Network Working Group                                     P. Mockapetris
Request for Comments:  883                                           ISI
                                                          November 1983

           DOMAIN NAMES - IMPLEMENTATION and SPECIFICATION

       +-----------------------------------------------------+
       |                                                     |
       | This memo discusses the implementation of domain    |
       | name servers and resolvers, specifies the format of |
       | transactions, and discusses the use of domain names |
       | in the context of existing mail systems and other   |
       | network software.                                   |
       |                                                     |
       | This memo assumes that the reader is familiar with  |
       | RFC 882, "Domain Names - Concepts and Facilities"   |
       | which discusses the basic principles of domain      |
       | names and their use.                                |
       |                                                     |
       | The algorithms and internal data structures used in |
       | this memo are offered as suggestions rather than    |
       | requirements; implementers are free to design their |
       | own structures so long as the same external         |
       | behavior is achieved.                               |
       |                                                     |
       +-----------------------------------------------------+




          +-----------------------------------------------+
          |                                               |
          |             *****  WARNING  *****             |
          |                                               |
          | This RFC contains format specifications which |
          | are preliminary and are included for purposes |
          | of explanation only.  Do not attempt to use   |
          | this information for actual implementations.  |
          |                                               |
          +-----------------------------------------------+















Mockapetris                                                     [Page i]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


TABLE OF CONTENTS
  INTRODUCTION........................................................3
     Overview.........................................................3
     Implementation components........................................2
     Conventions......................................................6
     Design philosophy................................................8
  NAME SERVER TRANSACTIONS...........................................11
     Introduction....................................................11
     Query and response transport....................................11
     Overall message format..........................................13
     The contents of standard queries and responses..................15
     Standard query and response example.............................15
     The contents of inverse queries and responses...................17
     Inverse query and response example..............................18
     Completion queries and responses................................19
     Completion query and response example...........................22
     Recursive Name Service..........................................24
     Header section format...........................................26
     Question section format.........................................29
     Resource record format..........................................30
     Domain name representation and compression......................31
     Organization of the Shared database.............................33
     Query processing................................................36
     Inverse query processing........................................37
     Completion query processing.....................................38
  NAME SERVER MAINTENANCE............................................39
     Introduction....................................................39
     Conceptual model of maintenance operations......................39
     Name server data structures and top level logic.................41
     Name server file loading........................................43
     Name server file loading example................................45
     Name server remote zone transfer................................47
  RESOLVER ALGORITHMS................................................50
     Operations......................................................50
  DOMAIN SUPPORT FOR MAIL............................................52
     Introduction....................................................52
     Agent binding...................................................53
     Mailbox binding.................................................54
  Appendix 1 - Domain Name Syntax Specification......................56
  Appendix 2 - Field formats and encodings...........................57
     TYPE values.....................................................57
     QTYPE values....................................................57
     CLASS values....................................................58
     QCLASS values...................................................58
     Standard resource record formats................................59
  Appendix 3 - Internet specific field formats and operations........67
  REFERENCES and BIBLIOGRAPHY........................................72
  INDEX..............................................................73



Mockapetris                                                    [Page ii]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


INTRODUCTION

  Overview

     The goal of domain names is to provide a mechanism for naming
     resources in such a way that the names are usable in different
     hosts, networks, protocol families, internets, and administrative
     organizations.

     From the user's point of view, domain names are useful as
     arguments to a local agent, called a resolver, which retrieves
     information associated with the domain name.  Thus a user might
     ask for the host address or mail information associated with a
     particular domain name.  To enable the user to request a
     particular type of information, an appropriate query type is
     passed to the resolver with the domain name.  To the user, the
     domain tree is a single information space.

     From the resolver's point of view, the database that makes up the
     domain space is distributed among various name servers.  Different
     parts of the domain space are stored in different name servers,
     although a particular data item will usually be stored redundantly
     in two or more name servers.  The resolver starts with knowledge
     of at least one name server.  When the resolver processes a user
     query it asks a known name server for the information; in return,
     the resolver either receives the desired information or a referral
     to another name server.  Using these referrals, resolvers learn
     the identities and contents of other name servers.  Resolvers are
     responsible for dealing with the distribution of the domain space
     and dealing with the effects of name server failure by consulting
     redundant databases in other servers.

     Name servers manage two kinds of data.  The first kind of data
     held in sets called zones; each zone is the complete database for
     a particular subtree of the domain space.  This data is called
     authoritative.  A name server periodically checks to make sure
     that its zones are up to date, and if not obtains a new copy of
     updated zones from master files stored locally or in another name
     server.  The second kind of data is cached data which was acquired
     by a local resolver.  This data may be incomplete but improves the
     performance of the retrieval process when non-local data is
     repeatedly accessed.  Cached data is eventually discarded by a
     timeout mechanism.

     This functional structure isolates the problems of user interface,
     failure recovery, and distribution in the resolvers and isolates
     the database update and refresh problems in the name servers.




Mockapetris                                                     [Page 1]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Implementation components

     A host can participate in the domain name system in a number of
     ways, depending on whether the host runs programs that retrieve
     information from the domain system, name servers that answer
     queries from other hosts, or various combinations of both
     functions.  The simplest, and perhaps most typical, configuration
     is shown below:

                  Local Host                        |  Foreign
                                                    |
     +---------+               +----------+         |  +--------+
     |         | user queries  |          |queries  |  |        |
     |  User   |-------------->|          |---------|->|Foreign |
     | Program |               | Resolver |         |  |  Name  |
     |         |<--------------|          |<--------|--| Server |
     |         | user responses|          |responses|  |        |
     +---------+               +----------+         |  +--------+
                                 |     A            |
                 cache additions |     | references |
                                 V     |            |
                               +----------+         |
                               | database |         |
                               +----------+         |

     User programs interact with the domain name space through
     resolvers; the format of user queries and user responses is
     specific to the host and its operating system.  User queries will
     typically be operating system calls, and the resolver and its
     database will be part of the host operating system.  Less capable
     hosts may choose to implement the resolver as a subroutine to be
     linked in with every program that needs its services.

     Resolvers answer user queries with information they acquire via
     queries to foreign name servers, and may also cache or reference
     domain information in the local database.

     Note that the resolver may have to make several queries to several
     different foreign name servers to answer a particular user query,
     and hence the resolution of a user query may involve several
     network accesses and an arbitrary amount of time.  The queries to
     foreign name servers and the corresponding responses have a
     standard format described in this memo, and may be datagrams.








Mockapetris                                                     [Page 2]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     Depending on its capabilities, a name server could be a stand
     alone program on a dedicated machine or a process or processes on
     a large timeshared host.  A simple configuration might be:

                  Local Host                        |  Foreign
                                                    |
       +---------+                                  |
      /         /|                                  |
     +---------+ |             +----------+         |  +--------+
     |         | |             |          |responses|  |        |
     |         | |             |   Name   |---------|->|Foreign |
     |  Master |-------------->|  Server  |         |  |Resolver|
     |  files  | |             |          |<--------|--|        |
     |         |/              |          | queries |  +--------+
     +---------+               +----------+         |

     Here the name server acquires information about one or more zones
     by reading master files from its local file system, and answers
     queries about those zones that arrive from foreign resolvers.

     A more sophisticated name server might acquire zones from foreign
     name servers as well as local master files.  This configuration is
     shown below:

                  Local Host                        |  Foreign
                                                    |
       +---------+                                  |
      /         /|                                  |
     +---------+ |             +----------+         |  +--------+
     |         | |             |          |responses|  |        |
     |         | |             |   Name   |---------|->|Foreign |
     |  Master |-------------->|  Server  |         |  |Resolver|
     |  files  | |             |          |<--------|--|        |
     |         |/              |          | queries |  +--------+
     +---------+               +----------+         |
                                 A     |maintenance |  +--------+
                                 |     \------------|->|        |
                                 |      queries     |  |Foreign |
                                 |                  |  |  Name  |
                                 \------------------|--| Server |
                              maintenance responses |  +--------+

     In this configuration, the name server periodically establishes a
     virtual circuit to a foreign name server to acquire a copy of a
     zone or to check that an existing copy has not changed.  The
     messages sent for these maintenance activities follow the same
     form as queries and responses, but the message sequences are
     somewhat different.



Mockapetris                                                     [Page 3]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     The information flow in a host that supports all aspects of the
     domain name system is shown below:

                  Local Host                        |  Foreign
                                                    |
     +---------+               +----------+         |  +--------+
     |         | user queries  |          |queries  |  |        |
     |  User   |-------------->|          |---------|->|Foreign |
     | Program |               | Resolver |         |  |  Name  |
     |         |<--------------|          |<--------|--| Server |
     |         | user responses|          |responses|  |        |
     +---------+               +----------+         |  +--------+
                                 |     A            |
                 cache additions |     | references |
                                 V     |            |
                               +----------+         |
                               |  Shared  |         |
                               | database |         |
                               +----------+         |
                                 A     |            |
       +---------+     refreshes |     | references |
      /         /|               |     V            |
     +---------+ |             +----------+         |  +--------+
     |         | |             |          |responses|  |        |
     |         | |             |   Name   |---------|->|Foreign |
     |  Master |-------------->|  Server  |         |  |Resolver|
     |  files  | |             |          |<--------|--|        |
     |         |/              |          | queries |  +--------+
     +---------+               +----------+         |
                                 A     |maintenance |  +--------+
                                 |     \------------|->|        |
                                 |      queries     |  |Foreign |
                                 |                  |  |  Name  |
                                 \------------------|--| Server |
                              maintenance responses |  +--------+

     The shared database holds domain space data for the local name
     server and resolver.  The contents of the shared database will
     typically be a mixture of authoritative data maintained by the
     periodic refresh operations of the name server and cached data
     from previous resolver requests.  The structure of the domain data
     and the necessity for synchronization between name servers and
     resolvers imply the general characteristics of this database, but
     the actual format is up to the local implementer.  This memo
     suggests a multiple tree format.






Mockapetris                                                     [Page 4]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     This memo divides the implementation discussion into sections:

        NAME SERVER TRANSACTIONS, which discusses the formats for name
        servers queries and the corresponding responses.

        NAME SERVER MAINTENANCE, which discusses strategies,
        algorithms, and formats for maintaining the data residing in
        name servers.  These services periodically refresh the local
        copies of zones that originate in other hosts.

        RESOLVER ALGORITHMS, which discusses the internal structure of
        resolvers.  This section also discusses data base sharing
        between a name server and a resolver on the same host.

        DOMAIN SUPPORT FOR MAIL, which discusses the use of the domain
        system to support mail transfer.



































Mockapetris                                                     [Page 5]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Conventions

     The domain system has several conventions dealing with low-level,
     but fundamental, issues.  While the implementer is free to violate
     these conventions WITHIN HIS OWN SYSTEM, he must observe these
     conventions in ALL behavior observed from other hosts.

            ********** Data Transmission Order **********

     The order of transmission of the header and data described in this
     document is resolved to the octet level.  Whenever a diagram shows
     a group of octets, the order of transmission of those octets is
     the normal order in which they are read in English.  For example,
     in the following diagram the octets are transmitted in the order
     they are numbered.


                   0                   1
                   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |       1       |       2       |
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |       3       |       4       |
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  |       5       |       6       |
                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Transmission Order of Bytes

     Whenever an octet represents a numeric quantity the left most bit
     in the diagram is the high order or most significant bit.  That
     is, the bit labeled 0 is the most significant bit.  For example,
     the following diagram represents the value 170 (decimal).


                           0 1 2 3 4 5 6 7
                          +-+-+-+-+-+-+-+-+
                          |1 0 1 0 1 0 1 0|
                          +-+-+-+-+-+-+-+-+

                         Significance of Bits

     Similarly, whenever a multi-octet field represents a numeric
     quantity the left most bit of the whole field is the most
     significant bit.  When a multi-octet quantity is transmitted the
     most significant octet is transmitted first.





Mockapetris                                                     [Page 6]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


                 ********** Character Case **********

     All comparisons between character strings (e.g. labels, domain
     names, etc.) are done in a case-insensitive manner.

     When data enters the domain system, its original case should be
     preserved whenever possible.  In certain circumstances this cannot
     be done.  For example, if two domain names x.y and X.Y are entered
     into the domain database, they are interpreted as the same name,
     and hence may have a single representation.  The basic rule is
     that case can be discarded only when data is used to define
     structure in a database, and two names are identical when compared
     in a case insensitive manner.

     Loss of case sensitive data must be minimized.  Thus while data
     for x.y and X.Y may both be stored under x.y, data for a.x and B.X
     can be stored as a.x and B.x, but not A.x, A.X, b.x, or b.X.  In
     general, this prevents the first component of a domain name from
     loss of case information.

     Systems administrators who enter data into the domain database
     should take care to represent the data they supply to the domain
     system in a case-consistent manner if their system is
     case-sensitive.  The data distribution system in the domain system
     will ensure that consistent representations are preserved.


























Mockapetris                                                     [Page 7]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Design philosophy

     The design presented in this memo attempts to provide a base which
     will be suitable for several existing networks.  An equally
     important goal is to provide these services within a framework
     that is capable of adjustment to fit the evolution of services in
     early clients as well as to accommodate new networks.

