Internet Engineering Task Force (IETF)                   O. Gimenez, Ed.
Request for Comments: 9011                                       Semtech
Category: Standards Track                                 I. Petrov, Ed.
ISSN: 2070-1721                                                   Acklio
                                                             April 2021


Static Context Header Compression and Fragmentation (SCHC) over LoRaWAN

Abstract

  The Static Context Header Compression and fragmentation (SCHC)
  specification (RFC 8724) describes generic header compression and
  fragmentation techniques for Low-Power Wide Area Network (LPWAN)
  technologies.  SCHC is a generic mechanism designed for great
  flexibility so that it can be adapted for any of the LPWAN
  technologies.

  This document defines a profile of SCHC (RFC 8724) for use in LoRaWAN
  networks and provides elements such as efficient parameterization and
  modes of operation.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9011.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  SCHC Overview
  4.  LoRaWAN Architecture
    4.1.  Device Classes (A, B, C) and Interactions
    4.2.  Device Addressing
    4.3.  General Frame Types
    4.4.  LoRaWAN MAC Frames
    4.5.  LoRaWAN FPort
    4.6.  LoRaWAN Empty Frame
    4.7.  Unicast and Multicast Technology
  5.  SCHC over LoRaWAN
    5.1.  LoRaWAN FPort and RuleID
    5.2.  RuleID Management
    5.3.  Interface IDentifier (IID) Computation
    5.4.  Padding
    5.5.  Decompression
    5.6.  Fragmentation
      5.6.1.  DTag
      5.6.2.  Uplink Fragmentation: From Device to SCHC Gateway
      5.6.3.  Downlink Fragmentation: From SCHC Gateway to Device
    5.7.  SCHC Fragment Format
      5.7.1.  All-0 SCHC Fragment
      5.7.2.  All-1 SCHC Fragment
      5.7.3.  Delay after Each LoRaWAN Frame to Respect Local
              Regulation
  6.  Security Considerations
  7.  IANA Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Appendix A.  Examples
    A.1.  Uplink - Compression Example - No Fragmentation
    A.2.  Uplink - Compression and Fragmentation Example
    A.3.  Downlink
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  The SCHC specification [RFC8724] describes generic header compression
  and fragmentation techniques that can be used on all Low-Power Wide
  Area Network (LPWAN) technologies defined in [RFC8376].  Even though
  those technologies share a great number of common features like star-
  oriented topologies, network architecture, devices with
  communications that are mostly quite predictable, etc., they do have
  some slight differences with respect to payload sizes, reactiveness,
  etc.

  SCHC provides a generic framework that enables those devices to
  communicate on IP networks.  However, for efficient performance, some
  parameters and modes of operation need to be set appropriately for
  each of the LPWAN technologies.

  This document describes the parameters and modes of operation when
  SCHC is used over LoRaWAN networks.  The LoRaWAN protocol is
  specified by the LoRa Alliance in [LORAWAN-SPEC].

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This section defines the terminology and abbreviations used in this
  document.  For all other definitions, please look up the SCHC
  specification [RFC8724].

     |  Note: The SCHC acronym is pronounced like "sheek" in English
     |  (or "chic" in French).  Therefore, this document writes "a SCHC
     |  Packet" instead of "an SCHC Packet".

  AppKey:  Application Key. An AES-128 root key specific to each
     device.

  AppSKey:  Application Session Key. An AES-128 key derived from the
     AppKey for each new session.  It is used to encrypt the payload
     field of a LoRaWAN applicative frame.

  DevAddr:  A 32-bit non-unique identifier assigned to a device either:

     Statically:  by the device manufacturer in "Activation-by-
        Personalization" mode, or

     Dynamically:  after a LoRaWAN "Join Procedure" by the Network
        Gateway in "Over-the-Air-Activation" mode.

  DevEUI:  Device Extended Unique Identifier, an IEEE EUI-64 identifier
     used to identify the device during the procedure while joining the
     network (Join Procedure).  It is assigned by the manufacturer or
     the device owner and provisioned on the Network Gateway.

  Downlink:  A LoRaWAN term for a frame transmitted by the network and
     received by the device.

  EUI:  Extended Unique Identifier

  FRMPayload:  Application data in a LoRaWAN frame

  IID:  Interface Identifier

  LoRaWAN:  LoRaWAN is a wireless technology based on Industrial,
     Scientific, and Medical (ISM) radio bands that is used for long-
     range, low-power, low-data-rate applications developed by the LoRa
     Alliance, a membership consortium: <https://www.lora-
     alliance.org>.

  MSB:  Most Significant Byte

  NGW:  Network Gateway

  OUI:  Organizationally Unique Identifier.  IEEE-assigned prefix for
     EUI.

  RCS:  Reassembly Check Sequence.  Used to verify the integrity of the
     fragmentation-reassembly process.

  RGW:  Radio Gateway

  RX:  A device's reception window.

  RX1/RX2:  LoRaWAN class A devices open two RX windows following an
     uplink, called "RX1" and "RX2".

  SCHC C/D:  SCHC Compression/Decompression

  SCHC F/R:  SCHC Fragmentation/Reassembly

  SCHC gateway:  The LoRaWAN Application Server that manages
     translation between an IPv6 network and the Network Gateway
     (LoRaWAN Network Server).

  Tile:  A piece of a fragmented packet as described in Section 8.2.2.1
     of [RFC8724].

  Uplink:  LoRaWAN term for a frame transmitted by the device and
     received by the network.

3.  SCHC Overview

  This section contains a short overview of SCHC.  For a detailed
  description, refer to the full specification [RFC8724].

  It defines:

  1.  Compression mechanisms to avoid transporting information known by
      both sender and receiver over the air.  Known information is part
      of the "context".  This component is called the "SCHC
      Compression/Decompression" (SCHC C/D).

  2.  Fragmentation mechanisms to allow SCHC Packet transportation on a
      small, and potentially variable, MTU.  This component is called
      the "SCHC Fragmentation/Reassembly" (SCHC F/R).

  Context exchange or pre-provisioning is out of scope of this
  document.

