Independent Submission                                           P. Yang
Request for Comments: 8998                                     Ant Group
Category: Informational                                       March 2021
ISSN: 2070-1721


                ShangMi (SM) Cipher Suites for TLS 1.3

Abstract

  This document specifies how to use the ShangMi (SM) cryptographic
  algorithms with Transport Layer Security (TLS) protocol version 1.3.

  The use of these algorithms with TLS 1.3 is not endorsed by the IETF.
  The SM algorithms are becoming mandatory in China, so this document
  provides a description of how to use the SM algorithms with TLS 1.3
  and specifies a profile of TLS 1.3 so that implementers can produce
  interworking implementations.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8998.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
    1.1.  The SM Algorithms
    1.2.  Terminology
  2.  Algorithm Identifiers
  3.  Algorithm Definitions
    3.1.  TLS Versions
    3.2.  Authentication
      3.2.1.  SM2 Signature Scheme
    3.3.  Key Exchange
      3.3.1.  Hello Messages
      3.3.2.  CertificateRequest
      3.3.3.  Certificate
      3.3.4.  CertificateVerify
    3.4.  Key Scheduling
    3.5.  Cipher
      3.5.1.  AEAD_SM4_GCM
      3.5.2.  AEAD_SM4_CCM
  4.  IANA Considerations
  5.  Security Considerations
  6.  References
    6.1.  Normative References
    6.2.  Informative References
  Appendix A.  Test Vectors
    A.1.  SM4-GCM Test Vectors
    A.2.  SM4-CCM Test Vectors
  Contributors
  Author's Address

1.  Introduction

  This document describes two new cipher suites, a signature algorithm
  and a key exchange mechanism for the Transport Layer Security (TLS)
  protocol version 1.3 (TLS 1.3) ([RFC8446]).  These all utilize
  several ShangMi (SM) cryptographic algorithms to fulfill the
  authentication and confidentiality requirements of TLS 1.3.  The new
  cipher suites are as follows (see also Section 2):

     CipherSuite TLS_SM4_GCM_SM3 = { 0x00, 0xC6 };
     CipherSuite TLS_SM4_CCM_SM3 = { 0x00, 0xC7 };

  For a more detailed introduction to SM cryptographic algorithms,
  please see Section 1.1.  These cipher suites follow the TLS 1.3
  requirements.  Specifically, all the cipher suites use SM4 in either
  Galois/Counter (GCM) mode or Counter with CBC-MAC (CCM) mode to meet
  the needs of TLS 1.3 to have an encryption algorithm that is
  Authenticated Encryption with Associated Data (AEAD) capable.  The
  key exchange mechanism utilizes Elliptic Curve Diffie-Hellman
  Ephemeral (ECDHE) over the SM2 elliptic curve, and the signature
  algorithm combines the SM3 hash function and the SM2 elliptic curve
  signature scheme.

  For details about how these mechanisms negotiate shared encryption
  keys, authenticate the peer(s), and protect the record structure,
  please see Section 3.

  The cipher suites, signature algorithm, and key exchange mechanism
  defined in this document are not recommended by the IETF.  The SM
  algorithms are becoming mandatory in China, so this document provides
  a description of how to use them with TLS 1.3 and specifies a profile
  of TLS 1.3 so that implementers can produce interworking
  implementations.

1.1.  The SM Algorithms

  Several different SM cryptographic algorithms are used to integrate
  with TLS 1.3, including SM2 for authentication, SM4 for encryption,
  and SM3 as the hash function.

  SM2 is a set of cryptographic algorithms based on elliptic curve
  cryptography, including a digital signature, public key encryption
  and key exchange scheme.  In this document, only the SM2 digital
  signature algorithm and basic key exchange scheme are involved, which
  have already been added to ISO/IEC 14888-3:2018 [ISO-SM2] (as well as
  to [GBT.32918.2-2016]).  SM4 is a block cipher defined in
  [GBT.32907-2016] and now is being standardized by ISO to ISO/IEC
  18033-3:2010 [ISO-SM4].  SM3 is a hash function that produces an
  output of 256 bits.  SM3 has already been accepted by ISO in ISO/IEC
  10118-3:2018 [ISO-SM3] and has also been described by
  [GBT.32905-2016].

