Internet Engineering Task Force (IETF)                         Z. Sarker
Request for Comments: 8867                                   Ericsson AB
Category: Informational                                         V. Singh
ISSN: 2070-1721                                             callstats.io
                                                                 X. Zhu
                                                          Cisco Systems
                                                             M. Ramalho
                                                          AcousticComms
                                                           January 2021


Test Cases for Evaluating Congestion Control for Interactive Real-Time
                                Media

Abstract

  The Real-time Transport Protocol (RTP) is used to transmit media in
  multimedia telephony applications.  These applications are typically
  required to implement congestion control.  This document describes
  the test cases to be used in the performance evaluation of such
  congestion control algorithms in a controlled environment.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8867.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  Structure of Test Cases
  4.  Recommended Evaluation Settings
    4.1.  Evaluation Metrics
    4.2.  Path Characteristics
    4.3.  Media Source
  5.  Basic Test Cases
    5.1.  Variable Available Capacity with a Single Flow
    5.2.  Variable Available Capacity with Multiple Flows
    5.3.  Congested Feedback Link with Bi-directional Media Flows
    5.4.  Competing Media Flows with the Same Congestion Control
          Algorithm
    5.5.  Round Trip Time Fairness
    5.6.  Media Flow Competing with a Long TCP Flow
    5.7.  Media Flow Competing with Short TCP Flows
    5.8.  Media Pause and Resume
  6.  Other Potential Test Cases
    6.1.  Media Flows with Priority
    6.2.  Explicit Congestion Notification Usage
    6.3.  Multiple Bottlenecks
  7.  Wireless Access Links
  8.  Security Considerations
  9.  IANA Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Acknowledgments
  Authors' Addresses

1.  Introduction

  This memo describes a set of test cases for evaluating congestion
  control algorithm proposals in controlled environments for real-time
  interactive media.  It is based on the guidelines enumerated in
  [RFC8868] and the requirements discussed in [RFC8836].  The test
  cases cover basic usage scenarios and are described using a common
  structure, which allows for additional test cases to be added to
  those described herein to accommodate other topologies and/or the
  modeling of different path characteristics.  The described test cases
  in this memo should be used to evaluate any proposed congestion
  control algorithm for real-time interactive media.

2.  Terminology

  The terminology defined in RTP [RFC3550], RTP Profile for Audio and
  Video Conferences with Minimal Control [RFC3551], RTCP Extended
  Report (XR) [RFC3611], Extended RTP Profile for RTCP-based Feedback
  (RTP/AVPF) [RFC4585], and Support for Reduced-Size RTCP [RFC5506]
  applies.

3.  Structure of Test Cases

  All the test cases in this document follow a basic structure allowing
  implementers to describe a new test scenario without repeatedly
  explaining common attributes.  The structure includes a general
  description section that describes the test case and its motivation.
  Additionally the test case defines a set of attributes that
  characterize the testbed, for example, the network path between
  communicating peers and the diverse traffic sources.

  Define the test case:

     General description:  describes the motivation and the goals of
        the test case.

     Expected behavior:  describes the desired rate adaptation
        behavior.

     List of metrics to evaluate the desired behavior:  this indicates
        the minimum set of metrics (e.g., link utilization, media
        sending rate) that a proposed algorithm needs to measure to
        validate the expected rate adaptation behavior.  It should also
        indicate the time granularity (e.g., averaged over 10 ms, 100
        ms, or 1 s) for measuring certain metrics.  Typical measurement
        interval is 200 ms.

  Define testbed topology:

     Every test case needs to define an evaluation testbed topology.
     Figure 1 shows such an evaluation topology.  In this evaluation
     topology, S1..Sn are traffic sources.  These sources generate
     media traffic and use the congestion control algorithm(s) under
     investigation.  R1..Rn are the corresponding receivers.  A test
     case can have one or more such traffic sources (S) and their
     corresponding receivers (R).  The path from the source to
     destination is denoted as "forward", and the path from a
     destination to a source is denoted as "backward".  The following
     basic structure of the test case has been described from the
     perspective of media-generating endpoints attached on the left-
     hand side of Figure 1.  In this setup, the media flows are
     transported in the forward direction, and the corresponding
     feedback/control messages are transported in the backward
     direction.  However, it is also possible to set up the test with
     media in both forward and backward directions.  In that case,
     unless otherwise specified by the test case, it is expected that
     the backward path does not introduce any congestion-related
     impairments and has enough capacity to accommodate both media and
     feedback/control messages.  It should be noted that, depending on
     the test cases, it is possible to have different path
     characteristics in either of the directions.

     +---+                                                        +---+
     |S1 |====== \               Forward -->             / =======|R1 |
     +---+       \\                                     //        +---+
                  \\                                   //
     +---+       +-----+                            +-----+       +---+
     |S2 |=======|  A  |--------------------------->|  B  |=======|R2 |
     +---+       |     |<---------------------------|     |       +---+
                 +-----+                            +-----+
     (...)         //                                  \\         (...)
                  //          <-- Backward              \\
     +---+       //                                      \\       +---+
     |Sn |====== /                                        \ ======|Rn |
     +---+                                                        +---+

                  Figure 1: Example of a Testbed Topology

     In a testbed environment with real equipment, there may exist a
     significant amount of unwanted traffic on the portions of the
     network path between the endpoints.  Some of this traffic may be
     generated by other processes on the endpoints themselves (e.g.,
     discovery protocols) or by other endpoints not presently under
     test.  Such unwanted traffic should be removed or avoided to the
     greatest extent possible.

  Define testbed attributes:

     Duration:  defines the duration of the test in seconds.

     Path characteristics:  defines the end-to-end transport level path
        characteristics of the testbed for a particular test case.  Two
        sets of attributes describe the path characteristics, one for
        the forward path and the other for the backward path.  The path
        characteristics for a particular path direction are applicable
        to all the sources "S" sending traffic on that path.  If only
        one attribute is specified, it is used for both path
        directions; however, unless specified the reverse path has no
        capacity restrictions and no path loss.

        Path direction:  forward or backward.

        Minimum bottleneck-link capacity:  defines the minimum capacity
           of the end-to-end path.

