Internet Engineering Task Force (IETF)                     CJ. Bernardos
Request for Comments: 8948                                          UC3M
Category: Standards Track                                      A. Mourad
ISSN: 2070-1721                                             InterDigital
                                                          December 2020


  Structured Local Address Plan (SLAP) Quadrant Selection Option for
                                DHCPv6

Abstract

  The IEEE originally structured the 48-bit Media Access Control (MAC)
  address space in such a way that half of it was reserved for local
  use.  In 2017, the IEEE published a new standard (IEEE Std 802c) with
  a new optional Structured Local Address Plan (SLAP).  It specifies
  different assignment approaches in four specified regions of the
  local MAC address space.

  The IEEE is developing protocols to assign addresses (IEEE P802.1CQ).
  There is also work in the IETF on specifying a new mechanism that
  extends DHCPv6 operation to handle the local MAC address assignments.

  This document proposes extensions to DHCPv6 protocols to enable a
  DHCPv6 client or a DHCPv6 relay to indicate a preferred SLAP quadrant
  to the server so that the server may allocate MAC addresses in the
  quadrant requested by the relay or client.  A new DHCPv6 option
  (QUAD) is defined for this purpose.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8948.

Copyright Notice

  Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Problem Statement
      1.1.1.  Wi-Fi (IEEE 802.11) Devices
      1.1.2.  Hypervisor: Functions That Are and Are Not Migratable
  2.  Terminology
  3.  DHCPv6 Extensions
    3.1.  Address Assignment from the Preferred SLAP Quadrant
          Indicated by the Client
    3.2.  Address Assignment from the Preferred SLAP Quadrant
          Indicated by the Relay
  4.  DHCPv6 Option Definition
    4.1.  QUAD Option
  5.  IANA Considerations
  6.  Security Considerations
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Appendix A.  Example Uses of Quadrant Selection Mechanisms
  Acknowledgments
  Authors' Addresses

1.  Introduction

  The IEEE structures the 48-bit MAC address space in such a way that
  half of it is reserved for local use (where the Universal/Local (U/L)
  bit is set to 1).  In 2017, the IEEE published a new standard
  [IEEEStd802c] that defines a new optional Structured Local Address
  Plan (SLAP) that specifies different assignment approaches in four
  specified regions of the local MAC address space.  These four
  regions, called SLAP quadrants, are briefly described below (see
  Figure 1 and Table 1 for details):

  *  In SLAP Quadrant 01, Extended Local Identifier (ELI) MAC addresses
     are assigned based on a 24-bit Company ID (CID), which is assigned
     by the IEEE Registration Authority (RA).  The remaining bits are
     specified as an extension by the CID assignee or by a protocol
     designated by the CID assignee.

  *  In SLAP Quadrant 11, Standard Assigned Identifier (SAI) MAC
     addresses are assigned based on a protocol specified in an IEEE
     802 standard.  For 48-bit MAC addresses, 44 bits are available.
     Multiple protocols for assigning SAIs may be specified in IEEE
     standards.  Coexistence of multiple protocols may be supported by
     limiting the subspace available for assignment by each protocol.

  *  In SLAP Quadrant 00, Administratively Assigned Identifier (AAI)
     MAC addresses are assigned locally by an administrator.  Multicast
     IPv6 packets use a destination address starting in 33-33, so AAI
     addresses in that range should not be assigned.  For 48-bit MAC
     addresses, 44 bits are available.

  *  SLAP Quadrant 10 is "Reserved for future use" where MAC addresses
     may be assigned using new methods yet to be defined or until then
     by an administrator as in the AAI quadrant.  For 48-bit MAC
     addresses, 44 bits would be available.

