Internet Engineering Task Force (IETF)                          R. Civil
Request for Comments: 8913                             Ciena Corporation
Category: Standards Track                                      A. Morton
ISSN: 2070-1721                                                AT&T Labs
                                                              R. Rahman

                                                        M. Jethanandani
                                                    Xoriant Corporation
                                                    K. Pentikousis, Ed.
                                                                Detecon
                                                          November 2021


     Two-Way Active Measurement Protocol (TWAMP) YANG Data Model

Abstract

  This document specifies a data model for client and server
  implementations of the Two-Way Active Measurement Protocol (TWAMP).
  This document defines the TWAMP data model through Unified Modeling
  Language (UML) class diagrams and formally specifies it using the
  YANG data modeling language (RFC 7950).  The data model is compliant
  with the Network Management Datastore Architecture (NMDA).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8913.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Motivation
    1.2.  Terminology
    1.3.  Document Organization
  2.  Scope, Model, and Applicability
  3.  Data Model Overview
    3.1.  Control-Client
    3.2.  Server
    3.3.  Session-Sender
    3.4.  Session-Reflector
  4.  Data Model Parameters
    4.1.  Control-Client
    4.2.  Server
    4.3.  Session-Sender
    4.4.  Session-Reflector
  5.  Data Model
    5.1.  YANG Tree Diagram
    5.2.  YANG Module
  6.  Data Model Examples
    6.1.  Control-Client
    6.2.  Server
    6.3.  Session-Sender
    6.4.  Session-Reflector
  7.  Security Considerations
  8.  IANA Considerations
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Appendix A.  Detailed Data Model Examples
    A.1.  Control-Client
    A.2.  Server
    A.3.  Session-Sender
    A.4.  Session-Reflector
  Appendix B.  TWAMP Operational Commands
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  The Two-Way Active Measurement Protocol (TWAMP) [RFC5357] is used to
  measure network performance parameters such as latency, bandwidth,
  and packet loss by sending probe packets and measuring their
  experience in the network.  To date, TWAMP implementations do not
  come with a standard management framework, and, as such, implementers
  have no choice except to provide a proprietary mechanism.  This
  document addresses this gap by defining the model using Unified
  Modeling Language (UML) class diagrams [UML] and formally specifying
  a TWAMP data model that is compliant with the Network Management
  Datastore Architecture (NMDA) [RFC8342], using YANG 1.1 [RFC7950].

1.1.  Motivation

  In current TWAMP deployments, the lack of a standardized data model
  limits the flexibility to dynamically instantiate TWAMP-based
  measurements across equipment from different vendors.  In large,
  virtualized, and dynamically instantiated infrastructures where
  network functions are placed according to orchestration algorithms,
  proprietary mechanisms for managing TWAMP measurements pose severe
  limitations with respect to programmability.

  Two major trends call for standardizing TWAMP management aspects.
  First, it is expected that in the coming years large-scale and multi-
  vendor TWAMP deployments will become the norm.  From an operations
  perspective, using several vendor-specific TWAMP configuration
  mechanisms when one standard mechanism could provide an alternative
  is expensive and inefficient.  Second, the increasingly software-
  defined and virtualized nature of network infrastructures, based on
  dynamic service chains [NSC] and programmable control and management
  planes [RFC7426], requires a well-defined data model for TWAMP
  implementations.  This document defines such a TWAMP data model and
  specifies it formally using the YANG 1.1 data modeling language
  [RFC7950].

1.2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.3.  Document Organization

  The rest of this document is organized as follows.  Section 2
  presents the scope and applicability of this document.  Section 3
  provides a high-level overview of the TWAMP data model.  Section 4
  details the configuration parameters of the data model, and Section 5
  specifies in YANG the TWAMP data model.  Section 6 lists illustrative
  examples that conform to the YANG data model specified in this
  document.  Appendix A elaborates these examples further.

2.  Scope, Model, and Applicability

  The purpose of this document is the specification of a vendor-
  independent data model for TWAMP implementations.

  Figure 1 illustrates a redrawn version of the TWAMP logical model
  found in Section 1.2 of TWAMP [RFC5357].  The figure is annotated
  with pointers to the UML diagrams [UML] provided in this document and
  associated with the data model of the four logical entities in a
  TWAMP deployment, namely the TWAMP Control-Client, Server, Session-
  Sender, and Session-Reflector.  A UML Notation Guide is available in
  Section 5 of UML [UML].

  As per TWAMP [RFC5357], unlabeled links in Figure 1 are left
  unspecified and may be proprietary protocols.

           (Figure 3)                              (Figure 4)
       +----------------+                          +--------+
       | Control-Client |  <-- TWAMP-Control -->   | Server |
       +----------------+                          +--------+
               ^                                        ^
               |                                        |
               V                                        V
       +----------------+                     +-------------------+
       | Session-Sender |  <-- TWAMP-Test --> | Session-Reflector |
       +----------------+                     +-------------------+
           (Figure 5)                               (Figure 6)

                 Figure 1: Annotated TWAMP Logical Model

  As per TWAMP [RFC5357], a TWAMP implementation may follow a
  simplified logical model, in which the same node acts as both
  Control-Client and Session-Sender, while another node acts at the
  same time as both TWAMP Server and Session-Reflector.  Figure 2
  illustrates this simplified logical model and indicates the
  interaction between the TWAMP configuration client and server using,
  for instance, NETCONF [RFC6241] or RESTCONF [RFC8040].

    o-------------------o                       o-------------------o
    |   Config client   |                       |   Config client   |
    o-------------------o                       o-------------------o
             ||                                          ||
     NETCONF || RESTCONF                         NETCONF || RESTCONF
             ||                                          ||
    o-------------------o                       o-------------------o
    |   Config server   |                       |   Config server   |
    | (Figures 3 and 5) |                       | (Figures 4 and 6) |
    +-------------------+                       +-------------------+
    |   Control-Client  | <-- TWAMP-Control --> |      Server       |
    |                   |                       |                   |
    |   Session-Sender  |  <-- TWAMP-Test -->   | Session-Reflector |
    +-------------------+                       +-------------------+

              Figure 2: Simplified TWAMP Model and Protocols

  The data model defined in this document is orthogonal to the specific
  protocol used between the Config client and Config server to
  communicate the TWAMP configuration parameters.

  Operational actions such as how TWAMP-Test sessions are started and
  stopped, how performance measurement results are retrieved, or how
  stored results are cleared, and so on, are not addressed by the
  configuration model defined in this document.  As noted above, such
  operational actions are not part of the TWAMP specification [RFC5357]
  and hence are out of scope for this document.  See also Appendix B.
  In addition, for operational state, the information provided in the
  Performance Metrics Registry [RFC8911] and [PERF-METRICS] can be used
  to develop an independent model for the Performance Metrics that need
  to be captured and retrieved.

3.  Data Model Overview

  The TWAMP data model includes four categories of configuration items.

  First, global configuration items relate to parameters that are set
  on a per-device level.  For example, the administrative status of the
  device with respect to whether it allows TWAMP sessions and, if so,
  in what capacity (e.g., Control-Client, Server, or both) is a typical
  instance of a global configuration item.

  A second category includes attributes that can be configured on a
  per-TWAMP-Control-connection basis, such as the Server IP address.

  A third category includes attributes related to per-TWAMP-Test-
  session attributes -- for instance, setting different values in the
  Differentiated Services Code Point (DSCP) field.

  Finally, the data model includes attributes that relate to the
  operational state of the TWAMP implementation.

  As the TWAMP data model is described in the remaining sections of
  this document, readers should keep in mind the functional entity
  grouping illustrated in Figure 1.

3.1.  Control-Client

  A TWAMP Control-Client has an administrative status field set at the
  device level that indicates whether the node is enabled to function
  as such.

  Each TWAMP Control-Client is associated with zero or more
  TWAMP-Control connections.  The main configuration parameters of each
  control connection are:

  *  A name that can be used to uniquely identify at the Control-Client
     a particular control connection.  This name is necessary for
     programmability reasons because at the time of creation of a
     TWAMP-Control connection not all IP and TCP port number
     information needed to uniquely identify the connection is
     available.

  *  The IP address of the interface the Control-Client will use for
     connections.

  *  The IP address of the remote TWAMP Server.

  *  Authentication and encryption attributes such as KeyID, Token, and
     the Control-Client Initialization Vector (Client-IV); see also
     Section 3.1 of "A One-way Active Measurement Protocol (OWAMP)"
     [RFC4656] and "Randomness Requirements for Security" [RFC4086].

  Each TWAMP-Control connection, in turn, is associated with zero or
  more TWAMP-Test sessions.  For each test session, the following
  configuration items should be noted:

  *  The test session name, which uniquely identifies a particular test
     session at the Control-Client and Session-Sender.  Similar to the
     control connections mentioned above, this unique test session name
     is needed because at the time of creation of a TWAMP-Test session,
     for example, the source UDP port number is not known to uniquely
     identify the test session.

  *  The IP address and UDP port number of the Session-Sender on the
     path under test by TWAMP.

  *  The IP address and UDP port number of the Session-Reflector on
     said path.

  *  Information pertaining to the test packet stream, such as the test
     starting time; which Performance Metric is to be used, as defined
     in "Registry for Performance Metrics" [RFC8911]; or whether the
     test should be repeated.

3.2.  Server

  Each TWAMP Server has an administrative status field set at the
  device level to indicate whether the node is enabled to function as a
  TWAMP Server.

  Each Server is associated with zero or more TWAMP-Control
  connections.  Each control connection is uniquely identified by the
  4-tuple {Control-Client IP address, Control-Client TCP port number,
  Server IP address, Server TCP port}.  Control connection
  configuration items on a TWAMP Server are read-only.

3.3.  Session-Sender

  A TWAMP Session-Sender has an administrative status field set at the
  device level that indicates whether the node is enabled to function
  as such.

  There is one Session-Sender instance for each TWAMP-Test session that
  is initiated from the sending device.  Primary configuration fields
  include:

  *  The test session name, which MUST be identical to the
     corresponding test session name on the TWAMP Control-Client
     (Section 3.1).

  *  The control connection name, which, along with the test session
     name, uniquely identifies the TWAMP Session-Sender instance.

  *  Information pertaining to the test packet stream, such as the
     number of test packets and the packet distribution to be employed;
     see also "Network performance measurement with periodic streams"
     [RFC3432].

3.4.  Session-Reflector

  Each TWAMP Session-Reflector has an administrative status field set
  at the device level to indicate whether the node is enabled to
  function as such.

  Each Session-Reflector is associated with zero or more TWAMP-Test
  sessions.  For each test session, the REFWAIT timeout parameter,
  which determines whether to discontinue the session if no packets
  have been received (TWAMP [RFC5357], Section 4.2), can be configured.

  Read-only access to other data model parameters, such as the Sender
  IP address, is foreseen.  Each test session can be uniquely
  identified by the 4-tuple mentioned in Section 3.2.

4.  Data Model Parameters

  This section defines the TWAMP data model using UML [UML] and
  introduces selected parameters associated with the four TWAMP logical
  entities.  The complete TWAMP data model specification is provided in
  the YANG module presented in Section 5.2.

4.1.  Control-Client

  The client container (see Figure 3) holds items that are related to
  the configuration of the TWAMP Control-Client logical entity (recall
  Figure 1).

  The client container includes an administrative configuration
  parameter (client/admin-state) that indicates whether the device is
  allowed to initiate TWAMP-Control connections.