        Reference bottleneck capacity:  defines a reference value for
           the bottleneck capacity for test cases with time-varying
           bottleneck capacities.  All bottleneck capacities will be
           specified as a ratio with respect to the reference capacity
           value.

        One-way propagation delay:  describes the end-to-end latency
           along the path when network queues are empty, i.e., the time
           it takes for a packet to go from the sender to the receiver
           without encountering any queuing delay.

        Maximum end-to-end jitter:  defines the maximum jitter that can
           be observed along the path.

        Bottleneck queue type:  for example, "tail drop" [RFC7567],
           Flow Queue Controlled Delay (FQ-CoDel) [RFC8290], or
           Proportional Integral controller Enhanced (PIE) [RFC8033].

        Bottleneck queue size:  defines the size of queue in terms of
           queuing time when the queue is full (in milliseconds).

        Path loss ratio:  characterizes the non-congested, additive
           losses to be generated on the end-to-end path.  This must
           describe the loss pattern or loss model used to generate the
           losses.

     Application-related:  defines the traffic source behavior for
        implementing the test case:

        Media traffic source:  defines the characteristics of the media
           sources.  When using more than one media source, the
           different attributes are enumerated separately for each
           different media source.

           Media type:  Video/Voice.

           Media flow direction:  forward, backward, or both.

           Number of media sources:  defines the total number of media
              sources.

           Media codec:  Constant Bit Rate (CBR) or Variable Bit Rate
              (VBR).

           Media source behavior:  describes the media encoder
              behavior.  It defines the main parameters that affect the
              adaptation behavior.  This may include but is not limited
              to the following:

              Adaptability:  describes the adaptation options.  For
                 example, in the case of video, it defines the
                 following ranges of adaptation: bit rate, frame rate,
                 and video resolution.  Similarly, in the case of
                 voice, it defines the range of bit rate adaptation,
                 the sampling rate variation, and the variation in
                 packetization interval.

              Output variation:  for a VBR encoder, it defines the
                 encoder output variation from the average target rate
                 over a particular measurement interval.  For example,
                 on average the encoder output may vary between 5% to
                 15% above or below the average target bit rate when
                 measured over a 100 ms time window.  The time interval
                 over which the variation is specified must be
                 provided.

              Responsiveness to a new bit rate request:  the lag in
                 time between a new bit rate request from the
                 congestion control algorithm and actual rate changes
                 in encoder output.  Depending on the encoder, this
                 value may be specified in absolute time (e.g., 10 ms
                 to 1000 ms) or other appropriate metric (e.g., next
                 frame interval time).

              More detailed discussions on expected media source
              behavior, including those from synthetic video traffic
              sources, can be found in [RFC8593].

           Media content:  describes the chosen video scenario.  For
              example, video test sequences are available at [xiph-seq]
              and [HEVC-seq].  Different video scenarios give different
              distributions of video frames produced by the video
              encoder.  Hence, it is important to specify the media
              content used in a particular test.  If a synthetic video
              traffic source [RFC8593] is used, then the synthetic
              video traffic source needs to be configured according to
              the characteristics of the media content specified.

           Media timeline:  describes the point when the media source
              is introduced and removed from the testbed.  For example,
              the media source may start transmitting immediately when
              the test case begins, or after a few seconds.

           Startup behavior:  the media starts at a defined bit rate,
              which may be the minimum, maximum bit rate, or a value in
              between (in Kbps).

        Competing traffic source:  describes the characteristics of the
           competing traffic source, the different types of competing
           flows are enumerated in [RFC8868].

           Traffic direction:  forward, backward, or both.

           Type of sources:  defines the types of competing traffic
              sources.  Types of competing traffic flows are listed in
              [RFC8868].  For example, the number of TCP flows
              connected to a web browser, the mean size and
              distribution of the content downloaded.

           Number of sources:  defines the total number of competing
              sources of each media type per traffic direction.

           Congestion control:  enumerates the congestion control used
              by each type of competing traffic.

           Traffic timeline:  describes when the competing traffic
              starts and ends in the test case.

     Additional attributes:  describes attributes essential for
        implementing a test case that are not included in the above
        structure.  These attributes must be well defined, so that the
        other implementers of that particular test case are able to
        implement it easily.

  Any attribute can have a set of values (enclosed within "[]").  Each
  member value of such a set must be treated as different value for the
  same attribute.  It is desired to run separate tests for each such
  attribute value.

  The test cases described in this document follow the above structure.

4.  Recommended Evaluation Settings

  This section describes recommended test case settings and could be
  overwritten by the respective test cases.

4.1.  Evaluation Metrics

  To evaluate the performance of the candidate algorithms, the
  implementers must log enough information to visualize the following
  metrics at a fine enough time granularity:

  1.  Flow level:

      A.  End-to-end delay for the congestion-controlled media flow(s).
          For example, end-to-end delay observed on the IP packet level
          and the video frame level.

      B.  Variation in sending bit rate and throughput.  Mainly
          observing the frequency and magnitude of oscillations.

      C.  Packet losses observed at the receiving endpoint.

      D.  Feedback message overhead.

      E.  Convergence time.  Time to reach steady state for the
          congestion-controlled media flow(s).  Each occurrence of
          convergence during the test period needs to be presented.

  2.  Transport level:

      A.  Bandwidth utilization.

      B.  Queue length (milliseconds at specified path capacity).

4.2.  Path Characteristics

  Each path between a sender and receiver as described in Figure 1 has
  the following characteristics unless otherwise specified in the test
  case:

  Path direction:  forward and backward.

  Reference bottleneck capacity:  1 Mbps.

  One-way propagation delay:  50 ms.  Implementers are encouraged to
     run the experiment with additional propagation delays mentioned in
     [RFC8868].

  Maximum end-to-end jitter:  30 ms.  Jitter models are described in
     [RFC8868].

  Bottleneck queue type:  "tail drop".  Implementers are encouraged to
     run the experiment with other Active Queue Management (AQM)
     schemes, such as FQ-CoDel and PIE.

  Bottleneck queue size:  300 ms.

  Path loss ratio:  0%.

  Examples of additional network parameters are discussed in [RFC8868].

