Internet Engineering Task Force (IETF)                      S. Litkowski
Request for Comments: 8800                           Cisco Systems, Inc.
Category: Standards Track                                   S. Sivabalan
ISSN: 2070-1721                                        Ciena Corporation
                                                               C. Barth
                                                       Juniper Networks
                                                                M. Negi
                                                          RtBrick India
                                                              July 2020


 Path Computation Element Communication Protocol (PCEP) Extension for
       Label Switched Path (LSP) Diversity Constraint Signaling

Abstract

  This document introduces a simple mechanism to associate a group of
  Label Switched Paths (LSPs) via an extension to the Path Computation
  Element Communication Protocol (PCEP) with the purpose of computing
  diverse (disjointed) paths for those LSPs.  The proposed extension
  allows a Path Computation Client (PCC) to advertise to a Path
  Computation Element (PCE) that a particular LSP belongs to a
  particular Disjoint Association Group; thus, the PCE knows that the
  LSPs in the same group need to be disjoint from each other.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8800.

Copyright Notice

  Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Requirements Language
  2.  Terminology
  3.  Motivation
  4.  Applicability
  5.  Protocol Extension
    5.1.  Association Group
    5.2.  Disjoint TLVs
    5.3.  Disjointness Objective Functions
    5.4.  Relationship to SVEC
      5.4.1.  SVEC and OF
    5.5.  P Flag Considerations
    5.6.  Disjointness Computation Issues
  6.  Security Considerations
  7.  IANA Considerations
    7.1.  Association Type
    7.2.  PCEP TLVs
    7.3.  Objective Functions
    7.4.  NO-PATH-VECTOR Bit Flags
    7.5.  PCEP-ERROR Codes
  8.  Manageability Considerations
    8.1.  Control of Function and Policy
    8.2.  Information and Data Models
    8.3.  Liveness Detection and Monitoring
    8.4.  Verification of Correct Operations
    8.5.  Requirements on Other Protocols
    8.6.  Impact on Network Operations
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  [RFC5440] describes the Path Computation Element Communication
  Protocol (PCEP), which enables the communication between a Path
  Computation Client (PCC) and a Path Control Element (PCE) or between
  two PCEs based on the PCE architecture [RFC4655].

  The PCEP Extensions for Stateful PCE Model [RFC8231] describes a set
  of extensions to PCEP to enable active control of MPLS-TE and GMPLS
  tunnels.  [RFC8281] describes the setup and teardown of PCE-initiated
  LSPs under the active stateful PCE model, without the need for local
  configuration on the PCC, thus allowing for a dynamic network.

  [RFC8697] introduces a generic mechanism to create a grouping of LSPs
  in the context of a PCE that can then be used to define associations
  between a set of LSPs and a set of attributes (such as configuration
  parameters or behaviors) and is equally applicable to the active and
  passive modes of a stateful PCE [RFC8231] or a stateless PCE
  [RFC4655].

  This document specifies a PCEP extension to signal that a set of LSPs
  in a particular group should use diverse (disjointed) paths,
  including the requested type of diversity.  Sections 3 and 4 describe
  the property and use of a Disjoint Association Group.  A PCC can use
  this extension to signal to a PCE that a particular LSP belongs to a
  particular Disjoint Association Group.  When a PCE receives LSP
  states belonging to the same Disjoint Association Group from some
  PCCs, the PCE should ensure that the LSPs within the group are
  disjoint from each other.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Terminology

  The following terminology is used in this document.

  DAT:      Disjoint Association Type

  DAG:      Disjoint Association Group

  MPLS:     Multiprotocol Label Switching

  OF:       Objective Function

  PCC:      Path Computation Client.  Any client application requesting
            a path computation to be performed by a Path Computation
            Element.

  PCE:      Path Computation Element.  An entity (component,
            application, or network node) that is capable of computing
            a network path or route based on a network graph and
            applying computational constraints.

  PCEP:     Path Computation Element Communication Protocol

  PLSP-ID:  PCEP-specific identifier for the LSP

  SRLG:     Shared Risk Link Group

3.  Motivation

  Path diversity is a very common use case in today's IP/MPLS networks,
  especially for layer 2 transport over MPLS.  A customer may request
  that the operator provide two end-to-end disjoint paths across the
  operator's IP/MPLS core.  The customer may use these paths as
  primary/backup or active/active configuration.

  Different levels of disjointness may be offered:

  *  Link disjointness: the paths of the associated LSPs should transit
     different links (but may use common nodes or different links that
     may have some shared fate).