1.2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Although this document is not an IETF Standards Track publication, it
  adopts the conventions for normative language to provide clarity of
  instruction to the implementer and to indicate requirement levels for
  compliant TLS 1.3 implementations.

2.  Algorithm Identifiers

  The cipher suites defined here have the following identifiers:

     CipherSuite TLS_SM4_GCM_SM3 = { 0x00, 0xC6 };
     CipherSuite TLS_SM4_CCM_SM3 = { 0x00, 0xC7 };

  To accomplish a TLS 1.3 handshake, additional objects have been
  introduced along with the cipher suites as follows:

  *  The combination of the SM2 signature algorithm and SM3 hash
     function used in the Signature Algorithm extension is defined in
     Appendix B.3.1.3 of [RFC8446]:

        SignatureScheme sm2sig_sm3 = { 0x0708 };

  *  The SM2 elliptic curve ID used in the Supported Groups extension
     is defined in Appendix B.3.1.4 of [RFC8446]:

        NamedGroup curveSM2 = { 41 };

3.  Algorithm Definitions

3.1.  TLS Versions

  The new cipher suites defined in this document are only applicable to
  TLS 1.3.  Implementations of this document MUST NOT apply these
  cipher suites to any older versions of TLS.

3.2.  Authentication

3.2.1.  SM2 Signature Scheme

  The Chinese government requires the use of the SM2 signature
  algorithm.  This section specifies the use of the SM2 signature
  algorithm as the authentication method for a TLS 1.3 handshake.

  The SM2 signature algorithm is defined in [ISO-SM2].  The SM2
  signature algorithm is based on elliptic curves.  The SM2 signature
  algorithm uses a fixed elliptic curve parameter set defined in
  [GBT.32918.5-2017].  This curve is named "curveSM2" and has been
  assigned the value 41, as shown in Section 2.  Unlike other public
  key algorithms based on elliptic curve cryptography like the Elliptic
  Curve Digital Signature Algorithm (ECDSA), SM2 MUST NOT select other
  elliptic curves.  But it is acceptable to write test cases that use
  other elliptic curve parameter sets for SM2; see Annex F.14 of
  [ISO-SM2] as a reference.

  Implementations of the signature scheme and key exchange mechanism
  defined in this document MUST conform to what [GBT.32918.5-2017]
  requires; that is to say, the only valid elliptic curve parameter set
  for the SM2 signature algorithm (a.k.a. curveSM2) is defined as
  follows:

  curveSM2:  A prime field of 256 bits.

  y^(2) = x^(3) + ax + b

     p  = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF
          FFFFFFFF 00000000 FFFFFFFF FFFFFFFF
     a  = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF
          FFFFFFFF 00000000 FFFFFFFF FFFFFFFC
     b  = 28E9FA9E 9D9F5E34 4D5A9E4B CF6509A7
          F39789F5 15AB8F92 DDBCBD41 4D940E93
     n  = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF
          7203DF6B 21C6052B 53BBF409 39D54123
     Gx = 32C4AE2C 1F198119 5F990446 6A39C994
          8FE30BBF F2660BE1 715A4589 334C74C7
     Gy = BC3736A2 F4F6779C 59BDCEE3 6B692153
          D0A9877C C62A4740 02DF32E5 2139F0A0

  The SM2 signature algorithm requests an identifier value when
  generating or verifying a signature.  In all uses except when a
  client of a server needs to verify a peer's SM2 certificate in the
  Certificate message, an implementation of this document MUST use the
  following ASCII string value as the SM2 identifier when doing a TLS
  1.3 key exchange:

     TLSv1.3+GM+Cipher+Suite

  If either a client or a server needs to verify the peer's SM2
  certificate contained in the Certificate message, then the following
  ASCII string value MUST be used as the SM2 identifier according to
  [GMT.0009-2012]:

     1234567812345678

  Expressed as octets, this is:

     0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38,
     0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38

  In practice, the SM2 identifier used in a certificate signature
  depends on the certificate authority (CA) who signs that certificate.
  CAs may choose values other than the ones mentioned above.
  Implementations of this document SHOULD confirm this information by
  themselves.