  For test cases involving time-varying bottleneck capacity, all
  capacity values are specified as a ratio with respect to a reference
  capacity value, so as to allow flexible scaling of capacity values
  along with media source rate range.  There exist two different
  mechanisms for inducing path capacity variation: a) by explicitly
  modifying the value of physical link capacity, or b) by introducing
  background non-adaptive UDP traffic with time-varying traffic rate.
  Implementers are encouraged to run the experiments with both
  mechanisms for test cases specified in Section 5.1, Section 5.2, and
  Section 5.3.

4.3.  Media Source

  Unless otherwise specified, each test case will include one or more
  media sources as described below:

  Media type:  Video

     Media codec:  VBR

     Media source behavior:

        Adaptability:

           Bit rate range:  150 Kbps - 1.5 Mbps.  In real-life
              applications, the bit rate range can vary a lot depending
              on the provided service; for example, the maximum bit
              rate can be up to 4 Mbps.  However, for running tests to
              evaluate the congestion control algorithms, it is more
              important to have a look at how they react to a certain
              amount of bandwidth change.  Also it is possible that the
              media traffic generator used in a particular simulator or
              testbed is not capable of generating a higher bit rate.
              Hence, we have selected a suitable bit rate range typical
              of consumer-grade video conferencing applications in
              designing the test case.  If a different bit rate range
              is used in the test cases, then the end-to-end path
              capacity values will also need to be scaled accordingly.

           Frame resolution:  144p - 720p (or 1080p).  This resolution
              range is selected based on the bit rate range.  If a
              different bit rate range is used in the test cases, then
              a suitable frame resolution range also needs to be
              selected.

           Frame rate:  10 fps - 30 fps.  This frame rate range is
              selected based on the bit rate range.  If a different bit
              rate range is used in the test cases, then the frame rate
              range also needs to be suitably adjusted.

        Variation from target bit rate:  +/-5%. Unless otherwise
           specified in the test case(s), bit rate variation should be
           calculated over a one (1) second period of time.

        Responsiveness to new bit rate request:  100 ms

     Media content:  The media content should represent a typical video
        conversational scenario with head and shoulder movement.  We
        recommend using the Foreman video sequence [xiph-seq].

     Media startup behavior:  150 Kbps.  It should be noted that
        applications can use smart ways to select an optimal startup
        bit rate value for a certain network condition.  In such cases,
        the candidate proposals may show the effectiveness of such a
        smart approach as additional information for the evaluation
        process.

  Media type:  Audio

     Media codec:  CBR

     Media bit rate:  20 Kbps

5.  Basic Test Cases

5.1.  Variable Available Capacity with a Single Flow

  In this test case, the minimum bottleneck-link capacity between the
  two endpoints varies over time.  This test is designed to measure the
  responsiveness of the candidate algorithm.  This test tries to
  address the requirements in [RFC8836], which requires the algorithm
  to adapt the flow(s) and provide lower end-to-end latency when there
  exists:

  *  an intermediate bottleneck

  *  change in available capacity (e.g., due to interface change,
     routing change, abrupt arrival/departure of background non-
     adaptive traffic)

  *  maximum media bit rate is greater than link capacity.  In this
     case, when the application tries to ramp up to its maximum bit
     rate, since the link capacity is limited to a lower value, the
     congestion control scheme is expected to stabilize the sending bit
     rate close to the available bottleneck capacity.

  It should be noted that the exact variation in available capacity due
  to any of the above depends on the underlying technologies.  Hence,
  we describe a set of known factors, which may be extended to devise a
  more specific test case targeting certain behaviors in a certain
  network environment.

  Expected behavior:  The candidate algorithm is expected to detect the
     path capacity constraint, converge to the bottleneck link's
     capacity, and adapt the flow to avoid unwanted media rate
     oscillation when the sending bit rate is approaching the
     bottleneck link's capacity.  Such oscillations might occur when
     the media flow(s) attempts to reach its maximum bit rate but
     overshoots the usage of the available bottleneck capacity, then to
     rectify, it reduces the bit rate and starts to ramp up again.

  Evaluation metrics:  As described in Section 4.1.

  Testbed topology:  One media source S1 is connected to the
     corresponding R1.  The media traffic is transported over the
     forward path and corresponding feedback/control traffic is
     transported over the backward path.

                               Forward -->
  +---+       +-----+                               +-----+       +---+
  |S1 |=======|  A  |------------------------------>|  B  |=======|R1 |
  +---+       |     |<------------------------------|     |       +---+
              +-----+                               +-----+
                            <-- Backward

           Figure 2: Testbed Topology for Limited Link Capacity

  Testbed attributes:

     Test duration:  100 s

     Path characteristics:  as described in Section 4.2

     Application-related:

        Media Traffic:

           Media type:  Video

              Media direction:  forward

              Number of media sources:  one (1)

              Media timeline:

                 Start time:  0 s

                 End time:  99 s

           Media type:  Audio

              Media direction:  forward

              Number of media sources:  one (1)

              Media timeline:

                 Start time:  0 s

                 End time:  99 s

        Competing traffic:

           Number of sources:  zero (0)

  Test-specific information:

     One-way propagation delay:  [50 ms, 100 ms].  On the forward path
        direction.

     This test uses bottleneck path capacity variation as listed in
     Table 1.

     When using background non-adaptive UDP traffic to induce a time-
     varying bottleneck, the physical path capacity remains at 4 Mbps,
     and the UDP traffic source rate changes over time as (4 - (Y x
     r)), where r is the Reference bottleneck capacity in Mbps, and Y
     is the path capacity ratio specified in Table 1.

  +=========================+================+=======+===============+
  | Variation pattern index | Path direction | Start | Path capacity |
  |                         |                | time  | ratio         |
  +=========================+================+=======+===============+
  | One                     | Forward        | 0 s   | 1.0           |
  +-------------------------+----------------+-------+---------------+
  | Two                     | Forward        | 40 s  | 2.5           |
  +-------------------------+----------------+-------+---------------+
  | Three                   | Forward        | 60 s  | 0.6           |
  +-------------------------+----------------+-------+---------------+
  | Four                    | Forward        | 80 s  | 1.0           |
  +-------------------------+----------------+-------+---------------+

   Table 1: Path Capacity Variation Pattern for the Forward Direction


5.2.  Variable Available Capacity with Multiple Flows

  This test case is similar to Section 5.1.  However, this test will
  also consider persistent network load due to competing traffic.