     Device                                                App
 +----------------+                                +----+ +----+ +----+
 | App1 App2 App3 |                                |App1| |App2| |App3|
 |                |                                |    | |    | |    |
 |       UDP      |                                |UDP | |UDP | |UDP |
 |      IPv6      |                                |IPv6| |IPv6| |IPv6|
 |                |                                |    | |    | |    |
 |SCHC C/D and F/R|                                |    | |    | |    |
 +--------+-------+                                +----+ +----+ +----+
          |  +---+     +----+    +----+    +----+     .      .      .
          +~ |RGW| === |NGW | == |SCHC| == |SCHC|...... Internet ....
             +---+     +----+    |F/R |    |C/D |
                                 +----+    +----+
 |<- - - - LoRaWAN - - ->|

                         Figure 1: Architecture

  Figure 1 represents the architecture for compression/decompression;
  it is based on the terminology from [RFC8376].  The device is sending
  application flows using IPv6 or IPv6/UDP protocols.  These flows
  might be compressed by a SCHC C/D to reduce header size, and
  fragmented by the SCHC F/R.  The resulting information is sent on a
  Layer 2 (L2) frame to an LPWAN Radio Gateway (RGW) that forwards the
  frame to a Network Gateway (NGW).  The NGW sends the data to a SCHC
  F/R for reassembly, if required, then to a SCHC C/D for
  decompression.  The SCHC C/D shares the same rules with the device.
  The SCHC C/D and SCHC F/R can be located on the NGW or in another
  place as long as a communication is established between the NGW and
  the SCHC F/R, then SCHC F/R and SCHC C/D.  The SCHC C/D and SCHC F/R
  in the device and the SCHC gateway MUST share the same set of rules.
  After decompression, the packet can be sent on the Internet to one or
  several LPWAN Application Servers (App).

  The SCHC C/D and SCHC F/R process is bidirectional, so the same
  principles can be applied to the other direction.

  In a LoRaWAN network, the RGW is called a "Gateway", the NGW is a
  "Network Server", and the SCHC C/D and SCHC F/R are one or more
  "Application Servers".  Application servers can be provided by the
  NGW or any third-party software.  Figure 1 can be mapped in LoRaWAN
  terminology to:

   End Device                                              App
+--------------+                                   +----+ +----+ +----+
|App1 App2 App3|                                   |App1| |App2| |App3|
|              |                                   |    | |    | |    |
|      UDP     |                                   |UDP | |UDP | |UDP |
|     IPv6     |                                   |IPv6| |IPv6| |IPv6|
|              |                                   |    | |    | |    |
|SCHC C/D & F/R|                                   |    | |    | |    |
+-------+------+                                   +----+ +----+ +----+
        |  +-------+    +-------+    +-----------+    .      .      .
        +~ |Gateway| == |Network| == |Application|..... Internet ....
           +-------+    |server |    |server     |
                        +-------+    | F/R - C/D |
                                     +-----------+
|<- - - - - LoRaWAN - - - ->|

            Figure 2: SCHC Architecture Mapped to LoRaWAN

4.  LoRaWAN Architecture

  An overview of the LoRaWAN protocol and architecture [LORAWAN-SPEC]
  is described in [RFC8376].  The mapping between the LPWAN
  architecture entities as described in [RFC8724] and the ones in
  [LORAWAN-SPEC] is as follows:

  *  Devices are LoRaWAN End Devices (e.g., sensors, actuators, etc.).
     There can be a very high density of devices per radio gateway
     (LoRaWAN gateway).  This entity maps to the LoRaWAN end device.

  *  The RGW is the endpoint of the constrained link.  This entity maps
     to the LoRaWAN Gateway.

  *  The NGW is the interconnection node between the Radio Gateway and
     the SCHC gateway (LoRaWAN Application Server).  This entity maps
     to the LoRaWAN Network Server.

  *  The SCHC C/D and SCHC F/R are handled by the LoRaWAN Application
     Server.

  *  The LPWAN-AAA Server is the LoRaWAN Join Server.  Its role is to
     manage and deliver security keys in a secure way so that the
     devices root key is never exposed.

                                        (LPWAN-AAA Server)
   ()   ()   ()       |                      +------+
    ()  () () ()     / \       +---------+   | Join |
   () () () () ()   /   \======|    ^    |===|Server|  +-----------+
    () ()  ()      |           | <--|--> |   +------+  |Application|
   () ()  ()  ()  / \==========|    v    |=============|  Server   |
    ()  ()  ()   /   \         +---------+             +-----------+
   End devices  Gateways     Network Server          (SCHC C/D and F/R)
    (devices)    (RGW)            (NGW)

                    Figure 3: LPWAN Architecture

     |  Note: Figure 3 terms are from LoRaWAN, with [RFC8376]
     |  terminology in brackets.

  The SCHC C/D and SCHC F/R are performed on the LoRaWAN end device and
  the Application Server (called the SCHC gateway).  While the point-
  to-point link between the device and the Application Server
  constitutes a single IP hop, the ultimate endpoint of the IP
  communication may be an Internet node beyond the Application Server.
  In other words, the LoRaWAN Application Server (SCHC gateway) acts as
  the first-hop IP router for the device.  The Application Server and
  Network Server may be co-located, which effectively turns the
  Network/Application Server into the first-hop IP router.

4.1.  Device Classes (A, B, C) and Interactions

  The LoRaWAN Medium Access Control (MAC) layer supports three classes
  of devices named A, B, and C.  All devices implement Class A, and
  some devices may implement Class B or Class C.  Class B and Class C
  are mutually exclusive.

  Class A:  Class A is the simplest class of devices.  The device is
     allowed to transmit at any time, randomly selecting a
     communication channel.  The Network Gateway may reply with a
     downlink in one of the two receive windows immediately following
     the uplinks.  Therefore, the Network Gateway cannot initiate a
     downlink; it has to wait for the next uplink from the device to
     get a downlink opportunity.  Class A is the lowest power
     consumption class.

  Class B:  Class B devices implement all the functionalities of Class
     A devices but also schedule periodic listen windows.  Therefore,
     as opposed to Class A devices, Class B devices can receive
     downlinks that are initiated by the Network Gateway and not
     following an uplink.  There is a trade-off between the periodicity
     of those scheduled Class B listen windows and the power
     consumption of the device:

     High periodicity:  Downlinks from the NGW will be sent faster but
        the device wakes up more often and power consumption is
        increased.

     Low periodicity:  Downlinks from the NGW will have higher latency
        but lower power consumption.

  Class C:  Class C devices implement all the functionalities of Class
     A devices but keep their receiver open whenever they are not
     transmitting.  Class C devices can receive downlinks at any time
     at the expense of a higher power consumption.  Battery-powered
     devices can only operate in Class C for a limited amount of time
     (for example, for a firmware upgrade over-the-air).  Most of the
     Class C devices are grid powered (for example, Smart Plugs).