3.3.  Key Exchange

3.3.1.  Hello Messages

  The use of the algorithms defined by this document is negotiated
  during the TLS handshake with information exchanged in the Hello
  messages.

3.3.1.1.  ClientHello

  To use the cipher suites defined by this document, a TLS 1.3 client
  includes the new cipher suites in the "cipher_suites" array of the
  ClientHello structure defined in Section 4.1.2 of [RFC8446].

  Other requirements of this TLS 1.3 profile on the extensions of
  ClientHello message are as follows:

  *  For the supported_groups extension, "curveSM2" MUST be included.

  *  For the signature_algorithms extension, "sm2sig_sm3" MUST be
     included.

  *  For the signature_algorithms_cert extension (if present),
     "sm2sig_sm3" MUST be included.

  *  For the key_share extension, a KeyShareEntry for the "curveSM2"
     group MUST be included.

3.3.1.2.  ServerHello

  If a TLS 1.3 server receives a ClientHello message containing the
  algorithms defined in this document, it MAY choose to use them.  If
  so, then the server MUST put one of the new cipher suites defined in
  this document into its ServerHello's "cipher_suites" array and
  eventually send it to the client side.

  A TLS 1.3 server's choice of what cipher suite to use depends on the
  configuration of the server.  For instance, a TLS 1.3 server may or
  not be configured to include the new cipher suites defined in this
  document.  Typical TLS 1.3 server applications also provide a
  mechanism that configures the cipher suite preference on the server
  side.  If a server is not configured to use the cipher suites defined
  in this document, it SHOULD choose another cipher suite in the list
  that the TLS 1.3 client provides; otherwise, the server MUST abort
  the handshake with an "illegal_parameter" alert.

  The following extension MUST conform to the new requirements:

  *  For the key_share extension, a KeyShareEntry with SM2-related
     values MUST be added if the server wants to conform to this
     profile.

3.3.2.  CertificateRequest

  If a CertificateRequest message is sent by the server to require the
  client to send its certificate for authentication purposes, for
  conformance to this profile, the following is REQUIRED:

  *  The only valid signature algorithm present in
     "signature_algorithms" extension MUST be "sm2sig_sm3".  That is to
     say, if the server chooses to conform to this profile, the
     signature algorithm for the client's certificate MUST use the SM2/
     SM3 procedure specified by this document.

3.3.3.  Certificate

  When a server sends the Certificate message containing the server
  certificate to the client side, several new rules are added that will
  affect the certificate selection:

  *  The public key in the certificate MUST be a valid SM2 public key.

  *  The signature algorithm used by the CA to sign the current
     certificate MUST be "sm2sig_sm3".

  *  The certificate MUST be capable of signing; e.g., the
     digitalSignature bit of X.509's Key Usage extension is set.

3.3.4.  CertificateVerify

  In the CertificateVerify message, the signature algorithm MUST be
  "sm2sig_sm3", indicating that the hash function MUST be SM3 and the
  signature algorithm MUST be SM2.

3.4.  Key Scheduling

  As described in Section 1.1, SM2 is actually a set of cryptographic
  algorithms, including one key exchange protocol that defines methods
  such as key derivation function, etc.  This document does not define
  an SM2 key exchange protocol, and an SM2 key exchange protocol SHALL
  NOT be used in the key exchange steps defined in Section 3.3.
  Implementations of this document MUST always conform to what TLS 1.3
  [RFC8446] and its successors require regarding the key derivation and
  related methods.