     Since it is impossible to predict the course of these
     developments, the domain system attempts to provide for evolution
     in the form of an extensible framework.  This section describes
     the areas in which we expect to see immediate evolution.

     DEFINING THE DATABASE

     This memo defines methods for partitioning the database and data
     for host names, host addresses, gateway information, and mail
     support.  Experience with this system will provide guidance for
     future additions.

     While the present system allows for many new RR types, classes,
     etc., we feel that it is more important to get the basic services
     in operation than to cover an exhaustive set of information.
     Hence we have limited the data types to those we felt were
     essential, and would caution designers to avoid implementations
     which are based on the number of existing types and classes.
     Extensibility in this area is very important.

     While the domain system provides techniques for partitioning the
     database, policies for administrating the orderly connection of
     separate domains and guidelines for constructing the data that
     makes up a particular domain will be equally important to the
     success of the system.   Unfortunately, we feel that experience
     with prototype systems will be necessary before this question can
     be properly addressed.  Thus while this memo has minimal
     discussion of these issues, it is a critical area for development.

     TYING TOGETHER INTERNETS

     Although it is very difficult to characterize the types of
     networks, protocols, and applications that will be clients of the
     domain system, it is very obvious that some of these applications
     will cross the boundaries of network and protocol.  At the very
     least, mail is such a service.

     Attempts to unify two such systems must deal with two major
     problems:

     1. Differing formats for environment sensitive data.  For example,


Mockapetris                                                     [Page 8]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        network addresses vary in format, and it is unreasonable to
        expect to enforce consistent conventions.

     2. Connectivity may require intermediaries.  For example, it is a
        frequent occurence that mail is sent between hosts that share
        no common protocol.

     The domain system acknowledges that these are very difficult
     problems, and attempts to deal with both problems through its
     CLASS mechanism:

     1. The CLASS field in RRs allows data to be tagged so that all
        programs in the domain system can identify the format in use.

     2. The CLASS field allows the requestor to identify the format of
        data which can be understood by the requestor.

     3. The CLASS field guides the search for the requested data.

     The last point is central to our approach.  When a query crosses
     protocol boundaries, it must be guided though agents capable of
     performing whatever translation is required.  For example, when a
     mailer wants to identify the location of a mailbox in a portion of
     the domain system that doesn't have a compatible protocol, the
     query must be guided to a name server that can cross the boundary
     itself or form one link in a chain that can span the differences.

     If query and response transport were the only problem, then this
     sort of problem could be dealt with in the name servers
     themselves.  However, the applications that will use domain
     service have similar problems.  For example, mail may need to be
     directed through mail gateways, and the characteristics of one of
     the environments may not permit frequent connectivity between name
     servers in all environments.

     These problems suggest that connectivity will be achieved through
     a variety of measures:

        Translation name servers that act as relays between different
        protocols.

        Translation application servers that translate application
        level transactions.

        Default database entries that route traffic through application
        level forwarders in ways that depend on the class of the
        requestor.

     While this approach seems best given our current understanding of


Mockapetris                                                     [Page 9]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     the problem, we realize that the approach of using resource data
     that transcends class may be appropriate in future designs or
     applications.  By not defining class to be directly related to
     protocol, network, etc., we feel that such services could be added
     by defining a new "universal" class, while the present use of
     class will provide immediate service.

     This problem requires more thought and experience before solutions
     can be discovered.  The concepts of CLASS, recursive servers and
     other mechanisms are intended as tools for acquiring experience
     and not as final solutions.








































Mockapetris                                                    [Page 10]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


NAME SERVER TRANSACTIONS

  Introduction

     The primary purpose of name servers is to receive queries from
     resolvers and return responses.  The overall model of this service
     is that a program (typically a resolver) asks the name server
     questions (queries) and gets responses that either answer the
     question or refer the questioner to another name server.  Other
     functions related to name server database maintenance use similar
     procedures and formats and are discussed in a section later in
     this memo.

     There are three kinds of queries presently defined:

        1. Standard queries that ask for a specified resource attached
           to a given domain name.

        2. Inverse queries that specify a resource and ask for a domain
           name that possesses that resource.

        3. Completion queries that specify a partial domain name and a
           target domain and ask that the partial domain name be
           completed with a domain name close to the target domain.

     This memo uses an unqualified reference to queries to refer to
     either all queries or standard queries when the context is clear.

  Query and response transport

     Name servers and resolvers use a single message format for all
     communications.  The message format consists of a variable-length
     octet string which includes binary values.

     The messages used in the domain system are designed so that they
     can be carried using either datagrams or virtual circuits.  To
     accommodate the datagram style, all responses carry the query as
     part of the response.

     While the specification allows datagrams to be used in any
     context, some activities are ill suited to datagram use.  For
     example, maintenance transactions and recursive queries typically
     require the error control of virtual circuits.  Thus datagram use
     should be restricted to simple queries.

     The domain system assumes that a datagram service provides:

        1. A non-reliable (i.e. best effort) method of transporting a
           message of up to 512 octets.


Mockapetris                                                    [Page 11]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


           Hence datagram messages are limited to 512 octets.  If a
           datagram message would exceed 512 octets, it is truncated
           and a truncation flag is set in its header.

        2. A message size that gives the number of octets in the
           datagram.

     The main implications for programs accessing name servers via
     datagrams are:

        1. Datagrams should not be used for maintenance transactions
           and recursive queries.

        2. Since datagrams may be lost, the originator of a query must
           perform error recovery (such as retransmissions) as
           appropriate.

        3. Since network or host delay may cause retransmission when a
           datagram has not been lost, the originator of a query must
           be ready to deal with duplicate responses.

     The domain system assumes that a virtual circuit service provides:

        1. A reliable method of transmitting a message of up to 65535
           octets.

        2. A message size that gives the number of octets in the
           message.

           If the virtual circuit service does not provide for message
           boundary detection or limits transmission size to less than
           65535 octets, then messages are prefaced with an unsigned 16
           bit length field and broken up into separate transmissions
           as required.  The length field is only prefaced on the first
           message.  This technique is used for TCP virtual circuits.

        3. Multiple messages may be sent over a virtual circuit.

        4. A method for closing a virtual circuit.

        5. A method for detecting that the other party has requested
           that the virtual circuit be closed.

     The main implications for programs accessing name servers via
     virtual circuits are:

        1. Either end of a virtual circuit may initiate a close when
           there is no activity in progress.  The other end should
           comply.


Mockapetris                                                    [Page 12]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


           The decision to initiate a close is a matter of individual
           site policy; some name servers may leave a virtual circuit
           open for an indeterminate period following a query to allow
           for subsequent queries; other name servers may choose to
           initiate a close following the completion of the first query
           on a virtual circuit.  Of course, name servers should not
           close the virtual circuit in the midst of a multiple message
           stream used for zone transfer.

        2. Since network delay may cause one end to erroneously believe
           that no activity is in progress, a program which receives a
           virtual circuit close while a query is in progress should
           close the virtual circuit and resubmit the query on a new
           virtual circuit.

     All messages may use a compression scheme to reduce the space
     consumed by repetitive domain names.  The use of the compression
     scheme is optional for the sender of a message, but all receivers
     must be capable of decoding compressed domain names.

  Overall message format

     All messages sent by the domain system are divided into 5 sections
     (some of which are empty in certain cases) shown below:

      +---------------------+
      |        Header       |
      +---------------------+
      |       Question      | the question for the name server
      +---------------------+
      |        Answer       | answering resource records (RRs)
      +---------------------+
      |      Authority      | RRs pointing toward an authority
      +---------------------+
      |      Additional     | RRs holding pertinent information
      +---------------------+

     The header section is always present.  The header includes fields
     that specify which of the remaining sections are present, and also
     specify whether the message is a query, inverse query, completion
     query, or response.

     The question section contains fields that describe a question to a
     name server.  These fields are a query type (QTYPE), a query class
     (QCLASS), and a query domain name (QNAME).

     The last three sections have the same format: a possibly empty
     list of concatenated resource records (RRs).  The answer section
     contains RRs that answer the question; the authority section


Mockapetris                                                    [Page 13]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     contains RRs that point toward an authoritative name server; the
     additional records section contains RRs which relate to the query,
     but are not strictly answers for the question.

     The next two sections of this memo illustrate the use of these
     message sections through examples; a detailed discussion of data
     formats follows the examples.












































Mockapetris                                                    [Page 14]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  The contents of standard queries and responses

     When a name server processes a standard query, it first determines
     whether it is an authority for the domain name specified in the
     query.

     If the name server is an authority, it returns either:

        1. the specified resource information

        2. an indication that the specified name does not exist

        3. an indication that the requested resource information does
           not exist

     If the name server is not an authority for the specified name, it
     returns whatever relevant resource information it has along with
     resource records that the requesting resolver can use to locate an
     authoritative name server.

  Standard query and response example

     The overall structure of a query for retrieving information for
     Internet mail for domain F.ISI.ARPA is shown below:

                         +-----------------------------------------+
           Header        |          OPCODE=QUERY, ID=2304          |
                         +-----------------------------------------+
          Question       |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
                         +-----------------------------------------+
           Answer        |                 <empty>                 |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |                 <empty>                 |
                         +-----------------------------------------+

     The header includes an opcode field that specifies that this
     datagram is a query, and an ID field that will be used to
     associate replies with the original query.  (Some additional
     header fields have been omitted for clarity.)  The question
     section specifies that the type of the query is for mail agent
     information, that only ARPA Internet information is to be
     considered, and that the domain name of interest is F.ISI.ARPA.
     The remaining sections are empty, and would not use any octets in
     a real query.





Mockapetris                                                    [Page 15]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     One possible response to this query might be:

                         +-----------------------------------------+
           Header        |        OPCODE=RESPONSE, ID=2304         |
                         +-----------------------------------------+
          Question       |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
                         +-----------------------------------------+
           Answer        |                 <empty>                 |
                         +-----------------------------------------+
          Authority      |          ARPA NS IN A.ISI.ARPA          |
                         |                 -------                 |
                         |          ARPA NS IN F.ISI.ARPA          |
                         +-----------------------------------------+
          Additional     |        F.ISI.ARPA A IN 10.2.0.52        |
                         |                 -------                 |
                         |        A.ISI.ARPA A IN 10.1.0.22        |
                         +-----------------------------------------+

     This type of response would be returned by a name server that was
     not an authority for the domain name F.ISI.ARPA.  The header field
     specifies that the datagram is a response to a query with an ID of
     2304.  The question section is copied from the question section in
     the query datagram.

     The answer section is empty because the name server did not have
     any information that would answer the query.  (Name servers may
     happen to have cached information even if they are not
     authoritative for the query.)

     The best that this name server could do was to pass back
     information for the domain ARPA.  The authority section specifies
     two name servers for the domain ARPA using the Internet family:
     A.ISI.ARPA and F.ISI.ARPA.  Note that it is merely a coincidence
     that F.ISI.ARPA is a name server for ARPA as well as the subject
     of the query.

     In this case, the name server included in the additional records
     section the Internet addresses for the two hosts specified in the
     authority section.  Such additional data is almost always
     available.

     Given this response, the process that originally sent the query
     might resend the query to the name server on A.ISI.ARPA, with a
     new ID of 2305.







Mockapetris                                                    [Page 16]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     The name server on A.ISI.ARPA might return a response:

                         +-----------------------------------------+
           Header        |        OPCODE=RESPONSE, ID=2305         |
                         +-----------------------------------------+
          Question       |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA |
                         +-----------------------------------------+
           Answer        |       F.ISI.ARPA MD IN F.ISI.ARPA       |
                         |                 -------                 |
                         |       F.ISI.ARPA MF IN A.ISI.ARPA       |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |        F.ISI.ARPA A IN 10.2.0.52        |
                         |                 -------                 |
                         |        A.ISI.ARPA A IN 10.1.0.22        |
                         +-----------------------------------------+

     This query was directed to an authoritative name server, and hence
     the response includes an answer but no authority records.  In this
     case, the answer section specifies that mail for F.ISI.ARPA can
     either be delivered to F.ISI.ARPA or forwarded to A.ISI.ARPA.  The
     additional records section specifies the Internet addresses of
     these hosts.

  The contents of inverse queries and responses

     Inverse queries reverse the mappings performed by standard query
     operations; while a standard query maps a domain name to a
     resource, an inverse query maps a resource to a domain name.  For
     example, a standard query might bind a domain name to a host
     address; the corresponding inverse query binds the host address to
     a domain name.

     Inverse query mappings are not guaranteed to be unique or complete
     because the domain system does not have any internal mechanism for
     determining authority from resource records that parallels the
     capability for determining authority as a function of domain name.
     In general, resolvers will be configured to direct inverse queries
     to a name server which is known to have the desired information.

     Name servers are not required to support any form of inverse
     queries; it is anticipated that most name servers will support
     address to domain name conversions, but no other inverse mappings.
     If a name server receives an inverse query that it does not
     support, it returns an error response with the "Not Implemented"
     error set in the header.  While inverse query support is optional,
     all name servers must be at least able to return the error
     response.


Mockapetris                                                    [Page 17]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     When a name server processes an inverse query, it either returns:

        1. zero, one, or multiple domain names for the specified
        resource

        2. an error code indicating that the name server doesn't
           support inverse mapping of the specified resource type.

