Internet Engineering Task Force (IETF)                S. Pallagatti, Ed.
Request for Comments: 8971                                        VMware
Category: Informational                                   G. Mirsky, Ed.
ISSN: 2070-1721                                                ZTE Corp.
                                                            S. Paragiri
                                                 Individual Contributor
                                                            V. Govindan
                                                           M. Mudigonda
                                                                  Cisco
                                                          December 2020


Bidirectional Forwarding Detection (BFD) for Virtual eXtensible Local
                         Area Network (VXLAN)

Abstract

  This document describes the use of the Bidirectional Forwarding
  Detection (BFD) protocol in point-to-point Virtual eXtensible Local
  Area Network (VXLAN) tunnels used to form an overlay network.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8971.

Copyright Notice

  Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions Used in This Document
    2.1.  Abbreviations
    2.2.  Requirements Language
  3.  Deployment
  4.  Use of the Management VNI
  5.  BFD Packet Transmission over VXLAN Tunnel
  6.  Reception of BFD Packet from VXLAN Tunnel
  7.  Echo BFD
  8.  IANA Considerations
  9.  Security Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  "Virtual eXtensible Local Area Network (VXLAN)" [RFC7348] provides an
  encapsulation scheme that allows the building of an overlay network
  by decoupling the address space of the attached virtual hosts from
  that of the network.

  One use of VXLAN is in data centers interconnecting virtual machines
  (VMs) of a tenant.  VXLAN addresses the requirements of the Layer 2
  and Layer 3 data-center network infrastructure in the presence of VMs
  in a multi-tenant environment by providing a Layer 2 overlay scheme
  on a Layer 3 network [RFC7348].  Another use is as an encapsulation
  for Ethernet VPN [RFC8365].

  This document is written assuming the use of VXLAN for virtualized
  hosts and refers to VMs and VXLAN Tunnel End Points (VTEPs) in
  hypervisors.  However, the concepts are equally applicable to non-
  virtualized hosts attached to VTEPs in switches.

  In the absence of a router in the overlay, a VM can communicate with
  another VM only if they are on the same VXLAN segment.  VMs are
  unaware of VXLAN tunnels, because a VXLAN tunnel is terminated on a
  VTEP.  VTEPs are responsible for encapsulating and decapsulating
  frames exchanged among VMs.

  The ability to monitor path continuity -- i.e., perform proactive
  continuity check (CC) for point-to-point (p2p) VXLAN tunnels -- is
  important.  The asynchronous mode of BFD, as defined in [RFC5880], is
  used to monitor a p2p VXLAN tunnel.

  In the case where a Multicast Service Node (MSN) (as described in
  Section 3.3 of [RFC8293]) participates in VXLAN, the mechanisms
  described in this document apply and can, therefore, be used to test
  the continuity of the path between the source Network Virtualization
  Endpoint (NVE) and the MSN.

  This document describes the use of the Bidirectional Forwarding
  Detection (BFD) protocol to enable monitoring continuity of the path
  between VXLAN VTEPs that are performing as VNEs, and/or between the
  source NVE and a replicator MSN using a Management VXLAN Network
  Identifier (VNI) (Section 4).  All other uses of the specification to
  test toward other VXLAN endpoints are out of scope.

2.  Conventions Used in This Document

2.1.  Abbreviations

  BFD:     Bidirectional Forwarding Detection

  CC:      Continuity Check

  FCS:     Frame Check Sequence

  MSN:     Multicast Service Node

  NVE:     Network Virtualization Endpoint

  p2p:     Point-to-point

  VFI:     Virtual Forwarding Instance

  VM:      Virtual Machine

  VNI:     VXLAN Network Identifier (or VXLAN Segment ID)

  VTEP:    VXLAN Tunnel End Point

  VXLAN:   Virtual eXtensible Local Area Network

2.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Deployment

  Figure 1 illustrates a scenario with two servers: each hosting two
  VMs.  The servers host VTEPs that terminate two VXLAN tunnels with
  VNI number 100 and 200, respectively.  Separate BFD sessions can be
  established between the VTEPs (IP1 and IP2) for monitoring each of
  the VXLAN tunnels (VNI 100 and 200).  Using a BFD session to monitor
  a set of VXLAN VNIs between the same pair of VTEPs might help to
  detect and localize problems caused by misconfiguration.  An
  implementation that supports this specification MUST be able to
  control the number of BFD sessions that can be created between the
  same pair of VTEPs.  This method is applicable whether the VTEP is a
  virtual or physical device.