  *  Node disjointness: the paths of the associated LSPs should transit
     different nodes (but may use different links that may have some
     shared fate).

  *  SRLG disjointness: the paths of the associated LSPs should transit
     different links that do not share fate (but may use common transit
     nodes).

  *  Node+SRLG disjointness: the paths of the associated LSPs should
     transit different links that do not have any common shared fate
     and should transit different nodes.

  The associated LSPs may originate from the same or different head
  end(s) and may terminate at the same or different tail end(s).

4.  Applicability

           _________________________________________
          /                                         \
         /        +------+                           \
        |         | PCE  |                            |
        |         +------+                            |
        |                                             |
        |          ***********************>           |
        | +------+           10             +------+  |
  CE1 ****| PE 1 | ----- R1 ---- R2 ------- | PE 2 |**** CE2
        | +------+       |        |         +------+  |
        |                |        |                   |
        |                |        |                   |
        | +------+       |        |         +------+  |
  CE3 ****| PE 3 | ----- R3 ---- R4 ------- | PE 4 |**** CE4
        | +------+ ***********************> +------+  |
        |                                             |
         \                                           /
          \_________________________________________/

     Figure 1: Disjoint Paths with Different Head Ends and Tail Ends

  In the figure above, let us consider that the customer wants to have
  two disjoint paths, one between CE1 and CE2 and one between CE3 and
  CE4.  From an IP/MPLS network point view, in this example, the CEs
  are connected to different PEs to maximize their disjointness.  When
  LSPs originate from different head ends, distributed computation of
  diverse paths can be difficult, whereas computation via a centralized
  PCE ensures path disjointness, correctness, and simplicity.

  Section 5.4 describes the relationship between the Disjoint
  Association Group (DAG) and Synchronization VECtor (SVEC) object.

  The PCEP extension for stateful PCE [RFC8231] defined new PCEP
  messages -- Path Computation Report (PCRpt), Path Computation Update
  (PCUpd), and Path Computation Initiate (PCInitiate) [RFC8281].  These
  messages use a PLSP-ID in the LSP object for identification.
  Moreover, to allow diversity between LSPs originating from different
  PCCs, the generic mechanism to create a grouping of LSPs that is
  equally applicable to the active and passive modes of a stateful PCE
  is described in [RFC8697].

  Using the extension to PCEP defined in this document, the PCC uses
  the extension defined in [RFC8697] to indicate that a group of LSPs
  are required to be disjoint; such indication should include
  disjointness parameters like the type of disjointness, the Disjoint
  Association Group identifiers, and any customization parameters
  according to the configured local policy.

  The management of the Disjoint Association Group IDs will be a key
  point for the operator as the Association ID field is limited to
  65535.  The local configuration of the IPv4/IPv6 Association Source,
  or Global Association Source/Extended Association ID, can overcome
  this limitation, as described in [RFC8697].  When a PCC or PCE
  initiates all the LSPs in a particular Disjoint Association Group, it
  can set the IPv4/IPv6 Association Source as one of its own IP
  address.  When disjoint LSPs are initiated from different head ends,
  the Association Source could be the PCE address or any other unique
  value to identify the DAG.


          Initiate Disjoint LSPs
                   |
                   |                       PCReq/PCRpt
                   V                        {DAG Y}
                +-----+                ----------------> +-----+
     _ _ _ _ _ _| PCE |               |                  | PCE |
    |           +-----+               |      ----------> +-----+
    | PCInitiate                      |     |    PCReq/PCRpt
    |{DAG X}                          |     | {DAG Y}
    |                                 |     |
    |              .-----.            |     |         .-----.
    |             (       )           | +-----+      (       )
    |         .--(         )--.       | |PCC 2|--.--(         )--.
    V        (                 )      | +-----+ (                 )
  +---+     (                  )      |        (                  )
  |PCC|----(   (G)MPLS network )   +-----+    ( (G)MPLS network   )
  +---+    (                   )   |PCC 1|-----(                  )
  {DAG X}   (                 )    +-----+      (                )
             '--(         )--'                   (           )--'
                 (       )                         (        )
                  '-----'                            '-----'

  Case 1: Disjointness initiated by   Case 2: Disjointness initiated by
      PCE and enforced by PCC              PCC and enforced by PCE

       Figure 2: Sample Use Cases for Carrying Disjoint Association
                         Group over PCEP Session

  The Disjoint Association Group within a PCEP messages is used for:

  *  Configuration: Used to communicate the configured disjoint
     requirement to a PCEP peer.

