +=======+=======+=============+
                     | Name  | Value | Description |
                     +=======+=======+=============+
                     | EdDSA |   -8  | EdDSA       |
                     +-------+-------+-------------+

                      Table 2: EdDSA Algorithm Value

  [RFC8032] describes the method of encoding the signature value.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "OKP" (Octet Key
     Pair).

  *  The "crv" field MUST be present, and it MUST be a curve defined
     for this signature algorithm.

  *  If the "alg" field is present, it MUST match "EdDSA".

  *  If the "key_ops" field is present, it MUST include "sign" when
     creating an EdDSA signature.

  *  If the "key_ops" field is present, it MUST include "verify" when
     verifying an EdDSA signature.

2.2.1.  Security Considerations for EdDSA

  Public values are computed differently in EdDSA and Elliptic Curve
  Diffie-Hellman (ECDH); for this reason, the public key from one
  should not be used with the other algorithm.

  If batch signature verification is performed, a well-seeded
  cryptographic random number generator is REQUIRED (Section 8.2 of
  [RFC8032]).  Signing and nonbatch signature verification are
  deterministic operations and do not need random numbers of any kind.

3.  Message Authentication Code (MAC) Algorithms

  Section 8.2 of [RFC9052] contains a generic description of MAC
  algorithms.  This section defines the conventions for two MAC
  algorithms.

3.1.  Hash-Based Message Authentication Codes (HMACs)

  HMAC [RFC2104] [RFC4231] was designed to deal with length extension
  attacks.  The HMAC algorithm was also designed to allow new hash
  functions to be directly plugged in without changes to the hash
  function.  The HMAC design process has been shown to be solid;
  although the security of hash functions such as MD5 has decreased
  over time, the security of HMAC combined with MD5 has not yet been
  shown to be compromised [RFC6151].

  The HMAC algorithm is parameterized by an inner and outer padding, a
  hash function (h), and an authentication tag value length.  For this
  specification, the inner and outer padding are fixed to the values
  set in [RFC2104].  The length of the authentication tag corresponds
  to the difficulty of producing a forgery.  For use in constrained
  environments, we define one HMAC algorithm that is truncated.  There
  are currently no known issues with truncation; however, the security
  strength of the message tag is correspondingly reduced in strength.
  When truncating, the leftmost tag-length bits are kept and
  transmitted.

  The algorithms defined in this document can be found in Table 3.

  +=============+=======+=========+============+======================+
  | Name        | Value | Hash    | Tag Length | Description          |
  +=============+=======+=========+============+======================+
  | HMAC        |   4   | SHA-256 |     64     | HMAC w/ SHA-256      |
  | 256/64      |       |         |            | truncated to 64 bits |
  +-------------+-------+---------+------------+----------------------+
  | HMAC        |   5   | SHA-256 |    256     | HMAC w/ SHA-256      |
  | 256/256     |       |         |            |                      |
  +-------------+-------+---------+------------+----------------------+
  | HMAC        |   6   | SHA-384 |    384     | HMAC w/ SHA-384      |
  | 384/384     |       |         |            |                      |
  +-------------+-------+---------+------------+----------------------+
  | HMAC        |   7   | SHA-512 |    512     | HMAC w/ SHA-512      |
  | 512/512     |       |         |            |                      |
  +-------------+-------+---------+------------+----------------------+

                      Table 3: HMAC Algorithm Values

  Some recipient algorithms transport the key, while others derive a
  key from secret data.  For those algorithms that transport the key
  (such as AES Key Wrap), the size of the HMAC key SHOULD be the same
  size as the output of the underlying hash function.  For those
  algorithms that derive the key (such as ECDH), the derived key MUST
  be the same size as the output of the underlying hash function.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the HMAC algorithm
     being used.

  *  If the "key_ops" field is present, it MUST include "MAC create"
     when creating an HMAC authentication tag.

  *  If the "key_ops" field is present, it MUST include "MAC verify"
     when verifying an HMAC authentication tag.

  Implementations creating and validating MAC values MUST validate that
  the key type, key length, and algorithm are correct and appropriate
  for the entities involved.

3.1.1.  Security Considerations for HMAC

  HMAC has proved to be resistant to attack even when used with
  weakened hash algorithms.  The current best known attack is to brute
  force the key.  This means that key size is going to be directly
  related to the security of an HMAC operation.

3.2.  AES Message Authentication Code (AES-CBC-MAC)

  AES-CBC-MAC is the instantiation of the CBC-MAC construction (defined
  in [MAC]) using AES as the block cipher.  For brevity, we also use
  "AES-MAC" to refer to AES-CBC-MAC.  (Note that this is not the same
  algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)
  [RFC4493].)

  AES-CBC-MAC is parameterized by the key length, the authentication
  tag length, and the Initialization Vector (IV) used.  For all of
  these algorithms, the IV is fixed to all zeros.  We provide an array
  of algorithms for various key and tag lengths.  The algorithms
  defined in this document are found in Table 4.

    +=========+=======+============+============+==================+
    | Name    | Value | Key Length | Tag Length | Description      |
    +=========+=======+============+============+==================+
    | AES-MAC |   14  |    128     |     64     | AES-MAC 128-bit  |
    | 128/64  |       |            |            | key, 64-bit tag  |
    +---------+-------+------------+------------+------------------+
    | AES-MAC |   15  |    256     |     64     | AES-MAC 256-bit  |
    | 256/64  |       |            |            | key, 64-bit tag  |
    +---------+-------+------------+------------+------------------+
    | AES-MAC |   25  |    128     |    128     | AES-MAC 128-bit  |
    | 128/128 |       |            |            | key, 128-bit tag |
    +---------+-------+------------+------------+------------------+
    | AES-MAC |   26  |    256     |    128     | AES-MAC 256-bit  |
    | 256/128 |       |            |            | key, 128-bit tag |
    +---------+-------+------------+------------+------------------+

                   Table 4: AES-MAC Algorithm Values

  Keys may be obtained from either a key structure or a recipient
  structure.  Implementations creating and validating MAC values MUST
  validate that the key type, key length, and algorithm are correct and
  appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the AES-MAC algorithm
     being used.

  *  If the "key_ops" field is present, it MUST include "MAC create"
     when creating an AES-MAC authentication tag.

  *  If the "key_ops" field is present, it MUST include "MAC verify"
     when verifying an AES-MAC authentication tag.

3.2.1.  Security Considerations for AES-CBC-MAC

  A number of attacks exist against Cipher Block Chaining Message
  Authentication Code (CBC-MAC) that need to be considered.

  *  A single key must only be used for messages of a fixed or known
     length.  If this is not the case, an attacker will be able to
     generate a message with a valid tag given two message and tag
     pairs.  This can be addressed by using different keys for messages
     of different lengths.  The current structure mitigates this
     problem, as a specific encoding structure that includes lengths is
     built and signed.  (CMAC also addresses this issue.)

  *  In Cipher Block Chaining (CBC) mode, if the same key is used for
     both encryption and authentication operations, an attacker can
     produce messages with a valid authentication code.

  *  If the IV can be modified, then messages can be forged.  This is
     addressed by fixing the IV to all zeros.

4.  Content Encryption Algorithms

  Section 8.3 of [RFC9052] contains a generic description of content
  encryption algorithms.  This document defines the identifier and
  usages for three content encryption algorithms.

4.1.  AES-GCM

  The Galois/Counter Mode (GCM) mode is a generic AEAD block cipher
  mode defined in [AES-GCM].  The GCM mode is combined with the AES
  block encryption algorithm to define an AEAD cipher.

  The GCM mode is parameterized by the size of the authentication tag
  and the size of the nonce.  This document fixes the size of the nonce
  at 96 bits.  The size of the authentication tag is limited to a small
  set of values.  For this document, however, the size of the
  authentication tag is fixed at 128 bits.

  The set of algorithms defined in this document is in Table 5.

     +=========+=======+==========================================+
     | Name    | Value | Description                              |
     +=========+=======+==========================================+
     | A128GCM |   1   | AES-GCM mode w/ 128-bit key, 128-bit tag |
     +---------+-------+------------------------------------------+
     | A192GCM |   2   | AES-GCM mode w/ 192-bit key, 128-bit tag |
     +---------+-------+------------------------------------------+
     | A256GCM |   3   | AES-GCM mode w/ 256-bit key, 128-bit tag |
     +---------+-------+------------------------------------------+

                 Table 5: Algorithm Values for AES-GCM

  Keys may be obtained from either a key structure or a recipient
  structure.  Implementations that are encrypting or decrypting MUST
  validate that the key type, key length, and algorithm are correct and
  appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the AES-GCM algorithm
     being used.

  *  If the "key_ops" field is present, it MUST include "encrypt" or
     "wrap key" when encrypting.

  *  If the "key_ops" field is present, it MUST include "decrypt" or
     "unwrap key" when decrypting.

4.1.1.  Security Considerations for AES-GCM

  When using AES-GCM, the following restrictions MUST be enforced:

  *  The key and nonce pair MUST be unique for every message encrypted.

  *  The total number of messages encrypted for a single key MUST NOT
     exceed 2^32 [SP800-38D].  An explicit check is required only in
     environments where it is expected that this limit might be
     exceeded.

  *  [RFC8446] contains an analysis on the use of AES-CGM for its
     environment.  Based on that recommendation, one should restrict
     the number of messages encrypted to 2^24.5.

  *  A more recent analysis in [ROBUST] indicates that the number of
     failed decryptions needs to be taken into account as part of
     determining when a key rollover is to be done.  Following the
     recommendation in DTLS (Section 4.5.3 of [RFC9147]), the number of
     failed message decryptions should be limited to 2^36.

  Consideration was given to supporting smaller tag values; the
  constrained community would desire tag sizes in the 64-bit range.
  Such use drastically changes both the maximum message size (generally
  not an issue) and the number of times that a key can be used.  Given
  that Counter with CBC-MAC (CCM) is the usual mode for constrained
  environments, restricted modes are not supported.