  Expected behavior:  The candidate algorithm is expected to detect the
     variation in available capacity and adapt the media stream(s)
     accordingly.  The flows stabilize around their maximum bit rate as
     the maximum link capacity is large enough to accommodate the
     flows.  When the available capacity drops, the flows adapt by
     decreasing their sending bit rate, and when congestion disappears,
     the flows are again expected to ramp up.

  Evaluation metrics:  As described in Section 4.1.

  Testbed topology:  Two (2) media sources S1 and S2 are connected to
     their corresponding destinations R1 and R2.  The media traffic is
     transported over the forward path and corresponding feedback/
     control traffic is transported over the backward path.

  +---+                                                         +---+
  |S1 |===== \                                         / =======|R1 |
  +---+      \\             Forward -->               //        +---+
              \\                                     //
              +-----+                               +-----+
              |  A  |------------------------------>|  B  |
              |     |<------------------------------|     |
              +-----+                               +-----+
                //                                    \\
               //          <-- Backward                \\
  +---+       //                                        \\       +---+
  |S2 |====== /                                          \ ======|R2 |
  +---+                                                          +---+

        Figure 3: Testbed Topology for Variable Available Capacity

  Testbed attributes:  Testbed attributes are similar to those
     described in Section 5.1, except for the test-specific capacity
     variation setup.

  Test-specific information:  This test uses path capacity variation as
     listed in Table 2 with a corresponding end time of 125 seconds.
     The reference bottleneck capacity is 2 Mbps.  When using
     background non-adaptive UDP traffic to induce time-varying
     bottleneck for congestion-controlled media flows, the physical
     path capacity is 4 Mbps, and the UDP traffic source rate changes
     over time as (4 - (Y x r)), where r is the Reference bottleneck
     capacity in Mbps, and Y is the path capacity ratio specified in
     Table 2.

  +=========================+================+=======+===============+
  | Variation pattern index | Path direction | Start | Path capacity |
  |                         |                | time  | ratio         |
  +=========================+================+=======+===============+
  | One                     | Forward        | 0 s   | 2.0           |
  +-------------------------+----------------+-------+---------------+
  | Two                     | Forward        | 25 s  | 1.0           |
  +-------------------------+----------------+-------+---------------+
  | Three                   | Forward        | 50 s  | 1.75          |
  +-------------------------+----------------+-------+---------------+
  | Four                    | Forward        | 75 s  | 0.5           |
  +-------------------------+----------------+-------+---------------+
  | Five                    | Forward        | 100 s | 1.0           |
  +-------------------------+----------------+-------+---------------+

   Table 2: Path Capacity Variation Pattern for the Forward Direction

5.3.  Congested Feedback Link with Bi-directional Media Flows

  Real-time interactive media uses RTP; hence it is assumed that RTCP,
  RTP header extension, or such would be used by the congestion control
  algorithm in the back channel.  Due to the asymmetric nature of the
  link between communicating peers, it is possible for a participating
  peer to not receive such feedback information due to an impaired or
  congested back channel (even when the forward channel might not be
  impaired).  This test case is designed to observe the candidate
  congestion control behavior in such an event.

  Expected behavior:  It is expected that the candidate algorithms are
     able to cope with the lack of feedback information and to adapt to
     minimize the performance degradation of media flows in the forward
     channel.

     It should be noted that for this test case, logs are compared with
     the reference case, i.e., when the backward channel has no
     impairments.

  Evaluation metrics:  As described in Section 4.1.

  Testbed topology:  One (1) media source S1 is connected to
     corresponding R1, but both endpoints are additionally receiving
     and sending data, respectively.  The media traffic (S1->R1) is
     transported over the forward path, and the corresponding feedback/
     control traffic is transported over the backward path.  Likewise,
     media traffic (S2->R2) is transported over the backward path, and
     the corresponding feedback/control traffic is transported over the
     forward path.

  +---+                                                          +---+
  |S1 |====== \                Forward -->              / =======|R1 |
  +---+       \\                                       //        +---+
               \\                                     //
            +-----+                               +-----+
            |  A  |------------------------------>|  B  |
            |     |<------------------------------|     |
            +-----+                               +-----+
               //                                     \\
              //            <-- Backward               \\
  +---+      //                                         \\       +---+
  |R2 |===== /                                           \ ======|S2 |
  +---+                                                          +---+

          Figure 4: Testbed Topology for Congested Feedback Link

  Testbed attributes:

     Test duration:  100 s

     Path characteristics:

        Reference bottleneck capacity:  1 Mbps

     Application-related:

        Media source:

           Media type:  Video

              Media direction:  forward and backward

              Number of media sources:  two (2)

              Media timeline:

                 Start time:  0 s

                 End time:  99 s

           Media type:  Audio

              Media direction:  forward and backward

              Number of media sources:  two (2)

              Media timeline:

                 Start time:  0 s

                 End time:  99 s

        Competing traffic:

           Number of sources:  zero (0)

  Test-specific information:  This test uses path capacity variations
     to create a congested feedback link.  Table 3 lists the variation
     patterns applied to the forward path, and Table 4 lists the
     variation patterns applied to the backward path.  When using
     background non-adaptive UDP traffic to induce a time-varying
     bottleneck for congestion-controlled media flows, the physical
     path capacity is 4 Mbps for both directions, and the UDP traffic
     source rate changes over time as (4-x) Mbps in each direction,
     where x is the bottleneck capacity specified in Table 4.