  Inverse query and response example

     The overall structure of an inverse query for retrieving the
     domain name that corresponds to Internet address 10.2.0.52 is
     shown below:

                         +-----------------------------------------+
           Header        |          OPCODE=IQUERY, ID=997          |
                         +-----------------------------------------+
          Question       |                 <empty>                 |
                         +-----------------------------------------+
           Answer        |        <anyname> A IN 10.2.0.52         |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |                 <empty>                 |
                         +-----------------------------------------+

     This query asks for a question whose answer is the Internet style
     address 10.2.0.52.  Since the owner name is not known, any domain
     name can be used as a placeholder (and is ignored).  The response
     to this query might be:

                         +-----------------------------------------+
           Header        |         OPCODE=RESPONSE, ID=997         |
                         +-----------------------------------------+
          Question       |   QTYPE=A, QCLASS=IN, QNAME=F.ISI.ARPA  |
                         +-----------------------------------------+
           Answer        |       F.ISI.ARPA A IN 10.2.0.52         |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |                 <empty>                 |
                         +-----------------------------------------+

     Note that the QTYPE in a response to an inverse query is the same
     as the TYPE field in the answer section of the inverse query.
     Responses to inverse queries may contain multiple questions when
     the inverse is not unique.




Mockapetris                                                    [Page 18]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Completion queries and responses

     Completion queries ask a name server to complete a partial domain
     name and return a set of RRs whose domain names meet a specified
     set of criteria for "closeness" to the partial input.  This type
     of query can provide a local shorthand for domain names or command
     completion similar to that in TOPS-20.

     Implementation of completion query processing is optional in a
     name server.  However, a name server must return a "Not
     Implemented" (NI) error response if it does not support
     completion.

     The arguments in a completion query specify:

     1. A type in QTYPE that specifies the type of the desired name.
        The type is used to restrict the type of RRs which will match
        the partial input so that completion queries can be used for
        mailbox names, host names, or any other type of RR in the
        domain system without concern for matches to the wrong type of
        resource.

     2. A class in QCLASS which specifies the desired class of the RR.

     3. A partial domain name that gives the input to be completed.
        All returned RRs will begin with the partial string.  The
        search process first looks for names which qualify under the
        assumption that the partial string ends with a full label
        ("whole label match"); if this search fails, the search
        continues under the assumption that the last label in the
        partial sting may be an incomplete label ("partial label
        match").  For example, if the partial string "Smith" was used
        in a mailbox completion, it would match [email protected] in
        preference to [email protected].

        The partial name is supplied by the user through the user
        program that is using domain services.  For example, if the
        user program is a mail handler, the string might be "Mockap"
        which the user intends as a shorthand for the mailbox
        [email protected]; if the user program is TELNET, the user
        might specify "F" for F.ISI.ARPA.

        In order to make parsing of messages consistent, the partial
        name is supplied in domain name format (i.e. a sequence of
        labels terminated with a zero length octet).  However, the
        trailing root label is ignored during matching.

     4. A target domain name which specifies the domain which is to be
        examined for matches.  This name is specified in the additional


Mockapetris                                                    [Page 19]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        section using a NULL RR.  All returned names will end with the
        target name.

        The user program which constructs the query uses the target
        name to restrict the search.  For example, user programs
        running at ISI might restrict completion to names that end in
        ISI.ARPA; user programs running at MIT might restrict
        completion to the domain MIT.ARPA.

        The target domain name is also used by the resolver to
        determine the name server which should be used to process the
        query.  In general, queries should be directed to a name server
        that is authoritative for the target domain name.  User
        programs which wish to provide completion for a more than one
        target can issue multiple completion queries, each directed at
        a different target.  Selection of the target name and the
        number of searches will depend on the goals of the user
        program.

     5. An opcode for the query.  The two types of completion queries
        are "Completion Query - Multiple", or CQUERYM, which asks for
        all RRs which could complete the specified input, and
        "Completion Query - Unique", or CQUERYU, which asks for the
        "best" completion.

        CQUERYM is used by user programs which want to know if
        ambiguities exist or wants to do its own determinations as to
        the best choice of the available candidates.

        CQUERYU is used by user programs which either do not wish to
        deal with multiple choices or are willing to use the closeness
        criteria used by CQUERYU to select the best match.

     When a name server receives either completion query, it first
     looks for RRs that begin (on the left) with the same labels as are
     found in QNAME (with the root deleted), and which match the QTYPE
     and QCLASS.  This search is called "whole label" matching.  If one
     or more hits are found the name server either returns all of the
     hits (CQUERYM) or uses the closeness criteria described below to
     eliminate all but one of the matches (CQUERYU).

     If the whole label match fails to find any candidates, then the
     name server assumes that the rightmost label of QNAME (after root
     deletion) is not a complete label, and looks for candidates that
     would match if characters were added (on the right) to the
     rightmost label of QNAME.  If one or more hits are found the name
     server either returns all of the hits (CQUERYM) or uses the
     closeness criteria described below to eliminate all but one of the
     matches (CQUERYU).


Mockapetris                                                    [Page 20]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     If a CQUERYU query encounters multiple hits, it uses the following
     sequence of rules to discard multiple hits:

     1. Discard candidates that have more labels than others.  Since
        all candidates start with the partial name and end with the
        target name, this means that we select those entries that
        require the fewest number of added labels.  For example, a host
        search with a target of "ISI.ARPA" and a partial name of "A"
        will select A.ISI.ARPA in preference to A.IBM-PCS.ISI.ARPA.

     2. If partial label matching was used, discard those labels which
        required more characters to be added.  For example, a mailbox
        search for partial "X" and target "ISI.ARPA" would prefer
        [email protected] to [email protected].

     If multiple hits are still present, return all hits.

     Completion query mappings are not guaranteed to be unique or
     complete because the domain system does not have any internal
     mechanism for determining authority from a partial domain name
     that parallels the capability for determining authority as a
     function of a complete domain name.  In general, resolvers will be
     configured to direct completion queries to a name server which is
     known to have the desired information.

     When a name server processes a completion query, it either
     returns:

        1. An answer giving zero, one, or more possible completions.

        2. an error response with Not Implemented (NI) set.




















Mockapetris                                                    [Page 21]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Completion query and response example

     Suppose that the completion service was used by a TELNET program
     to allow a user to specify a partial domain name for the desired
     host.  Thus a user might ask to be connected to "B".  Assuming
     that the query originated from an ISI machine, the query might
     look like:

                         +-----------------------------------------+
           Header        |         OPCODE=CQUERYU, ID=409          |
                         +-----------------------------------------+
          Question       |       QTYPE=A, QCLASS=IN, QNAME=B       |
                         +-----------------------------------------+
           Answer        |                 <empty>                 |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |             ISI.ARPA NULL IN            |
                         +-----------------------------------------+

     The partial name in the query is "B", the mappings of interest are
     ARPA Internet address records, and the target domain is ISI.ARPA.
     Note that NULL is a special type of NULL resource record that is
     used as a placeholder and has no significance; NULL RRs obey the
     standard format but have no other function.

     The response to this completion query might be:

                         +-----------------------------------------+
           Header        |         OPCODE=RESPONSE, ID=409         |
                         +-----------------------------------------+
          Question       |       QTYPE=A, QCLASS=IN, QNAME=B       |
                         +-----------------------------------------+
           Answer        |        B.ISI.ARPA A IN 10.3.0.52        |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |             ISI.ARPA NULL IN            |
                         +-----------------------------------------+

     This response has completed B to mean B.ISI.ARPA.










Mockapetris                                                    [Page 22]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     Another query might be:

                         +-----------------------------------------+
           Header        |         OPCODE=CQUERYM, ID=410          |
                         +-----------------------------------------+
          Question       |       QTYPE=A, QCLASS=IN, QNAME=B       |
                         +-----------------------------------------+
           Answer        |                 <empty>                 |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |               ARPA NULL IN              |
                         +-----------------------------------------+

     This query is similar to the previous one, but specifies a target
     of ARPA rather than ISI.ARPA.  It also allows multiple matches.
     In this case the same name server might return:

                         +-----------------------------------------+
           Header        |         OPCODE=RESPONSE, ID=410         |
                         +-----------------------------------------+
          Question       |       QTYPE=A, QCLASS=IN, QNAME=B       |
                         +-----------------------------------------+
           Answer        |        B.ISI.ARPA A IN 10.3.0.52        |
                         |                    -                    |
                         |        B.BBN.ARPA A IN 10.0.0.49        |
                         |                    -                    |
                         |        B.BBNCC.ARPA A IN 8.1.0.2        |
                         +-----------------------------------------+
          Authority      |                 <empty>                 |
                         +-----------------------------------------+
         Additional      |               ARPA NULL IN              |
                         +-----------------------------------------+

     This response contains three answers, B.ISI.ARPA, B.BBN.ARPA, and
     B.BBNCC.ARPA.















Mockapetris                                                    [Page 23]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Recursive Name Service

     Recursive service is an optional feature of name servers.

     When a name server receives a query regarding a part of the name
     space which is not in one of the name server's zones, the standard
     response is a message that refers the requestor to another name
     server.  By iterating on these referrals, the requestor eventually
     is directed to a name server that has the required information.

     Name servers may also implement recursive service.  In this type
     of service, a name server either answers immediately based on
     local zone information, or pursues the query for the requestor and
     returns the eventual result back to the original requestor.

     A name server that supports recursive service sets the Recursion
     Available (RA) bit in all responses it generates.  A requestor
     asks for recursive service by setting the Recursion Desired (RD)
     bit in queries.  In some situations where recursive service is the
     only path to the desired information (see below), the name server
     may go recursive even if RD is zero.

     If a query requests recursion (RD set), but the name server does
     not support recursion, and the query needs recursive service for
     an answer, the name server returns a "Not Implemented" (NI) error
     code.  If the query can be answered without recursion since the
     name server is authoritative for the query, it ignores the RD bit.

     Because of the difficulty in selecting appropriate timeouts and
     error handling, recursive service is best suited to virtual
     circuits, although it is allowed for datagrams.

     Recursive service is valuable in several special situations:

        In a system of small personal computers clustered around one or
        more large hosts supporting name servers, the recursive
        approach minimizes the amount of code in the resolvers in the
        personal computers.  Such a design moves complexity out of the
        resolver into the name server, and may be appropriate for such
        systems.

        Name servers on the boundaries of different networks may wish
        to offer recursive service to create connectivity between
        different networks.  Such name servers may wish to provide
        recursive service regardless of the setting of RD.

        Name servers that translate between domain name service and
        some other name service may wish to adopt the recursive style.
        Implicit recursion may be valuable here as well.


Mockapetris                                                    [Page 24]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     These concepts are still under development.


















































Mockapetris                                                    [Page 25]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Header section format

          +-----------------------------------------------+
          |                                               |
          |             *****  WARNING  *****             |
          |                                               |
          |  The following format is preliminary and is   |
          | included for purposes of explanation only. In |
          | particular, the size and position of the      |
          | OPCODE, RCODE fields and the number and       |
          | meaning of the single bit fields are subject  |
          | to change.                                    |
          |                                               |
          +-----------------------------------------------+

     The header contains the following fields:

                                          1  1  1  1  1  1
            0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                      ID                       |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |QR|   Opcode  |AA|TC|RD|RA|        |   RCODE   |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    QDCOUNT                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    ANCOUNT                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    NSCOUNT                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    ARCOUNT                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     where:

     ID      - A 16 bit identifier assigned by the program that
               generates any kind of query.  This identifier is copied
               into all replies and can be used by the requestor to
               relate replies to outstanding questions.

     QR      - A one bit field that specifies whether this message is a
               query (0), or a response (1).

     OPCODE  - A four bit field that specifies kind of query in this
               message.  This value is set by the originator of a query
               and copied into the response.  The values are:

                       0   a standard query (QUERY)



Mockapetris                                                    [Page 26]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


                       1   an inverse query (IQUERY)

                       2   an completion query allowing multiple
                           answers (CQUERYM)

                       2   an completion query requesting a single
                           answer (CQUERYU)

                       4-15 reserved for future use

     AA      - Authoritative Answer - this bit is valid in responses,
                        and specifies that the responding name server
                        is an authority for the domain name in the
                        corresponding query.

     TC      - TrunCation - specifies that this message was truncated
                        due to length greater than 512 characters.
                        This bit is valid in datagram messages but not
                        in messages sent over virtual circuits.

     RD      - Recursion Desired - this bit may be set in a query and
                        is copied into the response.  If RD is set, it
                        directs the name server to pursue the query
                        recursively.  Recursive query support is
                        optional.

     RA      - Recursion Available - this be is set or cleared in a
                        response, and denotes whether recursive query
                        support is available in the name server.

     RCODE   - Response code - this 4 bit field is set as part of
                        responses.  The values have the following
                        interpretation:

                       0    No error condition

                       1    Format error - The name server was unable
                            to interpret the query.

                       2    Server failure - The name server was unable
                            to process this query due to a problem with
                            the name server.

                       3    Name Error - Meaningful only for responses
                            from an authoritative name server, this
                            code signifies that the domain name
                            referenced in the query does not exist.