4.2.  AES-CCM

  CCM is a generic authentication encryption block cipher mode defined
  in [RFC3610].  The CCM mode is combined with the AES block encryption
  algorithm to define an AEAD cipher that is commonly used in
  constrained devices.

  The CCM mode has two parameter choices.  The first choice is M, the
  size of the authentication field.  The choice of the value for M
  involves a trade-off between message growth (from the tag) and the
  probability that an attacker can undetectably modify a message.  The
  second choice is L, the size of the length field.  This value
  requires a trade-off between the maximum message size and the size of
  the nonce.

  It is unfortunate that the specification for CCM specified L and M as
  a count of bytes rather than a count of bits.  This leads to possible
  misunderstandings where AES-CCM-8 is frequently used to refer to a
  version of CCM mode where the size of the authentication is 64 bits
  and not 8 bits.  In most cryptographic algorithm specifications,
  these values have traditionally been specified as bit counts rather
  than byte counts.  This document will follow the convention of using
  bit counts so that it is easier to compare the different algorithms
  presented in this document.

  We define a matrix of algorithms in this document over the values of
  L and M.  Constrained devices are usually operating in situations
  where they use short messages and want to avoid doing recipient-
  specific cryptographic operations.  This favors smaller values of
  both L and M.  Less-constrained devices will want to be able to use
  larger messages and are more willing to generate new keys for every
  operation.  This favors larger values of L and M.

  The following values are used for L:

  16 bits (2):  This limits messages to 2^16 bytes (64 KiB) in length.
     This is sufficiently long for messages in the constrained world.
     The nonce length is 13 bytes allowing for 2^104 possible values of
     the nonce without repeating.

  64 bits (8):  This limits messages to 2^64 bytes in length.  The
     nonce length is 7 bytes, allowing for 2^56 possible values of the
     nonce without repeating.

  The following values are used for M:

  64 bits (8):  This produces a 64-bit authentication tag.  This
     implies that there is a 1 in 2^64 chance that a modified message
     will authenticate.

  128 bits (16):  This produces a 128-bit authentication tag.  This
     implies that there is a 1 in 2^128 chance that a modified message
     will authenticate.

   +====================+=======+====+=====+========+===============+
   | Name               | Value | L  | M   |  Key   | Description   |
   |                    |       |    |     | Length |               |
   +====================+=======+====+=====+========+===============+
   | AES-CCM-16-64-128  |   10  | 16 | 64  |  128   | AES-CCM mode  |
   |                    |       |    |     |        | 128-bit key,  |
   |                    |       |    |     |        | 64-bit tag,   |
   |                    |       |    |     |        | 13-byte nonce |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-16-64-256  |   11  | 16 | 64  |  256   | AES-CCM mode  |
   |                    |       |    |     |        | 256-bit key,  |
   |                    |       |    |     |        | 64-bit tag,   |
   |                    |       |    |     |        | 13-byte nonce |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-64-64-128  |   12  | 64 | 64  |  128   | AES-CCM mode  |
   |                    |       |    |     |        | 128-bit key,  |
   |                    |       |    |     |        | 64-bit tag,   |
   |                    |       |    |     |        | 7-byte nonce  |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-64-64-256  |   13  | 64 | 64  |  256   | AES-CCM mode  |
   |                    |       |    |     |        | 256-bit key,  |
   |                    |       |    |     |        | 64-bit tag,   |
   |                    |       |    |     |        | 7-byte nonce  |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-16-128-128 |   30  | 16 | 128 |  128   | AES-CCM mode  |
   |                    |       |    |     |        | 128-bit key,  |
   |                    |       |    |     |        | 128-bit tag,  |
   |                    |       |    |     |        | 13-byte nonce |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-16-128-256 |   31  | 16 | 128 |  256   | AES-CCM mode  |
   |                    |       |    |     |        | 256-bit key,  |
   |                    |       |    |     |        | 128-bit tag,  |
   |                    |       |    |     |        | 13-byte nonce |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-64-128-128 |   32  | 64 | 128 |  128   | AES-CCM mode  |
   |                    |       |    |     |        | 128-bit key,  |
   |                    |       |    |     |        | 128-bit tag,  |
   |                    |       |    |     |        | 7-byte nonce  |
   +--------------------+-------+----+-----+--------+---------------+
   | AES-CCM-64-128-256 |   33  | 64 | 128 |  256   | AES-CCM mode  |
   |                    |       |    |     |        | 256-bit key,  |
   |                    |       |    |     |        | 128-bit tag,  |
   |                    |       |    |     |        | 7-byte nonce  |
   +--------------------+-------+----+-----+--------+---------------+

                 Table 6: Algorithm Values for AES-CCM

  Keys may be obtained from either a key structure or a recipient
  structure.  Implementations that are encrypting or decrypting MUST
  validate that the key type, key length, and algorithm are correct and
  appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the AES-CCM algorithm
     being used.

  *  If the "key_ops" field is present, it MUST include "encrypt" or
     "wrap key" when encrypting.

  *  If the "key_ops" field is present, it MUST include "decrypt" or
     "unwrap key" when decrypting.

4.2.1.  Security Considerations for AES-CCM

  When using AES-CCM, the following restrictions MUST be enforced:

  *  The key and nonce pair MUST be unique for every message encrypted.
     Note that the value of L influences the number of unique nonces.

  *  The total number of times the AES block cipher is used MUST NOT
     exceed 2^61 operations.  This limit is the sum of times the block
     cipher is used in computing the MAC value and performing stream
     encryption operations.  An explicit check is required only in
     environments where it is expected that this limit might be
     exceeded.

  *  [RFC9147] contains an analysis on the use of AES-CCM for its
     environment.  Based on that recommendation, one should restrict
     the number of messages encrypted to 2^23.

  *  In addition to the number of messages successfully decrypted, the
     number of failed decryptions needs to be tracked as well.
     Following the recommendation in DTLS (Section 4.5.3 of [RFC9147]),
     the number of failed message decryptions should be limited to
     2^23.5.  If one is using the 64-bit tag, then the limits are
     significantly smaller if one wants to keep the same integrity
     limits.  A protocol recommending this needs to analyze what level
     of integrity is acceptable for the smaller tag size.  It may be
     that, to keep the desired level of integrity, one needs to rekey
     as often as every 2^7 messages.

  [RFC3610] additionally calls out one other consideration of note.  It
  is possible to do a precomputation attack against the algorithm in
  cases where portions of the plaintext are highly predictable.  This
  reduces the security of the key size by half.  Ways to deal with this
  attack include adding a random portion to the nonce value and/or
  increasing the key size used.  Using a portion of the nonce for a
  random value will decrease the number of messages that a single key
  can be used for.  Increasing the key size may require more resources
  in the constrained device.  See Sections 5 and 10 of [RFC3610] for
  more information.

4.3.  ChaCha20 and Poly1305

  ChaCha20 and Poly1305 combined together is an AEAD mode that is
  defined in [RFC8439].  This is an algorithm defined using a cipher
  that is not AES and thus would not suffer from any future weaknesses
  found in AES.  These cryptographic functions are designed to be fast
  in software-only implementations.

  The ChaCha20/Poly1305 AEAD construction defined in [RFC8439] has no
  parameterization.  It takes as inputs a 256-bit key and a 96-bit
  nonce, as well as the plaintext and additional data, and produces the
  ciphertext as an output.  We define one algorithm identifier for this
  algorithm in Table 7.

        +===================+=======+==========================+
        | Name              | Value | Description              |
        +===================+=======+==========================+
        | ChaCha20/Poly1305 |   24  | ChaCha20/Poly1305 w/     |
        |                   |       | 256-bit key, 128-bit tag |
        +-------------------+-------+--------------------------+

             Table 7: Algorithm Value for ChaCha20/Poly1305

  Keys may be obtained from either a key structure or a recipient
  structure.  Implementations that are encrypting or decrypting MUST
  validate that the key type, key length, and algorithm are correct and
  appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the ChaCha20/Poly1305
     algorithm being used.

  *  If the "key_ops" field is present, it MUST include "encrypt" or
     "wrap key" when encrypting.

  *  If the "key_ops" field is present, it MUST include "decrypt" or
     "unwrap key" when decrypting.

4.3.1.  Security Considerations for ChaCha20/Poly1305

  The key and nonce values MUST be a unique pair for every invocation
  of the algorithm.  Nonce counters are considered to be an acceptable
  way of ensuring that they are unique.

  A more recent analysis in [ROBUST] indicates that the number of
  failed decryptions needs to be taken into account as part of
  determining when a key rollover is to be done.  Following the
  recommendation in DTLS (Section 4.5.3 of [RFC9147]), the number of
  failed message decryptions should be limited to 2^36.

  [RFC8446] notes that the (64-bit) record sequence number would wrap
  before the safety limit is reached for ChaCha20/Poly1305.  COSE
  implementations should not send more than 2^64 messages encrypted
  using a single ChaCha20/Poly1305 key.

5.  Key Derivation Functions (KDFs)

  Section 8.4 of [RFC9052] contains a generic description of key
  derivation functions.  This document defines a single context
  structure and a single KDF.  These elements are used for all of the
  recipient algorithms defined in this document that require a KDF
  process.  These algorithms are defined in Sections 6.1.2, 6.3.1, and
  6.4.1.

5.1.  HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

  The HKDF key derivation algorithm is defined in [RFC5869] and [HKDF].

  The HKDF algorithm takes these inputs:

  secret:  A shared value that is secret.  Secrets may be either
     previously shared or derived from operations like a Diffie-Hellman
     (DH) key agreement.

  salt:  An optional value that is used to change the generation
     process.  The salt value can be either public or private.  If the
     salt is public and carried in the message, then the "salt"
     algorithm header parameter defined in Table 9 is used.  While
     [RFC5869] suggests that the length of the salt be the same as the
     length of the underlying hash value, any positive salt length will
     improve the security, as different key values will be generated.
     This parameter is protected by being included in the key
     computation and does not need to be separately authenticated.  The
     salt value does not need to be unique for every message sent.

  length:  The number of bytes of output that need to be generated.

  context information:  Information that describes the context in which
     the resulting value will be used.  Making this information
     specific to the context in which the material is going to be used
     ensures that the resulting material will always be tied to that
     usage.  The context structure defined in Section 5.2 is used by
     the KDFs in this document.

