Internet Engineering Task Force (IETF)                       A. Minaburo
Request for Comments: 8824                                        Acklio
Category: Standards Track                                     L. Toutain
ISSN: 2070-1721                                           IMT Atlantique
                                                           R. Andreasen
                                            Universidad de Buenos Aires
                                                              June 2021


           Static Context Header Compression (SCHC) for the
               Constrained Application Protocol (CoAP)

Abstract

  This document defines how to compress Constrained Application
  Protocol (CoAP) headers using the Static Context Header Compression
  and fragmentation (SCHC) framework.  SCHC defines a header
  compression mechanism adapted for Constrained Devices.  SCHC uses a
  static description of the header to reduce the header's redundancy
  and size.  While RFC 8724 describes the SCHC compression and
  fragmentation framework, and its application for IPv6/UDP headers,
  this document applies SCHC to CoAP headers.  The CoAP header
  structure differs from IPv6 and UDP, since CoAP uses a flexible
  header with a variable number of options, themselves of variable
  length.  The CoAP message format is asymmetric: the request messages
  have a header format different from the format in the response
  messages.  This specification gives guidance on applying SCHC to
  flexible headers and how to leverage the asymmetry for more efficient
  compression Rules.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8824.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Terminology
  2.  SCHC Applicability to CoAP
  3.  CoAP Headers Compressed with SCHC
    3.1.  Differences between CoAP and UDP/IP Compression
  4.  Compression of CoAP Header Fields
    4.1.  CoAP Version Field
    4.2.  CoAP Type Field
    4.3.  CoAP Code Field
    4.4.  CoAP Message ID Field
    4.5.  CoAP Token Fields
  5.  CoAP Options
    5.1.  CoAP Content and Accept Options
    5.2.  CoAP Option Max-Age, Uri-Host, and Uri-Port Fields
    5.3.  CoAP Option Uri-Path and Uri-Query Fields
      5.3.1.  Variable Number of Path or Query Elements
    5.4.  CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme
          Fields
    5.5.  CoAP Option ETag, If-Match, If-None-Match, Location-Path,
          and Location-Query Fields
  6.  SCHC Compression of CoAP Extensions
    6.1.  Block
    6.2.  Observe
    6.3.  No-Response
    6.4.  OSCORE
  7.  Examples of CoAP Header Compression
    7.1.  Mandatory Header with CON Message
    7.2.  OSCORE Compression
    7.3.  Example OSCORE Compression
  8.  IANA Considerations
  9.  Security Considerations
  10. Normative References
  Acknowledgements
  Authors' Addresses

1.  Introduction

  The Constrained Application Protocol (CoAP) [RFC7252] is a command/
  response protocol designed for microcontrollers with small RAM and
  ROM and optimized for services based on REST (Representational State
  Transfer).  Although the Constrained Devices are a leading factor in
  the design of CoAP, a CoAP header's size is still too large for
  LPWANs (Low-Power Wide-Area Networks).  Static Context Header
  Compression and fragmentation (SCHC) over CoAP headers is required to
  increase performance or to use CoAP over LPWAN technologies.

  [RFC8724] defines the SCHC framework, which includes a header
  compression mechanism for LPWANs that is based on a static context.
  Section 5 of [RFC8724] explains where compression and decompression
  occur in the architecture.  The SCHC compression scheme assumes as a
  prerequisite that both endpoints know the static context before
  transmission.  The way the context is configured, provisioned, or
  exchanged is out of this document's scope.

  CoAP is an application protocol, so CoAP compression requires
  installing common Rules between the two SCHC instances.  SCHC
  compression may apply at two different levels: at IP and UDP in the
  LPWAN and another at the application level for CoAP.  These two
  compression techniques may be independent.  Both follow the same
  principle as that described in [RFC8724].  As different entities
  manage the CoAP compression process at different levels, the SCHC
  Rules driving the compression/decompression are also different.
  [RFC8724] describes how to use SCHC for IP and UDP headers.  This
  document specifies how to apply SCHC compression to CoAP headers.

  SCHC compresses and decompresses headers based on common contexts
  between Devices.  The SCHC context includes multiple Rules.  Each
  Rule can match the header fields to specific values or ranges of
  values.  If a Rule matches, the matched header fields are replaced by
  the RuleID and the Compression Residue that contains the residual
  bits of the compression.  Thus, different Rules may correspond to
  different protocol headers in the packet that a Device expects to
  send or receive.

  A Rule describes the packets' entire header with an ordered list of
  Field Descriptors; see Section 7 of [RFC8724].  Thereby, each
  description contains the Field ID (FID), Field Length (FL), and Field
  Position (FP), as well as a Direction Indicator (DI) (upstream,
  downstream, and bidirectional) and some associated Target Values
  (TVs).  The DI is used for compression to give the best TV to the FID
  when these values differ in their transmission direction.  So, a
  field may be described several times.

  A Matching Operator (MO) is associated with each header Field
  Descriptor.  The Rule is selected if all the MOs fit the TVs for all
  fields of the incoming header.  A Rule cannot be selected if the
  message contains a field that is unknown to the SCHC compressor.

  In that case, a Compression/Decompression Action (CDA) associated
  with each field gives the method to compress and decompress each
  field.  Compression mainly results in one of four actions:

  *  send the field value (value-sent),

  *  send nothing (not-sent),

  *  send some Least Significant Bits (LSBs) of the field, or

  *  send an index (mapping-sent).

  After applying the compression, there may be some bits to be sent.
  These values are called "Compression Residue".

  SCHC is a general mechanism applied to different protocols, with the
  exact Rules to be used depending on the protocol and the application.
  Section 10 of [RFC8724] describes the compression scheme for IPv6 and
  UDP headers.  This document targets CoAP header compression using
  SCHC.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  SCHC Applicability to CoAP

  SCHC compression for CoAP headers MAY be done in conjunction with the
  lower layers (IPv6/UDP) or independently.  The SCHC adaptation
  layers, described in Section 5 of [RFC8724], may be used as shown in
  Figures 1, 2, and 3.

  In the first example, Figure 1, a Rule compresses the complete header
  stack from IPv6 to CoAP.  In this case, the Device and the Network
  Gateway (NGW) perform SCHC C/D (SCHC Compression/Decompression; see
  [RFC8724]).  The application communicating with the Device does not
  implement SCHC C/D.