4.2.  Device Addressing

  LoRaWAN end devices use a 32-bit network address (DevAddr) to
  communicate with the Network Gateway over the air; this address might
  not be unique in a LoRaWAN network.  Devices using the same DevAddr
  are distinguished by the Network Gateway based on the cryptographic
  signature appended to every LoRaWAN frame.

  To communicate with the SCHC gateway, the Network Gateway MUST
  identify the devices by a unique 64-bit device identifier called the
  "DevEUI".

  The DevEUI is assigned to the device during the manufacturing process
  by the device's manufacturer.  It is built like an Ethernet MAC
  address by concatenating the manufacturer's IEEE OUI field with a
  vendor unique number.  For example, a 24-bit OUI is concatenated with
  a 40-bit serial number.  The Network Gateway translates the DevAddr
  into a DevEUI in the uplink direction and reciprocally on the
  downlink direction.

+--------+         +---------+        +---------+          +----------+
| Device | <=====> | Network | <====> | SCHC    | <======> | Internet |
|        | DevAddr | Gateway | DevEUI | Gateway | IPv6/UDP |          |
+--------+         +---------+        +---------+          +----------+

                     Figure 4: LoRaWAN Addresses

4.3.  General Frame Types

  LoRaWAN implements the possibility to send confirmed or unconfirmed
  frames:

  Confirmed frame:  The sender asks the receiver to acknowledge the
     frame.

  Unconfirmed frame:  The sender does not ask the receiver to
     acknowledge the frame.

  As SCHC defines its own acknowledgment mechanisms, SCHC does not
  require the use of LoRaWAN Confirmed frames (FType = 0b100 as per
  [LORAWAN-SPEC]).

4.4.  LoRaWAN MAC Frames

  In addition to regular data frames, LoRaWAN implements JoinRequest
  and JoinAccept frame types, which are used by a device to join a
  network:

  JoinRequest:  This frame is used by a device to join a network.  It
     contains the device's unique identifier DevEUI and a random nonce
     that will be used for session key derivation.

  JoinAccept:  To onboard a device, the Network Gateway responds to the
     JoinRequest issued by a device with a JoinAccept frame.  That
     frame is encrypted with the device's AppKey and contains (among
     other fields) the network's major settings and a random nonce used
     to derive the session keys.

  Data:  This refers to MAC and application data.  Application data is
     protected with AES-128 encryption.  MAC-related data is AES-128
     encrypted with another key.

4.5.  LoRaWAN FPort

  The LoRaWAN MAC layer features a frame port field in all frames.
  This field (FPort) is 8 bits long and the values from 1 to 223 can be
  used.  It allows LoRaWAN networks and applications to identify data.

4.6.  LoRaWAN Empty Frame

  A LoRaWAN empty frame is a LoRaWAN frame without FPort (cf.
  Section 5.1) and FRMPayload.

4.7.  Unicast and Multicast Technology

  LoRaWAN technology supports unicast downlinks but also multicast; a
  multicast packet sent over a LoRaWAN radio link can be received by
  several devices.  It is useful to address many devices with the same
  content: either a large binary file (firmware upgrade) or the same
  command (e.g., lighting control).  As IPv6 is also a multicast
  technology, this feature can be used to address a group of devices.

     |  Note 1: IPv6 multicast addresses must be defined as per
     |  [RFC4291].  The LoRaWAN multicast group definition in a Network
     |  Gateway and the relation between those groups and IPv6 groupID
     |  are out of scope of this document.

     |  Note 2: The LoRa Alliance defined
     |  [LORAWAN-REMOTE-MULTICAST-SET] as the RECOMMENDED way to set up
     |  multicast groups on devices and create a synchronized reception
     |  window.

5.  SCHC over LoRaWAN

5.1.  LoRaWAN FPort and RuleID

  The FPort field is part of the SCHC Message, as shown in Figure 5.
  The SCHC C/D and the SCHC F/R SHALL concatenate the FPort field with
  the LoRaWAN payload to recompose the SCHC Message.

  | FPort | LoRaWAN payload  |
  + ------------------------ +
  |       SCHC Message       |

                    Figure 5: SCHC Message in LoRaWAN

     |  Note: The SCHC Message is any datagram sent by the SCHC C/D or
     |  F/R layers.

  A fragmented datagram with application payload transferred from
  device to Network Gateway is called an "uplink-fragmented datagram".
  It uses an FPort for data uplink and its associated SCHC control
  downlinks, named "FPortUp" in this document.  The other way, a
  fragmented datagram with application payload transferred from Network
  Gateway to device is called a "downlink-fragmented datagram".  It
  uses another FPort for data downlink and its associated SCHC control
  uplinks, named "FPortDown" in this document.

  All RuleIDs can use arbitrary values inside the FPort range allowed
  by the LoRaWAN specification [LORAWAN-SPEC] and MUST be shared by the
  device and SCHC gateway prior to the communication with the selected
  rule.  The uplink and downlink fragmentation FPorts MUST be
  different.

5.2.  RuleID Management

  The RuleID MUST be 8 bits and encoded in the LoRaWAN FPort as
  described in Section 5.1.  LoRaWAN supports up to 223 application
  FPorts in the range [1..223] as defined in Section 4.3.2 of
  [LORAWAN-SPEC]; it implies that the RuleID MSB SHOULD be inside this
  range.  An application can send non-SCHC traffic by using FPort
  values different from the ones used for SCHC.

  In order to improve interoperability, RECOMMENDED fragmentation
  RuleID values are:

  *  RuleID = 20 (8-bit) for uplink fragmentation, named FPortUp.

  *  RuleID = 21 (8-bit) for downlink fragmentation, named FPortDown.

  *  RuleID = 22 (8-bit) for which SCHC compression was not possible
     (i.e., no matching compression Rule was found), as described in
     Section 6 of [RFC8724].

  The FPortUp value MUST be different from the FPortDown value.  The
  remaining RuleIDs are available for compression.  RuleIDs are shared
  between uplink and downlink sessions.  A RuleID not in the set(s) of
  FPortUp or FPortDown means that the fragmentation is not used; thus,
  on reception, the SCHC Message MUST be sent to the SCHC C/D layer.

  The only uplink frames using the FPortDown port are the fragmentation
  SCHC control messages of a downlink-fragmented datagram (for example,
  SCHC ACKs).  Similarly, the only downlink frames using the FPortUp
  port are the fragmentation SCHC control messages of an uplink-
  fragmented datagram.