  PRF:  The underlying pseudorandom function to be used in the HKDF
     algorithm.  The PRF is encoded into the HKDF algorithm selection.

  HKDF is defined to use HMAC as the underlying PRF.  However, it is
  possible to use other functions in the same construct to provide a
  different KDF that is more appropriate in the constrained world.
  Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
  but not for the extract step.  When using a good random shared secret
  of the correct length, the extract step can be skipped.  For the AES
  algorithm versions, the extract step is always skipped.

  The extract step cannot be skipped if the secret is not uniformly
  random -- for example, if it is the result of an ECDH key agreement
  step.  This implies that the AES HKDF version cannot be used with
  ECDH.  If the extract step is skipped, the "salt" value is not used
  as part of the HKDF functionality.

  The algorithms defined in this document are found in Table 8.

      +==============+===================+========================+
      | Name         | PRF               | Description            |
      +==============+===================+========================+
      | HKDF SHA-256 | HMAC with SHA-256 | HKDF using HMAC        |
      |              |                   | SHA-256 as the PRF     |
      +--------------+-------------------+------------------------+
      | HKDF SHA-512 | HMAC with SHA-512 | HKDF using HMAC        |
      |              |                   | SHA-512 as the PRF     |
      +--------------+-------------------+------------------------+
      | HKDF AES-    | AES-CBC-MAC-128   | HKDF using AES-MAC as  |
      | MAC-128      |                   | the PRF w/ 128-bit key |
      +--------------+-------------------+------------------------+
      | HKDF AES-    | AES-CBC-MAC-256   | HKDF using AES-MAC as  |
      | MAC-256      |                   | the PRF w/ 256-bit key |
      +--------------+-------------------+------------------------+

                         Table 8: HKDF Algorithms

   +======+=======+======+============================+=============+
   | Name | Label | Type | Algorithm                  | Description |
   +======+=======+======+============================+=============+
   | salt | -20   | bstr | direct+HKDF-SHA-256,       | Random salt |
   |      |       |      | direct+HKDF-SHA-512,       |             |
   |      |       |      | direct+HKDF-AES-128,       |             |
   |      |       |      | direct+HKDF-AES-256, ECDH- |             |
   |      |       |      | ES+HKDF-256, ECDH-ES+HKDF- |             |
   |      |       |      | 512, ECDH-SS+HKDF-256,     |             |
   |      |       |      | ECDH-SS+HKDF-512, ECDH-    |             |
   |      |       |      | ES+A128KW, ECDH-ES+A192KW, |             |
   |      |       |      | ECDH-ES+A256KW, ECDH-      |             |
   |      |       |      | SS+A128KW, ECDH-SS+A192KW, |             |
   |      |       |      | ECDH-SS+A256KW             |             |
   +------+-------+------+----------------------------+-------------+

                   Table 9: HKDF Algorithm Parameters

5.2.  Context Information Structure

  The context information structure is used to ensure that the derived
  keying material is "bound" to the context of the transaction.  The
  context information structure used here is based on that defined in
  [SP800-56A].  By using CBOR for the encoding of the context
  information structure, we automatically get the same type and length
  separation of fields that is obtained by the use of ASN.1.  This
  means that there is no need to encode the lengths for the base
  elements, as it is done by the encoding used in JSON Object Signing
  and Encryption (JOSE) (Section 4.6.2 of [RFC7518]).

  The context information structure refers to PartyU and PartyV as the
  two parties that are doing the key derivation.  Unless the
  application protocol defines differently, we assign PartyU to the
  entity that is creating the message and PartyV to the entity that is
  receiving the message.  By defining this association, different keys
  will be derived for each direction, as the context information is
  different in each direction.

  The context structure is built from information that is known to both
  entities.  This information can be obtained from a variety of
  sources:

  *  Fields can be defined by the application.  This is commonly used
     to assign fixed names to parties, but it can be used for other
     items such as nonces.

  *  Fields can be defined by usage of the output.  Examples of this
     are the algorithm and key size that are being generated.

  *  Fields can be defined by parameters from the message.  We define a
     set of header parameters in Table 10 that can be used to carry the
     values associated with the context structure.  Examples of this
     are identities and nonce values.  These header parameters are
     designed to be placed in the unprotected bucket of the recipient
     structure; they do not need to be in the protected bucket, since
     they are already included in the cryptographic computation by
     virtue of being included in the context structure.

  +==========+=======+======+===========================+=============+
  | Name     | Label | Type | Algorithm                 | Description |
  +==========+=======+======+===========================+=============+
  | PartyU   | -21   | bstr | direct+HKDF-SHA-256,      | PartyU      |
  | identity |       |      | direct+HKDF-SHA-512,      | identity    |
  |          |       |      | direct+HKDF-AES-128,      | information |
  |          |       |      | direct+HKDF-AES-256,      |             |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+
  | PartyU   | -22   | bstr | direct+HKDF-SHA-256,      | PartyU      |
  | nonce    |       | /    | direct+HKDF-SHA-512,      | provided    |
  |          |       | int  | direct+HKDF-AES-128,      | nonce       |
  |          |       |      | direct+HKDF-AES-256,      |             |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+
  | PartyU   | -23   | bstr | direct+HKDF-SHA-256,      | PartyU      |
  | other    |       |      | direct+HKDF-SHA-512,      | other       |
  |          |       |      | direct+HKDF-AES-128,      | provided    |
  |          |       |      | direct+HKDF-AES-256,      | information |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+
  | PartyV   | -24   | bstr | direct+HKDF-SHA-256,      | PartyV      |
  | identity |       |      | direct+HKDF-SHA-512,      | identity    |
  |          |       |      | direct+HKDF-AES-128,      | information |
  |          |       |      | direct+HKDF-AES-256,      |             |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+
  | PartyV   | -25   | bstr | direct+HKDF-SHA-256,      | PartyV      |
  | nonce    |       | /    | direct+HKDF-SHA-512,      | provided    |
  |          |       | int  | direct+HKDF-AES-128,      | nonce       |
  |          |       |      | direct+HKDF-AES-256,      |             |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+
  | PartyV   | -26   | bstr | direct+HKDF-SHA-256,      | PartyV      |
  | other    |       |      | direct+HKDF-SHA-512,      | other       |
  |          |       |      | direct+HKDF-AES-128,      | provided    |
  |          |       |      | direct+HKDF-AES-256,      | information |
  |          |       |      | ECDH-ES+HKDF-256,         |             |
  |          |       |      | ECDH-ES+HKDF-512,         |             |
  |          |       |      | ECDH-SS+HKDF-256,         |             |
  |          |       |      | ECDH-SS+HKDF-512,         |             |
  |          |       |      | ECDH-ES+A128KW,           |             |
  |          |       |      | ECDH-ES+A192KW,           |             |
  |          |       |      | ECDH-ES+A256KW,           |             |
  |          |       |      | ECDH-SS+A128KW,           |             |
  |          |       |      | ECDH-SS+A192KW,           |             |
  |          |       |      | ECDH-SS+A256KW            |             |
  +----------+-------+------+---------------------------+-------------+

                  Table 10: Context Algorithm Parameters

  We define a CBOR object to hold the context information.  This object
  is referred to as COSE_KDF_Context.  The object is based on a CBOR
  array type.  The fields in the array are:

  AlgorithmID:  This field indicates the algorithm for which the key
     material will be used.  This normally is either a key wrap
     algorithm identifier or a content encryption algorithm identifier.
     The values are from the "COSE Algorithms" registry.  This field is
     required to be present.  The field exists in the context
     information so that a different key is generated for each
     algorithm even if all of the other context information is the
     same.  In practice, this means if algorithm A is broken and thus
     finding the key is relatively easy, the key derived for algorithm
     B will not be the same as the key derived for algorithm A.

  PartyUInfo:  This field holds information about PartyU.  The
     PartyUInfo is encoded as a CBOR array.  The elements of PartyUInfo
     are encoded in the order presented below.  The elements of the
     PartyUInfo array are:

     identity:  This contains the identity information for PartyU.  The
        identities can be assigned in one of two manners.  First, a
        protocol can assign identities based on roles.  For example,
        the roles of "client" and "server" may be assigned to different
        entities in the protocol.  Each entity would then use the
        correct label for the data it sends or receives.  The second
        way for a protocol to assign identities is to use a name based
        on a naming system (i.e., DNS or X.509 names).

        We define an algorithm parameter, "PartyU identity", that can
        be used to carry identity information in the message.  However,
        identity information is often known as part of the protocol and
        can thus be inferred rather than made explicit.  If identity
        information is carried in the message, applications SHOULD have
        a way of validating the supplied identity information.  The
        identity information does not need to be specified and is set
        to nil in that case.

     nonce:  This contains a nonce value.  The nonce can be either
        implicit from the protocol or carried as a value in the
        unprotected header bucket.

        We define an algorithm parameter, "PartyU nonce", that can be
        used to carry this value in the message; however, the nonce
        value could be determined by the application and its value
        obtained in a different manner.

        This option does not need to be specified; if not needed, it is
        set to nil.

     other:  This contains other information that is defined by the
        protocol.  This option does not need to be specified; if not
        needed, it is set to nil.

  PartyVInfo:  This field holds information about PartyV.  The content
     of the structure is the same as for the PartyUInfo but for PartyV.