3.5.  Cipher

  The new cipher suites introduced in this document add two new AEAD
  encryption algorithms, AEAD_SM4_GCM and AEAD_SM4_CCM, which stand for
  SM4 cipher in Galois/Counter mode and SM4 cipher [GBT.32907-2016] in
  Counter with CBC-MAC mode, respectively.  The hash function for both
  cipher suites is SM3 ([ISO-SM3]).

  This section defines the AEAD_SM4_GCM and AEAD_SM4_CCM AEAD
  algorithms in a style similar to what [RFC5116] used to define AEAD
  ciphers based on the AES cipher.

3.5.1.  AEAD_SM4_GCM

  The AEAD_SM4_GCM authenticated encryption algorithm works as
  specified in [GCM], using SM4 as the block cipher, by providing the
  key, nonce, plaintext, and associated data to that mode of operation.
  An authentication tag conforming to the requirements of TLS 1.3 as
  specified in Section 5.2 of [RFC8446] MUST be constructed using the
  details in the TLS record header.  The additional data input that
  forms the authentication tag MUST be the TLS record header.  The
  AEAD_SM4_GCM ciphertext is formed by appending the authentication tag
  provided as an output to the GCM encryption operation to the
  ciphertext that is output by that operation.  AEAD_SM4_GCM has four
  inputs: an SM4 key, an initialization vector (IV), a plaintext
  content, and optional additional authenticated data (AAD).
  AEAD_SM4_GCM generates two outputs: a ciphertext and message
  authentication code (also called an authentication tag).  To have a
  common set of terms for AEAD_SM4_GCM and AEAD_SM4_CCM, the
  AEAD_SM4_GCM IV is referred to as a nonce in the remainder of this
  document.  A simple test vector of AEAD_SM4_GCM and AEAD_SM4_CCM is
  given in Appendix A of this document.

  The nonce is generated by the party performing the authenticated
  encryption operation.  Within the scope of any authenticated
  encryption key, the nonce value MUST be unique.  That is, the set of
  nonce values used with any given key MUST NOT contain any duplicates.
  Using the same nonce for two different messages encrypted with the
  same key destroys the security properties of GCM mode.  To generate
  the nonce, implementations of this document MUST conform to TLS 1.3
  (see [RFC8446], Section 5.3).

  The input and output lengths are as follows:

     The SM4 key length is 16 octets.

     The max plaintext length is 2^(36) - 31 octets.

     The max AAD length is 2^(61) - 1 octets.

     The nonce length is 12 octets.

     The authentication tag length is 16 octets.

     The max ciphertext length is 2^(36) - 15 octets.

  A security analysis of GCM is available in [MV04].

3.5.2.  AEAD_SM4_CCM

  The AEAD_SM4_CCM authenticated encryption algorithm works as
  specified in [CCM] using SM4 as the block cipher.  AEAD_SM4_CCM has
  four inputs: an SM4 key, a nonce, a plaintext, and optional
  additional authenticated data (AAD).  AEAD_SM4_CCM generates two
  outputs: a ciphertext and a message authentication code (also called
  an authentication tag).  The formatting and counter generation
  functions are as specified in Appendix A of [CCM], and the values of
  the parameters identified in that appendix are as follows:

     The nonce length n is 12.

     The tag length t is 16.

     The value of q is 3.

  An authentication tag is also used in AEAD_SM4_CCM.  The generation
  of the authentication tag MUST conform to TLS 1.3 (See [RFC8446],
  Section 5.2).  The AEAD_SM4_CCM ciphertext is formed by appending the
  authentication tag provided as an output to the CCM encryption
  operation to the ciphertext that is output by that operation.  The
  input and output lengths are as follows:

     The SM4 key length is 16 octets.

     The max plaintext length is 2^(24) - 1 octets.

     The max AAD length is 2^(64) - 1 octets.

     The max ciphertext length is 2^(24) + 15 octets.