    +-------------+
    | client      |
    +-------------+                   1..* +-----------------------+
    | admin-state |<>----------------------| mode-preference-chain |
    |             |                        +-----------------------+
    |             |  1..* +------------+   | priority              |
    |             |<>-----| key-chain  |   | mode                  |
    +-------------+       +------------+   +-----------------------+
           ^              | key-id     |
           V              | secret-key |
           |              +------------+
           | 0..*
    +------------------------+
    | ctrl-connection        |
    +------------------------+
    | name                   |
    | client-ip              |
    | server-ip              |
    | server-tcp-port        |    0..* +----------------------+
    | control-packet-dscp    |<>-------| test-session-request |
    | key-id                 |         +----------------------+
    | max-count              |         | name                 |
    | client-tcp-port   {ro} |         | sender-ip            |
    | server-start-time {ro} |         | sender-udp-port      |
    | state             {ro} |         | reflector-ip         |
    | selected-mode     {ro} |         | reflector-udp-port   |
    | token             {ro} |         | timeout              |
    | client-iv         {ro} |         | padding-length       |
    +------------------------+         | test-packet-dscp     |
                                       | start-time           |
                +-------------+ 1      | repeat               |
                | pm-reg-list |------<>| repeat-interval      |
                +-------------+        | state           {ro} |
                | pm-index    |        | sid             {ro} |
                +-------------+        +----------------------+

             Figure 3: TWAMP Control-Client UML Class Diagram

  The client container holds a list (mode-preference-chain) that
  specifies the mode values according to their preferred order of use
  by the operator of this Control-Client, including the authentication
  and encryption modes.  Specifically, mode-preference-chain lists the
  mode and its corresponding priority, expressed as a 16-bit unsigned
  integer.  Values for the priority start with zero, the highest
  priority, and decreasing priority value is indicated by every
  increase in value by one.

  Depending on the modes available in the Server Greeting, the Control-
  Client MUST choose the highest-priority mode from the configured
  mode-preference-chain list.

  Note that the list of preferred modes may set multiple bit positions
  independently, such as when referring to the extended TWAMP features
  in "Mixed Security Mode for the Two-Way Active Measurement Protocol
  (TWAMP)" [RFC5618], "Individual Session Control Feature for the
  Two-Way Active Measurement Protocol (TWAMP)" [RFC5938], "Two-Way
  Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical
  Size Features" [RFC6038], and "IKEv2-Derived Shared Secret Key for
  the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active
  Measurement Protocol (TWAMP)" [RFC7717].  If the Control-Client
  cannot determine an acceptable mode, or when the bit combinations do
  not make sense, e.g., authenticated and unauthenticated bits are both
  set, it MUST respond with zero Mode bits set in the Set-Up-Response
  message, indicating that it will not continue with the control
  connection.

  In addition, the client container holds a list named "key-chain",
  which relates key-id with the respective secret-key.  Both the Server
  and the Control-Client use the same mappings from key-id to
  secret-key (in Figure 3); in order for this to work properly, key-id
  must be unique across all systems in the administrative domain.  The
  Server, being prepared to conduct sessions with more than one
  Control-Client, uses key-id to choose the appropriate secret-key; a
  Control-Client would typically have different secret keys for
  different Servers.  The secret-key is the shared secret, of type
  "binary", and the length SHOULD contain at least 128 bits of entropy.
  The key-id and secret-key encoding SHOULD follow Section 9.8 of YANG
  [RFC7950].  The derived key length (dkLen as defined in "PKCS #5:
  Password-Based Cryptography Specification Version 2.1" [RFC8018])
  MUST be 16 octets for the AES Session-key used for encryption and
  32 octets for the HMAC-SHA1 Session-key used for authentication; see
  also Section 6.10 of OWAMP [RFC4656].

  Each client container also holds a list of control connections, where
  each item in the list describes a TWAMP-Control connection initiated
  by this Control-Client.  There SHALL be one ctrl-connection per
  TWAMP-Control (TCP) connection that is to be initiated from this
  device.

  In turn, each ctrl-connection holds a test-session-request list.
  Each test-session-request holds information associated with the
  Control-Client for this test session.  This includes information
  associated with the Request-TW-Session/Accept-Session message
  exchange (see Section 3.5 of TWAMP [RFC5357]).

  There SHALL be one instance of test-session-request for each
  TWAMP-Test session that is to be negotiated by this TWAMP-Control
  connection via a Request-TW-Session/Accept-Session exchange.

  The Control-Client is also responsible for scheduling TWAMP-Test
  sessions; therefore, test-session-request holds information related
  to these actions (e.g., pm-index, repeat-interval).

4.2.  Server

  The server container (see Figure 4) holds items that are related to
  the configuration of the TWAMP Server logical entity (recall
  Figure 1).

  The server container includes an administrative configuration
  parameter (server/admin-state) that indicates whether the device is
  allowed to receive TWAMP-Control connections.

  A device operating in the Server Role cannot configure attributes on
  a per-TWAMP-Control-connection basis, as it has no foreknowledge of
  the incoming TWAMP-Control connections to be received.  Consequently,
  any parameter that the Server might want to apply to an incoming
  control connection must be configured at the overall Server level and
  applied to all incoming TWAMP-Control connections.

      +---------------------+
      | server              |
      +---------------------+
      | admin-state         |   1..* +------------+
      | server-tcp-port     |<>------| key-chain  |
      | servwait            |        +------------+
      | control-packet-dscp |        | key-id     |
      | count               |        | secret-key |
      | max-count           |        +------------+
      | modes               |
      |                     |   0..* +--------------------------+
      |                     |<>------| ctrl-connection          |
      +---------------------+        +--------------------------+
                                     | client-ip           {ro} |
                                     | client-tcp-port     {ro} |
                                     | server-ip           {ro} |
                                     | server-tcp-port     {ro} |
                                     | state               {ro} |
                                     | control-packet-dscp {ro} |
                                     | selected-mode       {ro} |
                                     | key-id              {ro} |
                                     | count               {ro} |
                                     | max-count           {ro} |
                                     | salt                {ro} |
                                     | server-iv           {ro} |
                                     | challenge           {ro} |
                                     +--------------------------+

                 Figure 4: TWAMP Server UML Class Diagram

  Each server container holds a list named "key-chain", which relates
  key-id with the respective secret-key.  As mentioned in Section 4.1,
  both the Server and the Control-Client use the same mapping from
  key-id to the shared secret-key; in order for this to work properly,
  key-id must be unique across all the systems in the administrative
  domain.  The Server, being prepared to conduct sessions with more
  than one Control-Client, uses key-id to choose the appropriate
  secret-key; a Control-Client would typically have different secret
  keys for different Servers.  key-id tells the Server which shared
  secret-key the Control-Client wishes to use for authentication or
  encryption.

  Each incoming control connection active on the Server is represented
  by a ctrl-connection.  There SHALL be one ctrl-connection per
  incoming TWAMP-Control (TCP) connection that is received and active
  on the Server.  Each ctrl-connection can be uniquely identified by
  the 4-tuple {client-ip, client-tcp-port, server-ip, server-tcp-
  port}.  All items in the ctrl-connection list are read-only.

4.3.  Session-Sender

  The session-sender container, illustrated in Figure 5, holds items
  that are related to the configuration of the TWAMP Session-Sender
  logical entity.

  The session-sender container includes an administrative parameter
  (session-sender/admin-state) that controls whether the device is
  allowed to initiate TWAMP-Test sessions.

        +----------------+
        | session-sender |
        +----------------+  0..* +---------------------------+
        | admin-state    |<>-----| test-session              |
        +----------------+       +---------------------------+
                                 | name                      |
                                 | ctrl-connection-name {ro} |
                                 | fill-mode                 |
                                 | number-of-packets         |
                                 | state                {ro} |
                                 | sent-packets         {ro} |
                                 | rcv-packets          {ro} |
                                 | last-sent-seq        {ro} |
                                 | last-rcv-seq         {ro} |
                                 +---------------------------+
                                              ^
                                              V
                                              | 1
                                  +---------------------+
                                  | packet-distribution |
                                  +---------------------+
                                  | periodic / poisson  |
                                  +---------------------+
                                      |           |
                           +-------------------+  |
                           | periodic-interval |  |
                           +-------------------+  |
                                                  |
                                          +--------------+
                                          | lambda       |
                                          | max-interval |
                                          +--------------+

             Figure 5: TWAMP Session-Sender UML Class Diagram

  Each TWAMP-Test session initiated by the Session-Sender will be
  represented by an instance of a test-session object.  There SHALL be
  one instance of test-session for each TWAMP-Test session for which
  packets are being sent.

4.4.  Session-Reflector

  The session-reflector container, illustrated in Figure 6, holds items
  that are related to the configuration of the TWAMP Session-Reflector
  logical entity.

  The session-reflector container includes an administrative parameter
  (session-reflector/admin-state) that controls whether the device is
  allowed to respond to incoming TWAMP-Test sessions.

  A device operating in the Session-Reflector Role cannot configure
  attributes on a per-session basis, as it has no foreknowledge of what
  incoming sessions it will receive.  As such, any parameter that the
  Session-Reflector might want to apply to an incoming TWAMP-Test
  session must be configured at the overall Session-Reflector level and
  applied to all incoming sessions.

               +-------------------+
               | session-reflector |
               +-------------------+
               | admin-state       |
               | refwait           |
               +-------------------+
                        ^
                        V
                        |
                        | 0..*
               +----------------------------------------+
               | test-session                           |
               +----------------------------------------+
               | sid                               {ro} |
               | sender-ip                         {ro} |
               | sender-udp-port                   {ro} |
               | reflector-ip                      {ro} |
               | reflector-udp-port                {ro} |
               | parent-connection-client-ip       {ro} |
               | parent-connection-client-tcp-port {ro} |
               | parent-connection-server-ip       {ro} |
               | parent-connection-server-tcp-port {ro} |
               | test-packet-dscp                  {ro} |
               | sent-packets                      {ro} |
               | rcv-packets                       {ro} |
               | last-sent-seq                     {ro} |
               | last-rcv-seq                      {ro} |
               +----------------------------------------+

           Figure 6: TWAMP Session-Reflector UML Class Diagram

  Each incoming TWAMP-Test session that is active on the Session-
  Reflector SHALL be represented by an instance of a test-session
  object.  All items in the test-session object are read-only.

  Instances of test-session are indexed by a Session Identifier (SID)
  (the sid parameter).  This SID value is auto-allocated by the TWAMP
  Server as test session requests are received and is communicated back
  to the Control-Client in the SID field of the Accept-Session message;
  see Section 4.3 of "Two-Way Active Measurement Protocol (TWAMP)
  Reflect Octets and Symmetrical Size Features" [RFC6038].

  When attempting to retrieve operational data for active test sessions
  from a Session-Reflector device, the user will not know what sessions
  are currently active on that device or what SIDs have been
  auto-allocated for these test sessions.  If the user has network
  access to the Control-Client device, then it is possible to read the
  data for this session under client/ctrl-connection/test-session-
  request/sid and obtain the SID (see Figure 3).  The user may then use
  this SID value as an index to retrieve an individual session-
  reflector/test-session instance on the Session-Reflector device.

  If the user has no network access to the Control-Client device, then
  the only option is to retrieve all test-session instances from the
  Session-Reflector device and then pick out specific test-session
  instances of interest to the user.  This could be problematic if a
  large number of test sessions are currently active on that device.

  Each Session-Reflector TWAMP-Test session contains the following
  4-tuple: {parent-connection-client-ip, parent-connection-client-tcp-
  port, parent-connection-server-ip, parent-connection-server-tcp-
  port}.  This 4-tuple MUST correspond to the equivalent 4-tuple
  {client-ip, client-tcp-port, server-ip, server-tcp-port} in
  server/ctrl-connection.  This 4-tuple allows the user to trace back
  from the TWAMP-Test session to the (parent) TWAMP-Control connection
  that negotiated this test session.

5.  Data Model

  This section formally specifies the TWAMP data model using YANG.