     +------------+-------------+
     |        Server 1          |
     | +----+----+  +----+----+ |
     | |VM1-1    |  |VM1-2    | |
     | |VNI 100  |  |VNI 200  | |
     | |         |  |         | |
     | +---------+  +---------+ |
     |        VTEP (IP1)        |
     +--------------------------+
                           |
                           |   +-------------+
                           |   |   Layer 3   |
                           +---|   Network   |
                               +-------------+
                                   |
                                   +-----------+
                                               |
                                        +------------+-------------+
                                        |         VTEP (IP2)       |
                                        | +----+----+  +----+----+ |
                                        | |VM2-1    |  |VM2-2    | |
                                        | |VNI 100  |  |VNI 200  | |
                                        | |         |  |         | |
                                        | +---------+  +---------+ |
                                        |      Server 2            |
                                        +--------------------------+


                     Figure 1: Reference VXLAN Domain

  At the same time, a service-layer BFD session may be used between the
  tenants of VTEPs IP1 and IP2 to provide end-to-end fault management;
  this use case is outside the scope of this document.  In such a case,
  for VTEPs, the BFD Control packets of that session are
  indistinguishable from data packets.

  For BFD Control packets encapsulated in VXLAN (Figure 2), the inner
  destination IP address SHOULD be set to one of the loopback addresses
  from 127/8 range for IPv4 or to one of IPv4-mapped IPv6 loopback
  addresses from ::ffff:127.0.0.0/104 range for IPv6.

4.  Use of the Management VNI

  In most cases, a single BFD session is sufficient for the given VTEP
  to monitor the reachability of a remote VTEP, regardless of the
  number of VNIs.  BFD control messages MUST be sent using the
  Management VNI, which acts as the control and management channel
  between VTEPs.  An implementation MAY support operating BFD on
  another (non-Management) VNI, although the implications of this are
  outside the scope of this document.  The selection of the VNI number
  of the Management VNI MUST be controlled through a management plane.
  An implementation MAY use VNI number 1 as the default value for the
  Management VNI.  All VXLAN packets received on the Management VNI
  MUST be processed locally and MUST NOT be forwarded to a tenant.

5.  BFD Packet Transmission over VXLAN Tunnel

  BFD packets MUST be encapsulated and sent to a remote VTEP as
  explained in this section.  Implementations SHOULD ensure that the
  BFD packets follow the same forwarding path as VXLAN data packets
  within the sender system.

  BFD packets are encapsulated in VXLAN as described below.  The VXLAN
  packet format is defined in Section 5 of [RFC7348].  The value in the
  VNI field of the VXLAN header MUST be set to the value selected as
  the Management VNI.  The outer IP/UDP and VXLAN headers MUST be
  encoded by the sender, as defined in [RFC7348].


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                      Outer Ethernet Header                    ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                        Outer IPvX Header                      ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                        Outer UDP Header                       ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                           VXLAN Header                        ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                    Inner Ethernet Header                      ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                        Inner IPvX Header                      ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                         Inner UDP Header                      ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                       BFD Control Packet                     ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Outer Ethernet FCS                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 2: VXLAN Encapsulation of BFD Control Packet

  The BFD packet MUST be carried inside the inner Ethernet frame of the
  VXLAN packet.  The choice of destination Media Access Control (MAC)
  and destination IP addresses for the inner Ethernet frame MUST ensure
  that the BFD Control packet is not forwarded to a tenant but is
  processed locally at the remote VTEP.  The inner Ethernet frame
  carrying the BFD Control packet has the following format:

  Ethernet Header:
     Destination MAC:  A Management VNI, which does not have any
        tenants, will have no dedicated MAC address for decapsulated
        traffic.  The value 00-52-02 SHOULD be used in this field.

     Source MAC:  MAC address associated with the originating VTEP.

     Ethertype:  This is set to 0x0800 if the inner IP header is IPv4
        and set to 0x86DD if the inner IP header is IPv6.

  IP header:
     Destination IP:  This IP address MUST NOT be of one of tenant's IP
        addresses.  The IP address SHOULD be selected from the range
        127/8 for IPv4 and from the range ::ffff:127.0.0.0/104 for
        IPv6.  Alternatively, the destination IP address MAY be set to
        VTEP's IP address.

     Source IP:  IP address of the originating VTEP.

     TTL or Hop Limit:  MUST be set to 255, in accordance with
        [RFC5881].