        (Device)            (NGW)                              (App)

        +--------+                                           +--------+
        |  CoAP  |                                           |  CoAP  |
        +--------+                                           +--------+
        |  UDP   |                                           |  UDP   |
        +--------+     +----------------+                    +--------+
        |  IPv6  |     |      IPv6      |                    |  IPv6  |
        +--------+     +--------+-------+                    +--------+
        |  SCHC  |     |  SCHC  |       |                    |        |
        +--------+     +--------+       +                    +        +
        |  LPWAN |     | LPWAN  |       |                    |        |
        +--------+     +--------+-------+                    +--------+
            ((((LPWAN))))             ------   Internet  ------

        Figure 1: Compression/Decompression at the LPWAN Boundary

  Figure 1 shows the use of SCHC header compression above Layer 2 in
  the Device and the NGW.  The SCHC layer receives non-encrypted
  packets and can apply compression Rules to all the headers in the
  stack.  On the other end, the NGW receives the SCHC packet and
  reconstructs the headers using the Rule and the Compression Residue.
  After the decompression, the NGW forwards the IPv6 packet toward the
  destination.  The same process applies in the other direction when a
  non-encrypted packet arrives at the NGW.  Thanks to the IP forwarding
  based on the IPv6 prefix, the NGW identifies the Device and
  compresses headers using the Device's Rules.

  In the second example, Figure 2, SCHC compression is applied in the
  CoAP layer, compressing the CoAP header independently of the other
  layers.  The RuleID, Compression Residue, and CoAP payload are
  encrypted using a mechanism such as DTLS.  Only the other end (App)
  can decipher the information.  If needed, layers below use SCHC to
  compress the header as defined in [RFC8724] (represented by dotted
  lines in the figure).

  This use case needs an end-to-end context initialization between the
  Device and the application.  The context initialization is out of
  scope for this document.

        (Device)            (NGW)                               (App)

        +--------+                                           +--------+
        |  CoAP  |                                           |  CoAP  |
        +--------+                                           +--------+
        |  SCHC  |                                           |  SCHC  |
        +--------+                                           +--------+
        |  DTLS  |                                           |  DTLS  |
        +--------+                                           +--------+
        .  udp   .                                           .  udp   .
        ..........     ..................                    ..........
        .  ipv6  .     .      ipv6      .                    .  ipv6  .
        ..........     ..................                    ..........
        .  schc  .     .  schc  .       .                    .        .
        ..........     ..........       .                    .        .
        .  lpwan .     . lpwan  .       .                    .        .
        ..........     ..................                    ..........
            ((((LPWAN))))             ------   Internet  ------

      Figure 2: Standalone CoAP End-to-End Compression/Decompression

  The third example, Figure 3, shows the use of Object Security for
  Constrained RESTful Environments (OSCORE) [RFC8613].  In this case,
  SCHC needs two Rules to compress the CoAP header.  A first Rule
  focuses on the Inner header.  The result of this first compression is
  encrypted using the OSCORE mechanism.  Then, a second Rule compresses
  the Outer header, including the OSCORE options.

        (Device)            (NGW)                              (App)

        +--------+                                           +--------+
        |  CoAP  |                                           |  CoAP  |
        |  Inner |                                           |  Inner |
        +--------+                                           +--------+
        |  SCHC  |                                           |  SCHC  |
        |  Inner |                                           |  Inner |
        +--------+                                           +--------+
        |  CoAP  |                                           |  CoAP  |
        |  Outer |                                           |  Outer |
        +--------+                                           +--------+
        |  SCHC  |                                           |  SCHC  |
        |  Outer |                                           |  Outer |
        +--------+                                           +--------+
        .  udp   .                                           .  udp   .
        ..........     ..................                    ..........
        .  ipv6  .     .      ipv6      .                    .  ipv6  .
        ..........     ..................                    ..........
        .  schc  .     .  schc  .       .                    .        .
        ..........     ..........       .                    .        .
        .  lpwan .     . lpwan  .       .                    .        .
        ..........     ..................                    ..........
            ((((LPWAN))))             ------   Internet  ------

                Figure 3: OSCORE Compression/Decompression

  In the case of several SCHC instances, as shown in Figures 2 and 3,
  the Rules may come from different provisioning domains.

  This document focuses on CoAP compression, as represented by the
  dashed boxes in the previous figures.

3.  CoAP Headers Compressed with SCHC

  The use of SCHC over the CoAP header applies the same description and
  compression/decompression techniques as the technique used for IP and
  UDP, as explained in [RFC8724].  For CoAP, the SCHC Rules description
  uses the direction information to optimize the compression by
  reducing the number of Rules needed to compress headers.  The Field
  Descriptor MAY define both request/response headers and TVs in the
  same Rule, using the DI to indicate the header type.

  As for other header compression protocols, when the compressor does
  not find a correct Rule to compress the header, the packet MUST be
  sent uncompressed using the RuleID dedicated to this purpose, and
  where the Compression Residue is the complete header of the packet.
  See Section 6 of [RFC8724].

3.1.  Differences between CoAP and UDP/IP Compression

  CoAP compression differs from IPv6 and UDP compression in the
  following aspects:

  *  The CoAP message format is asymmetric; the headers are different
     for a request or a response.  For example, the Uri-Path option is
     mandatory in the request, and it might not be present in the
     response.  A request might contain an Accept option, and the
     response might include a Content-Format option.  In comparison,
     the IPv6 and UDP returning path swaps the value of some fields in
     the header.  However, all the directions have the same fields
     (e.g., source and destination address fields).

     [RFC8724] defines the use of a DI in the Field Descriptor, which
     allows a single Rule to process a message header differently,
     depending on the direction.

  *  Even when a field is "symmetric" (i.e., found in both directions),
     the values carried in each direction are different.  The
     compression may use a "match-mapping" MO to limit the range of
     expected values in a particular direction and reduce the
     Compression Residue's size.  Through the DI, a Field Descriptor in
     the Rules splits the possible field value into two parts, one for
     each direction.  For instance, if a client sends only Confirmable
     (CON) requests [RFC7252], the Type can be elided by compression,
     and the answer may use one single bit to carry either the ACK or
     Reset (RST) type.  The field Code has the same behavior: the 0.0X
     code format value in the request and the Y.ZZ code format in the
     response.

  *  In SCHC, the Rule defines the different header fields' length, so
     SCHC does not need to send it.  In IPv6 and UDP headers, the
     fields have a fixed size, known by definition.  On the other hand,
     some CoAP header fields have variable lengths, and the Rule
     description specifies it.  For example, in a Uri-Path or Uri-
     Query, the Token size may vary from 0 to 8 bytes, and the CoAP
     options use the Type-Length-Value encoding format.

     When doing SCHC compression of a variable-length field,
     Section 7.4.2 of [RFC8724] offers the option of defining a
     function for the Field Length in the Field Descriptor to know the
     length before compression.  If the Field Length is unknown, the
     Rule will set it as a variable, and SCHC will send the compressed
     field's length in the Compression Residue.