         LSB                MSB
         M  X  Y  Z  -  -  -  -
         |  |  |  |
         |  |  |  +------------ SLAP Z-bit
         |  |  +--------------- SLAP Y-bit
         |  +------------------ X-bit (U/L) = 1 for locally assigned
         +--------------------- M-bit (I/G) (unicast/group)

         Legend:
         LSB: Least Significant Bit
         MSB: Most Significant Bit

   Figure 1: IEEE 48-Bit MAC Address Structure (in IEEE Representation)

    +==========+=======+=======+=======================+============+
    | Quadrant | Y-bit | Z-bit | Local Identifier Type | Local      |
    |          |       |       |                       | Identifier |
    +==========+=======+=======+=======================+============+
    | 01       | 0     | 1     | Extended Local        | ELI        |
    +----------+-------+-------+-----------------------+------------+
    | 11       | 1     | 1     | Standard Assigned     | SAI        |
    +----------+-------+-------+-----------------------+------------+
    | 00       | 0     | 0     | Administratively      | AAI        |
    |          |       |       | Assigned              |            |
    +----------+-------+-------+-----------------------+------------+
    | 10       | 1     | 0     | Reserved              | Reserved   |
    +----------+-------+-------+-----------------------+------------+

                         Table 1: SLAP Quadrants

1.1.  Problem Statement

  The IEEE is developing mechanisms to assign addresses
  [IEEE-P802.1CQ-Project].  And [RFC8947] specifies a new mechanism
  that extends DHCPv6 operation to handle the local MAC address
  assignments.  This document proposes extensions to DHCPv6 protocols
  to enable a DHCPv6 client or a DHCPv6 relay to indicate a preferred
  SLAP quadrant to the server so that the server may allocate the MAC
  addresses in the quadrant requested by the relay or client.

  In the following, we describe two application scenarios in which a
  need arises to assign local MAC addresses according to preferred SLAP
  quadrants.

1.1.1.  Wi-Fi (IEEE 802.11) Devices

  Today, most Wi-Fi devices come with interfaces that have a "burned-
  in" MAC address, allocated from the universal address space using a
  24-bit Organizationally Unique Identifier (OUI) (assigned to IEEE 802
  interface vendors).  However, recently, the need to assign local
  (instead of universal) MAC addresses has emerged particularly in the
  following two scenarios:

  *  IoT (Internet of Things): In general, composed of constrained
     devices [RFC7228] with constraints such as available power and
     energy, memory, and processing resources.  Examples of this
     include sensors and actuators for health or home automation
     applications.  Given the increasingly high number of these
     devices, manufacturers might prefer to equip devices with
     temporary MAC addresses used only at first boot.  These temporary
     MAC addresses would just be used to send initial DHCP packets to
     available DHCP servers.  IoT devices typically need a single MAC
     address for each available network interface.  Once the server
     assigns a MAC address, the device would abandon its temporary MAC
     address.  Home automation IoT devices typically do not move
     (however, note that there is an increase of mobile smart health
     monitoring devices).  For this type of device, in general, any
     type of SLAP quadrant would be good for assigning addresses, but
     ELI/SAI quadrants might be more suitable in some scenarios.  For
     example, the device might need to use an address from the CID
     assigned to the IoT communication device vendor, thus preferring
     the ELI quadrant.

  *  Privacy: Today, MAC addresses allow the exposure of user locations
     making it relatively easy to track user movements.  One of the
     mechanisms considered to mitigate this problem is the use of local
     random MAC addresses: changing them every time the user connects
     to a different network.  In this scenario, devices are typically
     mobile.  Here, AAI is probably the best SLAP quadrant from which
     to assign addresses; it is the best fit for randomization of
     addresses, and it is not required for the addresses to survive
     when changing networks.

1.1.2.  Hypervisor: Functions That Are and Are Not Migratable

  In large-scale virtualization environments, thousands of virtual
  machines (VMs) are active.  These VMs are typically managed by a
  hypervisor, which is in charge of spawning and stopping VMs as
  needed.  The hypervisor is also typically in charge of assigning new
  MAC addresses to the VMs.  If a DHCP solution is in place for that,
  the hypervisor acts as a DHCP client and requests that available DHCP
  servers assign one or more MAC addresses (an address block).  The
  hypervisor does not use those addresses for itself, but rather it
  uses them to create new VMs with appropriate MAC addresses.  If we
  assume very large data-center environments, such as the ones that are
  typically used nowadays, it is expected that the data center is
  divided in different network regions, each one managing its own local
  address space.  In this scenario, there are two possible situations
  that need to be tackled:

  *  Migratable functions: If a VM (providing a given function) needs
     to be migrated to another region of the data center (e.g., for
     maintenance, resilience, end-user mobility, etc.), the VM's
     networking context needs to migrate with the VM.  This includes
     the VM's MAC address(es).  Since the assignments from the ELI/SAI
     SLAP quadrants are governed by rules per IEEE Std 802c, they are
     more appropriate for use to ensure MAC address uniqueness globally
     in the data center.

  *  Functions that are not migratable: If a VM will not be migrated to
     another region of the data center, there are no requirements
     associated with its MAC address.  In this case, it is simpler to
     allocate it from the AAI SLAP quadrant, which does not need to be
     unique across multiple data centers (i.e., each region can manage
     its own MAC address assignment without checking for duplicates
     globally).

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Where relevant, the DHCPv6 terminology from [RFC8415] also applies
  here.  Additionally, the following definitions are updated for this
  document.

  address        Unless specified otherwise, a link-layer (or MAC)
                 address, as specified in [IEEEStd802].  The address is
                 6 or 8 bytes long.

  address block  A number of consecutive link-layer addresses.  An
                 address block is expressed as a first address plus a
                 number that designates the number of additional
                 (extra) addresses.  A single address can be
                 represented by the address itself and zero extra
                 addresses.

  client         A node that is interested in obtaining link-layer
                 addresses.  It implements the basic DHCP mechanisms
                 needed by a DHCP client, as described in [RFC8415],
                 and supports the options (IA_LL and LLADDR) specified
                 in [RFC8947] as well as the new option (QUAD)
                 specified in this document.  The client may or may not
                 support IPv6 address assignment and prefix delegation,
                 as specified in [RFC8415].

  IA_LL          Identity Association for Link-Layer Address, an
                 identity association (IA) used to request or assign
                 link-layer addresses.  Section 11.1 of [RFC8947]
                 provides details on the IA_LL option.

  LLADDR         Link-layer address option that is used to request or
                 assign a block of link-layer addresses.  Section 11.2
                 of [RFC8947] provides details on the LLADDR option.

  relay          A node that acts as an intermediary to deliver DHCP
                 messages between clients and servers.  A relay, based
                 on local knowledge and policies, may include the
                 preferred SLAP quadrant in a QUAD option sent to the
                 server.  The relay implements basic DHCPv6 relay agent
                 functionality, as described in [RFC8415].

  server         A node that manages link-layer address allocation and
                 is able to respond to client queries.  It implements
                 basic DHCP server functionality, as described in
                 [RFC8415], and supports the options (IA_LL and LLADDR)
                 specified in [RFC8947] as well as the new option
                 (QUAD) specified in this document.  The server may or
                 may not support IPv6 address assignment and prefix
                 delegation, as specified in [RFC8415].

3.  DHCPv6 Extensions

3.1.  Address Assignment from the Preferred SLAP Quadrant Indicated by
     the Client

  Next, we describe the protocol operations for a client to select a
  preferred SLAP quadrant using the DHCPv6 signaling procedures
  described in [RFC8947].  The signaling flow is shown in Figure 2.

   +--------+                            +--------+
   | DHCPv6 |                            | DHCPv6 |
   | client |                            | server |
   +--------+                            +--------+
       |                                      |
       +----1. Solicit(IA_LL(LLADDR,QUAD))--->|
       |                                      |
       |<--2. Advertise(IA_LL(LLADDR,QUAD))---+
       |                                      |
       +---3. Request(IA_LL(LLADDR,QUAD))---->|
       |                                      |
       |<------4. Reply(IA_LL(LLADDR))--------+
       |                                      |
       .                                      .
       .          (timer expiring)            .
       .                                      .
       |                                      |
       +---5. Renew(IA_LL(LLADDR,QUAD))------>|
       |                                      |
       |<-----6. Reply(IA_LL(LLADDR))---------+
       |                                      |

             Figure 2: DHCPv6 Signaling Flow (Client-Server)

  1.  Link-layer addresses (i.e., MAC addresses) are assigned in
      blocks.  The smallest block is a single address.  To request an
      assignment, the client sends a Solicit message with an IA_LL
      option in the message.  The IA_LL option MUST contain an LLADDR
      option.  In order to indicate the preferred SLAP quadrant(s), the
      IA_LL option includes the new OPTION_SLAP_QUAD option in the
      IA_LL-option field (alongside the LLADDR option).