  *  Status: Used to communicate the status of the computed
     disjointness.

5.  Protocol Extension

5.1.  Association Group

  As per [RFC8697], LSPs are associated with other LSPs with which they
  interact by adding them to a common association group.  As described
  in [RFC8697], the association group is uniquely identified by the
  combination of the following fields in the ASSOCIATION object:
  Association Type, Association ID, Association Source, and (if
  present) Global Association Source or Extended Association ID.

  This document defines a new Association type, called "Disjoint
  Association" (2), based on the generic ASSOCIATION object.  This new
  Association type is also called "DAT", for "Disjoint Association
  Type".

  [RFC8697] specifies the mechanism for the capability advertisement of
  the Association types supported by a PCEP speaker by defining an
  ASSOC-Type-List TLV to be carried within an OPEN object.  This
  capability exchange for the DAT (2) MUST be done before using the
  disjoint association.  Thus, the PCEP speaker MUST include the DAT in
  the ASSOC-Type-List TLV and MUST receive the same from the PCEP peer
  before using the Disjoint Association Group (DAG) in PCEP messages.

  This Association type is considered to be both dynamic and operator-
  configured in nature.  As per [RFC8697], the association group could
  be manually created by the operator on the PCEP peers, and the LSPs
  belonging to this association are conveyed via PCEP messages to the
  PCEP peer; alternately, the association group could be created
  dynamically by the PCEP speaker, and both the association group
  information and the LSPs belonging to the association group are
  conveyed to the PCEP peer.  The Operator-configured Association Range
  MUST be set for this association-type to mark a range of Association
  Identifiers that are used for operator-configured associations to
  avoid any Association Identifier clash within the scope of the
  Association Source.  (Refer to [RFC8697].)

  A Disjoint Association Group can have two or more LSPs, but a PCE may
  be limited in the number of LSPs it can take into account when
  computing disjointness.  If a PCE receives more LSPs in the group
  than it can handle in its computation algorithm, it SHOULD apply
  disjointness computation to only a subset of LSPs in the group.  The
  subset of disjoint LSPs will be decided by PCE as a local policy.
  Local polices MAY define the computational behavior for the other
  LSPs in the group.  For example, the PCE may provide no path, a
  shortest path, or a constrained path based on relaxing disjointness,
  etc.  The disjoint status of the computed path is informed to the PCC
  via the DISJOINTNESS-STATUS TLV (see Section 5.2).

  There are different types of disjointness identified by the flags (T,
  S, N, and L) in the DISJOINTNESS-CONFIGURATION TLV (see Section 5.2).
  All LSPs in a particular Disjoint Association Group MUST use the same
  combination of T, S, N, and L flags in the DISJOINTNESS-CONFIGURATION
  TLV.  If a PCEP peer receives a PCEP message for LSPs belonging to
  the same Disjoint Association Group but having an inconsistent
  combination of T, S, N, and L flags, the PCEP peer MUST NOT add the
  LSPs to the Disjoint Association Group and MUST reply with a PCErr
  with Error-Type 26 (Association Error) and Error-value 6 (Association
  information mismatch).

  A particular LSP MAY be associated to multiple Disjoint Association
  Groups, but in that case, the PCE SHOULD try to consider all the
  Disjoint Association Groups during path computation, if possible.
  Otherwise, a local policy MAY define the computational behavior.  If
  a PCE does not support such a path computation, it MUST NOT add the
  LSP into the association group and MUST return a PCErr with Error-
  Type 26 (Association Error) and Error-value 7 (Cannot join the
  association group).

5.2.  Disjoint TLVs

  The Disjoint Association Group (ASSOCIATION object with Association
  type = 2 for DAT) MUST carry the following TLV:

  *  DISJOINTNESS-CONFIGURATION TLV: Used to communicate some
     disjointness configuration parameters.  This is applicable for all
     PCEP messages that include DAG.

  In addition, the Disjoint Association Group (ASSOCIATION object with
  Association type = 2 for DAT) MAY carry the following TLVs:

  *  DISJOINTNESS-STATUS TLV: Used to communicate the status of the
     computed disjointness.  This is applicable for messages from a PCE
     to a PCC only (i.e., PCUpd, PCInitiate, or PCRep messages).

  *  VENDOR-INFORMATION-TLV: Used to communicate arbitrary vendor-
     specific behavioral information, described in [RFC7470].

  *  OF-List TLV: Used to communicate the disjointness objective
     function.  See Section 5.3.