5.1.  YANG Tree Diagram

  This section presents a simplified graphical representation of the
  TWAMP data model using a YANG tree diagram.  Readers should keep in
  mind that the limit of 72 characters per line forces us to introduce
  artificial line breaks in some tree diagram nodes.  Tree diagrams
  used in this document follow the notation defined in "YANG Tree
  Diagrams" [RFC8340].

  Please note that the backslash ('\') character near the end of the
  diagram is used for formatting purposes only (i.e.,
  "reflector-udp-port]" should be treated as part of the same line as
  "[sender-ip sender-udp-port reflector-ip").

  module: ietf-twamp
    +--rw twamp
       +--rw client {control-client}?
       |  +--rw admin-state?             boolean
       |  +--rw mode-preference-chain* [priority]
       |  |  +--rw priority    uint16
       |  |  +--rw mode?       twamp-modes
       |  +--rw key-chain* [key-id]
       |  |  +--rw key-id        string
       |  |  +--rw secret-key?   binary
       |  +--rw ctrl-connection* [name]
       |     +--rw name                    string
       |     +--rw client-ip?              inet:ip-address
       |     +--rw server-ip               inet:ip-address
       |     +--rw server-tcp-port?        inet:port-number
       |     +--rw control-packet-dscp?    inet:dscp
       |     +--rw key-id?                 string
       |     +--rw max-count-exponent?     uint8
       |     +--ro client-tcp-port?        inet:port-number
       |     +--ro server-start-time?      uint64
       |     +--ro repeat-count?           uint64
       |     +--ro state?
       |     |       control-client-connection-state
       |     +--ro selected-mode?          twamp-modes
       |     +--ro token?                  binary
       |     +--ro client-iv?              binary
       |     +--rw test-session-request* [name]
       |        +--rw name                  string
       |        +--rw sender-ip?            inet:ip-address
       |        +--rw sender-udp-port?      union
       |        +--rw reflector-ip          inet:ip-address
       |        +--rw reflector-udp-port?   inet:port-number
       |        +--rw timeout?              uint64
       |        +--rw padding-length?       uint32
       |        +--rw test-packet-dscp?     inet:dscp
       |        +--rw start-time?           uint64
       |        +--rw repeat?               uint32
       |        +--rw repeat-interval?      uint32
       |        +--rw pm-reg-list* [pm-index]
       |        |  +--rw pm-index    uint16
       |        +--ro state?                test-session-state
       |        +--ro sid?                  string
       +--rw server {server}?
       |  +--rw admin-state?           boolean
       |  +--rw server-tcp-port?       inet:port-number
       |  +--rw servwait?              uint32
       |  +--rw control-packet-dscp?   inet:dscp
       |  +--rw count?                 uint8
       |  +--rw max-count-exponent?    uint8
       |  +--rw modes?                 twamp-modes
       |  +--rw key-chain* [key-id]
       |  |  +--rw key-id        string
       |  |  +--rw secret-key?   binary
       |  +--ro ctrl-connection*
       |          [client-ip client-tcp-port server-ip server-tcp-port]
       |     +--ro client-ip              inet:ip-address
       |     +--ro client-tcp-port        inet:port-number
       |     +--ro server-ip              inet:ip-address
       |     +--ro server-tcp-port        inet:port-number
       |     +--ro state?                 server-ctrl-connection-state
       |     +--ro control-packet-dscp?   inet:dscp
       |     +--ro selected-mode?         twamp-modes
       |     +--ro key-id?                string
       |     +--ro count?                 uint8
       |     +--ro max-count-exponent?    uint8
       |     +--ro salt?                  binary
       |     +--ro server-iv?             binary
       |     +--ro challenge?             binary
       +--rw session-sender {session-sender}?
       |  +--rw admin-state?    boolean
       |  +--rw test-session* [name]
       |     +--rw name                    string
       |     +--ro ctrl-connection-name?   string
       |     +--rw fill-mode?              padding-fill-mode
       |     +--rw number-of-packets       uint32
       |     +--rw (packet-distribution)?
       |     |  +--:(periodic)
       |     |  |  +--rw periodic-interval       decimal64
       |     |  +--:(poisson)
       |     |     +--rw lambda                  decimal64
       |     |     +--rw max-interval?           decimal64
       |     +--ro state?                  sender-session-state
       |     +--ro sent-packets?           uint32
       |     +--ro rcv-packets?            uint32
       |     +--ro last-sent-seq?          uint32
       |     +--ro last-rcv-seq?           uint32
       +--rw session-reflector {session-reflector}?
          +--rw admin-state?    boolean
          +--rw refwait?        uint32
          +--ro test-session*
                  [sender-ip sender-udp-port reflector-ip \
                   reflector-udp-port]
             +--ro sid?                                string
             +--ro sender-ip                           inet:ip-address
             +--ro sender-udp-port
             |       dynamic-port-number
             +--ro reflector-ip                        inet:ip-address
             +--ro reflector-udp-port                  inet:port-number
             +--ro parent-connection-client-ip?        inet:ip-address
             +--ro parent-connection-client-tcp-port?  inet:port-number
             +--ro parent-connection-server-ip?        inet:ip-address
             +--ro parent-connection-server-tcp-port?  inet:port-number
             +--ro test-packet-dscp?                   inet:dscp
             +--ro sent-packets?                       uint32
             +--ro rcv-packets?                        uint32
             +--ro last-sent-seq?                      uint32
             +--ro last-rcv-seq?                       uint32

                       Figure 7: YANG Tree Diagram

5.2.  YANG Module

  This section presents the YANG module for the TWAMP data model
  defined in this document.  The module imports definitions from
  "Common YANG Data Types" [RFC6991] and references "Framework for IP
  Performance Metrics" [RFC2330], "Network performance measurement with
  periodic streams" [RFC3432], "A One-way Active Measurement Protocol
  (OWAMP)" [RFC4656], "A Two-Way Active Measurement Protocol (TWAMP)"
  [RFC5357], "Mixed Security Mode for the Two-Way Active Measurement
  Protocol (TWAMP)" [RFC5618], "Network Time Protocol Version 4:
  Protocol and Algorithms Specification" [RFC5905], "Individual Session
  Control Feature for the Two-Way Active Measurement Protocol (TWAMP)"
  [RFC5938], "Two-Way Active Measurement Protocol (TWAMP) Reflect
  Octets and Symmetrical Size Features" [RFC6038], "Advanced Stream and
  Sampling Framework for IP Performance Metrics (IPPM)" [RFC7312],
  "IKEv2-Derived Shared Secret Key for the One-Way Active Measurement
  Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)"
  [RFC7717], "Well-Known Port Assignments for the One-Way Active
  Measurement Protocol (OWAMP) and the Two-Way Active Measurement
  Protocol (TWAMP)" [RFC8545], and "Registry for Performance Metrics"
  [RFC8911].

  <CODE BEGINS> file "[email protected]"
  module ietf-twamp {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-twamp";
    prefix ietf-twamp;

    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991: Common YANG Data Types";
    }

    organization
      "IETF IPPM (IP Performance Metrics) Working Group";
    contact
      "WG Web: <https://datatracker.ietf.org/wg/ippm/documents/>
       WG List: <mailto:[email protected]>

       Editor: Ruth Civil
               <mailto:[email protected]>

       Editor: Al Morton
               <mailto:[email protected]>

       Editor: Reshad Rahman
               <mailto:[email protected]>

       Editor: Mahesh Jethanandani
               <mailto:[email protected]>

       Editor: Kostas Pentikousis
               <mailto:[email protected]>";
    description
      "This YANG module specifies a vendor-independent data
       model for the Two-Way Active Measurement Protocol (TWAMP).

       The data model defines four TWAMP logical entities, namely
       Control-Client, Server, Session-Sender, and Session-Reflector,
       as illustrated in the annotated TWAMP logical model (Figure 1
       of RFC 8913).

       This YANG module uses features to indicate which of the four
       logical entities are supported by a TWAMP implementation.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
       NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
       'MAY', and 'OPTIONAL' in this document are to be interpreted as
       described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
       they appear in all capitals, as shown here.

       Copyright (c) 2021 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Simplified BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 8913; see the
       RFC itself for full legal notices.";

    revision 2021-11-17 {
      description
        "Initial revision.

         References RFC 5357, RFC 5618, RFC 5938, RFC 6038, RFC 7717,
         and RFC 8911.";
      reference
        "RFC 8913: Two-Way Active Measurement Protocol (TWAMP) YANG
         Data Model";
    }

    /*
     * Typedefs
     */

    typedef twamp-modes {
      type bits {
        bit unauthenticated {
          position 0;
          description
            "Unauthenticated mode, in which no encryption or
             authentication is applied in TWAMP-Control and
             TWAMP-Test.  KeyID, Token, and Client-IV are not used in
             the Set-Up-Response message.  See Section 3.1 of
             RFC 4656.";
          reference
            "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
                       Section 3.1";
        }
        bit authenticated {
          position 1;
          description
            "Authenticated mode, in which the Control-Client and
             Server possess a shared secret, thus prohibiting
             'theft of service'.  As per Section 6 of RFC 4656,
             in 'authenticated mode, the timestamp is in the clear
             and is not protected cryptographically in any way,
             while the rest of the message has the same protection
             as in encrypted mode.  This mode allows one to trade off
             cryptographic protection against accuracy of
             timestamps.'";
          reference
            "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
                       Section 6";
        }
        bit encrypted {
          position 2;
          description
            "Encrypted mode 'makes it impossible to alter
             timestamps undetectably' (Section 1 of RFC 4656).
             See also Section 4 of RFC 7717.";
          reference
            "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
                       Section 6
             RFC 7717: IKEv2-Derived Shared Secret Key for the One-Way
             Active Measurement Protocol (OWAMP) and Two-Way Active
             Measurement Protocol (TWAMP), Section 4";
        }
        bit unauth-test-encrypt-control {
          position 3;
          description
            "When using the mixed security mode, the TWAMP-Test
             protocol operates in unauthenticated mode and the
             TWAMP-Control protocol operates in encrypted mode.";
          reference
            "RFC 5618: Mixed Security Mode for the Two-Way Active
             Measurement Protocol (TWAMP)";
        }
        bit individual-session-control {
          position 4;
          description
            "This mode enables individual test sessions using
             Session Identifiers.";
          reference
            "RFC 5938: Individual Session Control Feature
             for the Two-Way Active Measurement Protocol (TWAMP)";
        }
        bit reflect-octets {
          position 5;
          description
            "This mode indicates the reflect octets capability.";
          reference
            "RFC 6038: Two-Way Active Measurement Protocol (TWAMP)
             Reflect Octets and Symmetrical Size Features";
        }
        bit symmetrical-size {
          position 6;
          description
            "This mode indicates support for the symmetrical size
             sender test packet format.";
          reference
            "RFC 6038: Two-Way Active Measurement Protocol (TWAMP)
             Reflect Octets and Symmetrical Size Features";
        }
        bit IKEv2Derived {
          position 7;
          description
            "In this mode, the shared key is derived
             from an Internet Key Exchange Protocol Version 2 (IKEv2)
             security association (SA).";
          reference
            "RFC 7717: IKEv2-Derived Shared Secret Key for
             the One-Way Active Measurement Protocol (OWAMP)
             and Two-Way Active Measurement Protocol (TWAMP)";
        }
      }
      description
        "Specifies the configurable TWAMP-Modes supported during a
         TWAMP-Control connection setup between a Control-Client
         and a Server.  Section 7 of RFC 7717 summarizes the
         'TWAMP-Modes' Registry and points to their
         formal specification.";
    }

    typedef control-client-connection-state {
      type enumeration {
        enum active {
          description
            "Indicates an active TWAMP-Control connection to the
             Server.";
        }
        enum idle {
          description
            "Indicates an idle TWAMP-Control connection to the
             Server.";
        }
      }
      description
        "Indicates the Control-Client TWAMP-Control connection
         state.";
    }