  SuppPubInfo:  This field contains public information that is mutually
     known to both parties, and is encoded as a CBOR array.

     keyDataLength:  This is set to the number of bits of the desired
        output value.  This practice means if algorithm A can use two
        different key lengths, the key derived for the longer key size
        will not contain the key for the shorter key size as a prefix.

     protected:  This field contains the protected parameter field.  If
        there are no elements in the "protected" field, then use a
        zero-length bstr.

     other:  This field is for free-form data defined by the
        application.  For example, an application could define two
        different byte strings to be placed here to generate different
        keys for a data stream versus a control stream.  This field is
        optional and will only be present if the application defines a
        structure for this information.  Applications that define this
        SHOULD use CBOR to encode the data so that types and lengths
        are correctly included.

  SuppPrivInfo:  This field contains private information that is
     mutually known private information.  An example of this
     information would be a pre-existing shared secret.  (This could,
     for example, be used in combination with an ECDH key agreement to
     provide a secondary proof of identity.)  The field is optional and
     will only be present if the application defines a structure for
     this information.  Applications that define this SHOULD use CBOR
     to encode the data so that types and lengths are correctly
     included.

  The following CDDL fragment corresponds to the text above.

  PartyInfo = (
      identity : bstr / nil,
      nonce : bstr / int / nil,
      other : bstr / nil
  )

  COSE_KDF_Context = [
      AlgorithmID : int / tstr,
      PartyUInfo : [ PartyInfo ],
      PartyVInfo : [ PartyInfo ],
      SuppPubInfo : [
          keyDataLength : uint,
          protected : empty_or_serialized_map,
          ? other : bstr
      ],
      ? SuppPrivInfo : bstr
  ]

6.  Content Key Distribution Methods

  Section 8.5 of [RFC9052] contains a generic description of content
  key distribution methods.  This document defines the identifiers and
  usage for a number of content key distribution methods.

6.1.  Direct Encryption

  A direct encryption algorithm is defined in Section 8.5.1 of
  [RFC9052].  Information about how to fill in the COSE_Recipient
  structure is detailed there.

6.1.1.  Direct Key

  This recipient algorithm is the simplest; the identified key is
  directly used as the key for the next layer down in the message.
  There are no algorithm parameters defined for this algorithm.  The
  algorithm identifier value is assigned in Table 11.

  When this algorithm is used, the "protected" field MUST be zero
  length.  The key type MUST be "Symmetric".

     +========+=======+============================================+
     | Name   | Value | Description                                |
     +========+=======+============================================+
     | direct |   -6  | Direct use of content encryption key (CEK) |
     +--------+-------+--------------------------------------------+

                           Table 11: Direct Key

6.1.1.1.  Security Considerations for Direct Key

  This recipient algorithm has several potential problems that need to
  be considered:

  *  These keys need to have some method of being regularly updated
     over time.  All of the content encryption algorithms specified in
     this document have limits on how many times a key can be used
     without significant loss of security.

  *  These keys need to be dedicated to a single algorithm.  There have
     been a number of attacks developed over time when a single key is
     used for multiple different algorithms.  One example of this is
     the use of a single key for both the CBC encryption mode and the
     CBC-MAC authentication mode.

  *  Breaking one message means all messages are broken.  If an
     adversary succeeds in determining the key for a single message,
     then the key for all messages is also determined.

6.1.2.  Direct Key with KDF

  These recipient algorithms take a common shared secret between the
  two parties and apply the HKDF function (Section 5.1), using the
  context structure defined in Section 5.2 to transform the shared
  secret into the CEK.  The "protected" field can be of nonzero length.
  Either the "salt" parameter for HKDF (Table 9) or the "PartyU nonce"
  parameter for the context structure (Table 10) MUST be present (both
  can be present if desired).  The value in the "salt"/"nonce"
  parameter can be generated either randomly or deterministically.  The
  requirement is that it be a unique value for the shared secret in
  question.

  If the salt/nonce value is generated randomly, then it is suggested
  that the length of the random value be the same length as the output
  of the hash function underlying HKDF.  While there is no way to
  guarantee that it will be unique, there is a high probability that it
  will be unique.  If the salt/nonce value is generated
  deterministically, it can be guaranteed to be unique, and thus there
  is no length requirement.

  A new IV must be used for each message if the same key is used.  The
  IV can be modified in a predictable manner, a random manner, or an
  unpredictable manner (e.g., encrypting a counter).

  The IV used for a key can also be generated using the same HKDF
  functionality used to generate the key.  If HKDF is used for
  generating the IV, the algorithm identifier is set to 34 ("IV-
  GENERATION").

  The set of algorithms defined in this document can be found in
  Table 12.

  +=====================+=======+==============+=====================+
  | Name                | Value | KDF          | Description         |
  +=====================+=======+==============+=====================+
  | direct+HKDF-SHA-256 |  -10  | HKDF SHA-256 | Shared secret w/    |
  |                     |       |              | HKDF and SHA-256    |
  +---------------------+-------+--------------+---------------------+
  | direct+HKDF-SHA-512 |  -11  | HKDF SHA-512 | Shared secret w/    |
  |                     |       |              | HKDF and SHA-512    |
  +---------------------+-------+--------------+---------------------+
  | direct+HKDF-AES-128 |  -12  | HKDF AES-    | Shared secret w/    |
  |                     |       | MAC-128      | AES-MAC 128-bit key |
  +---------------------+-------+--------------+---------------------+
  | direct+HKDF-AES-256 |  -13  | HKDF AES-    | Shared secret w/    |
  |                     |       | MAC-256      | AES-MAC 256-bit key |
  +---------------------+-------+--------------+---------------------+

                     Table 12: Direct Key with KDF

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the algorithm being
     used.

  *  If the "key_ops" field is present, it MUST include "derive key" or
     "derive bits".

6.1.2.1.  Security Considerations for Direct Key with KDF

  The shared secret needs to have some method of being regularly
  updated over time.  The shared secret forms the basis of trust.
  Although not used directly, it should still be subject to scheduled
  rotation.

  These methods do not provide for perfect forward secrecy, as the same
  shared secret is used for all of the keys generated; however, if the
  key for any single message is discovered, only the message or series
  of messages using that derived key are compromised.  A new key
  derivation step will generate a new key that requires the same amount
  of work to get the key.

6.2.  Key Wrap

  Key wrap is defined in Section 8.5.2 of [RFC9052].  Information about
  how to fill in the COSE_Recipient structure is detailed there.

6.2.1.  AES Key Wrap

  The AES Key Wrap algorithm is defined in [RFC3394].  This algorithm
  uses an AES key to wrap a value that is a multiple of 64 bits.  As
  such, it can be used to wrap a key for any of the content encryption
  algorithms defined in this document.  The algorithm requires a single
  fixed parameter, the initial value.  This is fixed to the value
  specified in Section 2.2.3.1 of [RFC3394].  There are no public key
  parameters that vary on a per-invocation basis.  The protected header
  bucket MUST be empty.

  Keys may be obtained from either a key structure or a recipient
  structure.  Implementations that are encrypting or decrypting MUST
  validate that the key type, key length, and algorithm are correct and
  appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "Symmetric".

  *  If the "alg" field is present, it MUST match the AES Key Wrap
     algorithm being used.

  *  If the "key_ops" field is present, it MUST include "encrypt" or
     "wrap key" when encrypting.

  *  If the "key_ops" field is present, it MUST include "decrypt" or
     "unwrap key" when decrypting.

       +========+=======+==========+=============================+
       | Name   | Value | Key Size | Description                 |
       +========+=======+==========+=============================+
       | A128KW |   -3  |   128    | AES Key Wrap w/ 128-bit key |
       +--------+-------+----------+-----------------------------+
       | A192KW |   -4  |   192    | AES Key Wrap w/ 192-bit key |
       +--------+-------+----------+-----------------------------+
       | A256KW |   -5  |   256    | AES Key Wrap w/ 256-bit key |
       +--------+-------+----------+-----------------------------+

                 Table 13: AES Key Wrap Algorithm Values

6.2.1.1.  Security Considerations for AES Key Wrap

  The shared secret needs to have some method of being regularly
  updated over time.  The shared secret is the basis of trust.

6.3.  Direct Key Agreement

  Direct Key Agreement is defined in Section 8.5.4 of [RFC9052].
  Information about how to fill in the COSE_Recipient structure is
  detailed there.

6.3.1.  Direct ECDH

  The mathematics for ECDH can be found in [RFC6090].  In this
  document, the algorithm is extended to be used with the two curves
  defined in [RFC7748].

  ECDH is parameterized by the following:

  Curve Type/Curve:  The curve selected controls not only the size of
     the shared secret, but the mathematics for computing the shared
     secret.  The curve selected also controls how a point in the curve
     is represented and what happens for the identity points on the
     curve.  In this specification, we allow for a number of different
     curves to be used.  A set of curves is defined in Table 18.

     The math used to obtain the computed secret is based on the curve
     selected and not on the ECDH algorithm.  For this reason, a new
     algorithm does not need to be defined for each of the curves.

  Computed Secret to Shared Secret:  Once the computed secret is known,
     the resulting value needs to be converted to a byte string to run
     the KDF.  The x-coordinate is used for all of the curves defined
     in this document.  For curves X25519 and X448, the resulting value
     is used directly, as it is a byte string of a known length.  For
     the P-256, P-384, and P-521 curves, the x-coordinate is run
     through the Integer-to-Octet-String primitive (I2OSP) function
     defined in [RFC8017], using the same computation for n as is
     defined in Section 2.1.

  Ephemeral-Static or Static-Static:  The key agreement process may be
     done using either a static or an ephemeral key for the sender's
     side.  When using ephemeral keys, the sender MUST generate a new
     ephemeral key for every key agreement operation.  The ephemeral
     key is placed in the "ephemeral key" parameter and MUST be present
     for all algorithm identifiers that use ephemeral keys.  When using
     static keys, the sender MUST either generate a new random value or
     create a unique value for use as a KDF input.  For the KDFs used,
     this means that either the "salt" parameter for HKDF (Table 9) or
     the "PartyU nonce" parameter for the context structure (Table 10)
     MUST be present (both can be present if desired).  The value in
     the parameter MUST be unique for the pair of keys being used.  It
     is acceptable to use a global counter that is incremented for
     every Static-Static operation and use the resulting value.  Care
     must be taken that the counter is saved to permanent storage in a
     way that avoids reuse of that counter value.  When using static
     keys, the static key should be identified to the recipient.  The
     static key can be identified by providing either the key ("static
     key") or a key identifier for the static key ("static key id").
     Both of these header parameters are defined in Table 15.