Mockapetris                                                    [Page 27]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


                       4    Not Implemented - The name server does not
                            support the requested kind of query.

                       5    Refused - The name server refuses to
                            perform the specified operation for policy
                            reasons.  For example, a name server may
                            not wish to provide the information to the
                            particular requestor, or a name server may
                            not wish to perform a particular operation
                            (e.g. zone transfer) for particular data.

                       6-15 Reserved for future use.

     QDCOUNT - an unsigned 16 bit integer specifying the number of
               entries in the question section.

     ANCOUNT - an unsigned 16 bit integer specifying the number of
               resource records in the answer section.

     NSCOUNT - an unsigned 16 bit integer specifying the number of name
               server resource records in the authority records
               section.

     ARCOUNT - an unsigned 16 bit integer specifying the number of
               resource records in the additional records section.


























Mockapetris                                                    [Page 28]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Question section format

     The question section is used in all kinds of queries other than
     inverse queries.  In responses to inverse queries, this section
     may contain multiple entries; for all other responses it contains
     a single entry.  Each entry has the following format:

                                          1  1  1  1  1  1
            0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                                               |
          /                     QNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                     QTYPE                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                     QCLASS                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     where:

     QNAME -   a variable number of octets that specify a domain name.
               This field uses the compressed domain name format
               described in the next section of this memo.  This field
               can be used to derive a text string for the domain name.
               Note that this field may be an odd number of octets; no
               padding is used.

     QTYPE -   a two octet code which specifies the type of the query.
               The values for this field include all codes valid for a
               TYPE field, together with some more general codes which
               can match more than one type of RR.  For example, QTYPE
               might be A and only match type A RRs, or might be MAILA,
               which matches MF and MD type RRs.  The values for this
               field are listed in Appendix 2.

     QCLASS -  a two octet code that specifies the class of the query.
               For example, the QCLASS field is IN for the ARPA
               Internet, CS for the CSNET, etc.  The numerical values
               are defined in Appendix 2.











Mockapetris                                                    [Page 29]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Resource record format

     The answer, authority, and additional sections all share the same
     format: a variable number of resource records, where the number of
     records is specified in the corresponding count field in the
     header.  Each resource record has the following format:

                                          1  1  1  1  1  1
            0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                                               |
          /                                               /
          /                      NAME                     /
          |                                               |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                      TYPE                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                     CLASS                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                      TTL                      |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                   RDLENGTH                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
          /                     RDATA                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     where:

     NAME    - a compressed domain name to which this resource record
               pertains.

     TYPE    - two octets containing one of the RR type codes defined
               in Appendix 2.  This field specifies the meaning of the
               data in the RDATA field.

     CLASS   - two octets which specify the class of the data in the
               RDATA field.

     TTL     - a 16 bit unsigned integer that specifies the time
               interval (in seconds) that the resource record may be
               cached before it should be discarded.  Zero values are
               interpreted to mean that the RR can only be used for the
               transaction in progress, and should not be cached.  For
               example, SOA records are always distributed with a zero
               TTL to prohibit caching.  Zero values can also be used
               for extremely volatile data.




Mockapetris                                                    [Page 30]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     RDLENGTH- an unsigned 16 bit integer that specifies the length in
               octets of the RDATA field.

     RDATA   - a variable length string of octets that describes the
               resource.  The format of this information varies
               according to the TYPE and CLASS of the resource record.
               For example, the if the TYPE is A and the CLASS is IN,
               the RDATA field is a 4 octet ARPA Internet address.

     Formats for particular resource records are shown in Appendicies 2
     and 3.

  Domain name representation and compression

     Domain names messages are expressed in terms of a sequence of
     labels.  Each label is represented as a one octet length field
     followed by that number of octets.  Since every domain name ends
     with the null label of the root, a compressed  domain name is
     terminated by a length byte of zero.  The high order two bits of
     the length field must be zero, and the remaining six bits of the
     length field limit the label to 63 octets or less.

     To simplify implementations, the total length of label octets and
     label length octets that make up a domain name is restricted to
     255 octets or less.  Since the trailing root label and its dot are
     not printed, printed domain names are 254 octets or less.

     Although labels can contain any 8 bit values in octets that make
     up a label, it is strongly recommended that labels follow the
     syntax described in Appendix 1 of this memo, which is compatible
     with existing host naming conventions.  Name servers and resolvers
     must compare labels in a case-insensitive manner, i.e. A=a, and
     hence all character strings must be ASCII with zero parity.
     Non-alphabetic codes must match exactly.

     Whenever possible, name servers and resolvers must preserve all 8
     bits of domain names they process.  When a name server is given
     data for the same name under two different case usages, this
     preservation is not always possible.  For example, if a name
     server is given data for ISI.ARPA and isi.arpa, it should create a
     single node, not two, and hence will preserve a single casing of
     the label.  Systems with case sensitivity should take special
     precautions to insure that the domain data for the system is
     created with consistent case.

     In order to reduce the amount of space used by repetitive domain
     names, the sequence of octets that defines a domain name may be
     terminated by a pointer to the length octet of a previously
     specified label string.  The label string that the pointer


Mockapetris                                                    [Page 31]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     specifies is appended to the already specified label string.
     Exact duplication of a previous label string can be done with a
     single pointer.  Multiple levels are allowed.

     Pointers can only be used in positions in the message where the
     format is not class specific.  If this were not the case, a name
     server that was handling a RR for another class could make
     erroneous copies of RRs.  As yet, there are no such cases, but
     they may occur in future RDATA formats.

     If a domain name is contained in a part of the message subject to
     a length field (such as the RDATA section of an RR), and
     compression is used, the length of the compressed name is used in
     the length calculation, rather than the length of the expanded
     name.

     Pointers are represented as a two octet field in which the high
     order 2 bits are ones, and the low order 14 bits specify an offset
     from the start of the message.  The 01 and 10 values of the high
     order bits are reserved for future use and should not be used.

     Programs are free to avoid using pointers in datagrams they
     generate, although this will reduce datagram capacity.  However
     all programs are required to understand arriving messages that
     contain pointers.

     For example, a datagram might need to use the domain names
     F.ISI.ARPA, FOO.F.ISI.ARPA, ARPA, and the root.  Ignoring the
     other fields of the message, these domain names might be
     represented as:





















Mockapetris                                                    [Page 32]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         20 |           1           |           F           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         22 |           3           |           I           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         24 |           S           |           I           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         26 |           4           |           A           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         28 |           R           |           P           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         30 |           A           |           0           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         40 |           3           |           F           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         42 |           O           |           O           |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         44 | 1  1|                20                       |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         64 | 1  1|                26                       |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         92 |           0           |                       |
            +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     The domain name for F.ISI.ARPA is shown at offset 20.  The domain
     name FOO.F.ISI.ARPA is shown at offset 40; this definition uses a
     pointer to concatenate a label for FOO to the previously defined
     F.ISI.ARPA.  The domain name ARPA is defined at offset 64 using a
     pointer to the ARPA component of the name F.ISI.ARPA at 20; note
     that this reference relies on ARPA being the last label in the
     string at 20.  The root domain name is defined by a single octet
     of zeros at 92; the root domain name has no labels.

  Organization of the Shared database

     While name server implementations are free to use any internal
     data structures they choose, the suggested structure consists of
     several separate trees.  Each tree has structure corresponding to
     the domain name space, with RRs attached to nodes and leaves.
     Each zone of authoritative data has a separate tree, and one tree
     holds all non-authoritative data.  All of the trees corresponding
     to zones are managed identically, but the non-authoritative or
     cache tree has different management procedures.


Mockapetris                                                    [Page 33]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     Data stored in the database can be kept in whatever form is
     convenient for the name server, so long as it can be transformed
     back into the format needed for messages.  In particular, the
     database will probably use structure in place of expanded domain
     names, and will also convert many of the time intervals used in
     the domain systems to absolute local times.

     Each tree corresponding to a zone has complete information for a
     "pruned" subtree of the domain space.  The top node of a zone has
     a SOA record that marks the start of the zone.  The bottom edge of
     the zone is delimited by nodes containing NS records signifying
     delegation of authority to other zones, or by leaves of the domain
     tree.  When a name server contains abutting zones, one tree will
     have a bottom node containing a NS record, and the other tree will
     begin with a tree location containing a SOA record.

     Note that there is one special case that requires consideration
     when a name server is implemented.  A node that contains a SOA RR
     denoting a start of zone will also have NS records that identify
     the name servers that are expected to have a copy of the zone.
     Thus a name server will usually find itself (and possibly other
     redundant name servers) referred to in NS records occupying the
     same position in the tree as SOA records.  The solution to this
     problem is to never interpret a NS record as delimiting a zone
     started by a SOA at the same point in the tree.  (The sample
     programs in this memo deal with this problem by processing SOA
     records only after NS records have been processed.)

     Zones may also overlap a particular part of the name space when
     they are of different classes.

     Other than the abutting and separate class cases, trees are always
     expected to be disjoint.  Overlapping zones are regarded as a
     non-fatal error.  The scheme described in this memo avoids the
     overlap issue by maintaining separate trees; other designs must
     take the appropriate measures to defend against possible overlap.

     Non-authoritative data is maintained in a separate tree.  This
     tree is unlike the zone trees in that it may have "holes".  Each
     RR in the cache tree has its own TTL that is separately managed.
     The data in this tree is never used if authoritative data is
     available from a zone tree; this avoids potential problems due to
     cached data that conflicts with authoritative data.

     The shared database will also contain data structures to support
     the processing of inverse queries and completion queries if the
     local system supports these optional features.  Although many
     schemes are possible, this memo describes a scheme that is based
     on tables of pointers that invert the database according to key.


Mockapetris                                                    [Page 34]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     Each kind of retrieval has a separate set of tables, with one
     table per zone.  When a zone is updated, these tables must also be
     updated.  The contents of these tables are discussed in the
     "Inverse query processing" and "Completion query processing"
     sections of this memo.

     The database implementation described here includes two locks that
     are used to control concurrent access and modification of the
     database by name server query processing, name server maintenance
     operations, and resolver access:

        The first lock ("main lock") controls access to all of the
        trees.  Multiple concurrent reads are allowed, but write access
        can only be acquired by a single process.  Read and write
        access are mutually exclusive.  Resolvers and name server
        processes that answer queries acquire this lock in read mode,
        and unlock upon completion of the current message.  This lock
        is acquired in write mode by a name server maintenance process
        when it is about to change data in the shared database.  The
        actual update procedures are described under "NAME SERVER
        MAINTENANCE" but are designed to be brief.

        The second lock ("cache queue lock") controls access to the
        cache queue.  This queue is used by a resolver that wishes to
        add information to the cache tree.  The resolver acquires this
        lock, then places the RRs to be cached into the queue.  The
        name server maintenance procedure periodically acquires this
        lock and adds the queue information to the cache.  The
        rationale for this procedure is that it allows the resolver to
        operate with read-only access to the shared database, and
        allows the update process to batch cache additions and the
        associated costs for inversion calculations.  The name server
        maintenance procedure must take appropriate precautions to
        avoid problems with data already in the cache, inversions, etc.

     This organization solves several difficulties:

        When searching the domain space for the answer to a query, a
        name server can restrict its search for authoritative data to
        that tree that matches the most labels on the right side of the
        domain name of interest.

        Since updates to a zone must be atomic with respect to
        searches, maintenance operations can simply acquire the main
        lock, insert a new copy of a particular zone without disturbing
        other zones, and then release the storage used by the old copy.
        Assuming a central table pointing to valid zone trees, this
        operation can be a simple pointer swap.



Mockapetris                                                    [Page 35]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        TTL management of zones can be performed using the SOA record
        for the zone.  This avoids potential difficulties if individual
        RRs in a zone could be timed out separately.  This issue is
        discussed further in the maintenance section.

  Query processing

     The following algorithm outlines processing that takes place at a
     name server when a query arrives:

     1. Search the list of zones to find zones which have the same
        class as the QCLASS field in the query and have a top domain
        name that matches the right end of the QNAME field.  If there
        are none, go to step 2.  If there are more than one, pick the
        zone that has the longest match and go to step 3.

     2. Since the zone search failed, the only possible RRs are
        contained in the non-authoritative tree.  Search the cache tree
        for the NS record that has the same class as the QCLASS field
        and the largest right end match for domain name.  Add the NS
        record or records to the authority section of the response.  If
        the cache tree has RRs that are pertinent to the question
        (domain names match, classes agree, not timed-out, and the type
        field is relevant to the QTYPE), copy these RRs into the answer
        section of the response.  The name server may also search the
        cache queue.  Go to step 4.

     3. Since this zone is the best match, the zone in which QNAME
        resides is either this zone or a zone to which this zone will
        directly or indirectly delegate authority.  Search down the
        tree looking for a NS RR or the node specified by QNAME.

           If the node exists and has no NS record, copy the relevant
           RRs to the answer section of the response and go to step 4.

           If a NS RR is found, either matching a part or all of QNAME,
           then QNAME is in a delegated zone outside of this zone.  If
           so, copy the NS record or records into the authority section
           of the response, and search the remainder of the zone for an
           A type record corresponding to the NS reference.  If the A
           record is found, add it to the additional section.  Go to
           step 2.

           If the node is not found and a NS is not found, there is no
           such name; set the Name error bit in the response and exit.