  +=========================+================+=======+===============+
  | Variation pattern index | Path direction | Start | Path capacity |
  |                         |                | time  | ratio         |
  +=========================+================+=======+===============+
  | One                     | Forward        | 0 s   | 2.0           |
  +-------------------------+----------------+-------+---------------+
  | Two                     | Forward        | 20 s  | 1.0           |
  +-------------------------+----------------+-------+---------------+
  | Three                   | Forward        | 40 s  | 0.5           |
  +-------------------------+----------------+-------+---------------+
  | Four                    | Forward        | 60 s  | 2.0           |
  +-------------------------+----------------+-------+---------------+

   Table 3: Path Capacity Variation Pattern for the Forward Direction


  +=========================+================+=======+===============+
  | Variation pattern index | Path direction | Start | Path capacity |
  |                         |                | time  | ratio         |
  +=========================+================+=======+===============+
  | One                     | Backward       | 0 s   | 2.0           |
  +-------------------------+----------------+-------+---------------+
  | Two                     | Backward       | 35 s  | 0.8           |
  +-------------------------+----------------+-------+---------------+
  | Three                   | Backward       | 70 s  | 2.0           |
  +-------------------------+----------------+-------+---------------+

  Table 4: Path Capacity Variation Pattern for the Backward Direction

5.4.  Competing Media Flows with the Same Congestion Control Algorithm

  In this test case, more than one media flow share the bottleneck
  link, and each of them uses the same congestion control algorithm.
  This is a typical scenario where a real-time interactive application
  sends more than one media flow to the same destination, and these
  flows are multiplexed over the same port.  In such a scenario, it is
  likely that the flows will be routed via the same path and need to
  share the available bandwidth amongst themselves.  For the sake of
  simplicity, it is assumed that there are no other competing traffic
  sources in the bottleneck link and that there is sufficient capacity
  to accommodate all the flows individually.  While this appears to be
  a variant of the test case defined in Section 5.2, it focuses on the
  capacity-sharing aspect of the candidate algorithm.  The previous
  test case, on the other hand, measures adaptability, stability, and
  responsiveness of the candidate algorithm.

  Expected behavior:  It is expected that the competing flows will
     converge to an optimum bit rate to accommodate all the flows with
     minimum possible latency and loss.  Specifically, the test
     introduces three media flows at different time instances.  When
     the second flow appears, there should still be room to accommodate
     another flow on the bottleneck link.  Lastly, when the third flow
     appears, the bottleneck link should be saturated.

  Evaluation metrics:  As described in Section 4.1.

  Testbed topology:  Three media sources S1, S2, and S3 are connected
     to R1, R2, and R3, respectively.  The media traffic is transported
     over the forward path, and the corresponding feedback/control
     traffic is transported over the backward path.

  +---+                                                         +---+
  |S1 |===== \                Forward -->              / =======|R1 |
  +---+      \\                                       //        +---+
              \\                                     //
  +---+       +-----+                               +-----+       +---+
  |S2 |=======|  A  |------------------------------>|  B  |=======|R2 |
  +---+       |     |<------------------------------|     |       +---+
              +-----+                               +-----+
              //          <-- Backward               \\
  +---+      //                                       \\       +---+
  |S3 |===== /                                         \ ======|R3 |
  +---+                                                        +---+

      Figure 5: Testbed Topology for Multiple Congestion-Controlled
                               Media Flows

  Testbed attributes:

     Test duration:  120 s

     Path characteristics:

        Reference bottleneck capacity:  3.5 Mbps

        Path capacity ratio:  1.0

     Application-related:

        Media Source:

           Media type:  Video

              Media direction:  forward

              Number of media sources:  three (3)

              Media timeline:  New media flows are added sequentially,
                 at short time intervals.  See the test-specific setup
                 below.

           Media type:  Audio

              Media direction:  forward

              Number of media sources:  three (3)

              Media timeline:  New media flows are added sequentially,
                 at short time intervals.  See the test-specific setup
                 below.

        Competing traffic:

           Number of sources:  zero (0)

  Test-specific information:  Table 5 defines the media timeline for
     both media types.

            +=========+============+============+==========+
            | Flow ID | Media type | Start time | End time |
            +=========+============+============+==========+
            | 1       | Video      | 0 s        | 119 s    |
            +---------+------------+------------+----------+
            | 2       | Video      | 20 s       | 119 s    |
            +---------+------------+------------+----------+
            | 3       | Video      | 40 s       | 119 s    |
            +---------+------------+------------+----------+
            | 4       | Audio      | 0 s        | 119 s    |
            +---------+------------+------------+----------+
            | 5       | Audio      | 20 s       | 119 s    |
            +---------+------------+------------+----------+
            | 6       | Audio      | 40 s       | 119 s    |
            +---------+------------+------------+----------+

              Table 5: Media Timelines for Video and Audio
                             Media Sources

5.5.  Round Trip Time Fairness

  In this test case, multiple media flows share the bottleneck link,
  but the one-way propagation delay for each flow is different.  For
  the sake of simplicity, it is assumed that there are no other
  competing traffic sources in the bottleneck link and that there is
  sufficient capacity to accommodate all the flows.  While this appears
  to be a variant of test case 5.2 (Section 5.2), it focuses on the
  capacity-sharing aspect of the candidate algorithm under different
  RTTs.

  Expected behavior:  It is expected that the competing flows will
     converge to bit rates to accommodate all the flows with minimum
     possible latency and loss.  The effectiveness of the algorithm
     depends on how fast and fairly the competing flows converge to
     their steady states irrespective of the RTT observed.

  Evaluation metrics:  As described in Section 4.1.

  Testbed topology:  Five (5) media sources S1..S5 are connected to
     their corresponding media sinks R1..R5.  The media traffic is
     transported over the forward path, and the corresponding feedback/
     control traffic is transported over the backward path.  The
     topology is the same as in Section 5.4.

  Testbed attributes:

     Test duration:  300 s

     Path characteristics:

        Reference bottleneck capacity:  4 Mbps

        Path capacity ratio:  1.0

        One-way propagation delay for each flow:  10 ms for S1-R1, 25
           ms for S2-R2, 50 ms for S3-R3, 100 ms for S4-R4, and 150 ms
           S5-R5.

     Application-related:

        Media source:

           Media type:  Video

              Media direction:  forward

              Number of media sources:  five (5)

              Media timeline:  New media flows are added sequentially,
                 at short time intervals.  See the test-specific setup
                 below.

           Media type:  Audio

              Media direction:  forward

              Number of media sources:  five (5)

              Media timeline:  New media flows are added sequentially,
                 at short time intervals.  See the test-specific setup
                 below.

        Competing traffic:

           Number of sources:  zero (0)

  Test-specific information:  Table 6 defines the media timeline for
     both media types.