    typedef test-session-state {
      type enumeration {
        enum accepted {
          value 0;
          description
            "Indicates an accepted TWAMP-Test session request.";
        }
        enum failed {
          value 1;
          description
            "Indicates a TWAMP-Test session failure due to
             some unspecified reason (catch-all).";
        }
        enum internal-error {
          value 2;
          description
            "Indicates a TWAMP-Test session failure due to
             an internal error.";
        }
        enum not-supported {
          value 3;
          description
            "Indicates a TWAMP-Test session failure because
             some aspect of the TWAMP-Test session request
             is not supported.";
        }
        enum permanent-resource-limit {
          value 4;
          description
            "Indicates a TWAMP-Test session failure due to
             permanent resource limitations.";
        }
        enum temp-resource-limit {
          value 5;
          description
            "Indicates a TWAMP-Test session failure due to
             temporary resource limitations.";
        }
      }
      description
        "Indicates the Control-Client TWAMP-Test session state.";
    }

    typedef server-ctrl-connection-state {
      type enumeration {
        enum active {
          description
            "Indicates an active TWAMP-Control connection
             to the Control-Client.";
        }
        enum servwait {
          description
            "Indicates that the TWAMP-Control connection to the
             Control-Client is in SERVWAIT as per the definition in
             Section 3.1 of RFC 5357.";
          reference
            "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP),
                       Section 3.1";
        }
      }
      description
        "Indicates the Server TWAMP-Control connection state.";
    }

    typedef sender-session-state {
      type enumeration {
        enum active {
          description
            "Indicates that the TWAMP-Test session is active.";
        }
        enum failure {
          description
            "Indicates that the TWAMP-Test session has failed.";
        }
      }
      description
        "Indicates the Session-Sender TWAMP-Test session state.";
    }

    typedef padding-fill-mode {
      type enumeration {
        enum zero {
          description
            "TWAMP-Test packets are padded with all zeros.";
        }
        enum random {
          description
            "TWAMP-Test packets are padded with pseudorandom
             numbers.";
        }
      }
      description
        "Indicates what type of packet padding is used in the
         TWAMP-Test packets.";
    }

    typedef dynamic-port-number {
      type inet:port-number {
        range "49152..65535";
      }
      description
        "Dynamic range for port numbers.";
    }

    /*
     * Features
     */

    feature control-client {
      description
        "Indicates that the device supports configuration of the
         TWAMP Control-Client logical entity.";
    }

    feature server {
      description
        "Indicates that the device supports configuration of the
         TWAMP Server logical entity.";
    }

    feature session-sender {
      description
        "Indicates that the device supports configuration of the
         TWAMP Session-Sender logical entity.";
    }

    feature session-reflector {
      description
        "Indicates that the device supports configuration of the
         TWAMP Session-Reflector logical entity.";
    }

    /*
     * Reusable node groups
     */

    grouping key-management {
      list key-chain {
        key "key-id";
        leaf key-id {
          type string {
            length "1..80";
          }
          description
            "KeyID used for a TWAMP-Control connection.  As per
             Section 3.1 of RFC 4656, KeyID is 'a UTF-8 string, up to
             80 octets in length' and is used to select which 'shared
             secret the client' (Control-Client) 'wishes to use to
             authenticate or encrypt'.";
        }
        leaf secret-key {
          type binary;
          description
            "The secret key corresponding to the KeyID for this
             TWAMP-Control connection.";
        }
        description
          "Relates KeyIDs with their respective secret keys
           in a TWAMP-Control connection.";
      }
      description
        "Used by the Control-Client and Server for TWAMP-Control
         key management.";
    }

    grouping maintenance-statistics {
      leaf sent-packets {
        type uint32;
        config false;
        description
          "Indicates the number of packets sent.";
      }
      leaf rcv-packets {
        type uint32;
        config false;
        description
          "Indicates the number of packets received.";
      }
      leaf last-sent-seq {
        type uint32;
        config false;
        description
          "Indicates the last sent sequence number.";
      }
      leaf last-rcv-seq {
        type uint32;
        config false;
        description
          "Indicates the last received sequence number.";
      }
      description
        "Used for TWAMP-Test maintenance statistics.";
    }

    grouping count {
      leaf count {
        type uint8 {
          range "10..31";
        }
        default "15";
        description
          "Parameter communicated to the Control-Client as part of
           the Server Greeting message and used for deriving a key
           from a shared secret as per Section 3.1 of RFC 4656:
           MUST be a power of 2 and at least 1024.  It is configured
           by providing said power.  For example, configuring 20 here
           means count 2^20 = 1048576.  The default is 15,
           meaning 2^15 = 32768.";
      }
      description
        "Reusable data structure for count, which is used in both the
         Server and the Control-Client.";
    }

    grouping max-count-exponent {
      leaf max-count-exponent {
        type uint8 {
          range "10..31";
        }
        default "20";
        description
          "This parameter limits the maximum Count value, which MUST
           be a power of 2 and at least 1024 as per RFC 5357.  It is
           configured by providing said power.  For example,
           configuring 10 here means max count 2^10 = 1024.
           The default is 20, meaning 2^20 = 1048576.

           A TWAMP Server uses this configured value in the
           Server Greeting message sent to the Control-Client.

           A TWAMP Control-Client uses this configured value to
           prevent denial-of-service (DoS) attacks by closing the
           control connection to the Server if it 'receives a
           Server-Greeting message with Count greater that [sic] its
           maximum configured value', as per Section 6 of RFC 5357.

           Further, note that according to Section 6 of RFC 5357:

           'If an attacking system set the maximum value in Count
           (2**32), then the system under attack would stall for a
           significant period of time while it attempts to generate
           keys.  Therefore, TWAMP-compliant systems SHOULD have a
           configuration control to limit the maximum Count value.
           The default maximum Count value SHOULD be 32768.'

           In the case of this document, the default max-count-exponent
           value SHOULD be 15, which corresponds to a maximum value of
           2**15 or 32768.

           RFC 5357 does not qualify 'significant period' in terms of
           time, but it is clear that this depends on the processing
           capacity available, and operators need to pay attention to
           this security consideration.";
      }
      description
        "Reusable data structure for max-count that is used in both
         the client (Control-Client) container and the server
         container.";
    }

    /*
     * Configuration data nodes
     */

    container twamp {
      description
        "TWAMP logical entity configuration grouping of four models
         that correspond to the four TWAMP logical entities
         Control-Client, Server, Session-Sender, and Session-Reflector
         as illustrated in Figure 1 of RFC 8913.";
      container client {
        if-feature "control-client";
        description
          "Configuration of the TWAMP Control-Client logical entity.";
        leaf admin-state {
          type boolean;
          default "true";
          description
            "Indicates whether the device is allowed to operate as a
             TWAMP Control-Client.";
        }
        list mode-preference-chain {
          key "priority";
          unique "mode";
          leaf priority {
            type uint16;
            description
              "Indicates the Control-Client mode preference priority,
               expressed as a 16-bit unsigned integer.  Values for the
               priority start with zero, the highest priority, and
               decreasing priority value is indicated by every increase
               in value by one.";
          }
          leaf mode {
            type twamp-modes;
            description
              "The supported TWAMP-Modes matching the corresponding
               priority.";
          }
          description
            "Indicates the Control-Client preferred order of use of
             the supported TWAMP-Modes.

             Depending on the modes available in the TWAMP Server
             Greeting message (see Figure 2 of RFC 7717), the
             Control-Client MUST choose the highest-priority
             mode from the configured mode-preference-chain list.";
        }
        uses key-management;
        list ctrl-connection {
          key "name";
          description
            "List of TWAMP Control-Client control connections.
             Each item in the list describes a control connection
             that will be initiated by this Control-Client.";
          leaf name {
            type string;
            description
              "A unique name used as a key to identify this
               individual TWAMP-Control connection on the
               Control-Client device.";
          }
          leaf client-ip {
            type inet:ip-address;
            description
              "The IP address of the local Control-Client device,
               to be placed in the source IP address field of the
               IP header in TWAMP-Control (TCP) packets belonging
               to this control connection.  If not configured, the
               device SHALL choose its own source IP address.";
          }
          leaf server-ip {
            type inet:ip-address;
            mandatory true;
            description
              "The IP address of the remote Server device to which
               the TWAMP-Control connection will be initiated.";
          }
          leaf server-tcp-port {
            type inet:port-number;
            default "862";
            description
              "This parameter defines the TCP port number that is
               to be used by this outgoing TWAMP-Control connection.
               Typically, this is the well-known TWAMP-Control
               port number (862) as per RFC 5357.  However, there are
               known realizations of TWAMP in the field that were
               implemented before this well-known port number was
               allocated.  These early implementations allowed the
               port number to be configured.  This parameter is
               therefore provided for backward-compatibility
               reasons.";
          }
          leaf control-packet-dscp {
            type inet:dscp;
            default "0";
            description
              "The Differentiated Services Code Point (DSCP) value
               to be placed in the IP header of TWAMP-Control (TCP)
               packets generated by this Control-Client.";
          }
          leaf key-id {
            type string {
              length "1..80";
            }
            description
              "Indicates the KeyID value selected for this
               TWAMP-Control connection.";
          }
          uses max-count-exponent;
          leaf client-tcp-port {
            type inet:port-number;
            config false;
            description
              "Indicates the source TCP port number used in the
               TWAMP-Control packets belonging to this control
               connection.";
          }
          leaf server-start-time {
            type uint64;
            config false;
            description
              "Indicates the Start-Time advertised by the Server in
               the Server-Start message (RFC 4656, Section 3.1),
               representing the time when the current
               instantiation of the Server started operating.
               The timestamp format follows RFC 5905, according to
               Section 4.1.2 of RFC 4656.";
            reference
              "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
               Sections 3.1 and 4.1.2
               RFC 5905: Network Time Protocol Version 4: Protocol and
               Algorithms Specification";
          }
          leaf repeat-count {
            type uint64;
            config false;
            description
              "Indicates how many times the test session has been
               repeated.  When a test is running, this value will be
               greater than 0.  If the repeat parameter is non-zero,
               this value is smaller than or equal to the repeat
               parameter.";
          }
          leaf state {
            type control-client-connection-state;
            config false;
            description
              "Indicates the current TWAMP-Control connection state.";
          }
          leaf selected-mode {
            type twamp-modes;
            config false;
            description
              "The TWAMP-Modes that the Control-Client has chosen for
               this control connection as set in the Mode field of
               the Set-Up-Response message.";
            reference
              "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
                         Section 3.1";
          }
          leaf token {
            type binary {
              length "64";
            }
            config false;
            description
              "This parameter holds the 64 octets containing the
               concatenation of a 16-octet Challenge, a 16-octet AES
               Session-key used for encryption, and a 32-octet
               HMAC-SHA1 Session-key used for authentication; see
               also the last paragraph of Section 6.10 of RFC 4656.

               If the mode defined in RFC 7717 is selected
               (selected-mode), Token is limited to 16 octets.";
            reference
              "RFC 4656: A One-way Active Measurement Protocol (OWAMP),
                         Section 6.10
               RFC 7717: IKEv2-Derived Shared Secret Key for the
               One-Way Active Measurement Protocol (OWAMP) and
               Two-Way Active Measurement Protocol (TWAMP)";
          }
          leaf client-iv {
            type binary {
              length "16";
            }
            config false;
            description
              "Indicates the Control-Client Initialization Vector
               (Client-IV), which is generated randomly by the
               Control-Client.  As per RFC 4656:

               'Client-IV merely needs to be unique (i.e., it MUST
               never be repeated for different sessions using the
               same secret key; a simple way to achieve that without
               the use of cumbersome state is to generate the
               Client-IV values using a cryptographically secure
               pseudo-random number source.'