  The DISJOINTNESS-CONFIGURATION TLV is shown in the following figure:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Type = 46             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Flags                               |T|P|S|N|L|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 3: DISJOINTNESS-CONFIGURATION TLV

  Type:  46

  Length:  Fixed value of 4 bytes.

  Flags:

     L (Link Diverse) bit:  When set, this indicates that the computed
        paths within the Disjoint Association Group MUST NOT have any
        link in common.

     N (Node Diverse) bit:  When set, this indicates that the computed
        paths within the Disjoint Association Group MUST NOT have any
        node in common.

     S (SRLG Diverse) bit:  When set, this indicates that the computed
        paths within the Disjoint Association Group MUST NOT share any
        SRLG (Shared Risk Link Group).

     P (Shortest Path) bit:  When set, this indicates that the computed
        path of the LSP SHOULD satisfy all the constraints and
        objective functions first without considering the diversity
        constraint.  This means that all of the LSPs with P flag set in
        the association group are computed first, as if the
        disjointness constraint has not been configured; then, with
        those LSPs fixed, the other LSPs with P flag unset in the
        association group are computed by taking into account the
        disjointness constraint.  The role of P flag is further
        described with examples in Section 5.5.

     T (Strict Disjointness) bit:  When set, if disjoint paths cannot
        be found, the PCE MUST return no path for LSPs that could not
        be disjoint.  When unset, the PCE is allowed to relax
        disjointness by either applying a requested objective function
        (cf. Section 5.3) or using the local policy if no objective
        function is requested (e.g., using a lower disjoint type (link
        instead of node) or fully relaxing disjointness constraint).
        See Section 5.6 for further details.

     Unassigned bits:  Unassigned bits are considered reserved.  They
        MUST be set to 0 on transmission and MUST be ignored on
        receipt.

  If a PCEP speaker receives a Disjoint Association Group (ASSOCIATION
  object with Association type = 2 for DAT) without the DISJOINTNESS-
  CONFIGURATION TLV, it SHOULD reply with a PCErr Error-Type 6
  (Mandatory Object missing) and Error-value 15 (DISJOINTNESS-
  CONFIGURATION TLV missing).

  The DISJOINTNESS-STATUS TLV uses the same format as the DISJOINTNESS-
  CONFIGURATION TLV with a different type 47 (in the TLV).  The L, N,
  and S flags are set if the respective disjointness criterion was
  requested and the computed paths meet it.  The P flag indicates that
  the computed path is the shortest path (computed first without taking
  disjointness constraints into consideration but considering other
  constraints).

  The T flag has no meaning in the DISJOINTNESS-STATUS TLV and MUST NOT
  be set while sending and MUST be ignored on receipt.

  Any document defining a new flag for the DISJOINTNESS-CONFIGURATION
  TLV automatically defines a new flag with the same name and in the
  same location in DISJOINTNESS-STATUS TLV; the semantics of the flag
  in the DISJOINTNESS-STATUS TLV MUST be specified in the document that
  specifies the flag in the DISJOINTNESS-CONFIGURATION TLV.

5.3.  Disjointness Objective Functions

  An objective function (OF) MAY be applied to the disjointness
  computation to drive the PCE computation behavior.  In this case, the
  OF-List TLV (defined in [RFC5541]) is used as an optional TLV in the
  ASSOCIATION object.  Whereas the PCEP OF-List TLV allows multiple OF-
  codes inside the TLV, a sender SHOULD include a single OF-code in the
  OF-List TLV when included in the Association Group, and the receiver
  MUST consider the first OF-code only and ignore others if included.

  To minimize the common shared resources (Node, Link, or SRLG) between
  a set of paths during path computation, three new OF-codes are
  defined:

  MSL

     Name:  Minimize the number of Shared (common) Links.
     Objective Function Code:  15
     Description:  Find a set of paths such that it passes through the
        least number of shared (common) links.
        -  A network comprises a set of N links {Li, (i=1...N)}.
        -  A path P passes through K links {Lpi,(i=1...K)}.
        -  A set of paths {P1...Pm} have L links that are common to
           more than one path {Lci,(i=1...L)}.
        -  Find a set of paths such that the value of L is minimized.

  MSS

     Name:  Minimize the number of Shared (common) SRLGs.
     Objective Function Code:  16
     Description:  Find a set of paths such that it passes through the
        least number of shared (common) SRLGs.
        -  A network comprises a set of N links {Li, (i=1...N)}.
        -  A path P passes through K links {Lpi,(i=1...K)} belonging to
           unique M SRLGs {Spi,(i=1..M)}.
        -  A set of paths {P1...Pm} have L SRLGs that are common to
           more than one path {Sci,(i=1...L)}.
        -  Find a set of paths such that the value of L is minimized.