            +=========+============+============+==========+
            | Flow ID | Media type | Start time | End time |
            +=========+============+============+==========+
            | 1       | Video      | 0 s        | 299 s    |
            +---------+------------+------------+----------+
            | 2       | Video      | 10 s       | 299 s    |
            +---------+------------+------------+----------+
            | 3       | Video      | 20 s       | 299 s    |
            +---------+------------+------------+----------+
            | 4       | Video      | 30 s       | 299 s    |
            +---------+------------+------------+----------+
            | 5       | Video      | 40 s       | 299 s    |
            +---------+------------+------------+----------+
            | 6       | Audio      | 0 s        | 299 s    |
            +---------+------------+------------+----------+
            | 7       | Audio      | 10 s       | 299 s    |
            +---------+------------+------------+----------+
            | 8       | Audio      | 20 s       | 299 s    |
            +---------+------------+------------+----------+
            | 9       | Audio      | 30 s       | 299 s    |
            +---------+------------+------------+----------+
            | 10      | Audio      | 40 s       | 299 s    |
            +---------+------------+------------+----------+

              Table 6: Media Timeline for Video and Audio
                             Media Sources

5.6.  Media Flow Competing with a Long TCP Flow

  In this test case, one or more media flows share the bottleneck link
  with at least one long-lived TCP flow.  Long-lived TCP flows download
  data throughout the session and are expected to have infinite amount
  of data to send and receive.  This is a scenario where a multimedia
  application coexists with a large file download.  The test case
  measures the adaptivity of the candidate algorithm to competing
  traffic.  It addresses requirement 3 in Section 2 of [RFC8836].

  Expected behavior:  Depending on the convergence observed in test
     cases 5.1 and 5.2, the candidate algorithm may be able to avoid
     congestion collapse.  In the worst case, the media stream will
     fall to the minimum media bit rate.

  Evaluation metrics:  Includes the following metrics in addition to
     those described in Section 4.1:

     1.  Flow level:

         a.  TCP throughput

         b.  Loss for the TCP flow

  Testbed topology:  One (1) media source S1 is connected to the
     corresponding media sink, R1.  In addition, there is a long-lived
     TCP flow sharing the same bottleneck link.  The media traffic is
     transported over the forward path, and the corresponding feedback/
     control traffic is transported over the backward path.  The TCP
     traffic goes over the forward path from S_tcp with acknowledgment
     packets going over the backward path from R_tcp.

   +--+                                                     +--+
   |S1|===== \              Forward -->              / =====|R1|
   +--+      \\                                     //      +--+
              \\                                   //
              +-----+                             +-----+
              |  A  |---------------------------->|  B  |
              |     |<----------------------------|     |
              +-----+                             +-----+
              //        <-- Backward               \\
  +-----+    //                                     \\    +-----+
  |S_tcp|=== /                                       \ ===|R_tcp|
  +-----+                                                 +-----+

    Figure 6: Testbed Topology for TCP vs Congestion-Controlled Media
                                  Flows

  Testbed attributes:

     Test duration:  120 s

     Path characteristics:

        Reference bottleneck capacity:  2 Mbps

        Path capacity ratio:  1.0

        Bottleneck queue size:  [300 ms, 1000 ms]

     Application-related:

        Media source:

           Media type:  Video

              Media direction:  forward

              Number of media sources:  one (1)

              Media timeline:

                 Start time:  5 s

                 End time:  119 s

           Media type:  Audio

              Media direction:  forward

              Number of media sources:  one (1)

              Media timeline:

                 Start time:  5 s

                 End time:  119 s

           Additionally, implementers are encouraged to run the
           experiment with multiple media sources.

        Competing traffic:

           Number and types of sources:  one (1) and long-lived TCP

           Traffic direction:  forward

           Congestion control:  default TCP congestion control
              [RFC5681].  Implementers are also encouraged to run the
              experiment with alternative TCP congestion control
              algorithms.

           Traffic timeline:

              Start time:  0 s

              End time:  119 s

  Test-specific information:  none

5.7.  Media Flow Competing with Short TCP Flows

  In this test case, one or more congestion-controlled media flows
  share the bottleneck link with multiple short-lived TCP flows.
  Short-lived TCP flows resemble the on/off pattern observed in web
  traffic, wherein clients (for example, browsers) connect to a server
  and download a resource (typically a web page, few images, text
  files, etc.) using several TCP connections.  This scenario shows the
  performance of a multimedia application when several browser windows
  are active.  The test case measures the adaptivity of the candidate
  algorithm to competing web traffic, and it addresses requirement 1.E
  in Section 2 of [RFC8836].

  Depending on the number of short TCP flows, the cross traffic either
  appears as a short burst flow or resembles a long-lived TCP flow.
  The intention of this test is to observe the impact of a short-term
  burst on the behavior of the candidate algorithm.

  Expected behavior:  The candidate algorithm is expected to avoid flow
     starvation during the presence of short and bursty competing TCP
     flows, streaming at least at the minimum media bit rate.  After
     competing TCP flows terminate, the media streams are expected to
     be robust enough to eventually recover to previous steady state
     behavior, and at the very least, avoid persistent starvation.

  Evaluation metrics:  Includes the following metrics in addition to
     those described in Section 4.1:

     1.  Flow level:

         A.  Variation in the sending rate of the TCP flow

         B.  TCP throughput

  Testbed topology:  The topology described here is the same as the one
     described in Figure 6.

  Testbed attributes:

     Test duration:  300 s

     Path characteristics:

        Reference bottleneck capacity:  2.0 Mbps

        Path capacity ratio:  1.0

     Application-related:

        Media source:

           Media type:  Video

              Media direction:  forward

              Number of media sources:  two (2)

              Media timeline:

                 Start time:  5 s

                 End time:  299 s

           Media type:  Audio

              Media direction:  forward

              Number of media sources:  two (2)

              Media timeline:

                 Start time:  5 s

                 End time:  299 s

        Competing traffic:

           Number and types of sources:  ten (10), short-lived TCP
              flows.

           Traffic direction:  forward

           Congestion algorithm:  default TCP congestion control
              [RFC5681].  Implementers are also encouraged to run the
              experiment with an alternative TCP congestion control
              algorithm.