  An application can have multiple fragmented datagrams between a
  device and one or several SCHC gateways.  A set of FPort values is
  REQUIRED for each SCHC gateway instance the device is required to
  communicate with.  The application can use additional uplinks or
  downlink-fragmented parameters but SHALL implement at least the
  parameters defined in this document.

  The mechanism for context distribution across devices and gateways is
  outside the scope of this document.

5.3.  Interface IDentifier (IID) Computation

  In order to mitigate the risks described in [RFC8064] and [RFC8065],
  implementations MUST implement the following algorithm and SHOULD use
  it.

  1.  key = LoRaWAN AppSKey

  2.  cmac = aes128_cmac(key, DevEUI)

  3.  IID = cmac[0..7]

  The aes128_cmac algorithm is described in [RFC4493].  It has been
  chosen as it is already used by devices for the LoRaWAN protocol.

  As AppSKey is renewed each time a device joins or rejoins a LoRaWAN
  network, the IID will change over time; this mitigates privacy
  concerns, for example, location tracking or correlation over time.
  Join periodicity is defined at the application level.

  Address-scan risk is mitigated thanks to the entropy added to the IID
  by the inclusion of AppSKey.

  Using this algorithm will also ensure that there is no correlation
  between the hardware identifier (DevEUI) and the IID, so an attacker
  cannot use the manufacturer OUI to target devices.

  Example with:

  *  DevEUI: 0x1122334455667788

  *  AppSKey: 0x00AABBCCDDEEFF00AABBCCDDEEFFAABB

  1. key: 0x00AABBCCDDEEFF00AABBCCDDEEFFAABB
  2. cmac: 0x4E822D9775B2649928F82066AF804FEC
  3. IID: 0x4E822D9775B26499

                   Figure 6: Example of IID Computation

  There is a small probability of IID collision in a LoRaWAN network.
  If this occurs, the IID can be changed by rekeying the device at the
  L2 level (i.e., triggering a LoRaWAN join).  The way the device is
  rekeyed is out of scope of this document and left to the
  implementation.

     |  Note: Implementations also using another IID source MUST ensure
     |  that the same IID is shared between the device and the SCHC
     |  gateway in the compression and decompression of the IPv6
     |  address of the device.

5.4.  Padding

  All padding bits MUST be 0.

5.5.  Decompression

  The SCHC C/D MUST concatenate FPort and LoRaWAN payload to retrieve
  the SCHC Packet as per Section 5.1.

  RuleIDs matching FPortUp and FPortDown are reserved for SCHC
  fragmentation.

5.6.  Fragmentation

  The L2 Word Size used by LoRaWAN is 1 byte (8 bits).  The SCHC
  fragmentation over LoRaWAN uses the ACK-on-Error mode for uplink
  fragmentation and ACK-Always mode for downlink fragmentation.  A
  LoRaWAN device cannot support simultaneous interleaved fragmented
  datagrams in the same direction (uplink or downlink).

  The fragmentation parameters are different for uplink- and downlink-
  fragmented datagrams and are successively described in the next
  sections.

5.6.1.  DTag

  Section 8.2.4 of [RFC8724] describes the possibility to interleave
  several fragmented SCHC datagrams for the same RuleID.  This is not
  used in the SCHC-over-LoRaWAN profile.  A device cannot interleave
  several fragmented SCHC datagrams on the same FPort.  This field is
  not used, and its size is 0.

     |  Note: The device can still have several parallel fragmented
     |  datagrams with more than one SCHC gateway thanks to distinct
     |  sets of FPorts, cf. Section 5.2.

5.6.2.  Uplink Fragmentation: From Device to SCHC Gateway

  In this case, the device is the fragment transmitter and the SCHC
  gateway is the fragment receiver.  A single fragmentation rule is
  defined.  The SCHC F/R MUST concatenate FPort and LoRaWAN payload to
  retrieve the SCHC Packet, as per Section 5.1.

  SCHC fragmentation reliability mode:  "ACK-on-Error".

  SCHC header size:  2 bytes (the FPort byte + 1 additional byte).

  RuleID:  8 bits stored in the LoRaWAN FPort (cf.  Section 5.2).

  DTag:  Size T = 0 bits, not used (cf.  Section 5.6.1).

  Window index:  4 windows are used, encoded on M = 2 bits.

  FCN:  The FCN field is encoded on N = 6 bits, so WINDOW_SIZE = 63
     tiles are allowed in a window.

  Last tile:  It can be carried in a Regular SCHC Fragment, alone in an
     All-1 SCHC Fragment, or with any of these two methods.
     Implementations must ensure that:

     *  The sender MUST ascertain that the receiver will not receive
        the last tile through both a Regular SCHC Fragment and an All-1
        SCHC Fragment during the same session.

     *  If the last tile is in an All-1 SCHC Message, the current L2
        MTU MUST be big enough to fit the All-1 header and the last
        tile.

  Penultimate tile:  MUST be equal to the regular size.

  RCS:  Use the recommended calculation algorithm in Section 8.2.3 of
     [RFC8724], Integrity Checking.

  Tile:  Size is 10 bytes.

  Retransmission timer:  Set by the implementation depending on the
     application requirements.  The default RECOMMENDED duration of
     this timer is 12 hours; this value is mainly driven by application
     requirements and MAY be changed by the application.

  Inactivity timer:  The SCHC gateway implements an "inactivity timer".
     The default RECOMMENDED duration of this timer is 12 hours; this
     value is mainly driven by application requirements and MAY be
     changed by the application.

  MAX_ACK_REQUESTS:  8.  With this set of parameters, the SCHC Fragment
     Header is 16 bits, including FPort; payload overhead will be 8
     bits as FPort is already a part of LoRaWAN payload.  MTU is: 4
     windows * 63 tiles * 10 bytes per tile = 2520 bytes.

  In addition to the per-rule context parameters specified in
  [RFC8724], for uplink rules, an additional context parameter is
  added: whether or not to ack after each window.  For battery powered
  devices, it is RECOMMENDED to use the ACK mechanism at the end of
  each window instead of waiting until the end of all windows:

  *  The SCHC receiver SHOULD send a SCHC ACK after every window even
     if there is no missing tile.

  *  The SCHC sender SHOULD wait for the SCHC ACK from the SCHC
     receiver before sending tiles from the next window.  If the SCHC
     ACK is not received, it SHOULD send a SCHC ACK REQ up to
     MAX_ACK_REQUESTS times, as described previously.