  To generate the nonce, implementations of this document MUST conform
  to TLS 1.3 (see [RFC8446], Section 5.3).

  A security analysis of CCM is available in [J02].

4.  IANA Considerations

  IANA has assigned the values {0x00,0xC6} and {0x00,0xC7} with the
  names "TLS_SM4_GCM_SM3" and "TLS_SM4_CCM_SM3" to the "TLS Cipher
  Suites" registry with this document as reference:

   +===========+=================+=========+=============+===========+
   | Value     | Description     | DTLS-OK | Recommended | Reference |
   +===========+=================+=========+=============+===========+
   | 0x00,0xC6 | TLS_SM4_GCM_SM3 | No      | No          | RFC 8998  |
   +-----------+-----------------+---------+-------------+-----------+
   | 0x00,0xC7 | TLS_SM4_CCM_SM3 | No      | No          | RFC 8998  |
   +-----------+-----------------+---------+-------------+-----------+

                                 Table 1

  IANA has assigned the value 0x0708 with the name "sm2sig_sm3" to the
  "TLS SignatureScheme" registry:

           +========+=============+=============+===========+
           |  Value | Description | Recommended | Reference |
           +========+=============+=============+===========+
           | 0x0708 | sm2sig_sm3  | No          | RFC 8998  |
           +--------+-------------+-------------+-----------+

                                Table 2

  IANA has assigned the value 41 with the name "curveSM2" to the "TLS
  Supported Groups" registry:

       +=======+=============+=========+=============+===========+
       | Value | Description | DTLS-OK | Recommended | Reference |
       +=======+=============+=========+=============+===========+
       |    41 | curveSM2    | No      | No          | RFC 8998  |
       +-------+-------------+---------+-------------+-----------+

                                 Table 3

5.  Security Considerations

  At the time of writing, there are no known weak keys for SM
  cryptographic algorithms SM2, SM3 and SM4, and no security issues
  have been found for these algorithms.

  A security analysis of GCM is available in [MV04].

  A security analysis of CCM is available in [J02].

6.  References

6.1.  Normative References

  [CCM]      Dworkin, M., "Recommendation for Block Cipher Modes of
             Operation: the CCM Mode for Authentication and
             Confidentiality", Special Publication 800-38C,
             DOI 10.6028/NIST.SP.800-38C, May 2004,
             <http://csrc.nist.gov/publications/nistpubs/800-38C/
             SP800-38C.pdf>.

  [GCM]      Dworkin, M., "Recommendation for Block Cipher Modes of
             Operation: Galois/Counter Mode (GCM) and GMAC", Special
             Publication 800-38D, DOI 10.6028/NIST.SP.800-38D, November
             2007, <http://csrc.nist.gov/publications/nistpubs/800-38D/
             SP-800-38D.pdf>.

  [ISO-SM2]  International Organization for Standardization, "IT
             Security techniques -- Digital signatures with appendix --
             Part 3: Discrete logarithm based mechanisms", ISO/
             IEC 14888-3:2018, November 2018,
             <https://www.iso.org/standard/76382.html>.

  [ISO-SM3]  International Organization for Standardization, "IT
             Security techniques -- Hash-functions -- Part 3: Dedicated
             hash-functions", ISO/IEC 10118-3:2018, October 2018,
             <https://www.iso.org/standard/67116.html>.

  [ISO-SM4]  International Organization for Standardization,
             "Information technology -- Security techniques --
             Encryption algorithms -- Part 3: Block ciphers", ISO/
             IEC 18033-3:2010, December 2010,
             <https://www.iso.org/standard/54531.html>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <https://www.rfc-editor.org/info/rfc5116>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

6.2.  Informative References

  [GBT.32905-2016]
             Standardization Administration of China, "Information
             security technology --- SM3 cryptographic hash algorithm",
             GB/T 32905-2016, March 2017, <http://www.gmbz.org.cn/
             upload/2018-07-24/1532401392982079739.pdf>.