  The destination UDP port is set to 3784 and the fields of the BFD
  Control packet are encoded as specified in [RFC5881].

6.  Reception of BFD Packet from VXLAN Tunnel

  Once a packet is received, the VTEP MUST validate the packet.  If the
  packet is received on the Management VNI and is identified as a BFD
  Control packet addressed to the VTEP, then the packet can be
  processed further.  Processing of BFD Control packets received on a
  non-Management VNI is outside the scope of this specification.

  The received packet's inner IP payload is then validated according to
  Sections 4 and 5 in [RFC5881].

7.  Echo BFD

  Support for echo BFD is outside the scope of this document.

8.  IANA Considerations

  IANA has assigned a single MAC address of the value 00-52-02 from the
  "Unassigned (small allocations)" block of the "IANA Unicast 48-bit
  MAC Addresses" registry as follows: the "Usage" field is "BFD for
  VXLAN".  The "Reference" is this document.

9.  Security Considerations

  Security issues discussed in [RFC5880], [RFC5881], and [RFC7348]
  apply to this document.

  This document recommends using an address from the internal host
  loopback addresses 127/8 range for IPv4, or an IP4-mapped IPv6
  loopback address from the ::ffff:127.0.0.0/104 range for IPv6, as the
  destination IP address in the inner IP header.  Using such an address
  prevents the forwarding of the encapsulated BFD control message by a
  transient node, in case the VXLAN tunnel is broken, in accordance
  with [RFC1812].

     |  A router SHOULD NOT forward, except over a loopback interface,
     |  any packet that has a destination address on network 127.  A
     |  router MAY have a switch that allows the network manager to
     |  disable these checks.  If such a switch is provided, it MUST
     |  default to performing the checks.

  The use of IPv4-mapped IPv6 addresses has the same property as using
  the IPv4 network 127/8.  Moreover, the IPv4-mapped IPv6 addresses'
  prefix is not advertised in any routing protocol.

  If the implementation supports establishing multiple BFD sessions
  between the same pair of VTEPs, there SHOULD be a mechanism to
  control the maximum number of such sessions that can be active at the
  same time.

10.  References

10.1.  Normative References

  [RFC1812]  Baker, F., Ed., "Requirements for IP Version 4 Routers",
             RFC 1812, DOI 10.17487/RFC1812, June 1995,
             <https://www.rfc-editor.org/info/rfc1812>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
             <https://www.rfc-editor.org/info/rfc5880>.

  [RFC5881]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881,
             DOI 10.17487/RFC5881, June 2010,
             <https://www.rfc-editor.org/info/rfc5881>.

  [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
             L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
             eXtensible Local Area Network (VXLAN): A Framework for
             Overlaying Virtualized Layer 2 Networks over Layer 3
             Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
             <https://www.rfc-editor.org/info/rfc7348>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2.  Informative References

  [RFC8293]  Ghanwani, A., Dunbar, L., McBride, M., Bannai, V., and R.
             Krishnan, "A Framework for Multicast in Network
             Virtualization over Layer 3", RFC 8293,
             DOI 10.17487/RFC8293, January 2018,
             <https://www.rfc-editor.org/info/rfc8293>.

  [RFC8365]  Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R.,
             Uttaro, J., and W. Henderickx, "A Network Virtualization
             Overlay Solution Using Ethernet VPN (EVPN)", RFC 8365,
             DOI 10.17487/RFC8365, March 2018,
             <https://www.rfc-editor.org/info/rfc8365>.

Acknowledgments

  The authors would like to thank Jeff Haas of Juniper Networks for his
  reviews and feedback on this material.

  The authors would also like to thank Nobo Akiya, Marc Binderberger,
  Shahram Davari, Donald E. Eastlake 3rd, Anoop Ghanwani, Dinesh Dutt,
  Joel Halpern, and Carlos Pignataro for the extensive reviews and the
  most detailed and constructive comments.

Contributors

  Reshad Rahman
  Cisco

  Email: [email protected]


Authors' Addresses

  Santosh Pallagatti (editor)
  VMware

  Email: [email protected]


  Greg Mirsky (editor)
  ZTE Corp.

  Email: [email protected]


  Sudarsan Paragiri
  Individual Contributor

  Email: [email protected]


  Vengada Prasad Govindan
  Cisco

  Email: [email protected]


  Mallik Mudigonda
  Cisco

  Email: [email protected]