     4. When this step is reached, the answer and authority sections
        are complete.  What remains is to complete the additional
        section.  This procedure is only possible if the name server


Mockapetris                                                    [Page 36]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        knows the data formats implied by the class of records in the
        answer and authority sections.  Hence this procedure is class
        dependent.  Appendix 3 discusses this procedure for Internet
        class data.

     While this algorithm deals with typical queries and databases,
     several additions are required that will depend on the database
     supported by the name server:

     QCLASS=*

        Special procedures are required when the QCLASS of the query is
        "*".  If the database contains several classes of data, the
        query processing steps above are performed separately for each
        CLASS, and the results are merged into a single response.  The
        name error condition is not meaningful for a QCLASS=* query.
        If the requestor wants this information, it must test each
        class independently.

        If the database is limited to data of a particular class, this
        operation can be performed by simply reseting the authoritative
        bit in the response, and performing the query as if QCLASS was
        the class used in the database.

     * labels in database RRs

        Some zones will contain default RRs that use * to match in
        cases where the search fails for a particular domain name.  If
        the database contains these records then a failure must be
        retried using * in place of one or more labels of the search
        key.  The procedure is to replace labels from the left with
        "*"s looking for a match until either all labels have been
        replaced, or a match is found.  Note that these records can
        never be the result of caching, so a name server can omit this
        processing for zones that don't contain RRs with * in labels,
        or can omit this processing entirely if * never appears in
        local authoritative data.

  Inverse query processing

     Name servers that support inverse queries can support these
     operations through exhaustive searches of their databases, but
     this becomes impractical as the size of the database increases.
     An alternative approach is to invert the database according to the
     search key.

     For name servers that support multiple zones and a large amount of
     data, the recommended approach is separate inversions for each



Mockapetris                                                    [Page 37]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     zone.  When a particular zone is changed during a refresh, only
     its inversions need to be redone.

     Support for transfer of this type of inversion may be included in
     future versions of the domain system, but is not supported in this
     version.

  Completion query processing

     Completion query processing shares many of the same problems in
     data structure design as are found in inverse queries, but is
     different due to the expected high rate of use of top level labels
     (ie., ARPA, CSNET).  A name server that wishes to be efficient in
     its use of memory may well choose to invert only occurrences of
     ARPA, etc. that are below the top level, and use a search for the
     rare case that top level labels are used to constrain a
     completion.


































Mockapetris                                                    [Page 38]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


NAME SERVER MAINTENANCE

  Introduction

     Name servers perform maintenance operations on their databases to
     insure that the data they distribute is accurate and timely.  The
     amount and complexity of the maintenance operations that a name
     server must perform are related to the size, change rate, and
     complexity of the database that the name server manages.

     Maintenance operations are fundamentally different for
     authoritative and non-authoritative data.  A name server actively
     attempts to insure the accuracy and timeliness of authoritative
     data by refreshing the data from master copies.  Non-authoritative
     data is merely purged when its time-to-live expires; the name
     server does not attempt to refresh it.

     Although the refreshing scheme is fairly simple to implement, it
     is somewhat less powerful than schemes used in other distributed
     database systems.  In particular, an update to the master does not
     immediately update copies, and should be viewed as gradually
     percolating though the distributed database.  This is adequate for
     the vast majority of applications.  In situations where timliness
     is critical, the master name server can prohibit caching of copies
     or assign short timeouts to copies.

  Conceptual model of maintenance operations

     The vast majority of information in the domain system is derived
     from master files scattered among hosts that implement name
     servers; some name servers will have no master files, other name
     servers will have one or more master files.  Each master file
     contains the master data for a single zone of authority rather
     than data for the whole domain name space.  The administrator of a
     particular zone controls that zone by updating its master file.

     Master files and zone copies from remote servers may include RRs
     that are outside of the zone of authority when a NS record
     delegates authority to a domain name that is a descendant of the
     domain name at which authority is delegated.  These forward
     references are a problem because there is no reasonable method to
     guarantee that the A type records for the delegatee are available
     unless they can somehow be attached to the NS records.

     For example, suppose the ARPA zone delegates authority at
     MIT.ARPA, and states that the name server is on AI.MIT.ARPA.  If a
     resolver gets the NS record but not the A type record for
     AI.MIT.ARPA, it might try to ask the MIT name server for the
     address of AI.MIT.ARPA.


Mockapetris                                                    [Page 39]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     The solution is to allow type A records that are outside of the
     zone of authority to be copied with the zone.  While these records
     won't be found in a search for the A type record itself, they can
     be protected by the zone refreshing system, and will be passed
     back whenever the name server passes back a referral to the
     corresponding NS record.  If a query is received for the A record,
     the name server will pass back a referral to the name server with
     the A record in the additional section, rather than answer
     section.

     The only exception to the use of master files is a small amount of
     data stored in boot files.  Boot file data is used by name servers
     to provide enough resource records to allow zones to be imported
     from foreign servers (e.g. the address of the server), and to
     establish the name and address of root servers.  Boot file records
     establish the initial contents of the cache tree, and hence can be
     overridden by later loads of authoritative data.

     The data in a master file first becomes available to users of the
     domain name system when it is loaded by the corresponding name
     server.  By definition, data from a master file is authoritative.

     Other name servers which wish to be authoritative for a particular
     zone do so by transferring a copy of the zone from the name server
     which holds the master copy using a virtual circuit.  These copies
     include parameters which specify the conditions under which the
     data in the copy is authoritative.  In the most common case, the
     conditions specify a refresh interval and policies to be followed
     when the refresh operation cannot be performed.

     A name server may acquire multiple zones from different name
     servers and master files, but the name server must maintain each
     zone separately from others and from non-authoritative data.

     When the refresh interval for a particular zone copy expires, the
     name server holding the copy must consult the name server that
     holds the master copy.  If the data in the zone has not changed,
     the master name server instructs the copy name server to reset the
     refresh interval.  If the data has changed, the master passes a
     new copy of the zone and its associated conditions to the copy
     name server.  Following either of these transactions, the copy
     name server begins a new refresh interval.

     Copy name servers must also deal with error conditions under which
     they are unable to communicate with the name server that holds the
     master copy of a particular zone.  The policies that a copy name
     server uses are determined by other parameters in the conditions
     distributed with every copy.  The conditions include a retry
     interval and a maximum holding time.  When a copy name server is


Mockapetris                                                    [Page 40]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     unable to establish communications with a master or is unable to
     complete the refresh transaction, it must retry the refresh
     operation at the rate specified by the retry interval.  This retry
     interval will usually be substantially shorter than the refresh
     interval.  Retries continue until the maximum holding time is
     reached.  At that time the copy name server must assume that its
     copy of the data for the zone in question is no longer
     authoritative.

     Queries must be processed while maintenance operations are in
     progress because a zone transfer can take a long time.  However,
     to avoid problems caused by access to partial databases, the
     maintenance operations create new copies of data rather than
     directly modifying the old copies.  When the new copy is complete,
     the maintenance process locks out queries for a short time using
     the main lock, and switches pointers to replace the old data with
     the new.  After the pointers are swapped, the maintenance process
     unlocks the main lock and reclaims the storage used by the old
     copy.

  Name server data structures and top level logic

     The name server must multiplex its attention between multiple
     activities.  For example, a name server should be able to answer
     queries while it is also performing refresh activities for a
     particular zone.  While it is possible to design a name server
     that devotes a separate process to each query and refresh activity
     in progress, the model described in this memo is based on the
     assumption that there is a single process performing all
     maintenance operations, and one or more processes devoted to
     handling queries.  The model also assumes the existence of shared
     memory for several control structures, the domain database, locks,
     etc.

     The model name server uses the following files and shared data
     structures:

        1. A configuration file that describes the master and boot
           files which the name server should load and the zones that
           the name server should attempt to load from foreign name
           servers.  This file establishes the initial contents of the
           status table.

        2. Domain data files that contain master and boot data to be
           loaded.

        3. A status table that is derived from the configuration file.
           Each entry in this table describes a source of data.  Each
           entry has a zone number.  The zone number is zero for


Mockapetris                                                    [Page 41]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


           non-authoritative sources; authoritative sources are
           assigned separate non-zero numbers.

        4. The shared database that holds the domain data.  This
           database is assumed to be organized in some sort of tree
           structure paralleling the domain name space, with a list of
           resource records attached to each node and leaf in the tree.
           The elements of the resource record list need not contain
           the exact data present in the corresponding output format,
           but must contain data sufficient to create the output
           format; for example, these records need not contain the
           domain name that is associated with the resource because
           that name can be derived from the tree structure.  Each
           resource record also internal data that the name server uses
           to organize its data.

        5. Inversion data structures that allow the name server to
           process inverse queries and completion queries.  Although
           many structures could be used, the implementation described
           in this memo supposes that there is one array for every
           inversion that the name server can handle.  Each array
           contains a list of pointers to resource records such that
           the order of the inverted quantities is sorted.

        6. The main and cache queue locks

        7. The cache queue

     The maintenance process begins by loading the status table from
     the configuration file.  It then periodically checks each entry,
     to see if its refresh interval has elapsed.  If not, it goes on to
     the next entry.  If so, it performs different operations depending
     on the entry:

        If the entry is for zone 0, or the cache tree, the maintenance
        process checks to see if additions or deletions are required.
        Additions are acquired from the cache queue using the cache
        queue lock.  Deletions are detected using TTL checks.  If any
        changes are required, the maintenance process recalculates
        inversion data structures and then alters the cache tree under
        the protection of the main lock.  Whenever the maintenance
        process modifies the cache tree, it resets the refresh interval
        to the minimum of the contained TTLs and the desired time
        interval for cache additions.

        If the entry is not zone 0, and the entry refers to a local
        file, the maintenance process checks to see if the file has
        been modified since its last load.  If so the file is reloaded
        using the procedures specified under "Name server file


Mockapetris                                                    [Page 42]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        loading".  The refresh interval is reset to that specified in
        the SOA record if the file is a master file.

        If the entry is for a remote master file, the maintenance
        process checks for a new version using the procedure described
        in "Names server remote zone transfer".

  Name server file loading

     Master files are kept in text form for ease of editing by system
     maintainers.  These files are not exchanged by name servers; name
     servers use the standard message format when transferring zones.

     Organizations that want to have a domain, but do not want to run a
     name server, can use these files to supply a domain definition to
     another organization that will run a name server for them.  For
     example, if organization X wants a domain but not a name server,
     it can find another organization, Y, that has a name server and is
     willing to provide service for X.  Organization X defines domain X
     via the master file format and ships a copy of the master file to
     organization Y via mail, FTP, or some other method.  A system
     administrator at Y configures Y's name server to read in X's file
     and hence support the X domain.  X can maintain the master file
     using a text editor and send new versions to Y for installation.

     These files have a simple line-oriented format, with one RR per
     line.  Fields are separated by any combination of blanks and tab
     characters.  Tabs are treated the same as spaces; in the following
     discussion the term "blank" means either a tab or a blank.  A line
     can be either blank (and ignored), a RR, or a $INCLUDE line.

     If a RR line starts with a domain name, that domain name is used
     to specify the location in the domain space for the record, i.e.
     the owner.  If a RR line starts with a blank, it is loaded into
     the location specified by the most recent location specifier.

     The location specifiers are assumed to be relative to some origin
     that is provided by the user of a file unless the location
     specifier contains the root label.  This provides a convenient
     shorthand notation, and can also be used to prevent errors in
     master files from propagating into other zones.  This feature is
     particularly useful for master files imported from other sites.

     An include line begins with $INCLUDE, starting at the first line
     position, and is followed by a local file name and an optional
     offset modifier.  The filename follows the appropriate local
     conventions.  The offset is one or more labels that are added to
     the offset in use for the file that contained the $INCLUDE.  If
     the offset is omitted, the included file is loaded using the


Mockapetris                                                    [Page 43]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     offset of the file that contained the $INCLUDE command.  For
     example, a file being loaded at offset ARPA might contain the
     following lines:

               $INCLUDE <subsys>isi.data ISI
               $INCLUDE <subsys>addresses.data

     The first line would be interpreted to direct loading of the file
     <subsys>isi.data at offset ISI.ARPA.  The second line would be
     interpreted as a request to load data at offset ARPA.

     Note that $INCLUDE commands do not cause data to be loaded into a
     different zone or tree; they are simply ways to allow data for a
     given zone to be organized in separate files.  For example,
     mailbox data might be kept separately from host data using this
     mechanism.

     Resource records are entered as a sequence of fields corresponding
     to the owner name, TTL, CLASS, TYPE and RDATA components.  (Note
     that this order is different from the order used in examples and
     the order used in the actual RRs; the given order allows easier
     parsing and defaulting.)

        The owner name is derived from the location specifier.

        The TTL field is optional, and is expressed as a decimal
        number.  If omitted TTL defaults to zero.

        The CLASS field is also optional; if omitted the CLASS defaults
        to the most recent value of the CLASS field in a previous RR.

        The RDATA fields depend on the CLASS and TYPE of the RR.  In
        general, the fields that make up RDATA are expressed as decimal
        numbers or as domain names.  Some exceptions exist, and are
        documented in the RDATA definitions in Appendicies 2 and 3 of
        this memo.

     Because CLASS and TYPE fields don't contain any common
     identifiers, and because CLASS and TYPE fields are never decimal
     numbers, the parse is always unique.