  Key Derivation Algorithm:  The result of an ECDH key agreement
     process does not provide a uniformly random secret.  As such, it
     needs to be run through a KDF in order to produce a usable key.
     Processing the secret through a KDF also allows for the
     introduction of context material: how the key is going to be used
     and one-time material for Static-Static key agreement.  All of the
     algorithms defined in this document use one of the HKDF algorithms
     defined in Section 5.1 with the context structure defined in
     Section 5.2.

  Key Wrap Algorithm:  No key wrap algorithm is used.  This is
     represented in Table 14 as "none".  The key size for the context
     structure is the content layer encryption algorithm size.

  COSE does not have an Ephemeral-Ephemeral version defined.  The
  reason for this is that COSE is not an online protocol by itself and
  thus does not have a method of establishing ephemeral secrets on both
  sides.  The expectation is that a protocol would establish the
  secrets for both sides, and then they would be used as Static-Static
  for the purposes of COSE, or that the protocol would generate a
  shared secret and a direct encryption would be used.

  The set of direct ECDH algorithms defined in this document is found
  in Table 14.

  +==========+=======+=========+==================+=====+=============+
  |Name      | Value | KDF     | Ephemeral-Static |Key  |Description  |
  |          |       |         |                  |Wrap |             |
  +==========+=======+=========+==================+=====+=============+
  |ECDH-ES + | -25   | HKDF -- | yes              |none |ECDH ES w/   |
  |HKDF-256  |       | SHA-256 |                  |     |HKDF --      |
  |          |       |         |                  |     |generate key |
  |          |       |         |                  |     |directly     |
  +----------+-------+---------+------------------+-----+-------------+
  |ECDH-ES + | -26   | HKDF -- | yes              |none |ECDH ES w/   |
  |HKDF-512  |       | SHA-512 |                  |     |HKDF --      |
  |          |       |         |                  |     |generate key |
  |          |       |         |                  |     |directly     |
  +----------+-------+---------+------------------+-----+-------------+
  |ECDH-SS + | -27   | HKDF -- | no               |none |ECDH SS w/   |
  |HKDF-256  |       | SHA-256 |                  |     |HKDF --      |
  |          |       |         |                  |     |generate key |
  |          |       |         |                  |     |directly     |
  +----------+-------+---------+------------------+-----+-------------+
  |ECDH-SS + | -28   | HKDF -- | no               |none |ECDH SS w/   |
  |HKDF-512  |       | SHA-512 |                  |     |HKDF --      |
  |          |       |         |                  |     |generate key |
  |          |       |         |                  |     |directly     |
  +----------+-------+---------+------------------+-----+-------------+

                     Table 14: ECDH Algorithm Values

   +===========+=======+==========+===================+=============+
   | Name      | Label | Type     | Algorithm         | Description |
   +===========+=======+==========+===================+=============+
   | ephemeral | -1    | COSE_Key | ECDH-ES+HKDF-256, | Ephemeral   |
   | key       |       |          | ECDH-ES+HKDF-512, | public key  |
   |           |       |          | ECDH-ES+A128KW,   | for the     |
   |           |       |          | ECDH-ES+A192KW,   | sender      |
   |           |       |          | ECDH-ES+A256KW    |             |
   +-----------+-------+----------+-------------------+-------------+
   | static    | -2    | COSE_Key | ECDH-SS+HKDF-256, | Static      |
   | key       |       |          | ECDH-SS+HKDF-512, | public key  |
   |           |       |          | ECDH-SS+A128KW,   | for the     |
   |           |       |          | ECDH-SS+A192KW,   | sender      |
   |           |       |          | ECDH-SS+A256KW    |             |
   +-----------+-------+----------+-------------------+-------------+
   | static    | -3    | bstr     | ECDH-SS+HKDF-256, | Static      |
   | key id    |       |          | ECDH-SS+HKDF-512, | public key  |
   |           |       |          | ECDH-SS+A128KW,   | identifier  |
   |           |       |          | ECDH-SS+A192KW,   | for the     |
   |           |       |          | ECDH-SS+A256KW    | sender      |
   +-----------+-------+----------+-------------------+-------------+

                  Table 15: ECDH Algorithm Parameters

  This document defines these algorithms to be used with the curves
  P-256, P-384, P-521, X25519, and X448.  Implementations MUST verify
  that the key type and curve are correct.  Different curves are
  restricted to different key types.  Implementations MUST verify that
  the curve and algorithm are appropriate for the entities involved.

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "EC2" or "OKP".

  *  If the "alg" field is present, it MUST match the key agreement
     algorithm being used.

  *  If the "key_ops" field is present, it MUST include "derive key" or
     "derive bits" for the private key.

  *  If the "key_ops" field is present, it MUST be empty for the public
     key.

6.3.1.1.  Security Considerations for ECDH

  There is a method of checking that points provided from external
  entities are valid.  For the "EC2" key format, this can be done by
  checking that the x and y values form a point on the curve.  For the
  "OKP" format, there is no simple way to perform point validation.

  Consideration was given to requiring that the public keys of both
  entities be provided as part of the key derivation process (as
  recommended in Section 6.1 of [RFC7748]).  This was not done, because
  COSE is used in a store-and-forward format rather than in online key
  exchange.  In order for this to be a problem, either the receiver
  public key has to be chosen maliciously or the sender has to be
  malicious.  In either case, all security evaporates anyway.

  A proof of possession of the private key associated with the public
  key is recommended when a key is moved from untrusted to trusted
  (either by the end user or by the entity that is responsible for
  making trust statements on keys).

6.4.  Key Agreement with Key Wrap

  Key Agreement with Key Wrap is defined in Section 8.5.5 of [RFC9052].
  Information about how to fill in the COSE_Recipient structure is
  detailed there.

6.4.1.  ECDH with Key Wrap

  These algorithms are defined in Table 16.

  ECDH with Key Agreement is parameterized by the same header
  parameters as for ECDH; see Section 6.3.1, with the following
  modifications:

  Key Wrap Algorithm:  Any of the key wrap algorithms defined in
     Section 6.2 are supported.  The size of the key used for the key
     wrap algorithm is fed into the KDF.  The set of identifiers is
     found in Table 16.

  +=========+=====+=========+==================+========+=============+
  |Name     |Value| KDF     | Ephemeral-Static |Key Wrap|Description  |
  +=========+=====+=========+==================+========+=============+
  |ECDH-ES +|-29  | HKDF -- | yes              |A128KW  |ECDH ES w/   |
  |A128KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |128-bit key  |
  +---------+-----+---------+------------------+--------+-------------+
  |ECDH-ES +|-30  | HKDF -- | yes              |A192KW  |ECDH ES w/   |
  |A192KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |192-bit key  |
  +---------+-----+---------+------------------+--------+-------------+
  |ECDH-ES +|-31  | HKDF -- | yes              |A256KW  |ECDH ES w/   |
  |A256KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |256-bit key  |
  +---------+-----+---------+------------------+--------+-------------+
  |ECDH-SS +|-32  | HKDF -- | no               |A128KW  |ECDH SS w/   |
  |A128KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |128-bit key  |
  +---------+-----+---------+------------------+--------+-------------+
  |ECDH-SS +|-33  | HKDF -- | no               |A192KW  |ECDH SS w/   |
  |A192KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |192-bit key  |
  +---------+-----+---------+------------------+--------+-------------+
  |ECDH-SS +|-34  | HKDF -- | no               |A256KW  |ECDH SS w/   |
  |A256KW   |     | SHA-256 |                  |        |HKDF and AES |
  |         |     |         |                  |        |Key Wrap w/  |
  |         |     |         |                  |        |256-bit key  |
  +---------+-----+---------+------------------+--------+-------------+

              Table 16: ECDH Algorithm Values with Key Wrap

  When using a COSE key for this algorithm, the following checks are
  made:

  *  The "kty" field MUST be present, and it MUST be "EC2" or "OKP".

  *  If the "alg" field is present, it MUST match the key agreement
     algorithm being used.

  *  If the "key_ops" field is present, it MUST include "derive key" or
     "derive bits" for the private key.

  *  If the "key_ops" field is present, it MUST be empty for the public
     key.

7.  Key Object Parameters

  The COSE_Key object defines a way to hold a single key object.  It is
  still required that the members of individual key types be defined.
  This section of the document is where we define an initial set of
  members for specific key types.

  For each of the key types, we define both public and private members.
  The public members are what is transmitted to others for their usage.
  Private members allow individuals to archive keys.  However, there
  are some circumstances in which private keys may be distributed to
  entities in a protocol.  Examples include: entities that have poor
  random number generation, centralized key creation for multicast-type
  operations, and protocols in which a shared secret is used as a
  bearer token for authorization purposes.

  Key types are identified by the "kty" member of the COSE_Key object.
  In this document, we define four values for the member:

            +===========+=======+==========================+
            | Name      | Value | Description              |
            +===========+=======+==========================+
            | OKP       |   1   | Octet Key Pair           |
            +-----------+-------+--------------------------+
            | EC2       |   2   | Elliptic Curve Keys w/   |
            |           |       | x- and y-coordinate pair |
            +-----------+-------+--------------------------+
            | Symmetric |   4   | Symmetric Keys           |
            +-----------+-------+--------------------------+
            | Reserved  |   0   | This value is reserved   |
            +-----------+-------+--------------------------+

                       Table 17: Key Type Values

7.1.  Elliptic Curve Keys

  Two different key structures are defined for elliptic curve keys.
  One version uses both an x-coordinate and a y-coordinate, potentially
  with point compression ("EC2").  This is the conventional elliptic
  curve (EC) point representation that is used in [RFC5480].  The other
  version uses only the x-coordinate, as the y-coordinate is either to
  be recomputed or not needed for the key agreement operation ("OKP").