  MSN

     Name:  Minimize the number of Shared (common) Nodes.
     Objective Function Code:  17
     Description:  Find a set of paths such that they pass through the
        least number of shared (common) nodes.
        -  A network comprises a set of N nodes {Ni, (i=1...N)}.
        -  A path P passes through K nodes {Npi,(i=1...K)}.
        -  A set of paths {P1...Pm} have L nodes that are common to
           more than one path {Nci,(i=1...L)}.
        -  Find a set of paths such that the value of L is minimized.

  If the OF-List TLV is included in the ASSOCIATION object, the first
  OF-code inside the OF object MUST be one of the disjoint OFs defined
  in this document.  If this condition is not met, the PCEP speaker
  MUST respond with a PCErr message with Error-Type 10 (Reception of an
  invalid object) and Error-value 32 (Incompatible OF code).

5.4.  Relationship to SVEC

  [RFC5440] defines a mechanism for the synchronization of a set of
  path computation requests by using the SVEC object, which specifies
  the list of synchronized requests that can be either dependent or
  independent.  The SVEC object identifies the relationship between the
  set of path computation requests, identified by 'Request-ID-number'
  in the RP (Request Parameters) object.  [RFC6007] further clarifies
  the use of the SVEC list for synchronized path computations when
  computing dependent requests and describes a number of usage
  scenarios for SVEC lists within single-domain and multi-domain
  environments.

  The SVEC object includes a Flags field that indicates the potential
  dependency between the set of path computation requests in a similar
  way as the Flags field in the TLVs defined in this document.  The
  path computation request in the Path Computation Request (PCReq)
  message MAY use both the SVEC and ASSOCIATION objects to identify the
  related path computation request, as well as the DAG.  The PCE MUST
  try to find a path that meets both the constraints.  It is possible
  that the diversity requirement in the association group is different
  from the one in the SVEC object.  The PCE MUST consider both the
  objects (including the flags set inside the objects) as per the
  processing rules and aim to find a path that meets both of these
  constraints.  In case no such path is possible, the PCE MUST send a
  Path Computation Reply (PCRep) with a NO-PATH object indicating path
  computation failure, as per [RFC5440].  It should be noted that the
  LSPs in the association group can be fully same or partially
  overlapping with the LSPs grouped by the SVEC object in PCReq
  message.

  Some examples of usage are listed below:

  *  PCReq with SVEC object with node-diverse bit=1 (LSP1,LSP2) and DAG
     with S=1 (LSP1,LSP2) - both node- and SRLG-diverse path between
     LSP1 and LSP2.

  *  PCReq with SVEC object with link-diverse bit=1 (LSP1,LSP2) and DAG
     with L=1 (LSP1,LSP3) - link-diverse paths between LSP1 and LSP2
     and between LSP1 and LSP3.  If the DAG is part of the stateful
     database, any future change in LSP3 will have an impact on LSP1.
     But any future change in LSP2 will have no impact on LSP1, as LSP2
     is part of SVEC object (which is considered once on receipt of the
     PCReq message only).

5.4.1.  SVEC and OF

  This document defines three new OF-codes in Section 5.3 to maximize
  diversity as much as possible.  In other words, new OF-codes allow
  specification of minimization of common shared resources (Node, Link,
  or SRLG) among a set of paths during path computation.

  It may be interesting to note that the diversity flags in the SVEC
  object and OF for diversity can be used together.  Some examples of
  usage are listed below:

  *  SVEC object with node-diverse bit=1 - ensure full node diversity.

  *  SVEC object with node-diverse bit=1 and OF=MSS - full node
     diversity with as much SRLG diversity as possible.

  *  SVEC object with domain-diverse bit=1 [RFC8685]; node-diverse
     bit=1, and OF=MSS - full domain and node diversity with as much
     SRLG diversity as possible.

  *  SVEC object with node-diverse bit=1 and OF=MSN - ensure full node
     diversity.

  In the last example above, it is interesting to note that "OF"
  becomes redundant as "SVEC object" ensures full node diversity;
  however, this specification does not prohibit redundant constraints
  while using "SVEC object" and "OF" together for diversity.