  *  A field can appear several times in the CoAP headers.  It is found
     typically for elements of a URI (path or queries).  The SCHC
     specification [RFC8724] allows a FID to appear several times in
     the Rule and uses the Field Position (FP) to identify the correct
     instance, thereby removing the MO's ambiguity.

  *  Field Lengths defined in CoAP can be too large when it comes to
     LPWAN traffic constraints.  For instance, this is particularly
     true for the Message ID field and the Token field.  SCHC uses
     different MOs to perform the compression.  See Section 7.4 of
     [RFC8724].  In this case, SCHC can apply the Most Significant Bits
     (MSBs) MO to reduce the information carried on LPWANs.

4.  Compression of CoAP Header Fields

  This section discusses the compression of the different CoAP header
  fields.  CoAP compression with SCHC follows the information provided
  in Section 7.1 of [RFC8724].

4.1.  CoAP Version Field

  The CoAP version is bidirectional and MUST be elided during SCHC
  compression, since it always contains the same value.  In the future,
  or if a new version of CoAP is defined, new Rules will be needed to
  avoid ambiguities between versions.

4.2.  CoAP Type Field

  CoAP [RFC7252] has four types of messages: two requests (CON, NON),
  one response (ACK), and one empty message (RST).

  The SCHC compression scheme SHOULD elide this field if, for instance,
  a client is sending only Non-confirmable (NON) messages or only CON
  messages.  For the RST message, SCHC may use a dedicated Rule.  For
  other usages, SCHC can use a "match-mapping" MO.

4.3.  CoAP Code Field

  The Code field, defined in an IANA registry [RFC7252], indicates the
  Request Method used in CoAP.  The compression of the CoAP Code field
  follows the same principle as that of the CoAP Type field.  If the
  Device plays a specific role, SCHC may split the code values into two
  Field Descriptors: (1) the request codes with the 0 class and (2) the
  response values.  SCHC will use the DI to identify the correct value
  in the packet.

  If the Device only implements a CoAP client, SCHC compression may
  reduce the request code to the set of requests the client can
  process.

  For known values, SCHC can use a "match-mapping" MO.  If SCHC cannot
  compress the Code field, it will send the values in the Compression
  Residue.

4.4.  CoAP Message ID Field

  SCHC can compress the Message ID field with the "MSB" MO and the
  "LSB" CDA.  See Section 7.4 of [RFC8724].

4.5.  CoAP Token Fields

  CoAP defines the Token using two CoAP fields: Token Length in the
  mandatory header and Token Value directly following the mandatory
  CoAP header.

  SCHC processes the Token Length as it would any header field.  If the
  value does not change, the size can be stored in the TV and elided
  during the transmission.  Otherwise, SCHC will send the Token Length
  in the Compression Residue.

  For the Token Value, SCHC MUST NOT send it as variable-length data in
  the Compression Residue, to avoid ambiguity with the Token Length.
  Therefore, SCHC MUST use the Token Length value to define the size of
  the Compression Residue.  SCHC designates a specific function, "tkl",
  that the Rule MUST use to complete the Field Descriptor.  During the
  decompression, this function returns the value contained in the Token
  Length field.

5.  CoAP Options

  CoAP defines options placed after the basic header, ordered by option
  number; see [RFC7252].  Each Option instance in a message uses the
  format Delta-Type (D-T), Length (L), Value (V).  The SCHC Rule builds
  the description of the option by using the following:

  *  in the FID: the option number built from the D-T;

  *  in the TV: the option value; and

  *  for the Option Length: the information provided in Sections 7.4.1
     and 7.4.2 of [RFC8724].

  When the Option Length has a well-known size, the Rule may keep the
  length value.  Therefore, SCHC compression does not send it.
  Otherwise, SCHC compression carries the length of the Compression
  Residue, in addition to the Compression Residue value.

  CoAP requests and responses do not include the same options.  So,
  compression Rules may reflect this asymmetry by tagging the DI.

  Note that length coding differs between CoAP options and SCHC
  variable size Compression Residue.

  The following sections present how SCHC compresses some specific CoAP
  options.

  If CoAP introduces a new option, the SCHC Rules MAY be updated, and
  the new FID description MUST be assigned to allow its compression.
  Otherwise, if no Rule describes this new option, SCHC compression is
  not achieved, and SCHC sends the CoAP header without compression.

5.1.  CoAP Content and Accept Options

  If the client expects a single value, it can be stored in the TV and
  elided during the transmission.  Otherwise, if the client expects
  several possible values, a "match-mapping" MO SHOULD be used to limit
  the Compression Residue's size.  If not, SCHC has to send the option
  value in the Compression Residue (fixed or variable length).

5.2.  CoAP Option Max-Age, Uri-Host, and Uri-Port Fields

  SCHC compresses these three fields in the same way.  When the values
  of these options are known, SCHC can elide these fields.  If the
  option uses well-known values, SCHC can use a "match-mapping" MO.
  Otherwise, SCHC will use the "value-sent" MO, and the Compression
  Residue will send these options' values.

5.3.  CoAP Option Uri-Path and Uri-Query Fields

  The Uri-Path and Uri-Query fields are repeatable options; this means
  that in the CoAP header, they may appear several times with different
  values.  The SCHC Rule description uses the FP to distinguish the
  different instances in the path.

  To compress repeatable field values, SCHC may use a "match-mapping"
  MO to reduce the size of variable paths or queries.  In these cases,
  to optimize the compression, several elements can be regrouped into a
  single entry.  The numbering of elements does not change, and the
  first matching element sets the MO comparison.

  In Table 1, SCHC can use a single bit in the Compression Residue to
  code one of the two paths.  If regrouping were not allowed, 2 bits in
  the Compression Residue would be needed.  SCHC sends the third path
  element as a variable size in the Compression Residue.

    +==========+=====+====+====+==========+=========+==============+
    |  Field   |  FL | FP | DI |    TV    |    MO   |     CDA      |
    +==========+=====+====+====+==========+=========+==============+
    | Uri-Path |     | 1  | Up | ["/a/b", | match-  | mapping-sent |
    |          |     |    |    | "/c/d"]  | mapping |              |
    +----------+-----+----+----+----------+---------+--------------+
    | Uri-Path | var | 3  | Up |          | ignore  | value-sent   |
    +----------+-----+----+----+----------+---------+--------------+

                     Table 1: Complex Path Example

  The length of Uri-Path and Uri-Query may be known when the Rule is
  defined.  In any case, SCHC MUST set the Field Length to a variable
  value.  The Compression Residue size is expressed in bytes.