  2.  The server, upon receiving an IA_LL option in a Solicit message,
      inspects its contents.  For each of the entries in the
      OPTION_SLAP_QUAD, in order of the preference field (highest to
      lowest), the server checks if it has a configured MAC address
      pool matching the requested quadrant identifier and an available
      range of addresses of the requested size.  If suitable addresses
      are found, the server sends back an Advertise message with an
      IA_LL option containing an LLADDR option that specifies the
      addresses being offered.  If the server manages a block of
      addresses belonging to a requested quadrant, the addresses being
      offered MUST belong to a requested quadrant.  If the server does
      not have a configured address pool matching the client's request,
      it SHOULD return the IA_LL option with the addresses being
      offered belonging to a quadrant managed by the server (following
      a local policy to select from which of the available quadrants).
      If the server has a configured address pool of the correct
      quadrant but no available addresses, it MUST return the IA_LL
      option containing a Status Code option with status set to
      NoAddrsAvail.

  3.  The client waits for available servers to send Advertise
      responses and picks one server, as defined in Section 18.2.9 of
      [RFC8415].  The client SHOULD NOT pick a server that does not
      advertise an address in the requested quadrant(s).  The client
      then sends a Request message that includes the IA_LL container
      option with the LLADDR option copied from the Advertise message
      sent by the chosen server.  It includes the preferred SLAP
      quadrant(s) in a new QUAD IA_LL option.

  4.  Upon reception of a Request message with an IA_LL container
      option, the server assigns requested addresses.  The server MAY
      alter the allocation at this time (e.g., by reducing the address
      block).  It then generates and sends a Reply message back to the
      client.  Upon receiving a Reply message, the client parses the
      IA_LL container option and may start using all provided
      addresses.  Note that a client that has included a Rapid Commit
      option in the Solicit message may receive a Reply message in
      response to the Solicit message and skip the Advertise and
      Request message steps above (following standard DHCPv6
      procedures).

  5.  The client is expected to periodically renew the link-layer
      addresses, as governed by T1 and T2 timers.  This mechanism can
      be administratively disabled by the server sending "infinity" as
      the T1 and T2 values (see Section 7.7 of [RFC8415]).  The client
      sends a Renew option after T1.  It includes the preferred SLAP
      quadrant(s) in the new QUAD IA_LL option, so in case the server
      is unable to extend the lifetime on the existing address(es), the
      preferred quadrants are known for the allocation of any "new"
      (i.e., different) addresses.

  6.  The server responds with a Reply message with an IA_LL option
      that includes an LLADDR option with extended lifetime.

  The client SHOULD check if the received MAC address comes from one of
  the requested quadrants.  It MAY repeat the process selecting a
  different DHCP server.

3.2.  Address Assignment from the Preferred SLAP Quadrant Indicated by
     the Relay

  Next, we describe the protocol operations for a relay to select a
  preferred SLAP quadrant using the DHCPv6 signaling procedures
  described in [RFC8947].  This is useful when a DHCPv6 server is
  operating over a large infrastructure split in different network
  regions, where each region might have different requirements.  The
  signaling flow is shown in Figure 3.