  [GBT.32907-2016]
             Standardization Administration of the People's Republic of
             China, "Information security technology -- SM4 block
             cipher algorithm", GB/T 32907-2016, March 2017,
             <http://www.gmbz.org.cn/
             upload/2018-04-04/1522788048733065051.pdf>.

  [GBT.32918.2-2016]
             Standardization Administration of the People's Republic of
             China, "Information security technology --- Public key
             cryptographic algorithm SM2 based on elliptic curves ---
             Part 2: Digital signature algorithm", GB/T 32918.2-2016,
             March 2017, <http://www.gmbz.org.cn/
             upload/2018-07-24/1532401673138056311.pdf>.

  [GBT.32918.5-2017]
             Standardization Administration of the People's Republic of
             China, "Information security technology --- Public key
             cryptographic algorithm SM2 based on elliptic curves ---
             Part 5: Parameter definition", GB/T 32918.5-2017, December
             2017, <http://www.gmbz.org.cn/
             upload/2018-07-24/1532401863206085511.pdf>.

  [GMT.0009-2012]
             State Cryptography Administration, "SM2 cryptography
             algorithm application specification", GM/T 0009-2012,
             November 2012, <http://www.gmbz.org.cn/main/
             viewfile/2018011001400692565.html>.

  [J02]      Jonsson, J., "On the Security of CTR + CBC-MAC",
             DOI 10.1007/3-540-36492-7_7, February 2003,
             <https://link.springer.com/
             chapter/10.1007%2F3-540-36492-7_7>.

  [MV04]     McGrew, D. and J. Viega, "The Security and Performance of
             the Galois/Counter Mode of Operation",
             DOI 10.1007/978-3-540-30556-9_27, December 2004,
             <http://eprint.iacr.org/2004/193>.

Appendix A.  Test Vectors

  All values are in hexadecimal and are in network byte order (big
  endian).

A.1.  SM4-GCM Test Vectors

  Initialization Vector:   00001234567800000000ABCD
  Key:                     0123456789ABCDEFFEDCBA9876543210
  Plaintext:               AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB
                           CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDD
                           EEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF
                           EEEEEEEEEEEEEEEEAAAAAAAAAAAAAAAA
  Associated Data:         FEEDFACEDEADBEEFFEEDFACEDEADBEEFABADDAD2
  CipherText:              17F399F08C67D5EE19D0DC9969C4BB7D
                           5FD46FD3756489069157B282BB200735
                           D82710CA5C22F0CCFA7CBF93D496AC15
                           A56834CBCF98C397B4024A2691233B8D
  Authentication Tag:      83DE3541E4C2B58177E065A9BF7B62EC

A.2.  SM4-CCM Test Vectors

  Initialization Vector:   00001234567800000000ABCD
  Key:                     0123456789ABCDEFFEDCBA9876543210
  Plaintext:               AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB
                           CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDD
                           EEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF
                           EEEEEEEEEEEEEEEEAAAAAAAAAAAAAAAA
  Associated Data:         FEEDFACEDEADBEEFFEEDFACEDEADBEEFABADDAD2
  CipherText:              48AF93501FA62ADBCD414CCE6034D895
                           DDA1BF8F132F042098661572E7483094
                           FD12E518CE062C98ACEE28D95DF4416B
                           ED31A2F04476C18BB40C84A74B97DC5B
  Authentication Tag:      16842D4FA186F56AB33256971FA110F4

Contributors

  Qin Long
  Ant Group

  Email: [email protected]


  Kepeng Li
  Ant Group

  Email: [email protected]


  Ke Zeng
  Ant Group

  Email: [email protected]


  Han Xiao
  Ant Group

  Email: [email protected]


  Zhi Guan
  Peking University

  Email: [email protected]


Author's Address

  Paul Yang
  Ant Group
  No. 77 Xueyuan Road
  Hangzhou
  310000
  China

  Phone: +86-571-2688-8888
  Email: [email protected]