  This will avoid useless uplinks if the device has lost network
  coverage.

  For non-battery powered devices, the SCHC receiver MAY also choose to
  send a SCHC ACK only at the end of all windows.  This will reduce
  downlink load on the LoRaWAN network by reducing the number of
  downlinks.

  SCHC implementations MUST be compatible with both behaviors, and this
  selection is part of the rule context.

5.6.2.1.  Regular Fragments

  Figure 7 is an example of a regular fragment for all fragments except
  the last one.  SCHC Header Size is 16 Bits, including the LoRaWAN
  FPort.

  | FPort  |  LoRaWAN payload          |
  + ------ + ------------------------- +
  | RuleID |   W    | FCN    | Payload |
  + ------ + ------ + ------ + ------- +
  | 8 bits | 2 bits | 6 bits |         |

               Figure 7: All Fragments Except the Last One.

5.6.2.2.  Last Fragment (All-1)

  Following figures are examples of All-1 messages.  Figure 8 is
  without the last tile, Figure 9 is with the last tile.

  | FPort  | LoRaWAN payload              |
  + ------ + ---------------------------- +
  | RuleID |   W    | FCN=All-1 |  RCS    |
  + ------ + ------ + --------- + ------- +
  | 8 bits | 2 bits | 6 bits    | 32 bits |

              Figure 8: All-1 SCHC Message without Last Tile

| FPort  | LoRaWAN payload                                            |
+ ------ + ---------------------------------------------------------- +
| RuleID |   W    | FCN=All-1 |  RCS    |  Last tile   | Opt. padding |
+ ------ + ------ + --------- + ------- + ------------ + ------------ +
| 8 bits | 2 bits |  6 bits   | 32 bits | 1 to 80 bits | 0 to 7 bits  |

             Figure 9: All-1 SCHC Message with Last Tile

5.6.2.3.  SCHC ACK

  | FPort  | LoRaWAN payload           |
  + ------ + --------------------------+
  | RuleID |   W   | C = 1 |  padding  |
  |        |       |       | (b'00000) |
  + ------ + ----- + ----- + --------- +
  | 8 bits | 2 bit | 1 bit |  5 bits   |

              Figure 10: SCHC ACK Format - Correct RCS Check

  | FPort  | LoRaWAN payload                                      |
  + ------ + --------------------------------- + ---------------- +
  | RuleID |   W   | C = 0 | Compressed bitmap | Optional padding |
  |        |       |       |      (C = 0)      |    (b'0...0)     |
  + ------ + ----- + ----- + ----------------- + ---------------- +
  | 8 bits | 2 bit | 1 bit |    5 to 63 bits   |  0, 6, or 7 bits |

             Figure 11: SCHC ACK Format - Incorrect RCS Check

     |  Note: Because of the bitmap compression mechanism and L2 byte
     |  alignment, only the following discrete values are possible for
     |  the compressed bitmap size: 5, 13, 21, 29, 37, 45, 53, 61, 62,
     |  and 63.  Bitmaps of 63 bits will require 6 bits of padding.

5.6.2.4.  Receiver-Abort

  | FPort  | LoRaWAN payload                              |
  + ------ + -------------------------------------------- +
  | RuleID | W = b'11 | C = 1 | b'11111 | 0xFF (all 1's)  |
  + ------ + -------- + ------+-------- + ----------------+
  | 8 bits |  2 bits  | 1 bit | 5 bits  | 8 bits          |
                next L2 Word boundary ->| <-- L2 Word --> |

                     Figure 12: Receiver-Abort Format

5.6.2.5.  SCHC Acknowledge Request

  | FPort  | LoRaWAN payload          |
  +------- +------------------------- +
  | RuleID | W      | FCN = b'000000  |
  + ------ + ------ + --------------- +
  | 8 bits | 2 bits | 6 bits          |

                      Figure 13: SCHC ACK REQ Format

5.6.3.  Downlink Fragmentation: From SCHC Gateway to Device

  In this case, the device is the fragmentation receiver and the SCHC
  gateway is the fragmentation transmitter.  The following fields are
  common to all devices.  The SCHC F/R MUST concatenate FPort and
  LoRaWAN payload to retrieve the SCHC Packet as described in
  Section 5.1.

  SCHC fragmentation reliability mode:
        Unicast downlinks:  ACK-Always.

        Multicast downlinks:  No-ACK; reliability has to be ensured by
           the upper layer.  This feature is OPTIONAL for the SCHC
           gateway and REQUIRED for the device.

  RuleID:  8 bits stored in the LoRaWAN FPort (cf.  Section 5.2).

  DTag:  Size T = 0 bit, not used (cf.  Section 5.6.1).

  FCN:  The FCN field is encoded on N = 1 bit, so WINDOW_SIZE = 1 tile.

  RCS:  Use the recommended calculation algorithm in Section 8.2.3 of
     [RFC8724], Integrity Checking.

  Inactivity timer:  The default RECOMMENDED duration of this timer is
     12 hours; this value is mainly driven by application requirements
     and MAY be changed by the application.

  The following parameters apply to ACK-Always (Unicast) only:

  Retransmission timer:  See Section 5.6.3.5.

  MAX_ACK_REQUESTS:  8.

  Window index (unicast only):  encoded on M = 1 bit, as per [RFC8724].

  As only one tile is used, its size can change for each downlink and
  will be the currently available MTU.

  Class A devices can only receive during an RX slot, following the
  transmission of an uplink.  Therefore, the SCHC gateway cannot
  initiate communication (e.g., start a new SCHC session).  In order to
  create a downlink opportunity, it is RECOMMENDED for Class A devices
  to send an uplink every 24 hours when no SCHC session is started;
  this is application specific and can be disabled.  The RECOMMENDED
  uplink is a LoRaWAN empty frame as defined in Section 4.6.  As this
  uplink is sent only to open an RX window, any LoRaWAN uplink frame
  from the device MAY reset this counter.

     |  Note: The FPending bit included in the LoRaWAN protocol SHOULD
     |  NOT be used for the SCHC-over-LoRaWAN protocol.  It might be
     |  set by the Network Gateway for other purposes but not SCHC
     |  needs.

5.6.3.1.  Regular Fragments

  Figure 14 is an example of a regular fragment for all fragments
  except the last one.  SCHC Header Size is 10 Bits, including the
  LoRaWAN FPort.

  | FPort  | LoRaWAN payload                      |
  + ------ + ------------------------------------ +
  | RuleID | W     | FCN = b'0 | Payload          |
  + ------ + ----- + --------- + ---------------- +
  | 8 bits | 1 bit | 1 bit     | X bytes + 6 bits |

                Figure 14: All Fragments but the Last One.