           Traffic timeline:  Each short TCP flow is modeled as a
              sequence of file downloads interleaved with idle periods.
              Not all short TCP flows start at the same time, two of
              them start in the ON state, while rest of the eight flows
              start in an OFF state.  For a description of the short
              TCP flow model, see test-specific information below.

  Test-specific information:

     Short TCP traffic model:  The short TCP model to be used in this
        test is described in [RFC8868].

5.8.  Media Pause and Resume

  In this test case, more than one real-time interactive media flow
  share the link bandwidth, and all flows reach to a steady state by
  utilizing the link capacity in an optimum way.  At this stage, one of
  the media flows is paused for a moment.  This event will result in
  more available bandwidth for the rest of the flows as they are on a
  shared link.  When the paused media flow resumes, it no longer has
  the same bandwidth share on the link.  It has to make its way through
  the other existing flows in the link to achieve a fair share of the
  link capacity.  This test case is important specially for real-time
  interactive media, which consists of more than one media flows and
  can pause/resume media flows at any point of time during the session.
  This test case directly addresses requirement 5 in Section 2 of
  [RFC8836].  One can think of it as a variation of the test case
  defined in Section 5.4.  However, it is different as the candidate
  algorithms can use different strategies to increase efficiency, for
  example, in terms of fairness, convergence time, oscillation
  reduction, etc., by capitalizing on the fact that they have previous
  information of the link.

  Expected behavior:  During the period where the third stream is
     paused, the two remaining flows are expected to increase their
     rates and reach the maximum media bit rate.  When the third stream
     resumes, all three flows are expected to converge to the same
     original fair share of rates prior to the media pause/resume
     event.

  Evaluation metrics:  Includes the following metrics in addition to
     those described in Section 4.1:

     1.  Flow level:

         A.  Variation in sending bit rate and throughput.  Mainly
             observing the frequency and magnitude of oscillations.

  Testbed topology:  Same as the test case defined in Section 5.4.

  Testbed attributes:  The general description of the testbed
     parameters are the same as Section 5.4 with changes in the test-
     specific setup as below:

     Other test-specific setup:

     Media flow timeline:

        Flow ID:  one (1)

        Start time:  0 s

        Flow duration:  119 s

        Pause time:  not required

        Resume time:  not required

     Media flow timeline:

        Flow ID:  two (2)

        Start time:  0 s

        Flow duration:  119 s

        Pause time:  at 40 s

        Resume time:  at 60 s

     Media flow timeline:

        Flow ID:  three (3)

        Start time:  0 s

        Flow duration:  119 s

        Pause time:  not required

        Resume time:  not required

6.  Other Potential Test Cases

  It has been noticed that there are other interesting test cases
  besides the basic test cases listed above.  In many aspects, these
  additional test cases can help further evaluation of the candidate
  algorithm.  They are listed below.

6.1.  Media Flows with Priority

  In this test case, media flows will have different priority levels.
  This is an extension of Section 5.4 where the same test is run with
  different priority levels imposed on each of the media flows.  For
  example, the first flow (S1) is assigned a priority of 2, whereas the
  remaining two flows (S2 and S3) are assigned a priority of 1.  The
  candidate algorithm must reflect the relative priorities assigned to
  each media flow.  In this case, the first flow (S1) must arrive at a
  steady-state rate approximately twice that of the other two flows (S2
  and S3).

  The candidate algorithm can use a coupled congestion control
  mechanism [RFC8699] or use a weighted priority scheduler for the
  bandwidth distribution according to the respective media flow
  priority or use.

6.2.  Explicit Congestion Notification Usage

  This test case requires running all the basic test cases with the
  availability of Explicit Congestion Notification (ECN) [RFC6679]
  feature enabled.  The goal of this test is to exhibit that the
  candidate algorithms do not fail when ECN signals are available.
  With ECN signals enabled, the algorithms are expected to perform
  better than their delay-based variants.

6.3.  Multiple Bottlenecks

  In this test case, one congestion-controlled media flow, S1->R1,
  traverses a path with multiple bottlenecks.  As illustrated in
  Figure 7, the first flow (S1->R1) competes with the second
  congestion-controlled media flow (S2->R2) over the link between A and
  B, which is close to the sender side.  Again, that flow (S1->R1)
  competes with the third congestion-controlled media flow (S3->R3)
  over the link between C and D, which is close to the receiver side.
  The goal of this test is to ensure that the candidate algorithms work
  properly in the presence of multiple bottleneck links on the end-to-
  end path.

  Expected behavior:  The candidate algorithm is expected to achieve
     full utilization at both bottleneck links without starving any of
     the three congestion-controlled media flows and ensuring fair
     share of the available bandwidth at each bottleneck.

                               Forward ---->

              +---+          +---+        +---+      +---+
              |S2 |          |R2 |        |S3 |      |R3 |
              +---+          +---+        +---+      +---+
                |              |            |          |
                |              |            |          |
  +---+      +-----+       +-----+      +-----+     +-----+      +---+
  |S1 |======|  A  |------>|  B  |----->|  C  |---->|  D  |======|R1 |
  +---+      |     |<------|     |<-----|     |<----|     |      +---+
             +-----+       +-----+      +-----+     +-----+

                      1st                       2nd
               Bottleneck (A->B)          Bottleneck (C->D)

                            <------ Backward

           Figure 7: Testbed Topology for Multiple Bottlenecks

  Testbed topology:  Three media sources S1, S2, and S3 are connected
     to respective destinations R1, R2, and R3.  For all three flows,
     the media traffic is transported over the forward path, and the
     corresponding feedback/control traffic is transported over the
     backward path.