  Applications MUST check that the curve and the key type are
  consistent and reject a key if they are not.

  +=========+=======+==========+=====================================+
  | Name    | Value | Key Type | Description                         |
  +=========+=======+==========+=====================================+
  | P-256   |   1   |   EC2    | NIST P-256, also known as secp256r1 |
  +---------+-------+----------+-------------------------------------+
  | P-384   |   2   |   EC2    | NIST P-384, also known as secp384r1 |
  +---------+-------+----------+-------------------------------------+
  | P-521   |   3   |   EC2    | NIST P-521, also known as secp521r1 |
  +---------+-------+----------+-------------------------------------+
  | X25519  |   4   |   OKP    | X25519 for use w/ ECDH only         |
  +---------+-------+----------+-------------------------------------+
  | X448    |   5   |   OKP    | X448 for use w/ ECDH only           |
  +---------+-------+----------+-------------------------------------+
  | Ed25519 |   6   |   OKP    | Ed25519 for use w/ EdDSA only       |
  +---------+-------+----------+-------------------------------------+
  | Ed448   |   7   |   OKP    | Ed448 for use w/ EdDSA only         |
  +---------+-------+----------+-------------------------------------+

                       Table 18: Elliptic Curves

7.1.1.  Double Coordinate Curves

  Generally, protocols transmit elliptic-curve points as either the
  x-coordinate and y-coordinate or the x-coordinate and a sign bit for
  the y-coordinate.  The latter encoding has not been recommended by
  the IETF due to potential IPR issues.  However, for operations in
  constrained environments, the ability to shrink a message by not
  sending the y-coordinate is potentially useful.

  For EC keys with both coordinates, the "kty" member is set to 2
  (EC2).  The key parameters defined in this section are summarized in
  Table 19.  The members that are defined for this key type are:

  crv:  This contains an identifier of the curve to be used with the
        key.  The curves defined in this document for this key type can
        be found in Table 18.  Other curves may be registered in the
        future, and private curves can be used as well.

  x:    This contains the x-coordinate for the EC point.  The integer
        is converted to a byte string as defined in [SEC1].  Leading-
        zero octets MUST be preserved.

  y:    This contains either the sign bit or the value of the
        y-coordinate for the EC point.  When encoding the value y, the
        integer is converted to a byte string (as defined in [SEC1])
        and encoded as a CBOR bstr.  Leading-zero octets MUST be
        preserved.  Compressed point encoding is also supported.
        Compute the sign bit as laid out in the Elliptic-Curve-Point-
        to-Octet-String Conversion function of [SEC1].  If the sign bit
        is zero, then encode y as a CBOR false value; otherwise, encode
        y as a CBOR true value.  The encoding of the infinity point is
        not supported.

  d:    This contains the private key.

  For public keys, it is REQUIRED that "crv", "x", and "y" be present
  in the structure.  For private keys, it is REQUIRED that "crv" and
  "d" be present in the structure.  For private keys, it is RECOMMENDED
  that "x" and "y" also be present, but they can be recomputed from the
  required elements, and omitting them saves on space.

   +======+======+=======+========+=================================+
   | Key  | Name | Label | CBOR   | Description                     |
   | Type |      |       | Type   |                                 |
   +======+======+=======+========+=================================+
   |  2   | crv  |   -1  | int /  | EC identifier -- Taken from the |
   |      |      |       | tstr   | "COSE Elliptic Curves" registry |
   +------+------+-------+--------+---------------------------------+
   |  2   |  x   |   -2  | bstr   | x-coordinate                    |
   +------+------+-------+--------+---------------------------------+
   |  2   |  y   |   -3  | bstr / | y-coordinate                    |
   |      |      |       | bool   |                                 |
   +------+------+-------+--------+---------------------------------+
   |  2   |  d   |   -4  | bstr   | Private key                     |
   +------+------+-------+--------+---------------------------------+

                      Table 19: EC Key Parameters

7.2.  Octet Key Pair

  A new key type is defined for Octet Key Pairs (OKPs).  Do not assume
  that keys using this type are elliptic curves.  This key type could
  be used for other curve types (for example, mathematics based on
  hyper-elliptic surfaces).

  The key parameters defined in this section are summarized in
  Table 20.  The members that are defined for this key type are:

  crv:  This contains an identifier of the curve to be used with the
        key.  The curves defined in this document for this key type can
        be found in Table 18.  Other curves may be registered in the
        future, and private curves can be used as well.

  x:    This contains the public key.  The byte string contains the
        public key as defined by the algorithm.  (For X25519,
        internally it is a little-endian integer.)

  d:    This contains the private key.

  For public keys, it is REQUIRED that "crv" and "x" be present in the
  structure.  For private keys, it is REQUIRED that "crv" and "d" be
  present in the structure.  For private keys, it is RECOMMENDED that
  "x" also be present, but it can be recomputed from the required
  elements, and omitting it saves on space.

  +======+==========+=======+=======+=================================+
  | Name |   Key    | Label | Type  | Description                     |
  |      |   Type   |       |       |                                 |
  +======+==========+=======+=======+=================================+
  | crv  |    1     |   -1  | int / | EC identifier -- Taken from the |
  |      |          |       | tstr  | "COSE Elliptic Curves" registry |
  +------+----------+-------+-------+---------------------------------+
  | x    |    1     |   -2  | bstr  | Public Key                      |
  +------+----------+-------+-------+---------------------------------+
  | d    |    1     |   -4  | bstr  | Private key                     |
  +------+----------+-------+-------+---------------------------------+

                   Table 20: Octet Key Pair Parameters

7.3.  Symmetric Keys

  Occasionally, it is required that a symmetric key be transported
  between entities.  This key structure allows for that to happen.

  For symmetric keys, the "kty" member is set to 4 ("Symmetric").  The
  member that is defined for this key type is:

  k:  This contains the value of the key.

  This key structure does not have a form that contains only public
  members.  As it is expected that this key structure is going to be
  transmitted, care must be taken that it is never transmitted
  accidentally or insecurely.  For symmetric keys, it is REQUIRED that
  "k" be present in the structure.

            +======+==========+=======+======+=============+
            | Name | Key Type | Label | Type | Description |
            +======+==========+=======+======+=============+
            |  k   |    4     |   -1  | bstr | Key Value   |
            +------+----------+-------+------+-------------+

                   Table 21: Symmetric Key Parameters

8.  COSE Capabilities

  The capabilities of an algorithm or key type need to be specified in
  some situations.  This has a counterpart in the S/MIME
  specifications, where SMIMECapabilities is defined in Section 2.5.2
  of [RFC8551].  This document defines the same concept for COSE.

  The algorithm identifier is not included in the capabilities data, as
  it should be encoded elsewhere in the message.  The key type
  identifier is included in the capabilities data, as it is not
  expected to be encoded elsewhere.

  Two different types of capabilities are defined: capabilities for
  algorithms and capabilities for key type.  Once defined by
  registration with IANA, the list of capabilities for an algorithm or
  key type is immutable.  If it is later found that a new capability is
  needed for a key type or algorithm, it will require that a new code
  point be assigned to deal with that.  As a general rule, the
  capabilities are going to map to algorithm-specific header parameters
  or key parameters, but they do not need to do so.  An example of this
  is the HSS-LMS key type capabilities defined below, where the hash
  algorithm used is included.

  The capability structure is an array of values; the values included
  in the structure are dependent on a specific algorithm or key type.
  For algorithm capabilities, the first element should always be a key
  type value if applicable, but the items that are specific to a key
  (for example, a curve) should not be included in the algorithm
  capabilities.  This means that if one wishes to enumerate all of the
  capabilities for a device that implements ECDH, it requires that all
  of the combinations of algorithms and key pairs be specified.  The
  last example of Section 8.3 provides a case where this is done by
  allowing for a cross product to be specified between an array of
  algorithm capabilities and key type capabilities (see the ECDH-
  ES+A25KW element).  For a key, the first element should be the key
  type value.  While this means that the key type value will be
  duplicated if both an algorithm and key capability are used, the key
  type is needed in order to understand the rest of the values.

8.1.  Assignments for Existing Algorithms

  For the current set of algorithms in the registry other than IV-
  GENERATION (those in this document as well as those in [RFC8230],
  [RFC8778], and [RFC9021]), the capabilities list is an array with one
  element, the key type (from the "COSE Key Types" Registry).  It is
  expected that future registered algorithms could have zero, one, or
  multiple elements.

8.2.  Assignments for Existing Key Types

  There are a number of pre-existing key types; the following deals
  with creating the capability definition for those structures:

  *  OKP, EC2: The list of capabilities is:

     -  The key type value.  (1 for OKP or 2 for EC2.)

     -  One curve for that key type from the "COSE Elliptic Curves"
        registry.

  *  RSA: The list of capabilities is:

     -  The key type value (3).

  *  Symmetric: The list of capabilities is:

     -  The key type value (4).

  *  HSS-LMS: The list of capabilities is:

     -  The key type value (5).

     -  Algorithm identifier for the underlying hash function from the
        "COSE Algorithms" registry.

  *  WalnutDSA: The list of capabilities is:

     -  The key type value (6).

     -  The N value (group and matrix size) for the key, a uint.

     -  The q value (finite field order) for the key, a uint.

8.3.  Examples

  Capabilities can be used in a key derivation process to make sure
  that both sides are using the same parameters.  The three examples
  below show different ways that one might utilize parameters in
  specifying an application protocol:

  *  Only an algorithm capability: This is useful if the protocol wants
     to require a specific algorithm, such as ES256, but it is agnostic
     about which curve is being used.  This requires that the algorithm
     identifier be specified in the protocol.  See the first example.

  *  Only a key type capability: This is useful if the protocol wants
     to require a specific key type and curve, such as P-256, but will
     accept any algorithm using that curve (e.g., both ECDSA and ECDH).
     See the second example.