     Because these files are text files several special encodings are
     necessary to allow arbitrary data to be loaded.  In particular:

        .    A free standing dot is used to refer to the current domain
             name.

        @    A free standing @ is used to denote the current origin.



Mockapetris                                                    [Page 44]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        ..   Two free standing dots represent the null domain name of
             the root.

        \X   where X is any character other than a digit (0-9), is used
             to quote that character so that its special meaning does
             not apply.  For example, "\." can be used to place a dot
             character in a label.

        \DDD where each D is a digit is the octet corresponding to the
             decimal number described by DDD.  The resulting octet is
             assumed to be text and is not checked for special meaning.

        ( )  Parentheses are used to group data that crosses a line
             boundary.  In effect, line terminations are not recognized
             within parentheses.

        ;    Semicolon is used to start a comment; the remainder of the
             line is ignored.

  Name server file loading example

     A name server for F.ISI.ARPA , serving as an authority for the
     ARPA and ISI.ARPA domains, might use a boot file and two master
     files.  The boot file initializes some non-authoritative data, and
     would be loaded without an origin:

   ..              9999999 IN      NS      B.ISI.ARPA
                   9999999 CS      NS      UDEL.CSNET
   B.ISI.ARPA      9999999 IN      A       10.3.0.52
   UDEL.CSNET      9999999 CS      A       302-555-0000

     This file loads non-authoritative data which provides the
     identities and addresses of root name servers.  The first line
     contains a NS RR which is loaded at the root; the second line
     starts with a blank, and is loaded at the most recent location
     specifier, in this case the root; the third and fourth lines load
     RRs at B.ISI.ARPA and UDEL.CSNET, respectively.  The timeouts are
     set to high values (9999999) to prevent this data from being
     discarded due to timeout.

     The first master file loads authoritative data for the ARPA
     domain.  This file is designed to be loaded with an origin of
     ARPA, which allows the location specifiers to omit the trailing
     .ARPA labels.







Mockapetris                                                    [Page 45]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


   @   IN  SOA     F.ISI.ARPA       Action.E.ISI.ARPA (
                                    20     ; SERIAL
                                    3600   ; REFRESH
                                    600    ; RETRY
                                    3600000; EXPIRE
                                    60)    ; MINIMUM
           NS      F.ISI.ARPA ; F.ISI.ARPA is a name server for ARPA
           NS      A.ISI.ARPA ; A.ISI.ARPA is a name server for ARPA
   MIT     NS      AI.MIT.ARPA; delegation to MIT name server
   ISI     NS      F.ISI.ARPA ; delegation to ISI name server

   UDEL    MD      UDEL.ARPA
           A       10.0.0.96
   NBS     MD      NBS.ARPA
           A       10.0.0.19
   DTI     MD      DTI.ARPA
           A       10.0.0.12

   AI.MIT  A       10.2.0.6
   F.ISI   A       10.2.0.52

     The first group of lines contains the SOA record and its
     parameters, and identifies name servers for this zone and for
     delegated zones.  The Action.E.ISI.ARPA field is a mailbox
     specification for the responsible person for the zone, and is the
     domain name encoding of the mail destination [email protected].
     The second group specifies data for domain names within this zone.
     The last group has forward references for name server address
     resolution for  AI.MIT.ARPA and F.ISI.ARPA.  This data is not
     technically within the zone, and will only be used for additional
     record resolution for NS records used in referrals.  However, this
     data is protected by the zone timeouts in the SOA, so it will
     persist as long as the NS references persist.

     The second master file defines the ISI.ARPA environment, and is
     loaded with an origin of ISI.ARPA:

   @   IN  SOA     F.ISI.ARPA      Action\.ISI.E.ISI.ARPA (
                                    20     ; SERIAL
                                    7200   ; REFRESH
                                    600    ; RETRY
                                    3600000; EXPIRE
                                    60)    ; MINIMUM
           NS      F.ISI.ARPA ; F.ISI.ARPA is a name server
   A       A       10.1.0.32
           MD      A.ISI.ARPA
           MF      F.ISI.ARPA
   B       A       10.3.0.52
           MD      B.ISI.ARPA


Mockapetris                                                    [Page 46]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


           MF      F.ISI.ARPA
   F       A       10.2.0.52
           MD      F.ISI.ARPA
           MF      A.ISI.ARPA
   $INCLUDE <SUBSYS>ISI-MAILBOXES.TXT

     Where the file <SUBSYS>ISI-MAILBOXES.TXT is:

   MOE     MB      F.ISI.ARPA
   LARRY   MB      A.ISI.ARPA
   CURLEY  MB      B.ISI.ARPA
   STOOGES MB      B.ISI.ARPA
           MG      MOE.ISI.ARPA
           MG      LARRY.ISI.ARPA
           MG      CURLEY.ISI.ARPA

     Note the use of the \ character in the SOA RR to specify the
     responsible person mailbox "[email protected]".

  Name server remote zone transfer

     When a name server needs to make an initial copy of a zone or test
     to see if a existing zone copy should be refreshed, it begins by
     attempting to open a virtual circuit to the foreign name server.

     If this open attempt fails, and this was an initial load attempt,
     it schedules a retry and exits.  If this was a refresh operation,
     the name server tests the status table to see if the maximum
     holding time derived from the SOA EXPIRE field has elapsed.  If
     not, the name server schedules a retry.  If the maximum holding
     time has expired, the name server invalidates the zone in the
     status table, and scans all resource records tagged with this zone
     number.  For each record it decrements TTL fields by the length of
     time since the data was last refreshed.  If the new TTL value is
     negative, the record is deleted.  If the TTL value is still
     positive, it moves the RR to the cache tree and schedules a retry.

     If the open attempt succeeds, the name server sends a query to the
     foreign name server in which QTYPE=SOA, QCLASS is set according to
     the status table information from the configuration file, and
     QNAME is set to the domain name of the zone of interest.

     The foreign name server will return either a SOA record indicating
     that it has the zone or an error.  If an error is detected, the
     virtual circuit is closed, and the failure is treated in the same
     way as if the open attempt failed.

     If the SOA record is returned and this was a refresh, rather than
     an initial load of the zone, the name server compares the SERIAL


Mockapetris                                                    [Page 47]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     field in the new SOA record with the SERIAL field in the SOA
     record of the existing zone copy.  If these values match, the zone
     has not been updated since the last copy and hence there is no
     reason to recopy the zone.  In this case the name server resets
     the times in the existing SOA record and closes the virtual
     circuit to complete the operation.

     If this is initial load, or the SERIAL fields were different, the
     name server requests a copy of the zone by sending the foreign
     name server an AXFR query which specifies the zone by its QCLASS
     and QNAME fields.

     When the foreign name server receives the AXFR request, it sends
     each node from the zone to the requestor in a separate message.
     It begins with the node that contains the SOA record, walks the
     tree in breadth-first order, and completes the transfer by
     resending the node containing the SOA record.

     Several error conditions are possible:

        If the AXFR request cannot be matched to a SOA, the foreign
        name server will return a single message in response that does
        not contain the AXFR request.  (The normal SOA query preceding
        the AXFR is designed to avoid this condition, but it is still
        possible.)

        The foreign name server can detect an internal error or detect
        some other condition (e.g. system going down, out of resources,
        etc.) that forces the transfer to be aborted.  If so, it sends
        a message with the "Server failure" condition set.  If the AXFR
        can be immediately retried with some chance of success, it
        leaves the virtual open; otherwise it initiates a close.

        If the foreign name server doesn't wish to perform the
        operation for policy reasons (i.e. the system administrator
        wishes to forbid zone copies), the foreign server returns a
        "Refused" condition.

     The requestor receives these records and builds a new tree.  This
     tree is not yet in the status table, so its data are not used to
     process queries.  The old copy of the zone, if any, may be used to
     satisfy request while the transfer is in progress.

     When the requestor receives the second copy of the SOA node, it
     compares the SERIAL field in the first copy of the SOA against the
     SERIAL field in the last copy of the SOA record.  If these don't
     match, the foreign server updated its zone while the transfer was
     in progress.  In this case the requestor repeats the AXFR request
     to acquire the newer version.


Mockapetris                                                    [Page 48]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     If the AXFR transfer eventually succeeds, the name server closes
     the virtual circuit and and creates new versions of inversion data
     structures for this zone.  When this operation is complete, the
     name server acquires the main lock in write mode and then replaces
     any old copy of the zone and inversion data structures with new
     ones.  The name server then releases the main lock, and can
     reclaim the storage used by the old copy.

     If an error occurs during the AXFR transfer, the name server can
     copy any partial information into its cache tree if it wishes,
     although it will not normally do so if the zone transfer was a
     refresh rather than an initial load.







































Mockapetris                                                    [Page 49]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


RESOLVER ALGORITHMS

  Operations

     Resolvers have a great deal of latitude in the semantics they
     allow in user calls.  For example, a resolver might support
     different user calls that specify whether the returned information
     must be from and authoritative name server or not.  Resolvers are
     also responsible for enforcement of any local restrictions on
     access, etc.

     In any case, the resolver will transform the user query into a
     number of shared database accesses and queries to remote name
     servers.  When a user requests a resource associated with a
     particular domain name, the resolver will execute the following
     steps:

     1. The resolver first checks the local shared database, if any,
        for the desired information.  If found, it checks the
        applicable timeout.  If the timeout check succeeds, the
        information is used to satisfy the user request.  If not, the
        resolver goes to step 2.

     2. In this step, the resolver consults the shared database for the
        name server that most closely matches the domain name in the
        user query.  Multiple redundant name servers may be found.  The
        resolver goes to step 3.

     3. In this step the resolver chooses one of the available name
        servers and sends off a query.  If the query fails, it tries
        another name server.  If all fail, an error indication is
        returned to the user.  If a reply is received the resolver adds
        the returned RRs to its database and goes to step 4.

     4. In this step, the resolver interprets the reply.  If the reply
        contains the desired information, the resolver returns the
        information to the user.  The the reply indicates that the
        domain name in the user query doesn't exist, then the resolver
        returns an error to the user.  If the reply contains a
        transient name server failure, the resolver can either wait and
        retry the query or go back to step 3 and try a different name
        server.  If the reply doesn't contain the desired information,
        but does contain a pointer to a closer name server, the
        resolver returns to step 2, where the closer name servers will
        be queried.

     Several modifications to this algorithm are possible.  A resolver
     may not support a local cache and instead only cache information
     during the course of a single user request, discarding it upon


Mockapetris                                                    [Page 50]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     completion.  The resolver may also find that a datagram reply was
     truncated, and open a virtual circuit so that the complete reply
     can be recovered.

     Inverse and completion queries must be treated in an
     environment-sensitive manner, because the domain system doesn't
     provide a method for guaranteeing that it can locate the correct
     information.  The typical choice will be to configure a resolver
     to use a particular set of known name servers for inverse queries.










































Mockapetris                                                    [Page 51]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


DOMAIN SUPPORT FOR MAIL

  Introduction

     Mail service is a particularly sensitive issue for users of the
     domain system because of the lack of a consistent system for
     naming mailboxes and even hosts, and the need to support continued
     operation of existing services.  This section discusses an
     evolutionary approach for adding consistent domain name support
     for mail.

     The crucial issue is deciding on the types of binding to be
     supported.  Most mail systems specify a mail destination with a
     two part construct such as X@Y.  The left hand side, X, is an
     string, often a user or account, and Y is a string, often a host.
     This section refers to the part on the left, i.e. X, as the local
     part, and refers to the part on the right, i.e. Y, as the global
     part.

     Most existing mail systems route mail based on the global part; a
     mailer with mail to deliver to X@Y will decide on the host to be
     contacted using only Y.  We refer to this type of binding as
     "agent binding".

        For example, mail addressed to Mockapetris@ISIF is delivered to
        host USC-ISIF (USC-ISIF is the official name for the host
        specified by nickname ISIF).

     More sophisticated mail systems use both the local and global
     parts, i.e. both X and Y to determine which host should receive
     the mail.  These more sophisticated systems usually separate the
     binding of the destination to the host from the actual delivery.
     This allows the global part to be a generic name rather than
     constraining it to a single host.  We refer to this type of
     binding as "mailbox binding".

        For example, mail addressed to Mockapetris@ISI might be bound
        to host F.ISI.ARPA, and subsequently delivered to that host,
        while mail for Cohen@ISI might be bound to host B.ISI.ARPA.

     The domain support for mail consists of two levels of support,
     corresponding to these two binding models.

        The first level, agent binding, is compatible with existing
        ARPA Internet mail procedures and uses maps a global part onto
        one or more hosts that will accept the mail.  This type of
        binding uses the MAILA QTYPE.

        The second level, mailbox binding, offers extended services


Mockapetris                                                    [Page 52]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        that map a local part and a global part onto one or more sets
        of data via the MAILB QTYPE.  The sets of data include hosts
        that will accept the mail, mailing list members  (mail groups),
        and mailboxes for reporting errors or requests to change a mail
        group.

     The domain system encodes the global part of a mail destination as
     a domain name and uses dots in the global part to separate labels
     in the encoded domain name.  The domain system encodes the local
     part of a mail destination as a single label, and any dots in this
     part are simply copied into the label.  The domain system forms a
     complete mail destination as the local label concatenated to the
     domain string for the global part.  We call this a mailbox.