               If the mode defined in RFC 7717 is selected
               (selected-mode), Client-IV is limited to 12 octets.";
            reference
              "RFC 4656: A One-way Active Measurement Protocol (OWAMP)
               RFC 7717: IKEv2-Derived Shared Secret Key for the
               One-Way Active Measurement Protocol (OWAMP) and
               Two-Way Active Measurement Protocol (TWAMP)";
          }
          list test-session-request {
            key "name";
            description
              "Information associated with the Control-Client
               for this test session.";
            leaf name {
              type string;
              description
                "A unique name to be used for identification of
                 this TWAMP-Test session on the Control-Client.";
            }
            leaf sender-ip {
              type inet:ip-address;
              description
                "The IP address of the Session-Sender device,
                 which is to be placed in the source IP address
                 field of the IP header in TWAMP-Test (UDP) packets
                 belonging to this test session.  This value will be
                 used to populate the Sender Address field of the
                 Request-TW-Session message.

                 If not configured, the device SHALL choose its own
                 source IP address.";
            }
            leaf sender-udp-port {
              type union {
                type dynamic-port-number;
                type enumeration {
                  enum autoallocate {
                    description
                      "Indicates that the Control-Client will
                       auto-allocate the TWAMP-Test (UDP) port number
                       from the dynamic port range.";
                  }
                }
              }
              default "autoallocate";
              description
                "The UDP port number that is to be used by
                 the Session-Sender for this TWAMP-Test session.
                 The number is restricted to the dynamic port range.

                 By default, the Control-Client SHALL auto-allocate a
                 UDP port number for this TWAMP-Test session.

                 The configured (or auto-allocated) value is
                 advertised in the Sender Port field of the
                 Request-TW-Session message (see Section 3.5 of
                 RFC 5357).  Note that in the scenario where a device
                 auto-allocates a UDP port number for a session and
                 the repeat parameter for that session indicates that
                 it should be repeated, the device is free to
                 auto-allocate a different UDP port number when it
                 negotiates the next (repeated) iteration of this
                 session.";
            }
            leaf reflector-ip {
              type inet:ip-address;
              mandatory true;
              description
                "The IP address belonging to the remote
                 Session-Reflector device to which the TWAMP-Test
                 session will be initiated.  This value will be
                 used to populate the Receiver Address field of
                 the Request-TW-Session message.";
            }
            leaf reflector-udp-port {
              type inet:port-number {
                range "862 | 49152..65535";
              }
              description
                "This parameter defines the UDP port number that
                 will be used by the Session-Reflector for
                 this TWAMP-Test session.  The default number is
                 within the dynamic port range and is to be placed
                 in the Receiver Port field of the Request-TW-Session
                 message.  The well-known port (862) MAY be used.";
              reference
                "RFC 8545: Well-Known Port Assignments for the One-Way
                 Active Measurement Protocol (OWAMP) and the Two-Way
                 Active Measurement Protocol (TWAMP)";
            }
            leaf timeout {
              type uint64;
              units "seconds";
              default "2";
              description
                "The length of time (in seconds) that the
                 Session-Reflector should continue to respond to
                 packets belonging to this TWAMP-Test session after
                 a Stop-Sessions TWAMP-Control message has been
                 received.

                 This value will be placed in the Timeout field of
                 the Request-TW-Session message.";
              reference
                "RFC 5357: A Two-Way Active Measurement Protocol
                 (TWAMP), Section 3.5";
            }
            leaf padding-length {
              type uint32 {
                range "64..4096";
              }
              description
                "The number of padding bytes to be added to the
                 TWAMP-Test (UDP) packets generated by the
                 Session-Sender.

                 This value will be placed in the Padding Length
                 field of the Request-TW-Session message.";
              reference
                "RFC 4656: A One-way Active Measurement Protocol
                 (OWAMP), Section 3.5";
            }
            leaf test-packet-dscp {
              type inet:dscp;
              default "0";
              description
                "The DSCP value to be placed in the IP header
                 of TWAMP-Test packets generated by the
                 Session-Sender and in the UDP header of the
                 TWAMP-Test response packets generated by the
                 Session-Reflector for this test session.

                 This value will be placed in the Type-P Descriptor
                 field of the Request-TW-Session message.";
              reference
                "RFC 5357: A Two-Way Active Measurement Protocol
                 (TWAMP)";
            }
            leaf start-time {
              type uint64;
              default "0";
              description
                "Time when the session is to be started
                 (but not before the TWAMP Start-Sessions command
                 is issued; see Section 3.4 of RFC 5357).

                 The start-time value is placed in the Start Time
                 field of the Request-TW-Session message.

                 The timestamp format follows RFC 5905 as per
                 Section 3.5 of RFC 4656.

                 The default value of 0 indicates that the session
                 will be started as soon as the Start-Sessions
                 message is received.";
            }
            leaf repeat {
              type uint32 {
                range "0..4294967295";
              }
              default "0";
              description
                "This value determines if the TWAMP-Test session must
                 be repeated.  When a test session has completed, the
                 repeat parameter is checked.

                 The default value of 0 indicates that the session
                 MUST NOT be repeated.

                 If the repeat value is 1 through 4,294,967,294,
                 then the test session SHALL be repeated using the
                 information in the repeat-interval parameter, and the
                 parent TWAMP-Control connection for this test
                 session is restarted to negotiate a new instance
                 of this TWAMP-Test session.

                 A value of 4,294,967,295 indicates that the test
                 session SHALL be repeated *forever* using the
                 information in the repeat-interval parameter and
                 SHALL NOT decrement the value.";
            }
            leaf repeat-interval {
              when "../repeat!='0'" {
                description
                  "This parameter determines the timing of repeated
                   TWAMP-Test sessions when repeat is more than 0.

                   When the value of repeat-interval is 0, the
                   negotiation of a new test session SHALL begin
                   immediately after the previous test session
                   completes.  Otherwise, the Control-Client will
                   wait for the number of seconds specified in the
                   repeat-interval parameter before negotiating the
                   new instance of this TWAMP-Test session.";
              }
              type uint32;
              units "seconds";
              default "0";
              description
                "Repeat interval (in seconds).";
            }
            list pm-reg-list {
              key "pm-index";
              leaf pm-index {
                type uint16;
                description
                  "Numerical index value of a Registered Metric in
                   the Performance Metrics Registry (see RFC 8911).
                   Output statistics are specified in the
                   corresponding Registry Entry.";
              }
              description
                "A list of one or more Performance Metrics Registry
                 Index values, which communicate packet stream
                 characteristics along with one or more metrics
                 to be measured.

                 All members of the pm-reg-list MUST have the same
                 stream characteristics, such that they combine
                 to specify all metrics that shall be measured on
                 a single stream.";
              reference
                "RFC 8911: Registry for Performance Metrics";
            }
            leaf state {
              type test-session-state;
              config false;
              description
                "Indicates the TWAMP-Test session state -- an accepted
                 request or an indication of an error.";
              reference
                "RFC 5357: A Two-Way Active Measurement Protocol
                 (TWAMP), Section 3.5";
            }
            leaf sid {
              type string;
              config false;
              description
                "The Session Identifier (SID) allocated by the Server
                 for this TWAMP-Test session and communicated back to
                 the Control-Client in the SID field of the
                 Accept-Session message.";
              reference
                "RFC 6038: Two-Way Active Measurement Protocol (TWAMP)
                 Reflect Octets and Symmetrical Size
                 Features, Section 4.3";
            }
          }
        }
      }
      container server {
        if-feature "server";
        description
          "Configuration of the TWAMP Server logical entity.";
        leaf admin-state {
          type boolean;
          default "true";
          description
            "Indicates whether the device is allowed to operate
             as a TWAMP Server.";
        }
        leaf server-tcp-port {
          type inet:port-number;
          default "862";
          description
            "This parameter defines the well-known TCP port number
             that is used by TWAMP-Control.  The Server will listen
             on this port number for incoming TWAMP-Control
             connections.  Although this is defined as a fixed value
             (862) in RFC 5357, there are several realizations of
             TWAMP in the field that were implemented before this
             well-known port number was allocated.  These early
             implementations allowed the port number to be
             configured.  This parameter is therefore provided for
             backward-compatibility reasons.";
        }
        leaf servwait {
          type uint32 {
            range "1..604800";
          }
          units "seconds";
          default "900";
          description
            "TWAMP-Control (TCP) session timeout, in seconds.
             According to Section 3.1 of RFC 5357:

             'The Server MAY discontinue any established control
             connection when no packet associated with that
             connection has been received within SERVWAIT seconds.'";
        }
        leaf control-packet-dscp {
          type inet:dscp;
          description
            "The DSCP value to be placed in the IP header of
             TWAMP-Control (TCP) packets generated by the Server.

             Section 3.1 of RFC 5357 specifies that the Server
             SHOULD use the DSCP value from the Control-Client's
             TCP SYN.  However, for practical purposes, TWAMP will
             typically be implemented using a general-purpose TCP
             stack provided by the underlying operating system,
             and such a stack may not provide this information to the
             user.  Consequently, it is not always possible to
             implement the behavior described in RFC 5357 in an
             OS-portable version of TWAMP.