  +--------+                  +--------+                     +--------+
  | DHCPv6 |                  | DHCPv6 |                     | DHCPv6 |
  | client |                  | relay  |                     | server |
  +--------+                  +--------+                     +--------+
     |                            |                                |
     +-----1. Solicit(IA_LL)----->|                                |
     |                            +----2. Relay-forward            |
     |                            |    (Solicit(IA_LL),QUAD)------>|
     |                            |                                |
     |                            |<---3. Relay-reply              |
     |                            |    (Advertise(IA_LL(LLADDR)))--+
     |<4. Advertise(IA_LL(LLADDR))+                                |
     |-5. Request(IA_LL(LLADDR))->|                                |
     |                            +-6. Relay-forward               |
     |                            | (Request(IA_LL(LLADDR)),QUAD)->|
     |                            |                                |
     |                            |<--7. Relay-reply               |
     |                            |   (Reply(IA_LL(LLADDR)))-------+
     |<--8. Reply(IA_LL(LLADDR))--+                                |
     |                            |                                |
     .                            .                                .
     .                    (timer expiring)                         .
     .                            .                                .
     |                            |                                |
     +--9. Renew(IA_LL(LLADDR))-->|                                |
     |                            |--10. Relay-forward             |
     |                            |  (Renew(IA_LL(LLADDR)),QUAD)-->|
     |                            |                                |
     |                            |<---11. Relay-reply             |
     |                            |     (Reply(IA_LL(LLADDR)))-----+
     |<--12. Reply(IA_LL(LLADDR))-+                                |
     |                            |                                |

          Figure 3: DHCPv6 Signaling Flow (Client-Relay-Server)

  1.   Link-layer addresses (i.e., MAC addresses) are assigned in
       blocks.  The smallest block is a single address.  To request an
       assignment, the client sends a Solicit message with an IA_LL
       option in the message.  The IA_LL option MUST contain an LLADDR
       option.

  2.   The DHCP relay receives the Solicit message and encapsulates it
       in a Relay-forward message.  The relay, based on local knowledge
       and policies, includes in the Relay-forward message the QUAD
       option with the preferred quadrant.  The relay might know which
       quadrant to request based on local configuration (e.g., the
       served network contains IoT devices only, thus requiring ELI/
       SAI) or other means.  Note that if a client sends multiple
       instances of the IA_LL option in the same message, the DHCP
       relay MAY only add a single instance of the QUAD option.

  3.   Upon receiving a relayed message containing an IA_LL option, the
       server inspects the contents for instances of OPTION_SLAP_QUAD
       in both the Relay-forward message and the client's message
       payload.  Depending on the server's policy, the instance of the
       option to process is selected (see the end of this section).
       For each of the entries in OPTION_SLAP_QUAD, in order of the
       preference field (highest to lowest), the server checks if it
       has a configured MAC address pool matching the requested
       quadrant identifier and an available range of addresses of the
       requested size.  If suitable addresses are found, the server
       sends back an Advertise message with an IA_LL option containing
       an LLADDR option that specifies the addresses being offered.
       This message is sent to the Relay in a Relay-reply message.  If
       the server supports the semantics of the preferred quadrant
       included in the QUAD option and manages a block of addresses
       belonging to a requested quadrant, then the addresses being
       offered MUST belong to a requested quadrant.  The server SHOULD
       apply the contents of the relay's supplied QUAD option for all
       of the client's IA_LLs, unless configured to do otherwise.

  4.   The relay sends the received Advertise message to the client.

  5.   The client waits for available servers to send Advertise
       responses and picks one server, as defined in Section 18.2.9 of
       [RFC8415].  The client then sends a Request message that
       includes the IA_LL container option with the LLADDR option
       copied from the Advertise message sent by the chosen server.

  6.   The relay forwards the received Request in a Relay-forward
       message.  It adds, in the Relay-forward, a QUAD IA_LL option
       with the preferred quadrant.

  7.   Upon reception of the forwarded Request message with IA_LL
       container option, the server assigns requested addresses.  The
       server MAY alter the allocation at this time.  It then generates
       and sends a Reply message in a Relay-reply message back to the
       relay.

  8.   Upon receiving a Reply message, the client parses the IA_LL
       container option and may start using all provided addresses.

  9.   The client is expected to periodically renew the link-layer
       addresses, as governed by T1 and T2 timers.  This mechanism can
       be administratively disabled by the server sending "infinity" as
       the T1 and T2 values (see Section 7.7 of [RFC8415]).  The client
       sends a Renew option after T1.