  Testbed attributes:

     Test duration:  300 s

     Path characteristics:

        Reference bottleneck capacity:  2 Mbps

        Path capacity ratio between A and B:  1.0

        Path capacity ratio between B and C:  4.0

        Path capacity ratio between C and D:  0.75

        One-way propagation delay:

           Between S1 and R1:  100 ms

           Between S2 and R2:  40 ms

           Between S3 and R3:  40 ms

     Application-related:

        Media source:

           Media type:  Video

              Media direction:  Forward

              Number of media sources:  Three (3)

              Media timeline:

                 Start time:  0 s

                 End time:  299 s

           Media type:  Audio

              Media direction:  Forward

              Number of media sources:  Three (3)

              Media timeline:

                 Start time:  0 s

                 End time:  299 s

        Competing traffic:

           Number of sources:  Zero (0)

7.  Wireless Access Links

  Additional wireless network (both cellular network and Wi-Fi network)
  specific test cases are defined in [RFC8869].

8.  Security Considerations

  The security considerations in Section 6 of [RFC8868] and the
  relevant congestion control algorithms apply.  The principles for
  congestion control are described in [RFC2914], and in particular any
  new method must implement safeguards to avoid congestion collapse of
  the Internet.

  The evaluation of the test cases are intended to be run in a
  controlled lab environment.  Hence, the applications, simulators, and
  network nodes ought to be well-behaved and should not impact the
  desired results.  Moreover, proper measures must be taken to avoid
  leaking nonresponsive traffic from unproven congestion avoidance
  techniques onto the open Internet.

9.  IANA Considerations

  This document has no IANA actions.

10.  References

10.1.  Normative References

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
             July 2003, <https://www.rfc-editor.org/info/rfc3550>.

  [RFC3551]  Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
             Video Conferences with Minimal Control", STD 65, RFC 3551,
             DOI 10.17487/RFC3551, July 2003,
             <https://www.rfc-editor.org/info/rfc3551>.

  [RFC3611]  Friedman, T., Ed., Caceres, R., Ed., and A. Clark, Ed.,
             "RTP Control Protocol Extended Reports (RTCP XR)",
             RFC 3611, DOI 10.17487/RFC3611, November 2003,
             <https://www.rfc-editor.org/info/rfc3611>.

  [RFC4585]  Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
             "Extended RTP Profile for Real-time Transport Control
             Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
             DOI 10.17487/RFC4585, July 2006,
             <https://www.rfc-editor.org/info/rfc4585>.

  [RFC5506]  Johansson, I. and M. Westerlund, "Support for Reduced-Size
             Real-Time Transport Control Protocol (RTCP): Opportunities
             and Consequences", RFC 5506, DOI 10.17487/RFC5506, April
             2009, <https://www.rfc-editor.org/info/rfc5506>.

  [RFC5681]  Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
             Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
             <https://www.rfc-editor.org/info/rfc5681>.

  [RFC6679]  Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
             and K. Carlberg, "Explicit Congestion Notification (ECN)
             for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
             2012, <https://www.rfc-editor.org/info/rfc6679>.

  [RFC8593]  Zhu, X., Mena, S., and Z. Sarker, "Video Traffic Models
             for RTP Congestion Control Evaluations", RFC 8593,
             DOI 10.17487/RFC8593, May 2019,
             <https://www.rfc-editor.org/info/rfc8593>.

  [RFC8836]  Jesup, R. and Z. Sarker, Ed., "Congestion Control
             Requirements for Interactive Real-Time Media", RFC 8836,
             DOI 10.17487/RFC8836, January 2021,
             <https://www.rfc-editor.org/info/rfc8836>.

  [RFC8868]  Singh, V., Ott, J., and S. Holmer, "Evaluating Congestion
             Control for Interactive Real-Time Media", RFC 8868,
             DOI 10.17487/RFC8868, January 2021,
             <https://www.rfc-editor.org/info/rfc8868>.

  [RFC8869]  Sarker, Z., Zhu, X., and J. Fu, "Evaluation Test Cases for
             Interactive Real-Time Media over Wireless Networks",
             RFC 8869, DOI 10.17487/RFC8869, January 2021,
             <https://www.rfc-editor.org/info/rfc8869>.

10.2.  Informative References

  [HEVC-seq] HEVC, "Test Sequences",
             <http://www.netlab.tkk.fi/~varun/test_sequences/>.

  [RFC2914]  Floyd, S., "Congestion Control Principles", BCP 41,
             RFC 2914, DOI 10.17487/RFC2914, September 2000,
             <https://www.rfc-editor.org/info/rfc2914>.

  [RFC7567]  Baker, F., Ed. and G. Fairhurst, Ed., "IETF
             Recommendations Regarding Active Queue Management",
             BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
             <https://www.rfc-editor.org/info/rfc7567>.

  [RFC8033]  Pan, R., Natarajan, P., Baker, F., and G. White,
             "Proportional Integral Controller Enhanced (PIE): A
             Lightweight Control Scheme to Address the Bufferbloat
             Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,
             <https://www.rfc-editor.org/info/rfc8033>.

  [RFC8290]  Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
             J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
             and Active Queue Management Algorithm", RFC 8290,
             DOI 10.17487/RFC8290, January 2018,
             <https://www.rfc-editor.org/info/rfc8290>.

  [RFC8699]  Islam, S., Welzl, M., and S. Gjessing, "Coupled Congestion
             Control for RTP Media", RFC 8699, DOI 10.17487/RFC8699,
             January 2020, <https://www.rfc-editor.org/info/rfc8699>.

  [xiph-seq] Xiph.org, "Video Test Media",
             <http://media.xiph.org/video/derf/>.

Acknowledgments

  Much of this document is derived from previous work on congestion
  control at the IETF.

  The content and concepts within this document are a product of the
  discussion carried out within the Design Team.

Authors' Addresses

  Zaheduzzaman Sarker
  Ericsson AB
  Torshamnsgatan 23
  SE-164 83 Stockholm
  Sweden

  Phone: +46 10 717 37 43
  Email: [email protected]


  Varun Singh
  CALLSTATS I/O Oy
  Rauhankatu 11 C
  FI-00100 Helsinki
  Finland

  Email: [email protected]
  URI:   http://www.callstats.io/


  Xiaoqing Zhu
  Cisco Systems
  12515 Research Blvd
  Austin, TX 78759
  United States of America

  Email: [email protected]


  Michael A. Ramalho
  AcousticComms Consulting
  6310 Watercrest Way Unit 203
  Lakewood Ranch, FL 34202-5211
  United States of America

  Phone: +1 732 832 9723
  Email: [email protected]
  URI:   http://ramalho.webhop.info/