5.6.3.2.  Last Fragment (All-1)

  | FPort  | LoRaWAN payload                                         |
  + ------ + --------------------------- + ------------------------- +
  | RuleID | W     | FCN = b'1 |   RCS   |   Payload   | Opt padding |
  + ------ + ----- + --------- + ------- + ----------- + ----------- +
  | 8 bits | 1 bit | 1 bit     | 32 bits | 6 to X bits | 0 to 7 bits |

             Figure 15: All-1 SCHC Message: The Last Fragment

5.6.3.3.  SCHC ACK

  | FPort  | LoRaWAN payload                    |
  + ------ + ---------------------------------- +
  | RuleID | W     | C = b'1 | Padding b'000000 |
  + ------ + ----- + ------- + ---------------- +
  | 8 bits | 1 bit | 1 bit   | 6 bits           |

              Figure 16: SCHC ACK Format - Correct RCS Check

  | FPort  | LoRaWAN payload                                   |
  + ------ + ------------------------------------------------- +
  | RuleID | W     | C = b'0 | Bitmap = b'1 | Padding b'000000 |
  + ------ + ----- + ------- + ------------ + ---------------- +
  | 8 bits | 1 bit | 1 bit   |    1 bit     |      5 bits      |

             Figure 17: SCHC ACK Format - Incorrect RCS Check

5.6.3.4.  Receiver-Abort

  Figure 18 is an example of a Receiver-Abort packet, following an
  All-1 SCHC Fragment with incorrect RCS.

  | FPort  | LoRaWAN payload                                |
  + ------ + ---------------------------------------------- +
  | RuleID | W = b'1 | C = b'1 | b'111111 | 0xFF (all 1's)  |
  + ------ + ------- + ------- + -------- + --------------- +
  | 8 bits | 1 bit   | 1 bits  | 6 bits   | 8 bits          |
                  next L2 Word boundary ->| <-- L2 Word --> |

                     Figure 18: Receiver-Abort Packet

5.6.3.5.  Downlink Retransmission Timer

  Class A, Class B, and Class C devices do not manage retransmissions
  and timers the same way.

5.6.3.5.1.  Class A Devices

  Class A devices can only receive in an RX slot following the
  transmission of an uplink.

  The SCHC gateway implements an inactivity timer with a RECOMMENDED
  duration of 36 hours.  For devices with very low transmission rates
  (for example, 1 packet a day in normal operation), that duration may
  be extended; it is application specific.

  RETRANSMISSION_TIMER is application specific and its RECOMMENDED
  value is INACTIVITY_TIMER/(MAX_ACK_REQUESTS + 1).

  *SCHC All-0 (FCN = 0)*

  All fragments but the last have an FCN = 0 (because the window size
  is 1).  Following an All-0 SCHC Fragment, the device MUST transmit
  the SCHC ACK message.  It MUST transmit up to MAX_ACK_REQUESTS SCHC
  ACK messages before aborting.  In order to progress the fragmented
  datagram, the SCHC layer should immediately queue for transmission
  those SCHC ACK messages if no SCHC downlink has been received during
  the RX1 and RX2 windows.  The LoRaWAN layer will respect the
  applicable local spectrum regulation.

     |  Note: The ACK bitmap is 1 bit long and is always 1.

  *SCHC All-1 (FCN = 1)*

  SCHC All-1 is the last fragment of a datagram, and the corresponding
  SCHC ACK message might be lost; therefore, the SCHC gateway MUST
  request a retransmission of this ACK when the retransmission timer
  expires.  To open a downlink opportunity, the device MUST transmit an
  uplink every interval of RETRANSMISSION_TIMER/(MAX_ACK_REQUESTS *
  SCHC_ACK_REQ_DN_OPPORTUNITY).  The format of this uplink is
  application specific.  It is RECOMMENDED for a device to send an
  empty frame (see Section 4.6), but it is application specific and
  will be used by the NGW to transmit a potential SCHC ACK REQ.
  SCHC_ACK_REQ_DN_OPPORTUNITY is application specific and its
  recommended value is 2.  It MUST be greater than 1.  This allows the
  opening of a downlink opportunity to any downlink with higher
  priority than the SCHC ACK REQ message.

     |  Note: The device MUST keep this SCHC ACK message in memory
     |  until it receives a downlink SCHC Fragmentation Message (with
     |  FPort == FPortDown) that is not a SCHC ACK REQ; this indicates
     |  that the SCHC gateway has received the SCHC ACK message.

5.6.3.6.  Class B or Class C Devices

  Class B devices can receive in scheduled RX slots or in RX slots
  following the transmission of an uplink.  Class C devices are almost
  in constant reception.

  RECOMMENDED retransmission timer values are:

  Class B:  3 times the ping slot periodicity.

  Class C:  30 seconds.

  The RECOMMENDED inactivity timer value is 12 hours for both Class B
  and Class C devices.

5.7.  SCHC Fragment Format

5.7.1.  All-0 SCHC Fragment

  *Uplink Fragmentation (Ack-on-Error)*:

  All-0 is distinguishable from a SCHC ACK REQ, as [RFC8724] states
  "This condition is also met if the SCHC Fragment Header is a multiple
  of L2 Words", the following condition being met: SCHC header is 2
  bytes.

  *Downlink fragmentation (ACK-Always)*:

  As per [RFC8724], SCHC All-1 MUST contain the last tile, and
  implementations MUST ensure that SCHC All-0 message Payload will be
  at least the size of an L2 Word.

5.7.2.  All-1 SCHC Fragment

  All-1 is distinguishable from a SCHC Sender-Abort, as [RFC8724]
  states "This condition is met if the RCS is present and is at least
  the size of an L2 Word", the following condition being met: RCS is 4
  bytes.

5.7.3.  Delay after Each LoRaWAN Frame to Respect Local Regulation

  This profile does not define a delay to be added after each LoRaWAN
  frame; local regulation compliance is expected to be enforced by the
  LoRaWAN stack.