  SCHC compression can use the MSB MO to a Uri-Path or Uri-Query
  element.  However, attention to the length is important because the
  MSB value is in bits, and the size MUST always be a multiple of 8
  bits.

  The length sent at the beginning of a variable-length Compression
  Residue indicates the LSB's size in bytes.

  For instance, for a CORECONF path /c/X6?k=eth0, the Rule description
  can be as follows (Table 2):

       +===========+=====+====+====+======+=========+============+
       |   Field   |  FL | FP | DI |  TV  |    MO   |    CDA     |
       +===========+=====+====+====+======+=========+============+
       | Uri-Path  |     | 1  | Up | "c"  | equal   | not-sent   |
       +-----------+-----+----+----+------+---------+------------+
       | Uri-Path  | var | 2  | Up |      | ignore  | value-sent |
       +-----------+-----+----+----+------+---------+------------+
       | Uri-Query | var | 1  | Up | "k=" | MSB(16) | LSB        |
       +-----------+-----+----+----+------+---------+------------+

                    Table 2: CORECONF URI Compression

  Table 2 shows the Rule description for a Uri-Path and a Uri-Query.
  SCHC compresses the first part of the Uri-Path with a "not-sent" CDA.
  SCHC will send the second element of the Uri-Path with the length
  (i.e., 0x2 "X6") followed by the query option (i.e., 0x4 "eth0").

5.3.1.  Variable Number of Path or Query Elements

  SCHC fixed the number of Uri-Path or Uri-Query elements in a Rule at
  the Rule creation time.  If the number varies, SCHC SHOULD either

  *  create several Rules to cover all possibilities or

  *  create a Rule that defines several entries for Uri-Path to cover
     the longest path and send a Compression Residue with a length of 0
     to indicate that a Uri-Path entry is empty.

  However, this adds 4 bits to the variable Compression Residue size.
  See Section 7.4.2 of [RFC8724].

5.4.  CoAP Option Size1, Size2, Proxy-URI, and Proxy-Scheme Fields

  The SCHC Rule description MAY define sending some field values by
  setting the TV to "not-sent", the MO to "ignore", and the CDA to
  "value-sent".  A Rule MAY also use a "match-mapping" MO when there
  are different options for the same FID.  Otherwise, the Rule sets the
  TV to the value, the MO to "equal", and the CDA to "not-sent".

5.5.  CoAP Option ETag, If-Match, If-None-Match, Location-Path, and
     Location-Query Fields

  A Rule entry cannot store these fields' values.  The Rule description
  MUST always send these values in the Compression Residue.

6.  SCHC Compression of CoAP Extensions

6.1.  Block

  When a packet uses a Block option [RFC7959], SCHC compression MUST
  send its content in the Compression Residue.  The SCHC Rule describes
  an empty TV with the MO set to "ignore" and the CDA set to "value-
  sent".  The Block option allows fragmentation at the CoAP level that
  is compatible with SCHC fragmentation.  Both fragmentation mechanisms
  are complementary, and the node may use them for the same packet as
  needed.

6.2.  Observe

  [RFC7641] defines the Observe Option.  The SCHC Rule description will
  not define the TV but will set the MO to "ignore" and the CDA to
  "value-sent".  SCHC does not limit the maximum size for this option
  (3 bytes).  To reduce the transmission size, either the Device
  implementation MAY limit the delta between two consecutive values or
  a proxy can modify the increment.

  Since the Observe Option MAY use a RST message to inform a server
  that the client does not require the Observe response, a specific
  SCHC Rule SHOULD exist to allow the message's compression with the
  RST type.

6.3.  No-Response

  [RFC7967] defines a No-Response option limiting the responses made by
  a server to a request.  Different behaviors exist while using this
  option to limit the responses made by a server to a request.  If both
  ends know the value, then the SCHC Rule will describe a TV to this
  value, with the MO set to "equal" and the CDA set to "not-sent".

  Otherwise, if the value is changing over time, the SCHC Rule will set
  the MO to "ignore" and the CDA to "value-sent".  The Rule may also
  use a "match-mapping" MO to compress this option.

6.4.  OSCORE

  OSCORE [RFC8613] defines end-to-end protection for CoAP messages.
  This section describes how SCHC Rules can be applied to compress
  OSCORE-protected messages.

  Figure 4 shows the OSCORE option value encoding defined in
  Section 6.1 of [RFC8613], where the first byte specifies the content
  of the OSCORE options using flags.  The three most significant bits
  of this byte are reserved and always set to 0.  Bit h, when set,
  indicates the presence of the kid context field in the option.  Bit
  k, when set, indicates the presence of a kid field.  The three least
  significant bits, n, indicate the length of the piv (Partial
  Initialization Vector) field in bytes.  When n = 0, no piv is
  present.

        0 1 2 3 4 5 6 7 <--------- n bytes ------------->
       +-+-+-+-+-+-+-+-+---------------------------------
       |0 0 0|h|k|  n  |      Partial IV (if any) ...
       +-+-+-+-+-+-+-+-+---------------------------------
       |               |                                |
       |<--  CoAP   -->|<------ CoAP OSCORE_piv ------> |
          OSCORE_flags

        <- 1 byte -> <------ s bytes ----->
       +------------+----------------------+-----------------------+
       | s (if any) | kid context (if any) | kid (if any)      ... |
       +------------+----------------------+-----------------------+
       |                                   |                       |
       | <------ CoAP OSCORE_kidctx ------>|<-- CoAP OSCORE_kid -->|

                         Figure 4: OSCORE Option

  The flag byte is followed by the piv field, the kid context field,
  and the kid field, in that order, and, if present, the kid context
  field's length (in bytes) is encoded in the first byte, denoted by
  "s".

  To better perform OSCORE SCHC compression, the Rule description needs
  to identify the OSCORE option and the fields it contains.
  Conceptually, it discerns up to four distinct pieces of information
  within the OSCORE option: the flag bits, the piv, the kid context,
  and the kid.  The SCHC Rule splits the OSCORE option into four Field
  Descriptors in order to compress them:

  *  CoAP OSCORE_flags

  *  CoAP OSCORE_piv

  *  CoAP OSCORE_kidctx

  *  CoAP OSCORE_kid

  Figure 4 shows the OSCORE option format with those four fields
  superimposed on it.  Note that the CoAP OSCORE_kidctx field directly
  includes the size octet, s.

7.  Examples of CoAP Header Compression

7.1.  Mandatory Header with CON Message

  In this first scenario, the SCHC compressor on the NGW side receives
  a POST message from an Internet client, which is immediately
  acknowledged by the Device.  Table 3 describes the SCHC Rule
  descriptions for this scenario.