             The default behavior if this item is not set is to use
             the DSCP value from the Control-Client's TCP SYN.";
          reference
            "RFC 5357: A Two-Way Active Measurement Protocol (TWAMP),
             Section 3.1";
        }
        uses count;
        uses max-count-exponent;
        leaf modes {
          type twamp-modes;
          description
            "The bit mask of TWAMP-Modes this Server instance is
             willing to support; see the IANA 'TWAMP-Modes' Registry.";
        }
        uses key-management;
        list ctrl-connection {
          key "client-ip client-tcp-port server-ip server-tcp-port";
          config false;
          description
            "List of all incoming TWAMP-Control (TCP) connections.";
          leaf client-ip {
            type inet:ip-address;
            description
              "The IP address on the remote Control-Client device,
               which is the source IP address used in the
               TWAMP-Control (TCP) packets belonging to this control
               connection.";
          }
          leaf client-tcp-port {
            type inet:port-number;
            description
              "The source TCP port number used in the TWAMP-Control
               (TCP) packets belonging to this control connection.";
          }
          leaf server-ip {
            type inet:ip-address;
            description
              "The IP address of the local Server device, which is
               the destination IP address used in the
               TWAMP-Control (TCP) packets belonging to this control
               connection.";
          }
          leaf server-tcp-port {
            type inet:port-number;
            description
              "The destination TCP port number used in the
               TWAMP-Control (TCP) packets belonging to this
               control connection.  This will usually be the
               same value as the server-tcp-port configured
               under twamp/server.  However, in the event that
               the user reconfigured server/server-tcp-port
               after this control connection was initiated, this
               value will indicate the server-tcp-port that is
               actually in use for this control connection.";
          }
          leaf state {
            type server-ctrl-connection-state;
            description
              "Indicates the Server TWAMP-Control connection state.";
          }
          leaf control-packet-dscp {
            type inet:dscp;
            description
              "The DSCP value used in the IP header of the
               TWAMP-Control (TCP) packets sent by the Server
               for this control connection.  This will usually
               be the same value as is configured in the
               control-packet-dscp parameter under the twamp/server
               container.  However, in the event that the user
               reconfigures server/dscp after this control
               connection is already in progress, this read-only
               value will show the actual DSCP value in use by this
               TWAMP-Control connection.";
          }
          leaf selected-mode {
            type twamp-modes;
            description
              "The mode that was chosen for this TWAMP-Control
               connection as set in the Mode field of the
               Set-Up-Response message.";
          }
          leaf key-id {
            type string {
              length "1..80";
            }
            description
              "The KeyID value that is in use by this TWAMP-Control
               connection as selected by the Control-Client.";
          }
          uses count {
            description
              "The Count value that is in use by this TWAMP-Control
               connection.  This will usually be the same value
               as is configured under twamp/server.  However, in the
               event that the user reconfigures server/count
               after this control connection is already in progress,
               this read-only value will show the actual count that
               is in use for this TWAMP-Control connection.";
          }
          uses max-count-exponent {
            description
              "This read-only value indicates the actual max-count in
               use for this control connection.  Usually, this would be
               the same value as is configured under twamp/server.";
          }
          leaf salt {
            type binary {
              length "16";
            }
            description
              "A parameter used in deriving a key from a
               shared secret, as described in Section 3.1 of RFC 4656.
               It is communicated to the Control-Client as part of
               the Server Greeting message.";
          }
          leaf server-iv {
            type binary {
              length "16";
            }
            description
              "The Server Initialization Vector (Server-IV)
               generated randomly by the Server.";
          }
          leaf challenge {
            type binary {
              length "16";
            }
            description
              "A random sequence of octets generated by the Server.
               As described in client/token, a Challenge is used
               by the Control-Client to prove possession of a
               shared secret.";
          }
        }
      }
      container session-sender {
        if-feature "session-sender";
        description
          "Configuration of the TWAMP Session-Sender logical entity.";
        leaf admin-state {
          type boolean;
          default "true";
          description
            "Indicates whether the device is allowed to operate
             as a TWAMP Session-Sender.";
        }
        list test-session {
          key "name";
          description
            "List of TWAMP Session-Sender test sessions.";
          leaf name {
            type string;
            description
              "A unique name for this TWAMP-Test session to be used
               for identifying this test session by the
               Session-Sender logical entity.";
          }
          leaf ctrl-connection-name {
            type string;
            config false;
            description
              "The name of the parent TWAMP-Control connection that
               is responsible for negotiating this TWAMP-Test
               session.";
          }
          leaf fill-mode {
            type padding-fill-mode;
            default "zero";
            description
              "Indicates whether the padding added to the
               TWAMP-Test (UDP) packets (1) will contain pseudorandom
               numbers or (2) should consist of all zeros, as per
               Section 4.2.1 of RFC 5357.";
          }
          leaf number-of-packets {
            type uint32;
            mandatory true;
            description
              "The overall number of TWAMP-Test (UDP) packets to be
               transmitted by the Session-Sender for this test
               session.";
          }
          choice packet-distribution {
            description
              "Indicates the distribution to be used for transmitting
               the TWAMP-Test (UDP) packets.";
            case periodic {
              leaf periodic-interval {
                type decimal64 {
                  fraction-digits 5;
                }
                units "seconds";
                mandatory true;
                description
                  "Indicates the time to wait (in seconds) between
                   the first bits of TWAMP-Test (UDP) packet
                   transmissions for this test session.";
                reference
                  "RFC 3432: Network performance measurement with
                   periodic streams";
              }
            }
            case poisson {
              leaf lambda {
                type decimal64 {
                  fraction-digits 5;
                }
                units "seconds";
                mandatory true;
                description
                  "Indicates the average time interval (in seconds)
                   between packets in the Poisson distribution.
                   The packet is calculated using the reciprocal of
                   lambda and the TWAMP-Test packet size (which
                   depends on the selected mode and the packet
                   padding).";
                reference
                  "RFC 2330: Framework for IP Performance Metrics";
              }
              leaf max-interval {
                type decimal64 {
                  fraction-digits 5;
                }
                units "seconds";
                description
                  "Indicates the maximum time (in seconds)
                   between packet transmissions.";
                reference
                  "RFC 7312: Advanced Stream and Sampling Framework
                   for IP Performance Metrics (IPPM)";
              }
            }
          }
          leaf state {
            type sender-session-state;
            config false;
            description
              "Indicates the Session-Sender test session state.";
          }
          uses maintenance-statistics;
        }
      }
      container session-reflector {
        if-feature "session-reflector";
        description
          "Configuration of the TWAMP Session-Reflector logical
           entity.";
        leaf admin-state {
          type boolean;
          default "true";
          description
            "Indicates whether the device is allowed to operate
             as a TWAMP Session-Reflector.";
        }
        leaf refwait {
          type uint32 {
            range "1..604800";
          }
          units "seconds";
          default "900";
          description
            "The Session-Reflector MAY discontinue any session that
             has been started when no packet associated with that
             session has been received for REFWAIT seconds.  As per
             Section 3.1 of RFC 5357, this timeout allows a
             Session-Reflector to free up resources in case of
             failure.";
        }
        list test-session {
          key "sender-ip sender-udp-port
               reflector-ip reflector-udp-port";
          config false;
          description
            "TWAMP Session-Reflector test sessions.";
          leaf sid {
            type string;
            description
              "An auto-allocated identifier for this TWAMP-Test
               session that is unique within the context of this
               Server/Session-Reflector device only.  This value
               is communicated to the Control-Client that
               requested the test session in the SID field of the
               Accept-Session message.";
          }
          leaf sender-ip {
            type inet:ip-address;
            description
              "The IP address on the remote device, which is the
               source IP address used in the TWAMP-Test (UDP) packets
               belonging to this test session.";
          }
          leaf sender-udp-port {
            type dynamic-port-number;
            description
              "The source UDP port used in the TWAMP-Test packets
               belonging to this test session.";
          }
          leaf reflector-ip {
            type inet:ip-address;
            description
              "The IP address of the local Session-Reflector
               device, which is the destination IP address used
               in the TWAMP-Test (UDP) packets belonging to this test
               session.";
          }
          leaf reflector-udp-port {
            type inet:port-number {
              range "862 | 49152..65535";
            }
            description
              "The destination UDP port number used in the
               TWAMP-Test (UDP) test packets belonging to this
               test session.";
          }
          leaf parent-connection-client-ip {
            type inet:ip-address;
            description
              "The IP address on the Control-Client device, which
               is the source IP address used in the TWAMP-Control
               (TCP) packets belonging to the parent control
               connection that negotiated this test session.";
          }
          leaf parent-connection-client-tcp-port {
            type inet:port-number;
            description
              "The source TCP port number used in the TWAMP-Control
               (TCP) packets belonging to the parent control
               connection that negotiated this test session.";
          }
          leaf parent-connection-server-ip {
            type inet:ip-address;
            description
              "The IP address of the Server device, which is the
               destination IP address used in the TWAMP-Control
               (TCP) packets belonging to the parent control
               connection that negotiated this test session.";
          }
          leaf parent-connection-server-tcp-port {
            type inet:port-number;
            description
              "The destination TCP port number used in the
               TWAMP-Control (TCP) packets belonging to the parent
               control connection that negotiated this test
               session.";
          }
          leaf test-packet-dscp {
            type inet:dscp;
            description
              "The DSCP value present in the IP header of
               TWAMP-Test (UDP) packets belonging to this session.";
          }
          uses maintenance-statistics;
        }
      }
    }
  }
  <CODE ENDS>

6.  Data Model Examples

  This section presents simple but complete examples of configuring all
  four entities in Figure 1, based on the YANG module specified in
  Section 5.  The examples are illustrative in nature but aim to be
  self-contained, i.e., were they to be executed in a real TWAMP
  implementation, they would lead to correctly configured test
  sessions.  For completeness, examples are provided for both IPv4 and
  IPv6.  The examples are shown using XML [W3C.REC-xml-20081126].

  More elaborate examples, which also include authentication
  parameters, are provided in Appendix A.

6.1.  Control-Client

  Figure 8 shows a configuration example for a Control-Client with
  client/admin-state enabled.  In a real implementation following
  Figure 2, this would permit the initiation of TWAMP-Control
  connections and TWAMP-Test sessions.

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <client>
        <admin-state>true</admin-state>
      </client>
    </twamp>
  </config>

         Figure 8: XML Instance Enabling Control-Client Operation

  The following example shows a Control-Client with two instances of
  client/ctrl-connection -- one called "RouterA" and another called
  "RouterB".  Each TWAMP-Control connection is to a different Server.
  The control connection named "RouterA" has two test session requests.
  The TWAMP-Control connection named "RouterB" has no TWAMP-Test
  session requests.

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <client>
        <admin-state>true</admin-state>
        <ctrl-connection>
          <name>RouterA</name>
          <client-ip>203.0.113.1</client-ip>
          <server-ip>203.0.113.2</server-ip>
          <test-session-request>
            <name>Test1</name>
            <sender-ip>203.0.113.3</sender-ip>
            <sender-udp-port>54001</sender-udp-port>
            <reflector-ip>203.0.113.4</reflector-ip>
            <reflector-udp-port>50001</reflector-udp-port>
            <start-time>0</start-time>
          </test-session-request>
          <test-session-request>
            <name>Test2</name>
            <sender-ip>203.0.113.1</sender-ip>
            <sender-udp-port>54001</sender-udp-port>
            <reflector-ip>203.0.113.2</reflector-ip>
            <reflector-udp-port>50001</reflector-udp-port>
            <start-time>0</start-time>
          </test-session-request>
        </ctrl-connection>
        <ctrl-connection>
          <name>RouterB</name>
          <client-ip>203.0.113.1</client-ip>
          <server-ip>203.0.113.3</server-ip>
        </ctrl-connection>
      </client>
    </twamp>
  </config>

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <client>
        <admin-state>true</admin-state>
        <ctrl-connection>
          <name>RouterA</name>
          <client-ip>2001:db8:203:0:113::1</client-ip>
          <server-ip>2001:db8:203:0:113::2</server-ip>
          <test-session-request>
            <name>Test1</name>
            <sender-ip>2001:db8:203:1:113::3</sender-ip>
            <sender-udp-port>54000</sender-udp-port>
            <reflector-ip>2001:db8:203:1:113::4</reflector-ip>
            <reflector-udp-port>55000</reflector-udp-port>
            <start-time>0</start-time>
          </test-session-request>
          <test-session-request>
            <name>Test2</name>
            <sender-ip>2001:db8:203:0:113::1</sender-ip>
            <sender-udp-port>54001</sender-udp-port>
            <reflector-ip>2001:db8:203:0:113::2</reflector-ip>
            <reflector-udp-port>55001</reflector-udp-port>
            <start-time>0</start-time>
          </test-session-request>
        </ctrl-connection>
        <ctrl-connection>
          <name>RouterB</name>
          <client-ip>2001:db8:203:0:113::1</client-ip>
          <server-ip>2001:db8:203:0:113::3</server-ip>
        </ctrl-connection>
      </client>
    </twamp>
  </config>

6.2.  Server

  Figure 9 shows a configuration example for a Server with
  server/admin-state enabled, which permits a device following Figure 2
  to respond to TWAMP-Control connections and TWAMP-Test sessions.

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <server>
        <admin-state>true</admin-state>
      </server>
    </twamp>
  </config>

             Figure 9: XML Instance Enabling Server Operation

  The following example presents a Server with the TWAMP-Control
  connection corresponding to the control connection name
  (client/ctrl-connection/name) "RouterA" presented in Section 6.1.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <server>
        <admin-state>true</admin-state>
        <ctrl-connection>
          <client-ip>203.0.113.1</client-ip>
          <client-tcp-port>16341</client-tcp-port>
          <server-ip>203.0.113.2</server-ip>
          <server-tcp-port>862</server-tcp-port>
          <state>active</state>
        </ctrl-connection>
      </server>
    </twamp>
  </data>

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <server>
        <admin-state>true</admin-state>
        <ctrl-connection>
          <client-ip>2001:db8:203:0:113::1</client-ip>
          <client-tcp-port>16341</client-tcp-port>
          <server-ip>2001:db8:203:0:113::2</server-ip>
          <server-tcp-port>862</server-tcp-port>
          <state>active</state>
        </ctrl-connection>
      </server>
    </twamp>
  </data>

6.3.  Session-Sender

  Figure 10 shows a configuration example for a Session-Sender with
  session-sender/admin-state enabled, which permits a device following
  Figure 2 to initiate TWAMP-Test sessions.