6.  Security Considerations

  This document is only providing parameters that are expected to be
  best suited for LoRaWAN networks for [RFC8724].  IID security is
  discussed in Section 5.3.  As such, this document does not contribute
  to any new security issues beyond those already identified in
  [RFC8724].  Moreover, SCHC data (LoRaWAN payload) are protected at
  the LoRaWAN level by an AES-128 encryption with a session key shared
  by the device and the SCHC gateway.  These session keys are renewed
  at each LoRaWAN session (i.e., each join or rejoin to the LoRaWAN
  network).

7.  IANA Considerations

  This document has no IANA actions.

8.  References

8.1.  Normative References

  [LORAWAN-SPEC]
             LoRa Alliance, "LoRaWAN 1.0.4 Specification Package",
             <https://lora-alliance.org/resource_hub/lorawan-104-
             specification-package/>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
             Architecture", RFC 4291, DOI 10.17487/RFC4291, February
             2006, <https://www.rfc-editor.org/info/rfc4291>.

  [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
             AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
             2006, <https://www.rfc-editor.org/info/rfc4493>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
             Zúñiga, "SCHC: Generic Framework for Static Context Header
             Compression and Fragmentation", RFC 8724,
             DOI 10.17487/RFC8724, April 2020,
             <https://www.rfc-editor.org/info/rfc8724>.

8.2.  Informative References

  [LORAWAN-REMOTE-MULTICAST-SET]
             LoRa Alliance, "LoRaWAN Remote Multicast Setup
             Specification v1.0.0", <https://lora-
             alliance.org/resource_hub/lorawan-remote-multicast-setup-
             specification-v1-0-0/>.

  [RFC8064]  Gont, F., Cooper, A., Thaler, D., and W. Liu,
             "Recommendation on Stable IPv6 Interface Identifiers",
             RFC 8064, DOI 10.17487/RFC8064, February 2017,
             <https://www.rfc-editor.org/info/rfc8064>.

  [RFC8065]  Thaler, D., "Privacy Considerations for IPv6 Adaptation-
             Layer Mechanisms", RFC 8065, DOI 10.17487/RFC8065,
             February 2017, <https://www.rfc-editor.org/info/rfc8065>.

  [RFC8376]  Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
             Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
             <https://www.rfc-editor.org/info/rfc8376>.

Appendix A.  Examples

  In the following examples, "applicative data" refers to the IPv6
  payload sent by the application to the SCHC layer.

A.1.  Uplink - Compression Example - No Fragmentation

  This example represents an applicative data going through SCHC over
  LoRaWAN; no fragmentation required.

  An applicative data of 78 bytes is passed to the SCHC compression
  layer.  Rule 1 is used by the SCHC C/D layer, allowing to compress it
  to 40 bytes and 5 bits: 1 byte RuleID, 21 bits residue + 37 bytes
  payload.

  | RuleID | Compression residue |  Payload  | Padding=b'000 |
  + ------ + ------------------- + --------- + ------------- +
  |   1    |       21 bits       |  37 bytes |    3 bits     |

                 Figure 19: Uplink Example: SCHC Message

  The current LoRaWAN MTU is 51 bytes, although 2-byte FOpts are used
  by the LoRaWAN protocol: 49 bytes are available for SCHC payload; no
  need for fragmentation.  The payload will be transmitted through
  FPort = 1.

| LoRaWAN Header            | LoRaWAN payload (40 bytes)              |
+ ------------------------- + --------------------------------------- +
|      |  FOpts  | RuleID=1 | Compression | Payload   | Padding=b'000 |
|      |         |          | residue     |           |               |
+ ---- + ------- + -------- + ----------- + --------- + ------------- +
| XXXX | 2 bytes | 1 byte   | 21 bits     |  37 bytes |    3 bits     |

              Figure 20: Uplink Example: LoRaWAN Packet

A.2.  Uplink - Compression and Fragmentation Example

  This example represents an applicative data going through SCHC, with
  fragmentation.

  An applicative data of 300 bytes is passed to the SCHC compression
  layer.  Rule 1 is used by the SCHC C/D layer, allowing to compress it
  to 282 bytes and 5 bits: 1 byte RuleID, 21 bits residue + 279 bytes
  payload.

  | RuleID | Compression residue |  Payload  |
  + ------ + ------------------- + --------- +
  |   1    |       21 bits       | 279 bytes |

                 Figure 21: Uplink Example: SCHC Message

  The current LoRaWAN MTU is 11 bytes; 0-byte FOpts are used by the
  LoRaWAN protocol: 11 bytes are available for SCHC payload + 1 byte
  FPort field.  The SCHC header is 2 bytes (including FPort), so 1 tile
  is sent in the first fragment.

  | LoRaWAN Header             | LoRaWAN payload (11 bytes) |
  + -------------------------- + -------------------------- +
  |                | RuleID=20 |   W   |  FCN   |  1 tile   |
  + -------------- + --------- + ----- + ------ + --------- +
  |       XXXX     | 1 byte    | 0   0 |   62   | 10 bytes  |

               Figure 22: Uplink Example: LoRaWAN Packet 1

  The tile content is described in Figure 23

  Content of the tile is:
  | RuleID | Compression residue |  Payload          |
  + ------ + ------------------- + ----------------- +
  |   1    |       21 bits       |  6 bytes + 3 bits |

              Figure 23: Uplink Example: First Tile Content

  Next transmission MTU is 11 bytes, although 2-byte FOpts are used by
  the LoRaWAN protocol: 9 bytes are available for SCHC payload + 1 byte
  FPort field, a tile does not fit inside so the LoRaWAN stack will
  send only FOpts.

  Next transmission MTU is 242 bytes, 4-byte FOpts. 23 tiles are
  transmitted:

| LoRaWAN Header                        | LoRaWAN payload (231 bytes) |
+ --------------------------------------+ --------------------------- +
|                |  FOpts  | RuleID=20  |   W   |  FCN  |  23 tiles   |
+ -------------- + ------- + ---------- + ----- + ----- + ----------- +
|       XXXX     | 4 bytes |  1 byte    | 0   0 |   61  | 230 bytes   |

             Figure 24: Uplink Example: LoRaWAN Packet 2

  Next transmission MTU is 242 bytes, no FOpts.  All 5 remaining tiles
  are transmitted, the last tile is only 2 bytes + 5 bits.  Padding is
  added for the remaining 3 bits.

| LoRaWAN Header    | LoRaWAN payload (44 bytes)                      |
+ ---- + ---------- + ----------------------------------------------- +
|      | RuleID=20  |   W   |  FCN  |    5 tiles      | Padding=b'000 |
+ ---- + ---------- + ----- + ----- + --------------- + ------------- +
| XXXX | 1 byte     | 0   0 |  38   | 42 bytes+5 bits |    3 bits     |