  10.  This message is forwarded by the relay in a Relay-forward
       message, including a QUAD IA_LL option with the preferred
       quadrant.

  11.  The server responds with a Reply message, including an LLADDR
       option with extended lifetime.  This message is sent in a Relay-
       reply message.

  12.  The relay sends the Reply message back to the client.

  The server SHOULD implement a configuration parameter to deal
  with the case where the client's DHCP message contains an instance of
  OPTION_SLAP_QUAD and the relay adds a second instance in its Relay-
  forward message.  This parameter configures the server to process
  either the client's or the relay's instance of option QUAD.  It is
  RECOMMENDED that the default for such a parameter is to process the
  client's instance of the option.

  The client MAY check if the received MAC address belongs to a
  quadrant it is willing to use/configure and MAY decide based on that
  whether to use/configure the received address.

4.  DHCPv6 Option Definition

4.1.  QUAD Option

  The QUAD option is used to specify the preferences for the selected
  quadrants within an IA_LL.  The option MUST be encapsulated either in
  the IA_LL-options field of an IA_LL option or in a Relay-forward
  message.

  The format of the QUAD option is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       OPTION_SLAP_QUAD        |          option-len           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   quadrant-1  |    pref-1     |   quadrant-2  |    pref-2     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                                                               .
     .                                                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  quadrant-n-1 |   pref-n-1    |   quadrant-n  |    pref-n     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 4: QUAD Option Format

  option-code     OPTION_SLAP_QUAD (140).

  option-len      2 * number of included (quadrant, preference).  This
                  is a 2-byte field containing the total length of all
                  (quadrant, preference) pairs included in the option.

  quadrant-n      Identifier of the quadrant (0: AAI, 1: ELI, 2:
                  Reserved by IEEE [IEEEStd802c], and 3: SAI).  Each
                  quadrant MUST only appear once at most in the option.
                  This is a 1-byte field.

  pref-n          Preference associated to quadrant-n.  A higher value
                  means a more preferred quadrant.  This is a 1-byte
                  field.

  A quadrant identifier value MUST only appear, at most, once in the
  option. If an option includes more than one occurrence of the same
  quadrant identifier, only the first occurrence is processed, and the
  rest MUST be ignored by the server.

  If the same preference value is used for more than one quadrant, the
  server MAY select which quadrant should be preferred (if the server
  can assign addresses from all or some of the quadrants with the same
  assigned preference).  Note that this is not a simple list of
  quadrants ordered by preference with no preference value, but a list
  of quadrants with explicit preference values.  This way it can
  support the case whereby a client really has no preference between
  two or three quadrants, leaving the decision to the server.

  If the client or relay agent provides the OPTION_SLAP_QUAD, the
  server MUST use the quadrant-n/pref-n values to order the selection
  of the quadrants.  If the server can provide an assignment from one
  of the specified quadrants, it SHOULD proceed with the assignment.
  If the server does not have a configured address pool matching any of
  the specified quadrant-n fields or if the server has a configured
  address pool of the correct quadrant but no available addresses, it
  MUST return the IA_LL option containing a status of NoAddrsAvail.

  There is no requirement that the client or relay agent order the
  quadrant/pref values in any specific order; hence, servers MUST NOT
  assume that quadrant-1/pref-1 have the highest preference (except if
  there is only one set of values).

  For cases where a server may not be configured to have pools for the
  client or relay quadrant preferences, clients and relays SHOULD
  specify all quadrants in the QUAD option to assure the client gets an
  address (or addresses) -- if any are available.  Specifying all
  quadrants also results in a QUAD option supporting server responding
  like a non-QUAD option supporting server, i.e., an address (or
  addresses) from any available quadrants can be returned.