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-sender>
        <admin-state>true</admin-state>
      </session-sender>
    </twamp>
  </config>

        Figure 10: XML Instance Enabling Session-Sender Operation

  The following configuration example shows a Session-Sender with the
  two TWAMP-Test sessions presented in Section 6.1.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-sender>
        <admin-state>true</admin-state>
        <test-session>
          <name>Test1</name>
          <ctrl-connection-name>RouterA</ctrl-connection-name>
          <number-of-packets>900</number-of-packets>
          <periodic-interval>1</periodic-interval>
        </test-session>
        <test-session>
          <name>Test2</name>
          <ctrl-connection-name>RouterA</ctrl-connection-name>
          <number-of-packets>900</number-of-packets>
          <lambda>1</lambda>
          <max-interval>2</max-interval>
        </test-session>
      </session-sender>
    </twamp>
  </data>

6.4.  Session-Reflector

  This configuration example shows a Session-Reflector with
  session-reflector/admin-state enabled, which permits a device
  following Figure 2 to respond to TWAMP-Test sessions.

  <?xml version="1.0" encoding="utf-8"?>
  <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-reflector>
        <admin-state>true</admin-state>
      </session-reflector>
    </twamp>
  </config>

       Figure 11: XML Instance Enabling Session-Reflector Operation

  The following example shows the two Session-Reflector TWAMP-Test
  sessions corresponding to the test sessions presented in Section 6.3.

     |  Note: '\' line wrapping is for formatting only.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-reflector>
        <admin-state>true</admin-state>
        <test-session>
          <sender-ip>203.0.113.3</sender-ip>
          <sender-udp-port>54000</sender-udp-port>
          <reflector-ip>203.0.113.4</reflector-ip>
          <reflector-udp-port>50001</reflector-udp-port>
          <sid>1232</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <sent-packets>2</sent-packets>
          <rcv-packets>2</rcv-packets>
          <last-sent-seq>1</last-sent-seq>
          <last-rcv-seq>1</last-rcv-seq>
        </test-session>
        <test-session>
          <sender-ip>203.0.113.1</sender-ip>
          <sender-udp-port>54001</sender-udp-port>
          <reflector-ip>192.0.2.2</reflector-ip>
          <reflector-udp-port>50001</reflector-udp-port>
          <sid>178943</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <sent-packets>21</sent-packets>
          <rcv-packets>21</rcv-packets>
          <last-sent-seq>20</last-sent-seq>
          <last-rcv-seq>20</last-rcv-seq>
        </test-session>
      </session-reflector>
    </twamp>
  </data>

     |  Note: '\' line wrapping is for formatting only.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-reflector>
        <admin-state>true</admin-state>
        <test-session>
          <sender-ip>203.0.113.3</sender-ip>
          <sender-udp-port>54000</sender-udp-port>
          <reflector-ip>203.0.113.4</reflector-ip>
          <reflector-udp-port>54001</reflector-udp-port>
          <sid>1232</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <sent-packets>2</sent-packets>
          <rcv-packets>2</rcv-packets>
          <last-sent-seq>1</last-sent-seq>
          <last-rcv-seq>1</last-rcv-seq>
        </test-session>
        <test-session>
          <sender-ip>203.0.113.1</sender-ip>
          <sender-udp-port>54001</sender-udp-port>
          <reflector-ip>192.0.2.2</reflector-ip>
          <reflector-udp-port>55001</reflector-udp-port>
          <sid>178943</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <sent-packets>21</sent-packets>
          <rcv-packets>21</rcv-packets>
          <last-sent-seq>20</last-sent-seq>
          <last-rcv-seq>20</last-rcv-seq>
        </test-session>
      </session-reflector>
    </twamp>
  </data>

7.  Security Considerations

  Virtually all existing measurement systems using TWAMP [RFC5357] are
  administered by the same network operator.  For example, attacks on
  the measurement infrastructure could be launched by third parties to
  commandeer the packet generation capability, corrupt the
  measurements, or perform other nefarious acts.

  The YANG module specified in this document defines a schema for data
  that is designed to be accessed via network management protocols such
  as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
  is the secure transport layer, and the mandatory-to-implement secure
  transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in this YANG module that are
  writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  These are the subtrees and data nodes
  and their sensitivity/vulnerability:

  *  If written, the 'admin-state' node can cause unintended test
     sessions to be created.

  *  If the node 'number-of-packets', which dictates how many packets
     are sent in any particular test session, is written with a large
     value, it can cause a test session to run longer than expected.

  *  Nodes that are particularly vulnerable include several timeout
     values put in the protocol to protect against sessions that are
     not active but are consuming resources.  These are the REFWAIT
     timeout parameter, which determines whether to discontinue the
     session if no packets are received; and the nodes 'count' and
     'max-count-exponent', which can cause a long time to be spent on
     Password-Based Key Derivation Function 2 (PBKDF2) iterations.

  *  In addition, a 'dscp' node marked with different DSCP markings can
     cause the test traffic on the network to be skewed and the result
     manipulated.

  *  Finally, nodes within 'mode-preference-chain', which specifies the
     'mode' and 'priority' values and indicates the preferred order of
     use by an operator, can be manipulated to send unauthenticated or
     non-encrypted traffic, enabling an on-path attack.

  *  Limiting access to these nodes will limit the ability to launch an
     attack in network environments.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or
  notification) to these data nodes.  This is the subtree and data node
  and its sensitivity/vulnerability:

  *  The 'token' node defined in the model, containing a concatenation
     of a Challenge, an AES Session-key used for encryption, and an
     HMAC-SHA1 Session-key used for authentication, is sensitive from a
     privacy perspective and can be used to disrupt a test session.
     The ability to read the field should be limited to the
     administrator of the test network.

  The TWAMP YANG data model does not define RPC operations, as detailed
  in Appendix B, and defers the definition of NETCONF RPC operations to
  each implementation.  These RPC operations, when defined, may be
  considered sensitive or vulnerable in some network environments.  It
  is thus important to control access to these operations.

8.  IANA Considerations

  IANA has registered the following URI in the "IETF XML Registry"
  [RFC3688].

  URI:  urn:ietf:params:xml:ns:yang:ietf-twamp
  Registrant Contact:  The IESG.
  XML:  N/A; the requested URI is an XML namespace.

  IANA has registered the following YANG module in the "YANG Module
  Names" registry [RFC6020].

  Name:  ietf-twamp
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-twamp
  Prefix:  twamp
  Reference:  RFC 8913

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3432]  Raisanen, V., Grotefeld, G., and A. Morton, "Network
             performance measurement with periodic streams", RFC 3432,
             DOI 10.17487/RFC3432, November 2002,
             <https://www.rfc-editor.org/info/rfc3432>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             DOI 10.17487/RFC4086, June 2005,
             <https://www.rfc-editor.org/info/rfc4086>.

  [RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
             Zekauskas, "A One-way Active Measurement Protocol
             (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
             <https://www.rfc-editor.org/info/rfc4656>.

  [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
             Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
             RFC 5357, DOI 10.17487/RFC5357, October 2008,
             <https://www.rfc-editor.org/info/rfc5357>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
             Protocol (TWAMP) Reflect Octets and Symmetrical Size
             Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
             <https://www.rfc-editor.org/info/rfc6038>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC7717]  Pentikousis, K., Ed., Zhang, E., and Y. Cui,
             "IKEv2-Derived Shared Secret Key for the One-Way Active
             Measurement Protocol (OWAMP) and Two-Way Active
             Measurement Protocol (TWAMP)", RFC 7717,
             DOI 10.17487/RFC7717, December 2015,
             <https://www.rfc-editor.org/info/rfc7717>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC8545]  Morton, A., Ed. and G. Mirsky, Ed., "Well-Known Port
             Assignments for the One-Way Active Measurement Protocol
             (OWAMP) and the Two-Way Active Measurement Protocol
             (TWAMP)", RFC 8545, DOI 10.17487/RFC8545, March 2019,
             <https://www.rfc-editor.org/info/rfc8545>.

  [RFC8911]  Bagnulo, M., Claise, B., Eardley, P., Morton, A., and A.
             Akhter, "Registry for Performance Metrics", RFC 8911,
             DOI 10.17487/RFC8911, November 2021,
             <https://www.rfc-editor.org/info/rfc8911>.

  [UML]      ISO/IEC, "Information technology - Open Distributed
             Processing - Unified Modeling Language (UML) Version
             1.4.2", ISO/IEC 19501:2005, OMG-UML VER 1.3, April 2005.

  [W3C.REC-xml-20081126]
             Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
             F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
             Edition)", World Wide Web Consortium Recommendation REC-
             xml-20081126, November 2008,
             <https://www.w3.org/TR/2008/REC-xml-20081126>.

9.2.  Informative References

  [NSC]      John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind,
             M., Manzalini, A., Risso, F., Staessens, D., Steinert, R.,
             and C. Meirosu, "Research directions in network service
             chaining", 2013 IEEE SDN for Future Networks and Services
             (SDN4FNS), Trento, Italy,
             DOI 10.1109/SDN4FNS.2013.6702549, November 2013,
             <https://doi.org/10.1109/SDN4FNS.2013.6702549>.

  [PERF-METRICS]
             IANA, "Performance Metrics",
             <https://www.iana.org/assignments/performance-metrics>.

  [RFC2330]  Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
             "Framework for IP Performance Metrics", RFC 2330,
             DOI 10.17487/RFC2330, May 1998,
             <https://www.rfc-editor.org/info/rfc2330>.

  [RFC5618]  Morton, A. and K. Hedayat, "Mixed Security Mode for the
             Two-Way Active Measurement Protocol (TWAMP)", RFC 5618,
             DOI 10.17487/RFC5618, August 2009,
             <https://www.rfc-editor.org/info/rfc5618>.

  [RFC5938]  Morton, A. and M. Chiba, "Individual Session Control
             Feature for the Two-Way Active Measurement Protocol
             (TWAMP)", RFC 5938, DOI 10.17487/RFC5938, August 2010,
             <https://www.rfc-editor.org/info/rfc5938>.

  [RFC7312]  Fabini, J. and A. Morton, "Advanced Stream and Sampling
             Framework for IP Performance Metrics (IPPM)", RFC 7312,
             DOI 10.17487/RFC7312, August 2014,
             <https://www.rfc-editor.org/info/rfc7312>.

  [RFC7426]  Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
             Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
             Defined Networking (SDN): Layers and Architecture
             Terminology", RFC 7426, DOI 10.17487/RFC7426, January
             2015, <https://www.rfc-editor.org/info/rfc7426>.

  [RFC8018]  Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
             Password-Based Cryptography Specification Version 2.1",
             RFC 8018, DOI 10.17487/RFC8018, January 2017,
             <https://www.rfc-editor.org/info/rfc8018>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

Appendix A.  Detailed Data Model Examples

  This appendix extends the examples presented in Section 6 by
  configuring more fields, such as authentication parameters, DSCP
  values, and so on.