             Figure 25: Uplink Example: LoRaWAN Packet 3

  Then All-1 message can be transmitted:

  | LoRaWAN Header    | LoRaWAN payload (44 bytes) |
  + ---- + -----------+ -------------------------- +
  |      | RuleID=20  |   W   |  FCN  |     RCS    |
  + ---- + ---------- + ----- + ----- + ---------- +
  | XXXX | 1 byte     | 0   0 |   63  |  4 bytes   |

     Figure 26: Uplink Example: LoRaWAN Packet 4 - All-1 SCHC Message

  All packets have been received by the SCHC gateway, computed RCS is
  correct so the following ACK is sent to the device by the SCHC
  receiver:

  | LoRaWAN Header             | LoRaWAN payload     |
  + -------------- + --------- + ------------------- +
  |                | RuleID=20 |   W   | C | Padding |
  + -------------- + --------- + ----- + - + ------- +
  |       XXXX     | 1 byte    | 0   0 | 1 | 5 bits  |

          Figure 27: Uplink Example: LoRaWAN Packet 5 - SCHC ACK

A.3.  Downlink

  An applicative data of 155 bytes is passed to the SCHC compression
  layer.  Rule 1 is used by the SCHC C/D layer, allowing to compress it
  to 130 bytes and 5 bits: 1 byte RuleID, 21 bits residue + 127 bytes
  payload.

  | RuleID | Compression residue |  Payload  |
  + ------ + ------------------- + --------- +
  |   1    |       21 bits       | 127 bytes |

                Figure 28: Downlink Example: SCHC Message

  The current LoRaWAN MTU is 51 bytes; no FOpts are used by the LoRaWAN
  protocol: 51 bytes are available for SCHC payload + FPort field; the
  applicative data has to be fragmented.

  | LoRaWAN Header    | LoRaWAN payload (51 bytes)             |
  + ---- + ---------- + -------------------------------------- +
  |      | RuleID=21  |  W = 0 | FCN = 0 |       1 tile        |
  + ---- + ---------- + ------ + ------- + ------------------- +
  | XXXX | 1 byte     |  1 bit |  1 bit  | 50 bytes and 6 bits |

     Figure 29: Downlink Example: LoRaWAN Packet 1 - SCHC Fragment 1

  The tile content is described in Figure 30

  | RuleID | Compression residue |        Payload     |
  + ------ + ------------------- + ------------------ +
  |   1    |       21 bits       | 48 bytes and 1 bit |

             Figure 30: Downlink Example: First Tile Content

  The receiver answers with a SCHC ACK:

  | LoRaWAN Header   | LoRaWAN payload                  |
  + ---- + --------- + -------------------------------- +
  |      | RuleID=21 | W = 0 | C = 1 | Padding=b'000000 |
  + ---- + --------- + ----- + ----- + ---------------- +
  | XXXX |  1 byte   | 1 bit | 1 bit |     6 bits       |

         Figure 31: Downlink Example: LoRaWAN Packet 2 - SCHC ACK

  The second downlink is sent, two FOpts:

| LoRaWAN Header              |  LoRaWAN payload (49 bytes)           |
+ --------------------------- + ------------------------------------- +
|      |  FOpts  | RuleID=21  | W = 1 | FCN = 0 |        1 tile       |
+ ---- + ------- + ---------- + ----- + ------- + ------------------- +
| XXXX | 2 bytes | 1 byte     | 1 bit |  1 bit  | 48 bytes and 6 bits |

   Figure 32: Downlink Example: LoRaWAN Packet 3 - SCHC Fragment 2

  The receiver answers with a SCHC ACK:

  | LoRaWAN Header   | LoRaWAN payload                  |
  + ---- + --------- + -------------------------------- +
  |      | RuleID=21 | W = 1 | C = 1 | Padding=b'000000 |
  + ---- + --------- + ----- + ----- + ---------------- +
  | XXXX |  1 byte   | 1 bit | 1 bit |     6 bits       |

         Figure 33: Downlink Example: LoRaWAN Packet 4 - SCHC ACK

  The last downlink is sent, no FOpts:

| LoRaWAN Header | LoRaWAN payload (37 bytes)                         |
+ ---- + ------- + -------------------------------------------------- +
|      | RuleID  |   W   |  FCN  |   RCS   |      1 tile    | Padding |
|      |   21    |   0   |   1   |         |                | b'00000 |
+ ---- + ------- + ----- + ----- + ------- + -------------- + ------- +
| XXXX | 1 byte  | 1 bit | 1 bit | 4 bytes | 31 bytes+1 bit | 5 bits  |

  Figure 34: Downlink Example: LoRaWAN Packet 5 - All-1 SCHC Message

  The receiver answers to the sender with a SCHC ACK:

  | LoRaWAN Header   | LoRaWAN payload                  |
  + ---- + --------- + -------------------------------- +
  |      | RuleID=21 | W = 0 | C = 1 | Padding=b'000000 |
  + ---- + --------- + ----- + ----- + ---------------- +
  | XXXX |  1 byte   | 1 bit | 1 bit |     6 bits       |

         Figure 35: Downlink Example: LoRaWAN Packet 6 - SCHC ACK

Acknowledgements

  Thanks to all those listed in the Contributors Section for the
  excellent text, insightful discussions, reviews, and suggestions, and
  also to (in alphabetical order) Dominique Barthel, Arunprabhu
  Kandasamy, Rodrigo Munoz, Alexander Pelov, Pascal Thubert, and
  Laurent Toutain for useful design considerations, reviews, and
  comments.

  LoRaWAN is a registered trademark of the LoRa Alliance.

Contributors

  Contributors ordered by family name.

  Vincent Audebert
  EDF R&D

  Email: [email protected]


  Julien Catalano
  Kerlink

  Email: [email protected]


  Michael Coracin
  Semtech

  Email: [email protected]


  Marc Le Gourrierec
  Sagemcom

  Email: [email protected]


  Nicolas Sornin
  Chirp Foundation

  Email: [email protected]


  Alper Yegin
  Actility

  Email: [email protected]


Authors' Addresses

  Olivier Gimenez (editor)
  Semtech
  14 Chemin des Clos
  Meylan
  France

  Email: [email protected]


  Ivaylo Petrov (editor)
  Acklio
  1137A Avenue des Champs Blancs
  35510 Cesson-Sévigné Cedex
  France

  Email: [email protected]