  *  Both algorithm and key type capabilities: This is used if the
     protocol needs to nail down all of the options surrounding an
     algorithm -- e.g., EdDSA with the curve Ed25519.  As with the
     first example, the algorithm identifier needs to be specified in
     the protocol.  See the third example, which just concatenates the
     two capabilities together.

  Algorithm ES256

  0x8102                 / [2 \ EC2 \ ] /

  Key type EC2 with P-256 curve:

  0x820201               / [2 \ EC2 \, 1 \ P-256 \] /

  ECDH-ES + A256KW with an X25519 curve:

  0x8101820104           / [1 \ OKP \],[1 \ OKP \, 4 \ X25519 \] /

  The capabilities can also be used by an entity to advertise what it
  is capable of doing.  The decoded example below is one of many
  encodings that could be used for that purpose.  Each array element
  includes three fields: the algorithm identifier, one or more
  algorithm capabilities, and one or more key type capabilities.

  [
   [-8 / EdDSA /,
     [1 / OKP key type /],
     [
       [1 / OKP /, 6 / Ed25519 / ],
       [1 /OKP/, 7 /Ed448 /]
     ]
   ],
   [-7 / ECDSA with SHA-256/,
     [2 /EC2 key type/],
     [
       [2 /EC2/, 1 /P-256/],
       [2 /EC2/, 3 /P-521/]
     ]
   ],
   [ -31 / ECDH-ES+A256KW/,
     [
       [ 2 /EC2/],
       [1 /OKP/ ]
     ],
     [
       [2 /EC2/, 1 /P-256/],
       [1 /OKP/, 4 / X25519/ ]
     ]
   ],
   [ 1 / A128GCM /,
     [ 4 / Symmetric / ],
     [ 4 / Symmetric /]
   ]
  ]

  Examining the above:

  *  The first element indicates that the entity supports EdDSA with
     curves Ed25519 and Ed448.

  *  The second element indicates that the entity supports ECDSA with
     SHA-256 with curves P-256 and P-521.

  *  The third element indicates that the entity supports Ephemeral-
     Static ECDH using AES256 key wrap.  The entity can support the
     P-256 curve with an EC2 key type and the X25519 curve with an OKP
     key type.

  *  The last element indicates that the entity supports AES-GCM of 128
     bits for content encryption.

  The entity does not advertise that it supports any MAC algorithms.

9.  CBOR Encoding Restrictions

  This document limits the restrictions it imposes on how the CBOR
  Encoder needs to work.  The new encoding restrictions are aligned
  with the Core Deterministic Encoding Requirements specified in
  Section 4.2.1 of RFC 8949 [STD94].  It has been narrowed down to the
  following restrictions:

  *  The restriction applies to the encoding of the COSE_KDF_Context.

  *  Encoding MUST be done using definite lengths, and the length of
     the (encoded) argument MUST be the minimum possible length.  This
     means that the integer 1 is encoded as "0x01" and not "0x1801".

  *  Applications MUST NOT generate messages with the same label used
     twice as a key in a single map.  Applications MUST NOT parse and
     process messages with the same label used twice as a key in a
     single map.  Applications can enforce the parse-and-process
     requirement by using parsers that will fail the parse step or by
     using parsers that will pass all keys to the application, and the
     application can perform the check for duplicate keys.

10.  IANA Considerations

  IANA has updated all COSE registries except for "COSE Header
  Parameters" and "COSE Key Common Parameters" to point to this
  document instead of [RFC8152].

10.1.  Changes to the "COSE Key Types" Registry

  IANA has added a new column in the "COSE Key Types" registry.  The
  new column is labeled "Capabilities" and has been populated according
  to the entries in Table 22.

           +=======+===========+============================+
           | Value | Name      | Capabilities               |
           +=======+===========+============================+
           | 1     | OKP       | [kty(1), crv]              |
           +-------+-----------+----------------------------+
           | 2     | EC2       | [kty(2), crv]              |
           +-------+-----------+----------------------------+
           | 3     | RSA       | [kty(3)]                   |
           +-------+-----------+----------------------------+
           | 4     | Symmetric | [kty(4)]                   |
           +-------+-----------+----------------------------+
           | 5     | HSS-LMS   | [kty(5), hash algorithm]   |
           +-------+-----------+----------------------------+
           | 6     | WalnutDSA | [kty(6), N value, q value] |
           +-------+-----------+----------------------------+

                    Table 22: Key Type Capabilities

10.2.  Changes to the "COSE Algorithms" Registry

  IANA has added a new column in the "COSE Algorithms" registry.  The
  new column is labeled "Capabilities" and has been populated with
  "[kty]" for all current, nonprovisional registrations.

  IANA has updated the Reference column in the "COSE Algorithms"
  registry to include this document as a reference for all rows where
  it was not already present.

  IANA has added a new row to the "COSE Algorithms" registry.

   +===============+=======+===============+===========+=============+
   | Name          | Value | Description   | Reference | Recommended |
   +===============+=======+===============+===========+=============+
   | IV-GENERATION | 34    | For doing IV  | RFC 9053  | No          |
   |               |       | generation    |           |             |
   |               |       | for symmetric |           |             |
   |               |       | algorithms.   |           |             |
   +---------------+-------+---------------+-----------+-------------+

           Table 23: New entry in the COSE Algorithms registry

  The Capabilities column for this registration is to be empty.

10.3.  Changes to the "COSE Key Type Parameters" Registry

  IANA has modified the description to "Public Key" for the line with
  "Key Type" of 1 and the "Name" of "x".  See Table 20, which has been
  modified with this change.

10.4.  Expert Review Instructions

  All of the IANA registries established by [RFC8152] are, at least in
  part, defined as Expert Review [RFC8126].  This section gives some
  general guidelines for what the experts should be looking for, but
  they are being designated as experts for a reason, so they should be
  given substantial latitude.

  Expert reviewers should take the following into consideration:

  *  Point squatting should be discouraged.  Reviewers are encouraged
     to get sufficient information for registration requests to ensure
     that the usage is not going to duplicate an existing registration
     and that the code point is likely to be used in deployments.  The
     ranges tagged as private use are intended for testing purposes and
     closed environments; code points in other ranges should not be
     assigned for testing.

  *  Standards Track or BCP RFCs are required to register a code point
     in the Standards Action range.  Specifications should exist for
     Specification Required ranges, but early assignment before an RFC
     is available is considered to be permissible.  Specifications are
     needed for the first-come, first-served range if the points are
     expected to be used outside of closed environments in an
     interoperable way.  When specifications are not provided, the
     description provided needs to have sufficient information to
     identify what the point is being used for.

  *  Experts should take into account the expected usage of fields when
     approving code point assignment.  The fact that the Standards
     Action range is only available to Standards Track documents does
     not mean that a Standards Track document cannot have points
     assigned outside of that range.  The length of the encoded value
     should be weighed against how many code points of that length are
     left and the size of device it will be used on.

  *  When algorithms are registered, vanity registrations should be
     discouraged.  One way to do this is to require registrations to
     provide additional documentation on security analysis of the
     algorithm.  Another thing that should be considered is requesting
     an opinion on the algorithm from the Crypto Forum Research Group
     (CFRG).  Algorithms are expected to meet the security requirements
     of the community and the requirements of the message structures in
     order to be suitable for registration.

11.  Security Considerations

  There are a number of security considerations that need to be taken
  into account by implementers of this specification.  The security
  considerations that are specific to an individual algorithm are
  placed next to the description of the algorithm.  While some
  considerations have been highlighted here, additional considerations
  may be found in the documents listed in the references.

  Implementations need to protect the private key material for all
  individuals.  Some cases in this document need to be highlighted with
  regard to this issue.

  *  Use of the same key for two different algorithms can leak
     information about the key.  It is therefore recommended that keys
     be restricted to a single algorithm.

  *  Use of "direct" as a recipient algorithm combined with a second
     recipient algorithm exposes the direct key to the second
     recipient; Section 8.5 of [RFC9052] forbids combining "direct"
     recipient algorithms with other modes.

  *  Several of the algorithms in this document have limits on the
     number of times that a key can be used without leaking information
     about the key.

  The use of ECDH and direct plus KDF (with no key wrap) will not
  directly lead to the private key being leaked; the one-way function
  of the KDF will prevent that.  There is, however, a different issue
  that needs to be addressed.  Having two recipients requires that the
  CEK be shared between two recipients.  The second recipient therefore
  has a CEK that was derived from material that can be used for the
  weak proof of origin.  The second recipient could create a message
  using the same CEK and send it to the first recipient; the first
  recipient would, for either Static-Static ECDH or direct plus KDF,
  make an assumption that the CEK could be used for proof of origin,
  even though it is from the wrong entity.  If the key wrap step is
  added, then no proof of origin is implied and this is not an issue.

  Although it has been mentioned before, it bears repeating that the
  use of a single key for multiple algorithms has been demonstrated in
  some cases to leak information about a key, providing the opportunity
  for attackers to forge integrity tags or gain information about
  encrypted content.  Binding a key to a single algorithm prevents
  these problems.  Key creators and key consumers are strongly
  encouraged to not only create new keys for each different algorithm,
  but to include that selection of algorithm in any distribution of key
  material and strictly enforce the matching of algorithms in the key
  structure to algorithms in the message structure.  In addition to
  checking that algorithms are correct, the key form needs to be
  checked as well.  Do not use an "EC2" key where an "OKP" key is
  expected.

  Before using a key for transmission, or before acting on information
  received, a trust decision on a key needs to be made.  Is the data or
  action something that the entity associated with the key has a right
  to see or a right to request?  A number of factors are associated
  with this trust decision.  Some highlighted here are:

  *  What are the permissions associated with the key owner?

  *  Is the cryptographic algorithm acceptable in the current context?

  *  Have the restrictions associated with the key, such as algorithm
     or freshness, been checked, and are they correct?