A.1.  Control-Client

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <client>
        <admin-state>true</admin-state>
        <mode-preference-chain>
          <priority>0</priority>
          <mode>authenticated</mode>
        </mode-preference-chain>
        <mode-preference-chain>
          <priority>1</priority>
          <mode>unauthenticated</mode>
        </mode-preference-chain>
        <key-chain>
          <key-id>KeyClient1ToRouterA</key-id>
          <secret-key>c2VjcmV0MQ==</secret-key>
        </key-chain>
        <key-chain>
          <key-id>KeyForRouterB</key-id>
          <secret-key>c2VjcmV0Mg0K</secret-key>
        </key-chain>
        <ctrl-connection>
          <name>RouterA</name>
          <client-ip>203.0.113.1</client-ip>
          <server-ip>203.0.113.2</server-ip>
          <control-packet-dscp>32</control-packet-dscp>
          <key-id>KeyClient1ToRouterA</key-id>
          <test-session-request>
            <name>Test1</name>
            <sender-ip>203.0.113.3</sender-ip>
            <sender-udp-port>54000</sender-udp-port>
            <reflector-ip>203.0.113.4</reflector-ip>
            <reflector-udp-port>55000</reflector-udp-port>
            <padding-length>64</padding-length>
            <start-time>0</start-time>
          </test-session-request>
          <test-session-request>
            <name>Test2</name>
            <sender-ip>203.0.113.1</sender-ip>
            <sender-udp-port>54001</sender-udp-port>
            <reflector-ip>203.0.113.2</reflector-ip>
            <reflector-udp-port>55001</reflector-udp-port>
            <padding-length>128</padding-length>
            <start-time>0</start-time>
          </test-session-request>
        </ctrl-connection>
      </client>
    </twamp>
  </data>

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <client>
        <admin-state>true</admin-state>
        <mode-preference-chain>
          <priority>0</priority>
          <mode>authenticated</mode>
        </mode-preference-chain>
        <mode-preference-chain>
          <priority>1</priority>
          <mode>unauthenticated</mode>
        </mode-preference-chain>
        <key-chain>
          <key-id>KeyClient1ToRouterA</key-id>
          <secret-key>c2VjcmV0MQ==</secret-key>
        </key-chain>
        <key-chain>
          <key-id>KeyForRouterB</key-id>
          <secret-key>c2VjcmV0Mg0K</secret-key>
        </key-chain>
        <ctrl-connection>
          <name>RouterA</name>
          <client-ip>2001:db8:203:0:113::1</client-ip>
          <server-ip>2001:db8:203:0:113::2</server-ip>
          <control-packet-dscp>32</control-packet-dscp>
          <key-id>KeyClient1ToRouterA</key-id>
          <test-session-request>
            <name>Test1</name>
            <sender-ip>2001:db8:10:1:1::1</sender-ip>
            <sender-udp-port>54000</sender-udp-port>
            <reflector-ip>2001:db8:10:1:1::2</reflector-ip>
            <reflector-udp-port>55000</reflector-udp-port>
            <padding-length>64</padding-length>
            <start-time>0</start-time>
          </test-session-request>
          <test-session-request>
            <name>Test2</name>
            <sender-ip>2001:db8:203:0:113::1</sender-ip>
            <sender-udp-port>54001</sender-udp-port>
            <reflector-ip>2001:db8:203:0:113::2</reflector-ip>
            <reflector-udp-port>55001</reflector-udp-port>
            <padding-length>128</padding-length>
            <start-time>0</start-time>
          </test-session-request>
        </ctrl-connection>
      </client>
    </twamp>
  </data>

A.2.  Server

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <server>
        <admin-state>true</admin-state>
        <servwait>1800</servwait>
        <control-packet-dscp>32</control-packet-dscp>
        <modes>authenticated unauthenticated</modes>
        <count>15</count>
        <key-chain>
          <key-id>KeyClient1ToRouterA</key-id>
          <secret-key>c2VjcmV0MQ==</secret-key>
        </key-chain>
        <key-chain>
          <key-id>KeyClient10ToRouterA</key-id>
          <secret-key>c2VjcmV0MTANCg==</secret-key>
        </key-chain>
        <ctrl-connection>
          <client-ip>203.0.113.1</client-ip>
          <client-tcp-port>16341</client-tcp-port>
          <server-ip>203.0.113.2</server-ip>
          <server-tcp-port>862</server-tcp-port>
          <control-packet-dscp>32</control-packet-dscp>
          <selected-mode>unauthenticated</selected-mode>
          <key-id>KeyClient1ToRouterA</key-id>
          <count>15</count>
        </ctrl-connection>
      </server>
    </twamp>
  </data>

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <server>
        <admin-state>true</admin-state>
        <servwait>1800</servwait>
        <control-packet-dscp>32</control-packet-dscp>
        <modes>authenticated unauthenticated</modes>
        <count>15</count>
        <key-chain>
          <key-id>KeyClient1ToRouterA</key-id>
          <secret-key>c2VjcmV0MQ==</secret-key>
        </key-chain>
        <key-chain>
          <key-id>KeyClient10ToRouterA</key-id>
          <secret-key>c2VjcmV0MTANCg==</secret-key>
        </key-chain>
        <ctrl-connection>
          <client-ip>2001:db8:203:0:113::1</client-ip>
          <client-tcp-port>16341</client-tcp-port>
          <server-ip>2001:db8:203:0:113::2</server-ip>
          <server-tcp-port>862</server-tcp-port>
          <control-packet-dscp>32</control-packet-dscp>
          <selected-mode>unauthenticated</selected-mode>
          <key-id>KeyClient1ToRouterA</key-id>
          <count>15</count>
        </ctrl-connection>
      </server>
    </twamp>
  </data>

A.3.  Session-Sender

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-sender>
        <admin-state>true</admin-state>
        <test-session>
          <name>Test1</name>
          <ctrl-connection-name>RouterA</ctrl-connection-name>
          <fill-mode>zero</fill-mode>
          <number-of-packets>900</number-of-packets>
          <periodic-interval>1</periodic-interval>
          <sent-packets>2</sent-packets>
          <rcv-packets>2</rcv-packets>
          <last-sent-seq>1</last-sent-seq>
          <last-rcv-seq>1</last-rcv-seq>
        </test-session>
        <test-session>
          <name>Test2</name>
          <ctrl-connection-name>RouterA</ctrl-connection-name>
          <fill-mode>random</fill-mode>
          <number-of-packets>900</number-of-packets>
          <lambda>1</lambda>
          <max-interval>2</max-interval>
          <sent-packets>21</sent-packets>
          <rcv-packets>21</rcv-packets>
          <last-sent-seq>20</last-sent-seq>
          <last-rcv-seq>20</last-rcv-seq>
        </test-session>
      </session-sender>
    </twamp>
  </data>

A.4.  Session-Reflector

     |  Note: '\' line wrapping is for formatting only.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-reflector>
        <admin-state>true</admin-state>
        <test-session>
          <sender-ip>203.0.113.3</sender-ip>
          <sender-udp-port>54000</sender-udp-port>
          <reflector-ip>203.0.113.4</reflector-ip>
          <reflector-udp-port>55000</reflector-udp-port>
          <sid>1232</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <test-packet-dscp>32</test-packet-dscp>
          <sent-packets>2</sent-packets>
          <rcv-packets>2</rcv-packets>
          <last-sent-seq>1</last-sent-seq>
          <last-rcv-seq>1</last-rcv-seq>
        </test-session>
        <test-session>
          <sender-ip>203.0.113.1</sender-ip>
          <sender-udp-port>54001</sender-udp-port>
          <reflector-ip>192.0.2.2</reflector-ip>
          <reflector-udp-port>55001</reflector-udp-port>
          <sid>178943</sid>
          <parent-connection-client-ip>203.0.113.1</parent-connection-\
  client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>203.0.113.2</parent-connection-\
  server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <test-packet-dscp>32</test-packet-dscp>
          <sent-packets>21</sent-packets>
          <rcv-packets>21</rcv-packets>
          <last-sent-seq>20</last-sent-seq>
          <last-rcv-seq>20</last-rcv-seq>
        </test-session>
      </session-reflector>
    </twamp>
  </data>

     |  Note: '\' line wrapping is for formatting only.

  <?xml version="1.0" encoding="utf-8"?>
  <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp">
      <session-reflector>
        <admin-state>true</admin-state>
        <test-session>
          <sender-ip>2001:db8:10:1:1::1</sender-ip>
          <sender-udp-port>54000</sender-udp-port>
          <reflector-ip>2001:db8:10:1:1::2</reflector-ip>
          <reflector-udp-port>55000</reflector-udp-port>
          <sid>1232</sid>
          <parent-connection-client-ip>2001:db8:203:0:113::1</parent-c\
  onnection-client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>2001:db8:203:0:113::2</parent-c\
  onnection-server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <test-packet-dscp>32</test-packet-dscp>
          <sent-packets>2</sent-packets>
          <rcv-packets>2</rcv-packets>
          <last-sent-seq>1</last-sent-seq>
          <last-rcv-seq>1</last-rcv-seq>
        </test-session>
        <test-session>
          <sender-ip>2001:db8:203:0:113::1</sender-ip>
          <sender-udp-port>54001</sender-udp-port>
          <reflector-ip>2001:db8:192:68::2</reflector-ip>
          <reflector-udp-port>55001</reflector-udp-port>
          <sid>178943</sid>
          <parent-connection-client-ip>2001:db8:203:0:113::1</parent-c\
  onnection-client-ip>
          <parent-connection-client-tcp-port>16341</parent-connection-\
  client-tcp-port>
          <parent-connection-server-ip>2001:db8:203:0:113::2</parent-c\
  onnection-server-ip>
          <parent-connection-server-tcp-port>862</parent-connection-se\
  rver-tcp-port>
          <test-packet-dscp>32</test-packet-dscp>
          <sent-packets>21</sent-packets>
          <rcv-packets>21</rcv-packets>
          <last-sent-seq>20</last-sent-seq>
          <last-rcv-seq>20</last-rcv-seq>
        </test-session>
      </session-reflector>
    </twamp>
  </data>

Appendix B.  TWAMP Operational Commands

  TWAMP operational commands could be performed programmatically or
  manually, e.g., using a command-line interface (CLI).

  With respect to programmability, YANG can be used to define NETCONF
  Remote Procedure Calls (RPCs); therefore, it would be, in principle,
  possible to define TWAMP RPC operations for actions such as starting
  or stopping control connections, test sessions, or groups of
  sessions; retrieving results; clearing stored results; and so on.

  However, TWAMP [RFC5357] does not attempt to describe such
  operational actions.  Refer also to Section 2 and the unlabeled links
  in Figure 1.  In actual deployments, different TWAMP implementations
  may support different sets of operational commands, with different
  restrictions.  Therefore, this document considers it the
  responsibility of the individual implementation to define its
  corresponding data model for TWAMP operational commands.

Acknowledgments

  We thank Fred Baker, Kevin D'Souza, Gregory Mirsky, Brian Trammell,
  Robert Sherman, and Marius Georgescu for their thorough and
  constructive reviews, comments, and text suggestions.

  Haoxing Shen contributed to the definition of the YANG module in
  Section 5.

  Jan Lindblad and Ladislav Lhotka did thorough reviews of the YANG
  module and the examples in Appendix A.

  Kostas Pentikousis was partially supported by FP7 UNIFY, a research
  project partially funded by the European Community under the Seventh
  Framework Program (grant agreement no. 619609).  The views expressed
  here are those of the authors only.  The European Commission is not
  liable for any use that may be made of the information in this
  document.

Contributors

  Lianshu Zheng

Authors' Addresses

  Ruth Civil
  Ciena Corporation
  307 Legget Drive
  Kanata ON K2K 3C8
  Canada

  Email: [email protected]
  URI:   www.ciena.com


  Al Morton
  AT&T Labs
  200 Laurel Avenue South
  Middletown, NJ 07748
  United States of America

  Phone: +1 732 420 1571
  Email: [email protected]


  Reshad Rahman
  Canada

  Email: [email protected]


  Mahesh Jethanandani
  Xoriant Corporation
  1248 Reamwood Avenue
  Sunnyvale, CA 94089
  United States of America

  Email: [email protected]


  Kostas Pentikousis (editor)
  Detecon
  Winterfeldtstrasse 21
  10781 Berlin
  Germany

  Email: [email protected]