  +===================================================================+
  |RuleID 1                                                           |
  +==========+===+==+==+======+===============+===============+=======+
  |  Field   | FL|FP|DI|  TV  |       MO      |      CDA      |  Sent |
  |          |   |  |  |      |               |               | [bits]|
  +==========+===+==+==+======+===============+===============+=======+
  |CoAP      |2  |1 |Bi|01    | equal         | not-sent      |       |
  |version   |   |  |  |      |               |               |       |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP Type |2  |1 |Dw|CON   | equal         | not-sent      |       |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP Type |2  |1 |Up|[ACK, | match-mapping | matching-sent |T      |
  |          |   |  |  |RST]  |               |               |       |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP TKL  |4  |1 |Bi|0     | equal         | not-sent      |       |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP Code |8  |1 |Bi|[0.00,| match-mapping | matching-sent |CC CCC |
  |          |   |  |  |...   |               |               |       |
  |          |   |  |  |5.05] |               |               |       |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP MID  |16 |1 |Bi|0000  | MSB(7)        | LSB           |MID    |
  +----------+---+--+--+------+---------------+---------------+=======+
  |CoAP Uri- |var|1 |Dw|path  | equal 1       | not-sent      |       |
  |Path      |   |  |  |      |               |               |       |
  +----------+---+--+--+------+---------------+---------------+=======+

          Table 3: CoAP Context to Compress Header without Token

  In this example, SCHC compression elides the version and Token Length
  fields.  The 25 Method and Response Codes defined in [RFC7252] have
  been shrunk to 5 bits using a "match-mapping" MO.  The Uri-Path
  contains a single element indicated in the TV and elided with the CDA
  "not-sent".

  SCHC compression reduces the header, sending only the Type, a mapped
  code, and the least significant bits of the Message ID (9 bits in the
  example above).

  Note that a client located in an Application Server sending a request
  to a server located in the Device may not be compressed through this
  Rule, since the MID might not start with 7 bits equal to 0.  A CoAP
  proxy placed before SCHC C/D can rewrite the Message ID to fit the
  value and match the Rule.

7.2.  OSCORE Compression

  OSCORE aims to solve the problem of end-to-end encryption for CoAP
  messages.  Therefore, the goal is to hide the message as much as
  possible while still enabling proxy operation.

  Conceptually, this is achieved by splitting the CoAP message into an
  Inner Plaintext and Outer OSCORE message.  The Inner Plaintext
  contains sensitive information that is not necessary for proxy
  operation.  However, it is part of the message that can be encrypted
  until it reaches its end destination.  The Outer Message acts as a
  shell matching the regular CoAP message format and includes all
  options and information needed for proxy operation and caching.
  Figure 5 below illustrates this analysis.

  CoAP arranges the options into one of three classes, each granted a
  specific type of protection by the protocol:

  Class E:  Encrypted options moved to the Inner Plaintext.

  Class I:  Integrity-protected options included in the Additional
     Authenticated Data (AAD) for the encryption of the Plaintext but
     otherwise left untouched in the Outer Message.

  Class U:  Unprotected options left untouched in the Outer Message.

  These classes point out that the Outer option contains the OSCORE
  option and that the message is OSCORE protected; this option carries
  the information necessary to retrieve the Security Context.  The
  endpoint will use this Security Context to decrypt the message
  correctly.

                        Original CoAP Packet
                     +-+-+---+-------+---------------+
                     |v|t|TKL| code  | Message ID    |
                     +-+-+---+-------+---------------+....+
                     | Token                              |
                     +-------------------------------.....+
                     | Options (IEU)            |
                     .                          .
                     .                          .
                     +------+-------------------+
                     | 0xFF |
                     +------+------------------------+
                     |                               |
                     |     Payload                   |
                     |                               |
                     +-------------------------------+
                            /                \
                           /                  \
                          /                    \
                         /                      \
       Outer Header     v                        v  Plaintext
    +-+-+---+--------+---------------+          +-------+
    |v|t|TKL|new code| Message ID    |          | code  |
    +-+-+---+--------+---------------+....+     +-------+-----......+
    | Token                               |     | Options (E)       |
    +--------------------------------.....+     +-------+------.....+
    | Options (IU)             |                | 0xFF  |
    .                          .                +-------+-----------+
    . OSCORE Option            .                |                   |
    +------+-------------------+                | Payload           |
    | 0xFF |                                    |                   |
    +------+                                    +-------------------+

    Figure 5: CoAP Packet Split into OSCORE Outer Header and Plaintext

  Figure 5 shows the packet format for the OSCORE Outer header and
  Plaintext.

  In the Outer header, the original header code is hidden and replaced
  by a default dummy value.  As seen in Sections 4.1.3.5 and 4.2 of
  [RFC8613], the message code is replaced by POST for requests and
  Changed for responses when CoAP is not using the Observe Option.  If
  CoAP uses Observe, the OSCORE message code is replaced by FETCH for
  requests and Content for responses.

  The first byte of the Plaintext contains the original packet code,
  followed by the message code, the class E options, and, if present,
  the original message payload preceded by its payload marker.

  An Authenticated Encryption with Associated Data (AEAD) algorithm now
  encrypts the Plaintext.  This integrity-protects the Security Context
  parameters and, eventually, any class I options from the Outer
  header.  The resulting ciphertext becomes the new payload of the
  OSCORE message, as illustrated in Figure 6.

  As defined in [RFC5116], this ciphertext is the encrypted Plaintext's
  concatenation of the Authentication Tag. Note that Inner Compression
  only affects the Plaintext before encryption.  The Authentication
  Tag, fixed in length and uncompressed, is considered part of the cost
  of protection.

       Outer Header
    +-+-+---+--------+---------------+
    |v|t|TKL|new code| Message ID    |
    +-+-+---+--------+---------------+....+
    | Token                               |
    +--------------------------------.....+
    | Options (IU)             |
    .                          .
    . OSCORE Option            .
    +------+-------------------+
    | 0xFF |
    +------+---------------------------+
    |                                  |
    | Ciphertext: Encrypted Inner      |
    |             Header and Payload   |
    |             + Authentication Tag |
    |                                  |
    +----------------------------------+

                         Figure 6: OSCORE Message

  The SCHC compression scheme consists of compressing both the
  Plaintext before encryption and the resulting OSCORE message after
  encryption; see Figure 7.

  The OSCORE message translates into a segmented process where SCHC
  compression is applied independently in two stages, each with its
  corresponding set of Rules, with the Inner SCHC Rules and the Outer
  SCHC Rules.  This way, compression is applied to all fields of the
  original CoAP message.