  *  Is the request something that is reasonable, given the current
     state of the application?

  *  Have any security considerations that are part of the message been
     enforced (as specified by the application or "crit" header
     parameter)?

  There are a large number of algorithms presented in this document
  that use nonce values.  For all of the nonces defined in this
  document, there is some type of restriction on the nonce being a
  unique value for either a key or some other conditions.  In all of
  these cases, there is no known requirement on the nonce being both
  unique and unpredictable; under these circumstances, it's reasonable
  to use a counter for creation of the nonce.  In cases where one wants
  the pattern of the nonce to be unpredictable as well as unique, one
  can use a key created for that purpose and encrypt the counter to
  produce the nonce value.

  One area that has been getting exposure is traffic analysis of
  encrypted messages based on the length of the message.  This
  specification does not provide a uniform method for providing padding
  as part of the message structure.  An observer can distinguish
  between two different messages (for example, "YES" and "NO") based on
  the length for all of the content encryption algorithms that are
  defined in this document.  This means that it is up to the
  applications to document how content padding is to be done in order
  to prevent or discourage such analysis.  (For example, the text
  strings could be defined as "YES" and "NO ".)

  The analysis done in [RFC9147] is based on the number of records that
  are sent.  This should map well to the number of messages sent when
  using COSE, so that analysis should hold here as well, under the
  assumption that the COSE messages are roughly the same size as DTLS
  records.  It needs to be noted that the limits are based on the
  number of messages, but QUIC and DTLS are always pairwise-based
  endpoints.  In contrast, [OSCORE-GROUPCOMM] uses COSE in a group
  communication scenario.  Under these circumstances, it may be that no
  one single entity will see all of the messages that are encrypted,
  and therefore no single entity can trigger the rekey operation.

12.  References

12.1.  Normative References

  [AES-GCM]  Dworkin, M., "Recommendation for Block Cipher Modes of
             Operation: Galois/Counter Mode (GCM) and GMAC", NIST
             Special Publication 800-38D, DOI 10.6028/NIST.SP.800-38D,
             November 2007, <https://csrc.nist.gov/publications/
             nistpubs/800-38D/SP-800-38D.pdf>.

  [DSS]      National Institute of Standards and Technology, "Digital
             Signature Standard (DSS)", FIPS PUB 186-4,
             DOI 10.6028/NIST.FIPS.186-4, July 2013,
             <https://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.186-4.pdf>.

  [MAC]      Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
             of Applied Cryptography", CRC Press, Boca Raton, 1996,
             <https://cacr.uwaterloo.ca/hac/>.

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <https://www.rfc-editor.org/info/rfc2104>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3394]  Schaad, J. and R. Housley, "Advanced Encryption Standard
             (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
             September 2002, <https://www.rfc-editor.org/info/rfc3394>.

  [RFC3610]  Whiting, D., Housley, R., and N. Ferguson, "Counter with
             CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
             2003, <https://www.rfc-editor.org/info/rfc3610>.

  [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
             Key Derivation Function (HKDF)", RFC 5869,
             DOI 10.17487/RFC5869, May 2010,
             <https://www.rfc-editor.org/info/rfc5869>.

  [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
             Curve Cryptography Algorithms", RFC 6090,
             DOI 10.17487/RFC6090, February 2011,
             <https://www.rfc-editor.org/info/rfc6090>.

  [RFC6979]  Pornin, T., "Deterministic Usage of the Digital Signature
             Algorithm (DSA) and Elliptic Curve Digital Signature
             Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
             2013, <https://www.rfc-editor.org/info/rfc6979>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <https://www.rfc-editor.org/info/rfc7748>.

  [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
             "PKCS #1: RSA Cryptography Specifications Version 2.2",
             RFC 8017, DOI 10.17487/RFC8017, November 2016,
             <https://www.rfc-editor.org/info/rfc8017>.

  [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
             Signature Algorithm (EdDSA)", RFC 8032,
             DOI 10.17487/RFC8032, January 2017,
             <https://www.rfc-editor.org/info/rfc8032>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8439]  Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
             Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
             <https://www.rfc-editor.org/info/rfc8439>.

  [RFC9052]  Schaad, J., "CBOR Object Signing and Encryption (COSE):
             Structures and Process", STD 96, RFC 9052,
             DOI 10.17487/RFC9052, August 2022,
             <https://www.rfc-editor.org/info/rfc9052>.

  [SEC1]     Certicom Research, "SEC 1: Elliptic Curve Cryptography",
             Standards for Efficient Cryptography, May 2009,
             <https://www.secg.org/sec1-v2.pdf>.

  [STD94]    Bormann, C. and P. Hoffman, "Concise Binary Object
             Representation (CBOR)", STD 94, RFC 8949, December 2020,
             <https://www.rfc-editor.org/info/std94>.

12.2.  Informative References

  [CFRG-DET-SIGS]
             Mattsson, J. P., Thormarker, E., and S. Ruohomaa,
             "Deterministic ECDSA and EdDSA Signatures with Additional
             Randomness", Work in Progress, Internet-Draft, draft-
             mattsson-cfrg-det-sigs-with-noise-04, 15 February 2022,
             <https://datatracker.ietf.org/doc/html/draft-mattsson-
             cfrg-det-sigs-with-noise-04>.

  [COUNTERSIGN]
             Schaad, J. and R. Housley, "CBOR Object Signing and
             Encryption (COSE): Countersignatures", Work in Progress,
             Internet-Draft, draft-ietf-cose-countersign-08, 22 August
             2022, <https://datatracker.ietf.org/doc/html/draft-ietf-
             cose-countersign-08>.

  [GitHub-Examples]
             "GitHub Examples of COSE", commit 3221310, 3 June 2020,
             <https://github.com/cose-wg/Examples>.

  [HKDF]     Krawczyk, H., "Cryptographic Extraction and Key
             Derivation: The HKDF Scheme", 2010,
             <https://eprint.iacr.org/2010/264.pdf>.

  [OSCORE-GROUPCOMM]
             Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,
             and J. Park, "Group OSCORE - Secure Group Communication
             for CoAP", Work in Progress, Internet-Draft, draft-ietf-
             core-oscore-groupcomm-14, 7 March 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-core-
             oscore-groupcomm-14>.

  [RFC4231]  Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
             224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
             RFC 4231, DOI 10.17487/RFC4231, December 2005,
             <https://www.rfc-editor.org/info/rfc4231>.

  [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
             AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
             2006, <https://www.rfc-editor.org/info/rfc4493>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <https://www.rfc-editor.org/info/rfc5116>.

  [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
             "Elliptic Curve Cryptography Subject Public Key
             Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
             <https://www.rfc-editor.org/info/rfc5480>.

  [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
             for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
             RFC 6151, DOI 10.17487/RFC6151, March 2011,
             <https://www.rfc-editor.org/info/rfc6151>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7518]  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
             DOI 10.17487/RFC7518, May 2015,
             <https://www.rfc-editor.org/info/rfc7518>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8152]  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
             RFC 8152, DOI 10.17487/RFC8152, July 2017,
             <https://www.rfc-editor.org/info/rfc8152>.

  [RFC8230]  Jones, M., "Using RSA Algorithms with CBOR Object Signing
             and Encryption (COSE) Messages", RFC 8230,
             DOI 10.17487/RFC8230, September 2017,
             <https://www.rfc-editor.org/info/rfc8230>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC8551]  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
             Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
             Message Specification", RFC 8551, DOI 10.17487/RFC8551,
             April 2019, <https://www.rfc-editor.org/info/rfc8551>.

  [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
             Definition Language (CDDL): A Notational Convention to
             Express Concise Binary Object Representation (CBOR) and
             JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
             June 2019, <https://www.rfc-editor.org/info/rfc8610>.

  [RFC8778]  Housley, R., "Use of the HSS/LMS Hash-Based Signature
             Algorithm with CBOR Object Signing and Encryption (COSE)",
             RFC 8778, DOI 10.17487/RFC8778, April 2020,
             <https://www.rfc-editor.org/info/rfc8778>.

  [RFC9021]  Atkins, D., "Use of the Walnut Digital Signature Algorithm
             with CBOR Object Signing and Encryption (COSE)", RFC 9021,
             DOI 10.17487/RFC9021, May 2021,
             <https://www.rfc-editor.org/info/rfc9021>.

  [RFC9147]  Rescorla, E., Tschofenig, H., and N. Modadugu, "The
             Datagram Transport Layer Security (DTLS) Protocol Version
             1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
             <https://www.rfc-editor.org/info/rfc9147>.

  [ROBUST]   Fischlin, M., Günther, F., and C. Janson, "Robust
             Channels: Handling Unreliable Networks in the Record
             Layers of QUIC and DTLS", February 2020,
             <https://eprint.iacr.org/2020/718.pdf>.

  [SP800-38D]
             Dworkin, M., "Recommendation for Block Cipher Modes of
             Operation: Galois/Counter Mode (GCM) and GMAC", NIST
             Special Publication 800-38D, November 2007,
             <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
             nistspecialpublication800-38d.pdf>.

  [SP800-56A]
             Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
             Davis, "Recommendation for Pair-Wise Key Establishment
             Schemes Using Discrete Logarithm Cryptography", NIST
             Special Publication 800-56A, Revision 3,
             DOI 10.6028/NIST.SP.800-56Ar3, April 2018,
             <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
             NIST.SP.800-56Ar2.pdf>.

  [STD90]    Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259, December 2017,
             <https://www.rfc-editor.org/info/std90>.

Acknowledgments

  This document is a product of the COSE Working Group of the IETF.

  The following individuals are to blame for getting me started on this
  project in the first place: Richard Barnes, Matt Miller, and Martin
  Thomson.

  The initial draft version of the specification was based to some
  degree on the outputs of the JOSE and S/MIME Working Groups.

  The following individuals provided input into the final form of the
  document: Carsten Bormann, John Bradley, Brian Campbell, Michael
  B. Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and
  Göran Selander.

Author's Address

  Jim Schaad
  August Cellars