        For example, the mailbox [email protected] has a global
        domain name of three labels, F.ISI.ARPA.  The domain name
        encoding for the whole mailbox is Mockapetris.F.ISI.ARPA.  The
        mailbox [email protected] has the same domain name for
        the global part and a 4 label domain name for the mailbox of
        Mockapetris\.cad.F.ISI.ARPA (the \ is not stored in the label,
        its merely used to denote the "quoted" dot).

     It is anticipated that the Internet system will adopt agent
     binding as part of the initial implementation of the domain
     system, and that mailbox binding will eventually become the
     preferred style as organizations convert their mail systems to the
     new style.  To facilitate this approach, the domain information
     for these two binding styles is organized to allow a requestor to
     determine which types of support are available, and the
     information is kept in two disjoint classes.

  Agent binding

     In agent binding, a mail system uses the global part of the mail
     destination as a domain name, with dots denoting structure.  The
     domain name is resolved using a MAILA query which return MF and MD
     RRs to specify the domain name of the appropriate host to receive
     the mail.  MD (Mail delivery) RRs specify hosts that are expected
     to have the mailbox in question; MF (Mail forwarding) RRs specify
     hosts that are expected to be intermediaries willing to accept the
     mail for eventual forwarding.  The hosts are hints, rather than
     definite answers, since the query is made without the full mail
     destination specification.

     For example, mail for [email protected] would result in a
     query with QTYPE=MAILA and QNAME=F.ISI.ARPA, which might return
     two RRs:




Mockapetris                                                    [Page 53]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


                     F.ISI.ARPA MD IN F.ISI.ARPA
                     F.ISI.ARPA MF IN A.ISI.ARPA

     The mailer would interpret these to mean that the mail agent on
     F.ISI.ARPA should be able to deliver the mail directly, but that
     A.ISI.ARPA is willing to accept the mail for probable forwarding.

     Using this system, an organization could implement a system that
     uses organization names for global parts, rather than the usual
     host names, but all mail for the organization would be routed the
     same, regardless of its local part.  Hence and organization with
     many hosts would expect to see many forwarding operations.

  Mailbox binding

     In mailbox binding, the mailer uses the entire mail destination
     specification to construct a domain name.  The encoded domain name
     for the mailbox is used as the QNAME field in a QTYPE=MAILB query.

     Several outcomes are possible for this query:

     1. The query can return a name error indicating that the mailbox
        does not exist as a domain name.

        In the long term this would indicate that the specified mailbox
        doesn't exist.  However, until the use of mailbox binding is
        universal, this error condition should be interpreted to mean
        that the organization identified by the global part does not
        support mailbox binding.  The appropriate procedure is to
        revert to agent binding at this point.

     2. The query can return a Mail Rename (MR) RR.

        The MR RR carries new mailbox specification in its RDATA field.
        The mailer should replace the old mailbox with the new one and
        retry the operation.

     3. The query can return a MB RR.

        The MB RR carries a domain name for a host in its RDATA field.
        The mailer should deliver the message to that host via whatever
        protocol is applicable, e.g. SMTP.

     4. The query can return one or more Mail Group (MG) RRs.

        This condition means that the mailbox was actually a mailing
        list or mail group, rather than a single mailbox.  Each MG RR
        has a RDATA field that identifies a mailbox that is a member of



Mockapetris                                                    [Page 54]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        the group.  The mailer should deliver a copy of the message to
        each member.

     5. The query can return a MB RR as well as one or more MG RRs.

        This condition means the the mailbox was actually a mailing
        list.  The mailer can either deliver the message to the host
        specified by the MB RR, which will in turn do the delivery to
        all members, or the mailer can use the MG RRs to do the
        expansion itself.

     In any of these cases, the response may include a Mail Information
     (MINFO) RR.  This RR is usually associated with a mail group, but
     is legal with a MB.  The MINFO RR identifies two mailboxes.  One
     of these identifies a responsible person for the original mailbox
     name.  This mailbox should be used for requests to be added to a
     mail group, etc.  The second mailbox name in the MINFO RR
     identifies a mailbox that should receive error messages for mail
     failures.  This is particularly appropriate for mailing lists when
     errors in member names should be reported to a person other than
     the one who sends a message to the list.  New fields may be added
     to this RR in the future.





























Mockapetris                                                    [Page 55]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


Appendix 1 - Domain Name Syntax Specification

  The preferred syntax of domain names is given by the following BNF
  rules.  Adherence to this syntax will result in fewer problems with
  many applications that use domain names (e.g., mail, TELNET).  Note
  that some applications use domain names containing binary information
  and hence do not follow this syntax.

     <domain> ::=  <subdomain> | " "

     <subdomain> ::=  <label> | <subdomain> "." <label>

     <label> ::= <letter> [ [ <ldh-str> ] <let-dig> ]

     <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

     <let-dig-hyp> ::= <let-dig> | "-"

     <let-dig> ::= <letter> | <digit>

     <letter> ::= any one of the 52 alphabetic characters A through Z
     in upper case and a through z in lower case

     <digit> ::= any one of the ten digits 0 through 9

  Note that while upper and lower case letters are allowed in domain
  names no significance is attached to the case.  That is, two names
  with the same spelling but different case are to be treated as if
  identical.

  The labels must follow the rules for ARPANET host names.  They must
  start with a letter, end with a letter or digit, and have as interior
  characters only letters, digits, and hyphen.  There are also some
  restrictions on the length.  Labels must be 63 characters or less.

  For example, the following strings identify hosts in the ARPA
  Internet:

     F.ISI.ARPA     LINKABIT-DCN5.ARPA     UCL-TAC.ARPA












Mockapetris                                                    [Page 56]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


Appendix 2 - Field formats and encodings

          +-----------------------------------------------+
          |                                               |
          |             *****  WARNING  *****             |
          |                                               |
          |  The following formats are preliminary and    |
          | are included for purposes of explanation only.|
          | In particular, new RR types will be added,    |
          | and the size, position, and encoding of       |
          | fields are subject to change.                 |
          |                                               |
          +-----------------------------------------------+

  TYPE values

     TYPE fields are used in resource records.  Note that these types
     are not the same as the QTYPE fields used in queries, although the
     functions are often similar.

     TYPE value meaning

     A      1   a host address

     NS     2   an authoritative name server

     MD     3   a mail destination

     MF     4   a mail forwarder

     CNAME  5   the canonical name for an alias

     SOA    6   marks the start of a zone of authority

     MB     7   a mailbox domain name

     MG     8   a mail group member

     MR     9   a mail rename domain name

     NULL  10   a null RR

     WKS   11   a well known service description

     PTR   12   a domain name pointer

     HINFO 13   host information

     MINFO 14   mailbox or mail list information


Mockapetris                                                    [Page 57]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  QTYPE values

     QTYPE fields appear in the question part of a query.  They include
     the values of TYPE with the following additions:

     AXFR   252 A request for a transfer of an entire zone of authority

     MAILB  253 A request for mailbox-related records (MB, MG or MR)

     MAILA  254 A request for mail agent RRs (MD and MF)

     *      255 A request for all records

  CLASS values

     CLASS fields appear in resource records

     CLASS value meaning

     IN      1   the ARPA Internet

     CS      2   the computer science network (CSNET)

  QCLASS values

     QCLASS fields appear in the question section of a query.  They
     include the values of CLASS with the following additions:

     *        255 any class






















Mockapetris                                                    [Page 58]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  Standard resource record formats

     All RRs have the same top level format shown below:

                                          1  1  1  1  1  1
            0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                                               |
          /                                               /
          /                      NAME                     /
          |                                               |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                      TYPE                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                     CLASS                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                      TTL                      |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                   RDLENGTH                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
          /                     RDATA                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        NAME    - a compressed domain name to which this resource
                  record pertains.

        TYPE    - two octets containing one of the RR type codes
                  defined in Appendix 2.  This field specifies the
                  meaning of the data in the RDATA field.

        CLASS   - two octets which specifies the class of the data in
                  the RDATA field.

        TTL     - a 16 bit signed integer that specifies the time
                  interval that the resource record may be cached
                  before the source of the information should again be
                  consulted.  Zero values are interpreted to mean that
                  the RR can only be used for the transaction in
                  progress, and should not be cached.  For example, SOA
                  records are always distributed with a zero TTL to
                  prohibit caching.  Zero values can also be used for
                  extremely volatile data.

        RDLENGTH- an unsigned 16 bit integer that specifies the length
                  in octets of the RDATA field.



Mockapetris                                                    [Page 59]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        RDATA  - a variable length string of octets that describes the
                  resource.  The format of this information varies
                  according to the TYPE and CLASS of the resource
                  record.

     The format of the RDATA field is standard for all classes for the
     RR types NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR, HINFO, MINFO and
     NULL.  These formats are shown below together with the appropriate
     additional section RR processing.

     CNAME RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                     CNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        CNAME   - A compressed domain name which specifies that the
                  domain name of the RR is an alias for a canonical
                  name specified by CNAME.

        CNAME records cause no additional section processing.  The
        RDATA section of a CNAME line in a master file is a standard
        printed domain name.

     HINFO RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                      CPU                      /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                       OS                      /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        CPU   - A character string which specifies the CPU type.  The
                  character string is represented as a single octet
                  length followed by that number of characters.    The
                  following standard strings are defined:.

           PDP-11/70   C/30        C/70        VAX-11/780
           H-316       H-516       DEC-2060    DEC-1090T
           ALTO        IBM-PC      IBM-PC/XT   PERQ
           IBM-360/67  IBM-370/145

        OS   - A character string which specifies the operating system
        type.  The character string is represented as a single octet


Mockapetris                                                    [Page 60]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        length followed by that number of characters.    The following
        standard types are defined:.

           ASP         AUGUST      BKY         CCP
           DOS/360     ELF         EPOS        EXEC-8
           GCOS        GPOS        ITS         INTERCOM
           KRONOS      MCP         MOS         MPX-RT
           MULTICS     MVT         NOS         NOS/BE
           OS/MVS      OS/MVT      RIG         RSX11
           RSX11M      RT11        SCOPE       SIGNAL
           SINTRAN     TENEX       TOPS10      TOPS20
           TSS         UNIX        VM/370      VM/CMS
           VMS         WAITS

        HINFO records cause no additional section processing.

        HINFO records are used to acquire general information about a
        host.  The main use is for protocols such as FTP that can use
        special procedures when talking between machines or operating
        systems of the same type.

     MB RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   MADNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        MADNAME - A compressed domain name which specifies a host which
                  has the specified mailbox.

        MB records cause additional section processing which looks up
        an A type record corresponding to MADNAME.  The RDATA section
        of a MB line in a master file is a standard printed domain
        name.

     MD RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   MADNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        MADNAME - A compressed domain name which specifies a host which



Mockapetris                                                    [Page 61]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


                  has a mail agent for the domain which should be able
                  to deliver mail for the domain.

        MD records cause additional section processing which looks up
        an A type record corresponding to MADNAME.  The RDATA section
        of a MD line in a master file is a standard printed domain
        name.

     MF RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   MADNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        MADNAME - A compressed domain name which specifies a host which
                  has a mail agent for the domain which will accept
                  mail for forwarding to the domain.

        MF records cause additional section processing which looks up
        an A type record corresponding to MADNAME.  The RDATA section
        of a MF line in a master file is a standard printed domain
        name.

     MG RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   MGMNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        MGMNAME - A compressed domain name which specifies a mailbox
                  which is a member of the mail group specified by the
                  domain name.

        MF records cause no additional section processing.  The RDATA
        section of a MF line in a master file is a standard printed
        domain name.









Mockapetris                                                    [Page 62]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     MINFO RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                    RMAILBX                    /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                    EMAILBX                    /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        RMAILBX - A compressed domain name which specifies a mailbox
                  which is responsible for the mailing list or mailbox.
                  If this domain name names the root, the owner of the
                  MINFO RR is responsible for itself.  Note that many
                  existing mailing lists use a mailbox X-request for
                  the RMAILBX field of mailing list X, e.g.
                  Msgroup-request for Msgroup.  This field provides a
                  more general mechanism.

        EMAILBX - A compressed domain name which specifies a mailbox
                  which is to receive error messages related to the
                  mailing list or mailbox specified by the owner of the
                  MINFO RR (similar to the ERRORS-TO: field which has
                  been proposed).  If this domain name names the root,
                  errors should be returned to the sender of the
                  message.

        MINFO records cause no additional section processing.  Although
        these records can be associated with a simple mailbox, they are
        usually used with a mailing list.  The MINFO section of a MF
        line in a master file is a standard printed domain name.

     MR RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   NEWNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        NEWNAME - A compressed domain name which specifies a mailbox
                  which is the proper rename of the specified mailbox.

        MR records cause no additional section processing.  The RDATA
        section of a MR line in a master file is a standard printed
        domain name.




Mockapetris                                                    [Page 63]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     NULL RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                  <anything>                   /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        Anything at all may be in the RDATA field so long as it is
        65535 octets or less.

        NULL records cause no additional section processing.  NULL RRs
        are not allowed in master files.