       Outer Message                             OSCORE Plaintext
    +-+-+---+--------+---------------+          +-------+
    |v|t|TKL|new code| Message ID    |          | code  |
    +-+-+---+--------+---------------+....+     +-------+-----......+
    | Token                               |     | Options (E)       |
    +--------------------------------.....+     +-------+------.....+
    | Options (IU)             |                | 0xFF  |
    .                          .                +-------+-----------+
    . OSCORE Option            .                |                   |
    +------+-------------------+                | Payload           |
    | 0xFF |                                    |                   |
    +------+------------+                       +-------------------+
    |  Ciphertext       |<---------\                      |
    |                   |          |                      v
    +-------------------+          |             +-----------------+
            |                      |             |   Inner SCHC    |
            v                      |             |   Compression   |
      +-----------------+          |             +-----------------+
      |   Outer SCHC    |          |                     |
      |   Compression   |          |                     v
      +-----------------+          |             +-------+
            |                      |             |RuleID |
            v                      |             +-------+-----------+
      +--------+             +------------+      |Compression Residue|
      |RuleID' |             | Encryption | <--  +----------+--------+
      +--------+-----------+ +------------+      |                   |
      |Compression Residue'|                     | Payload           |
      +-----------+--------+                     |                   |
      |  Ciphertext        |                     +-------------------+
      |                    |
      +--------------------+

                   Figure 7: OSCORE Compression Diagram

  Note that since the corresponding endpoint can only decrypt the Inner
  part of the message, this endpoint will also have to implement Inner
  SCHC Compression/Decompression.

7.3.  Example OSCORE Compression

  This section gives an example with a GET request and its consequent
  Content response from a Device-based CoAP client to a cloud-based
  CoAP server.  The example also describes a possible set of Rules for
  Inner SCHC Compression and Outer SCHC Compression.  A dump of the
  results and a contrast between SCHC + OSCORE performance with SCHC +
  CoAP performance are also listed.  This example gives an
  approximation of the cost of security with SCHC-OSCORE.

  Our first CoAP message is the GET request in Figure 8.

  Original message:
  =================
  0x4101000182bb74656d7065726174757265

  Header:
  0x4101
  01   Ver
    00   CON
      0001   TKL
          00000001   Request Code 1 "GET"

  0x0001 = mid
  0x82 = token

  Options:
  0xbb74656d7065726174757265
  Option 11: URI_PATH
  Value = temperature

  Original message length:   17 bytes

                        Figure 8: CoAP GET Request

  Its corresponding response is the Content response in Figure 9.

  Original message:
  =================
  0x6145000182ff32332043

  Header:
  0x6145
  01   Ver
    10   ACK
      0001   TKL
          01000101 Successful Response Code 69 "2.05 Content"

  0x0001 = mid
  0x82 = token

  0xFF  Payload marker
  Payload:
  0x32332043

  Original message length:   10 bytes

                     Figure 9: CoAP Content Response

  The SCHC Rules for the Inner Compression include all fields already
  present in a regular CoAP message.  The methods described in
  Section 4 apply to these fields.  Table 4 provides an example.

  +===================================================================+
  |RuleID 0                                                           |
  +========+==+==+==+===========+===============+==============+======+
  | Field  |FL|FP|DI|     TV    |       MO      |     CDA      | Sent |
  |        |  |  |  |           |               |              |[bits]|
  +========+==+==+==+===========+===============+==============+======+
  |CoAP    |8 |1 |Up|1          | equal         | not-sent     |      |
  |Code    |  |  |  |           |               |              |      |
  +--------+--+--+--+-----------+---------------+--------------+======+
  |CoAP    |8 |1 |Dw|[69,132]   | match-mapping | mapping-sent |c     |
  |Code    |  |  |  |           |               |              |      |
  +--------+--+--+--+-----------+---------------+--------------+======+
  |CoAP    |  |1 |Up|temperature| equal         | not-sent     |      |
  |Uri-Path|  |  |  |           |               |              |      |
  +--------+--+--+--+-----------+---------------+--------------+======+

                         Table 4: Inner SCHC Rule

  Figure 10 shows the Plaintext obtained for the example GET request.
  The packet follows the process of Inner Compression and encryption
  until the payload.  The Outer OSCORE message adds the result of the
  Inner process.

     ________________________________________________________
    |                                                        |
    | OSCORE Plaintext                                       |
    |                                                        |
    | 0x01bb74656d7065726174757265  (13 bytes)               |
    |                                                        |
    | 0x01 Request Code GET                                  |
    |                                                        |
    |      bb74656d7065726174757265 Option 11: URI_PATH      |
    |                               Value = temperature      |
    |________________________________________________________|

                                |
                                |
                                | Inner SCHC Compression
                                |
                                v
                  _________________________________
                 |                                 |
                 | Compressed Plaintext            |
                 |                                 |
                 | 0x00                            |
                 |                                 |
                 | RuleID = 0x00 (1 byte)          |
                 | (No Compression Residue)        |
                 |_________________________________|

                                |
                                | AEAD Encryption
                                |  (piv = 0x04)
                                v
           _________________________________________________
          |                                                 |
          |  encrypted_plaintext = 0xa2 (1 byte)            |
          |  tag = 0xc54fe1b434297b62 (8 bytes)             |
          |                                                 |
          |  ciphertext = 0xa2c54fe1b434297b62 (9 bytes)    |
          |_________________________________________________|

     Figure 10: Plaintext Compression and Encryption for GET Request

  In this case, the original message has no payload, and its resulting
  Plaintext is compressed up to only 1 byte (the size of the RuleID).
  The AEAD algorithm preserves this length in its first output and
  yields a fixed-size tag.  SCHC cannot compress the tag, and the
  OSCORE message must include it without compression.  The use of
  integrity protection translates into an overhead in total message
  length, limiting the amount of compression that can be achieved and
  playing into the cost of adding security to the exchange.

  Figure 11 shows the process for the example Content response.  The
  Compression Residue is 1 bit long.  Note that since SCHC adds padding
  after the payload, this misalignment causes the hexadecimal code from
  the payload to differ from the original, even if SCHC cannot compress
  the tag.  The overhead for the tag bytes limits SCHC's performance
  but brings security to the transmission.