5.  IANA Considerations

  IANA has assigned the QUAD (140) option code from the "Option Codes"
  subregistry of the "Dynamic Host Configuration Protocol for IPv6
  (DHCPv6)" registry maintained at <http://www.iana.org/assignments/
  dhcpv6-parameters>:

  Value:  140
  Description:  OPTION_SLAP_QUAD
  Client ORO:  No
  Singleton Option:  Yes
  Reference:  RFC 8948

6.  Security Considerations

  See [RFC8415] and [RFC7227] for the DHCPv6 security and privacy
  considerations.  See [RFC8200] for the IPv6 security considerations.

  Also, see [RFC8947] for security considerations regarding link-layer
  address assignments using DHCP.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8415]  Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
             Richardson, M., Jiang, S., Lemon, T., and T. Winters,
             "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
             RFC 8415, DOI 10.17487/RFC8415, November 2018,
             <https://www.rfc-editor.org/info/rfc8415>.

  [RFC8947]  Volz, B., Mrugalski, T., and CJ. Bernardos, "Link-Layer
             Address Assignment Mechanism for DHCPv6", RFC 8947,
             DOI 10.17487/RFC8947, December 2020,
             <https://www.rfc-editor.org/info/rfc8947>.

7.2.  Informative References

  [IEEE-P802.1CQ-Project]
             IEEE, "P802.1CQ - Standard for Local and Metropolitan Area
             Networks: Multicast and Local Address Assignment",
             <https://standards.ieee.org/project/802_1CQ.html>.

  [IEEEStd802]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks: Overview and Architecture", IEEE Std 802-2014,
             DOI 10.1109/IEEESTD.2014.6847097, June 2014,
             <https://doi.org/10.1109/IEEESTD.2014.6847097>.

  [IEEEStd802c]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks: Overview and Architecture -- Amendment 2: Local
             Medium Access Control (MAC) Address Usage", IEEE Std 802c-
             2017, DOI 10.1109/IEEESTD.2017.8016709, August 2017,
             <https://doi.org/10.1109/IEEESTD.2017.8016709>.

  [RFC7227]  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
             S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
             BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
             <https://www.rfc-editor.org/info/rfc7227>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <https://www.rfc-editor.org/info/rfc7228>.

  [RFC7548]  Ersue, M., Ed., Romascanu, D., Schoenwaelder, J., and A.
             Sehgal, "Management of Networks with Constrained Devices:
             Use Cases", RFC 7548, DOI 10.17487/RFC7548, May 2015,
             <https://www.rfc-editor.org/info/rfc7548>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

Appendix A.  Example Uses of Quadrant Selection Mechanisms

  This appendix describes some examples of how the quadrant preference
  mechanisms could be used.

  First, let's take an IoT scenario as an example.  An IoT device might
  decide on its own the SLAP quadrant it wants to use to obtain a local
  MAC address, using the following information to make the decision:

  *  Type of IoT deployment: For example, industrial, domestic, rural,
     etc.  For small deployments, such as domestic ones, the IoT device
     itself can decide to use the AAI quadrant (this might not even
     involve the use of DHCP, by the device just configuring a random
     address computed by the device itself).  For large deployments,
     such as industrial or rural ones, where thousands of devices might
     coexist, the IoT can decide to use the ELI or SAI quadrants.

  *  Mobility: If the IoT device can move, then it might prefer to
     select the SAI or AAI quadrants to minimize address collisions
     when moving to another network.  If the device is known to remain
     fixed, then the ELI is probably the most suitable one to use.

  *  Managed/Unmanaged: Depending on whether the IoT device is managed
     during its lifetime or cannot be reconfigured [RFC7548], the
     decision of what quadrant is more appropriate might be different.
     For example, if the IoT device can be managed (e.g., configured)
     and network topology changes might occur during its lifetime
     (e.g., due to changes on the deployment, such as extensions
     involving additional devices), this has an impact on the preferred
     quadrant (e.g., to avoid potential collisions in the future).

  *  Operation / Battery Lifetime: Depending on the expected lifetime
     of the device, a different quadrant might be preferred (as before,
     to minimize potential address collisions in the future).

  The previous parameters are considerations that the device vendor/
  administrator may wish to use when defining the IoT device's
  MAC address request policy (i.e., how to select a given SLAP
  quadrant).  IoT devices are typically very resource constrained, so
  there may only be a simple decision-making process based on
  preconfigured preferences.