     NS RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   NSDNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        NSDNAME - A compressed domain name which specifies a host which
                  has a name server for the domain.

        NS records cause both the usual additional section processing
        to locate a type A record, and a special search of the zone in
        which they reside.  The RDATA section of a NS line in a master
        file is a standard printed domain name.

     PTR RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                   PTRDNAME                    /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        PTRDNAME - A compressed domain name which points to some
                  location in the domain name space.

        PTR records cause no additional section processing.  These RRs
        are used in special domains to point to some other location in
        the domain space.  These records are simple data, and don't
        imply any special processing similar to that performed by
        CNAME, which identifies aliases.  Appendix 3 discusses the use
        of these records in the ARPA Internet address domain.




Mockapetris                                                    [Page 64]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     SOA RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                     MNAME                     /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          /                     RNAME                     /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    SERIAL                     |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    REFRESH                    |
          |                                               |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                     RETRY                     |
          |                                               |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    EXPIRE                     |
          |                                               |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    MINIMUM                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

        where:

        MNAME   - The domain name of the name server that was the
                  original source of data for this zone.

        RNAME   - A domain name which specifies the mailbox of the
                  person responsible for this zone.

        SERIAL  - The unsigned 16 bit version number of the of the
                  original copy of the zone.  This value wraps and
                  should be compared using sequence space arithmetic.

        REFRESH - The unsigned 32 bit time interval before the zone
                  should be refreshed.

        RETRY   - The unsigned 32 bit time interval that should elapse
                  before a failed refresh should be retried.

        EXPIRE  - A 32 bit time value that specifies the upper limit on
                  the time interval that can elapse before the zone is
                  no longer authoritative.

        MINIMUM - The unsigned 16 bit minimum TTL field that should be
                  exported with any RR from this zone (other than the
                  SOA itself).

        SOA records cause no additional section processing.  The RDATA


Mockapetris                                                    [Page 65]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        section of a SOA line in a master file is a standard printed
        domain name for MNAME, a standard X@Y mailbox specification for
        RNAME, and decimal numbers for the remaining parameters.

        All times are in units of seconds.

        Most of these fields are pertinent only for name server
        maintenance operations.  However, MINIMUM is used in all query
        operations that retrieve RRs from a zone.  Whenever a RR is
        sent in a response to a query, the TTL field is set to the
        maximum of the TTL field from the RR and the MINIMUM field in
        the appropriate SOA.  Thus MINIMUM is a lower bound on the TTL
        field for all RRs in a zone.  RRs in a zone are never discarded
        due to timeout unless the whole zone is deleted.  This prevents
        partial copies of zones.




































Mockapetris                                                    [Page 66]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


Appendix 3 - Internet specific field formats and operations

  Message transport

     The Internet supports name server access using TCP [10] on server
     port 53 (decimal) as well as datagram access using UDP [11] on UDP
     port 53 (decimal).  Messages sent over TCP virtual circuits are
     preceded by an unsigned 16 bit length field which describes the
     length of the message, excluding the length field itself.

          +-----------------------------------------------+
          |                                               |
          |             *****  WARNING  *****             |
          |                                               |
          |  The following formats are preliminary and    |
          | are included for purposes of explanation only.|
          | In particular, new RR types will be added,    |
          | and the size, position, and encoding of       |
          | fields are subject to change.                 |
          |                                               |
          +-----------------------------------------------+

  A RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    ADDRESS                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     where:

     ADDRESS   - A 32 bit ARPA internet address

     Hosts that have multiple ARPA Internet addresses will have
     multiple A records.

     A records cause no additional section processing.  The RDATA
     section of an A line in a master file is an Internet address
     expressed as four decimal numbers separated by dots without any
     imbedded spaces (e.g., "10.2.0.52" or "192.0.5.6").












Mockapetris                                                    [Page 67]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


  WKS RDATA format

          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |                    ADDRESS                    |
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
          |       PROTOCOL        |                       |
          +--+--+--+--+--+--+--+--+                       |
          |                                               |
          /                   <BIT MAP>                   /
          /                                               /
          +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

     where:

     ADDRESS   - An 32 bit ARPA Internet address

     PROTOCOL  - An 8 bit IP protocol number

     <BIT MAP> - A variable length bit map.  The bit map must be a
               multiple of 8 bits long.

     The WKS record is used to describe the well known services
     supported by a particular protocol on a particular internet
     address.  The PROTOCOL field specifies an IP protocol number, and
     the bit map has one bit per port of the specified protocol.  The
     first bit corresponds to port 0, the second to port 1, etc.  If
     less than 256 bits are present, the remainder are assumed to be
     zero.  The appropriate values for ports and protocols are
     specified in [13].

     For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP
     port 25 (SMTP).  If this bit is set, a SMTP server should be
     listening on TCP port 25; if zero, SMTP service is not supported
     on the specified address.

     The anticipated use of WKS RRs is to provide availability
     information for servers for TCP and UDP.  If a server supports
     both TCP and UDP, or has multiple Internet addresses, then
     multiple WKS RRs are used.

     WKS RRs cause no additional section processing.  The RDATA section
     of a WKS record consists of a decimal protocol number followed by
     mnemonic identifiers which specify bits to be set to 1.

  IN-ADDR special domain

     The ARPA internet uses a special domain to support gateway
     location and ARPA Internet address to host mapping.  The intent of
     this domain is to allow queries to locate all gateways on a


Mockapetris                                                    [Page 68]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     particular network in the ARPA Internet, and also to provide a
     guaranteed method to perform host address to host name mapping.

     Note that both of these services are similar to functions that
     could be performed by inverse queries; the difference is that this
     part of the domain name space is structured according to address,
     and hence can guarantee that the appropriate data can be located
     without an exhaustive search of the domain space.  It is
     anticipated that the special tree will be used by ARPA Internet
     resolvers for all gateway location services, but that address to
     name resolution will be performed by first trying the inverse
     query on the local name server database followed by a query in the
     special space if the inverse query fails.

     The domain is a top level domain called IN-ADDR whose substructure
     follows the ARPA Internet addressing structure.

     Domain names in the IN-ADDR domain are defined to have up to four
     labels in addition to the IN-ADDR label.  Each label is a
     character string which expresses a decimal value in the range
     0-255 (with leading zeros omitted except in the case of a zero
     octet which is represented by a single zero).  These labels
     correspond to the 4 octets of an ARPA Internet address.

     Host addresses are represented by domain names that have all four
     labels specified.  Thus data for ARPA Internet address 10.2.0.52
     is located at domain name 52.0.2.10.IN-ADDR.  The reversal, though
     awkward to read,  allows zones to follow the natural grouping of
     hosts within networks.  For example, 10.IN-ADDR can be a zone
     containing data for the ARPANET, while 26.IN-ADDR can be a
     separate zone for MILNET.  Address nodes are used to hold pointers
     to primary host names in the normal domain space.

     Network addresses correspond to some of the non-terminal nodes in
     the IN-ADDR tree, since ARPA Internet network numbers are either
     1, 2, or 3 octets.  Network nodes are used to hold pointers to
     primary host names (which happen to be gateways) in the normal
     domain space.  Since a gateway is, by definition, on more than one
     network, it will typically have two or more network nodes that
     point at the gateway.  Gateways will also have host level pointers
     at their fully qualified addresses.

     Both the gateway pointers at network nodes and the normal host
     pointers at full address nodes use the PTR RR to point back to the
     primary domain names of the corresponding hosts.

     For example, part of the IN-ADDR domain will contain information
     about the ISI to MILNET and MIT gateways, and hosts F.ISI.ARPA and
     MULTICS.MIT.ARPA.  Assuming that ISI gateway has addresses


Mockapetris                                                    [Page 69]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


     10.2.0.22 and 26.0.0.103, and a name MILNET-GW.ISI.ARPA, and the
     MIT gateway has addresses 10.0.0.77 and 18.10.0.4 and a name
     GW.MIT.ARPA, the domain database would contain:

          10.IN-ADDR           PTR  IN MILNET-GW.ISI.ARPA
          10.IN-ADDR           PTR  IN GW.MIT.ARPA
          18.IN-ADDR           PTR  IN GW.MIT.ARPA
          26.IN-ADDR           PTR  IN MILNET-GW.ISI.ARPA
          22.0.2.10.IN-ADDR    PTR  IN MILNET-GW.ISI.ARPA
          103.0.0.26.IN-ADDR   PTR  IN MILNET-GW.ISI.ARPA
          77.0.0.10.IN-ADDR    PTR  IN GW.MIT.ARPA
          4.0.10.18.IN-ADDR    PTR  IN GW.MIT.ARPA
          52.0.2.10.IN-ADDR    PTR  IN F.ISI.ARPA
          6.0.0.10.IN-ADDR     PTR  IN MULTICS.MIT.ARPA

     Thus a program which wanted to locate gateways on net 10 would
     originate a query of the form QTYPE=PTR, QCLASS=IN,
     QNAME=10.IN-ADDR.  It would receive two RRs in response:

          10.IN-ADDR           PTR  IN MILNET-GW.ISI.ARPA
          10.IN-ADDR           PTR  IN GW.MIT.ARPA

     The program could then originate QTYPE=A, QCLASS=IN queries for
     MILNET-GW.ISI.ARPA and GW.MIT.ARPA to discover the ARPA Internet
     addresses of these gateways.

     A resolver which wanted to find the host name corresponding to
     ARPA Internet host address 10.0.0.6 might first try an inverse
     query on the local name server, but find that this information
     wasn't available.  It could then try a query of the form
     QTYPE=PTR, QCLASS=IN, QNAME=6.0.0.10.IN-ADDR, and would receive:

          6.0.0.10.IN-ADDR     PTR  IN MULTICS.MIT.ARPA

     Several cautions apply to the use of these services:

        Since the IN-ADDR special domain and the normal domain for a
        particular host or gateway will be in different zones, the
        possibility exists that that the data may be inconsistent.

        Gateways will often have two names in separate domains, only
        one of which can be primary.

        Systems that use the domain database to initialize their
        routing tables must start with enough gateway information to
        guarantee that they can access the appropriate name server.

        The gateway data only reflects the existence of a gateway in a



Mockapetris                                                    [Page 70]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


        manner equivalent to the current HOSTS.TXT file.  It doesn't
        replace the dynamic availability information from GGP or EGP.

















































Mockapetris                                                    [Page 71]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


REFERENCES and BIBLIOGRAPHY

  [1]  E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet
       Host Table Specification", RFC 810, Network Information Center,
       SRI International, March 1982.

  [2]  J. Postel, "Computer Mail Meeting Notes", RFC 805,
       USC/Information Sciences Institute, February 1982.

  [3]  Z. Su, and J. Postel, "The Domain Naming Convention for Internet
       User Applications", RFC 819, Network Information Center, SRI
       International, August 1982.

  [4]  Z. Su, "A Distributed System for Internet Name Service",
       RFC 830, Network Information Center, SRI International,
       October 1982.

  [5]  K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC 812, Network
       Information Center, SRI International, March 1982.

  [6]   M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name
       Server", Computer Networks, vol 6, nr 3, July 1982.

  [7]  K. Harrenstien, "NAME/FINGER", RFC 742, Network Information
       Center, SRI International, December 1977.

  [8]  J. Postel, "Internet Name Server", IEN 116, USC/Information
       Sciences Institute, August 1979.

  [9]  K. Harrenstien, V. White, and E. Feinler, "Hostnames Server",
       RFC 811, Network Information Center, SRI International,
       March 1982.

  [10] J. Postel, "Transmission Control Protocol", RFC 793,
       USC/Information Sciences Institute, September 1981.

  [11] J. Postel, "User Datagram Protocol", RFC 768, USC/Information
       Sciences Institute, August 1980.

  [12] J. Postel, "Simple Mail Transfer Protocol", RFC 821,
       USC/Information Sciences Institute, August 1980.

  [13] J. Reynolds, and J. Postel, "Assigned Numbers", RFC 870,
       USC/Information Sciences Institute, October 1983.

  [14] P. Mockapetris, "Domain names - Concepts and Facilities,"
       RFC 882, USC/Information Sciences Institute, November 1983.




Mockapetris                                                    [Page 72]


RFC 883                                                    November 1983
                        Domain Names - Implementation and Specification


INDEX

  * usage........................................................37, 57

  A RDATA format.....................................................67

  byte order..........................................................6

  cache queue....................................................35, 42
  character case..................................................7, 31
  CLASS...........................................................9, 58
  completion.........................................................19
  compression........................................................31
  CNAME RR...........................................................60

  header format......................................................26
  HINFO RR...........................................................60

  include files......................................................43
  inverse queries....................................................17

  mailbox names......................................................53
  master files.......................................................43
  MB RR..............................................................61
  MD RR..............................................................61
  message format.....................................................13
  MF RR..............................................................62
  MG RR..............................................................62
  MINFO RR...........................................................63
  MR RR..............................................................63

  NULL RR............................................................64
  NS RR..............................................................64

  PTR RR.........................................................64, 69

  QCLASS.............................................................58
  QTYPE..............................................................57
  queries (standard).................................................15

  recursive service..................................................24
  RR format..........................................................59

  SOA RR.............................................................65
  Special domains....................................................68

  TYPE...............................................................57

  WKS type RR........................................................68


Mockapetris                                                    [Page 73]