     ________________________________________________________
    |                                                        |
    | OSCORE Plaintext                                       |
    |                                                        |
    | 0x45ff32332043  (6 bytes)                              |
    |                                                        |
    | 0x45 Successful Response Code 69 "2.05 Content"        |
    |                                                        |
    |     ff Payload marker                                  |
    |                                                        |
    |       32332043 Payload                                 |
    |________________________________________________________|

                                |
                                |
                                | Inner SCHC Compression
                                |
                                v
        _________________________________________________
       |                                                 |
       | Compressed Plaintext                            |
       |                                                 |
       | 0x001919902180 (6 bytes)                        |
       |                                                 |
       |   00 RuleID                                     |
       |                                                 |
       |  0b0 (1 bit match-mapping Compression Residue)  |
       |       0x32332043 >> 1 (shifted payload)         |
       |                        0b0000000 Padding        |
       |_________________________________________________|

                                |
                                | AEAD Encryption
                                |  (piv = 0x04)
                                v
       _________________________________________________________
      |                                                         |
      |  encrypted_plaintext = 0x10c6d7c26cc1 (6 bytes)         |
      |  tag = 0xe9aef3f2461e0c29 (8 bytes)                     |
      |                                                         |
      |  ciphertext = 0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes) |
      |_________________________________________________________|

   Figure 11: Plaintext Compression and Encryption for Content Response

  The Outer SCHC Rule (Table 5) must process the OSCORE options fields.
  Figures 12 and 13 show a dump of the OSCORE messages generated from
  the example messages.  They include the Inner Compressed ciphertext
  in the payload.  These are the messages that have to be compressed
  via the Outer SCHC Compression scheme.

  Table 5 shows a possible set of Outer Rule items to compress the
  Outer header.

  +===================================================================+
  |RuleID 0                                                           |
  +===============+===+==+==+================+=======+=========+======+
  |     Field     | FL|FP|DI|       TV       |   MO  |   CDA   | Sent |
  |               |   |  |  |                |       |         |[bits]|
  +===============+===+==+==+================+=======+=========+======+
  |CoAP version   |2  |1 |Bi| 01             |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP Type      |2  |1 |Up| 0              |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP Type      |2  |1 |Dw| 2              |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP TKL       |4  |1 |Bi| 1              |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP Code      |8  |1 |Up| 2              |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP Code      |8  |1 |Dw| 68             |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP MID       |16 |1 |Bi| 0000           |MSB(12)|LSB      |MMMM  |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP Token     |tkl|1 |Bi| 0x80           |MSB(5) |LSB      |TTT   |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP           |8  |1 |Up| 0x09           |equal  |not-sent |      |
  |OSCORE_flags   |   |  |  |                |       |         |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP OSCORE_piv|var|1 |Up| 0x00           |MSB(4) |LSB      |PPPP  |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP OSCORE_kid|var|1 |Up| 0x636c69656e70 |MSB(52)|LSB      |KKKK  |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP           |var|1 |Bi| b''            |equal  |not-sent |      |
  |OSCORE_kidctx  |   |  |  |                |       |         |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP           |8  |1 |Dw| b''            |equal  |not-sent |      |
  |OSCORE_flags   |   |  |  |                |       |         |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP OSCORE_piv|var|1 |Dw| b''            |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+
  |CoAP OSCORE_kid|var|1 |Dw| b''            |equal  |not-sent |      |
  +---------------+---+--+--+----------------+-------+---------+======+

                         Table 5: Outer SCHC Rule

  Protected message:
  ==================
  0x4102000182d8080904636c69656e74ffa2c54fe1b434297b62
  (25 bytes)

  Header:
  0x4102
  01   Ver
    00   CON
      0001   TKL
          00000010   Request Code 2 "POST"

  0x0001 = mid
  0x82 = token

  Options:
  0xd8080904636c69656e74 (10 bytes)
  Option 21: OBJECT_SECURITY
  Value = 0x0904636c69656e74
            09 = 000 0 1 001 flag byte
                     h k  n
              04 piv
                636c69656e74 kid

  0xFF  Payload marker
  Payload:
  0xa2c54fe1b434297b62 (9 bytes)

        Figure 12: Protected and Inner SCHC Compressed GET Request

  Protected message:
  ==================
  0x6144000182d008ff10c6d7c26cc1e9aef3f2461e0c29
  (22 bytes)

  Header:
  0x6144
  01   Ver
    10   ACK
      0001   TKL
          01000100   Successful Response Code 68 "2.04 Changed"

  0x0001 = mid
  0x82 = token

  Options:
  0xd008 (2 bytes)
  Option 21: OBJECT_SECURITY
  Value = b''

  0xFF  Payload marker
  Payload:
  0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes)

     Figure 13: Protected and Inner SCHC Compressed Content Response

  For the flag bits, some SCHC compression methods are useful,
  depending on the application.  The most straightforward alternative
  is to provide a fixed value for the flags, combining a MO of "equal"
  and a CDA of "not-sent".  This SCHC definition saves most bits but
  could prevent flexibility.  Otherwise, SCHC could use a "match-
  mapping" MO to choose from several configurations for the exchange.
  If not, the SCHC description may use an "MSB" MO to mask off the
  three hard-coded most significant bits.

  Note that fixing a flag bit will limit the choices of CoAP options
  that can be used in the exchange, since the values of these choices
  are dependent on specific options.

  The piv field lends itself to having some bits masked off with an
  "MSB" MO and an "LSB" CDA.  This SCHC description could be useful in
  applications where the message frequency is low, such as LPWAN
  technologies.  Note that compressing the sequence numbers may reduce
  the maximum number of sequence numbers that can be used in an
  exchange.  Once the sequence number exceeds the maximum value, the
  OSCORE keys need to be re-established.

  The size, s, that is included in the kid context field MAY be masked
  off with an "LSB" CDA.  The rest of the field could have additional
  bits masked off or have the whole field fixed with a MO of "equal"
  and a CDA of "not-sent".  The same holds for the kid field.

  The Outer Rule of Table 5 is applied to the example GET request and
  Content response.  Figures 14 and 15 show the resulting messages.

  Compressed message:
  ==================
  0x001489458a9fc3686852f6c4 (12 bytes)
  0x00 RuleID
      1489 Compression Residue
          458a9fc3686852f6c4 Padded payload

  Compression Residue:
  0b 0001 010 0100 0100 (15 bits -> 2 bytes with padding)
      mid tkn piv  kid

  Payload
  0xa2c54fe1b434297b62 (9 bytes)

  Compressed message length: 12 bytes

              Figure 14: SCHC-OSCORE Compressed GET Request

  Compressed message:
  ==================
  0x0014218daf84d983d35de7e48c3c1852 (16 bytes)
  0x00 RuleID
      14 Compression Residue
        218daf84d983d35de7e48c3c1852 Padded payload
  Compression Residue:
  0b0001 010 (7 bits -> 1 byte with padding)
    mid  tkn

  Payload
  0x10c6d7c26cc1e9aef3f2461e0c29 (14 bytes)

  Compressed message length: 16 bytes

            Figure 15: SCHC-OSCORE Compressed Content Response

  In contrast, comparing these results with what would be obtained by
  SCHC compressing the original CoAP messages without protecting them
  with OSCORE is done by compressing the CoAP messages according to the
  SCHC Rule in Table 6.