  We now take the Wi-Fi device scenario, considering, for example, that
  a laptop or smartphone connects to a network using its built-in MAC
  address.  Due to privacy/security concerns, the device might want to
  configure a local MAC address.  The device might use different
  parameters and context information to decide, not only which SLAP
  quadrant to use for the local MAC address configuration, but also
  when to perform a change of address (e.g., it might be needed to
  change address several times).  This information includes, but it is
  not limited to:

  *  Type of network the device is connected: public, work, home.

  *  Trusted network: Yes/No.

  *  First time visited network: Yes/No.

  *  Network geographical location.

  *  Mobility: Yes (the device might change its network attachment
     point) / No (the device is not going to change its network
     attachment point).

  *  Operating System (OS) network profile, including security/trust-
     related parameters: Most modern OSs keep metadata associated with
     the networks they can attach to as, for example, the level of
     trust the user or administrator assigns to the network.  This
     information is used to configure how the device behaves in terms
     of advertising itself on the network, firewall settings, etc.  But
     this information can also be used to decide whether or not to
     configure a local MAC address, from which SLAP quadrant it should
     be assigned, and how often it may be assigned.

  *  Triggers coming from applications regarding location privacy: An
     app might request that the OS maximize location privacy (due to
     the nature of the application), and this might require the OS to
     force the use of a local MAC address or the local MAC address to
     be changed.

  This information can be used by the device to select the SLAP
  quadrant.  For example, if the device is moving around (e.g., while
  connected to a public network in an airport), it is likely that it
  might change access points several times; therefore, it is best to
  minimize the chances of address collision, using the SAI or AAI
  quadrants.  If the device is not expected to move and is attached to
  a trusted network (e.g., in some scenarios at work), then it is
  probably best to select the ELI quadrant.  These are just some
  examples of how to use this information to select the quadrant.

  Additionally, the information can also be used to trigger subsequent
  changes of MAC address to enhance location privacy.  Besides,
  changing the SLAP quadrant might also be used as an additional
  enhancement to make it harder to track the user location.

  Last, if we consider the data-center scenario, a hypervisor might
  request local MAC addresses be assigned to virtual machines.  As in
  the previous scenarios, the hypervisor might select the preferred
  SLAP quadrant using information provided by the cloud management
  system or virtualization infrastructure manager running on top of the
  hypervisor.  This information might include, but is not limited to:

  *  Migratable VM: If the function implemented by the VM is subject to
     be moved to another physical server or not, this has an impact on
     the preference for the SLAP quadrant, as the ELI and SAI quadrants
     are better suited for supporting migration in a large data center.

  *  VM connectivity characteristics: For example, standalone, part of
     a pool, and part of a service graph/chain.  If the connectivity
     characteristics of the VM are known, this can be used by the
     hypervisor to select the best SLAP quadrant.

Acknowledgments

  The authors would like to thank Bernie Volz for his very valuable
  comments on this document.  We also want to thank Ian Farrer, Tomek
  Mrugalski, Éric Vyncke, Tatuya Jinmei, Carl Wallace, Ines Robles, Ted
  Lemon, Jaime Jimenez, Robert Wilton, Benjamin Kaduk, Barry Leiba,
  Alvaro Retana, and Murray Kucherawy for their very detailed and
  helpful reviews.  And thanks to Roger Marks and Antonio de la Oliva
  for comments related to IEEE work and references.

  The work in this document has been supported by the H2020 5GROWTH
  (Grant 856709) and 5G-DIVE projects (Grant 859881).

Authors' Addresses

  Carlos J. Bernardos
  Universidad Carlos III de Madrid
  Av. Universidad, 30
  28911 Leganes, Madrid
  Spain

  Phone: +34 91624 6236
  Email: [email protected]
  URI:   http://www.it.uc3m.es/cjbc/


  Alain Mourad
  InterDigital Europe

  Email: [email protected]
  URI:   http://www.InterDigital.com/