  +===================================================================+
  |RuleID 1                                                           |
  +========+===+==+==+===========+===============+=============+======+
  | Field  | FL|FP|DI|     TV    |       MO      |     CDA     | Sent |
  |        |   |  |  |           |               |             |[bits]|
  +========+===+==+==+===========+===============+=============+======+
  |CoAP    |2  |1 |Bi|01         | equal         |not-sent     |      |
  |version |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |2  |1 |Up|0          | equal         |not-sent     |      |
  |Type    |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |2  |1 |Dw|2          | equal         |not-sent     |      |
  |Type    |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP TKL|4  |1 |Bi|1          | equal         |not-sent     |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |8  |1 |Up|2          | equal         |not-sent     |      |
  |Code    |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |8  |1 |Dw|[69,132]   | match-mapping |mapping-sent |C     |
  |Code    |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP MID|16 |1 |Bi|0000       | MSB(12)       |LSB          |MMMM  |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |tkl|1 |Bi|0x80       | MSB(5)        |LSB          |TTT   |
  |Token   |   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+
  |CoAP    |   |1 |Up|temperature| equal         |not-sent     |      |
  |Uri-Path|   |  |  |           |               |             |      |
  +--------+---+--+--+-----------+---------------+-------------+======+

                   Table 6: SCHC-CoAP Rule (No OSCORE)

  The Rule in Table 6 yields the SCHC compression results as shown in
  Figure 16 for the request and Figure 17 for the response.

  Compressed message:
  ==================
  0x0114
  0x01 = RuleID

  Compression Residue:
  0b00010100 (1 byte)

  Compressed message length: 2 bytes

              Figure 16: CoAP GET Compressed without OSCORE

  Compressed message:
  ==================
  0x010a32332043
  0x01 = RuleID

  Compression Residue:
  0b00001010 (1 byte)

  Payload
  0x32332043

  Compressed message length: 6 bytes

            Figure 17: CoAP Content Compressed without OSCORE

  As can be seen, the difference between applying SCHC + OSCORE as
  compared to regular SCHC + CoAP is about 10 bytes.

8.  IANA Considerations

  This document has no IANA actions.

9.  Security Considerations

  The use of SCHC header compression for CoAP header fields only
  affects the representation of the header information.  SCHC header
  compression itself does not increase or decrease the overall level of
  security of the communication.  When the connection does not use a
  security protocol (OSCORE, DTLS, etc.), it is necessary to use a
  Layer 2 security mechanism to protect the SCHC messages.

  If an LPWAN is the Layer 2 technology being used, the SCHC security
  considerations discussed in [RFC8724] continue to apply.  When using
  another Layer 2 protocol, the use of a cryptographic integrity-
  protection mechanism to protect the SCHC headers is REQUIRED.  Such
  cryptographic integrity protection is necessary in order to continue
  to provide the properties that [RFC8724] relies upon.

  When SCHC is used with OSCORE, the security considerations discussed
  in [RFC8613] continue to apply.

  When SCHC is used with the OSCORE Outer headers, the Initialization
  Vector (IV) size in the Compression Residue must be carefully
  selected.  There is a trade-off between compression efficiency (with
  a longer "MSB" MO prefix) and the frequency at which the Device must
  renew its key material (in order to prevent the IV from expanding to
  an uncompressible value).  The key-renewal operation itself requires
  several message exchanges and requires energy-intensive computation,
  but the optimal trade-off will depend on the specifics of the Device
  and expected usage patterns.

  If an attacker can introduce a corrupted SCHC-compressed packet onto
  a link, DoS attacks can be mounted by causing excessive resource
  consumption at the decompressor.  However, an attacker able to inject
  packets at the link layer is also capable of other, potentially more
  damaging, attacks.

  SCHC compression emits variable-length Compression Residues for some
  CoAP fields.  In the representation of the compressed header, the
  length field that is sent is not the length of the original header
  field but rather the length of the Compression Residue that is being
  transmitted.  If a corrupted packet arrives at the decompressor with
  a longer or shorter length than the original compressed
  representation possessed, the SCHC decompression procedures will
  detect an error and drop the packet.

  SCHC header compression Rules MUST remain tightly coupled between the
  compressor and the decompressor.  If the compression Rules get out of
  sync, a Compression Residue might be decompressed differently at the
  receiver than the initial message submitted to compression
  procedures.  Accordingly, any time the context Rules are updated on
  an OSCORE endpoint, that endpoint MUST trigger OSCORE key re-
  establishment.  Similar procedures may be appropriate to signal Rule
  updates when other message-protection mechanisms are in use.

10.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <https://www.rfc-editor.org/info/rfc5116>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7641]  Hartke, K., "Observing Resources in the Constrained
             Application Protocol (CoAP)", RFC 7641,
             DOI 10.17487/RFC7641, September 2015,
             <https://www.rfc-editor.org/info/rfc7641>.

  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
             the Constrained Application Protocol (CoAP)", RFC 7959,
             DOI 10.17487/RFC7959, August 2016,
             <https://www.rfc-editor.org/info/rfc7959>.

  [RFC7967]  Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
             Bose, "Constrained Application Protocol (CoAP) Option for
             No Server Response", RFC 7967, DOI 10.17487/RFC7967,
             August 2016, <https://www.rfc-editor.org/info/rfc7967>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8613]  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
             "Object Security for Constrained RESTful Environments
             (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
             <https://www.rfc-editor.org/info/rfc8613>.

  [RFC8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
             Zúñiga, "SCHC: Generic Framework for Static Context Header
             Compression and Fragmentation", RFC 8724,
             DOI 10.17487/RFC8724, April 2020,
             <https://www.rfc-editor.org/info/rfc8724>.

Acknowledgements

  The authors would like to thank (in alphabetic order): Christian
  Amsuss, Dominique Barthel, Carsten Bormann, Theresa Enghardt, Thomas
  Fossati, Klaus Hartke, Benjamin Kaduk, Francesca Palombini, Alexander
  Pelov, Göran Selander, and Éric Vyncke.

Authors' Addresses

  Ana Minaburo
  Acklio
  1137A avenue des Champs Blancs
  35510 Cesson-Sevigne Cedex
  France

  Email: [email protected]


  Laurent Toutain
  Institut MINES TELECOM; IMT Atlantique
  CS 17607
  2 rue de la Chataigneraie
  35576 Cesson-Sevigne Cedex
  France

  Email: [email protected]


  Ricardo Andreasen
  Universidad de Buenos Aires
  Av. Paseo Colon 850
  C1063ACV Ciudad Autonoma de Buenos Aires
  Argentina

  Email: [email protected]