5.5.  P Flag Considerations

  As mentioned in Section 5.2, the P flag (when set) indicates that the
  computed path of the LSP SHOULD satisfy all constraints and objective
  functions first without considering the diversity constraint.

  This means that an LSP with the P flag set should be placed first, as
  if the disjointness constraint has not been configured, while the
  other LSPs in the association with the P flag unset should be placed
  by taking into account the disjointness constraint.  Setting the P
  flag changes the relationship between LSPs to a one-sided
  relationship (LSP 1 with P=0 depends on LSP 2 with P=1, but LSP 2
  with P=1 does not depend on LSP 1 with P=0).  Multiple LSPs in the
  same Disjoint Association Group may have the P flag set.  In such a
  case, those LSPs may not be disjoint from each other but will be
  disjoint from other LSPs in the group that have the P flag unset.

  This could be required in some primary/backup scenarios where the
  primary path should use the more optimal path available (taking into
  account the other constraints).  When disjointness is computed, it is
  important for the algorithm to know that it should try to optimize
  the path of one or more LSPs in the Disjoint Association Group (for
  instance, the primary path), while other paths are allowed to be
  costlier (compared to a similar path without the disjointness
  constraint).  Without such a hint, the disjointness algorithm may set
  a path for all LSPs that may not completely fulfill the customer's
  requirement.

           _________________________________________
          /                                         \
         /        +------+                           \
        |         | PCE  |                            |
        |         +------+                            |
        |                                             |
        |                                             |
        | +------+           10             +------+  |
  CE1 ****| PE 1 | ----- R1 ---- R2 ------- | PE 2 |**** CE2
        | +------+       |        |         +------+  |
        |                |        |                   |
        |                |        |                   |
        | +------+       |        |         +------+  |
  CE3 ****| PE 3 | ----- R3 ---- R4 ------- | PE 4 |**** CE4
        | +------+ \     |               /  +------+  |
        |           \    |     10       /             |
         \           +-- R5 --------- R6             /
          \_________________________________________/

           Figure 4: Example Topology with Six Internal Routers

  Note: In Figure 4, the cost of all the links is 1, unless explicitly
  marked otherwise.

  In the figure above, a customer has two dual-homed sites (CE1/CE3 and
  CE2/CE4).  Let us consider that this customer wants two link disjoint
  paths between the two sites.  Due to physical meshing, the customer
  wants to use CE1 and CE2 as the primary (and CE3 and CE4 are hosted
  in a remote site for redundancy purpose).

  Without any hint (constraint) provided, the PCE may compute the two
  link disjoint LSPs together, leading to PE1->PE2 using path
  PE1->R1->R2->PE2 and PE3->PE4 using PE3->R3->R4->PE4.  In this case,
  even if the disjointness constraint is fulfilled, the path from PE1
  to PE2 does not use the best optimal path available in the network
  (path delay may be higher); the customer requirement is thus not
  completely fulfilled.

  The usage of the P flag allows the PCE to know that a particular LSP
  should be tied to the best path, as if the disjointness constraint
  was not requested.

  In our example, if the P flag is set to the LSP PE1->PE2, the PCE
  should use the path PE1->R1->R3->R4->R2->PE2 for this LSP, while the
  other LSP should be link disjoint from this path.  The second LSP
  will be placed on PE3->R5->R6->PE4, as it is allowed to be costlier.

  Driving the PCE disjointness computation may be done in other ways,
  for instance, setting a metric boundary reflecting a path delay
  boundary.  Other constraints may also be used.

  The P flag allows to simply express that the disjointness constraint
  should not make the LSP worst.

  Any constraint added to a path disjointness computation may reduce
  the chance to find suitable paths.  The usage of the P flag, as any
  other constraint, may prevent finding a disjoint path.  In the
  example above, if we consider that router R5 is down and if PE1->PE2
  has the P flag set, there is no room available to place PE3->PE4 (the
  link disjointness constraint cannot be fulfilled).  If PE1->PE2 has
  the P flag unset, the algorithm may be able to place PE1->PE2 on the
  R1->R2 link leaving room for PE3->PE4 using the R3->R4 link.  When
  using the P flag or any additional constraint on top of the
  disjointness constraint, the user should be aware that there is less
  chance to fulfill the disjointness constraint.

           _________________________________________
          /                                         \
         /        +------+                           \
        |         | PCE  |                            |
        |         +------+                            |
        |                                             |
        |                                             |
        | +------+           10             +------+  |
  CE1 ****| PE 1 | ----- R1 ---- R2 ------- | PE 2 |**** CE2
        | +------+       |  \     |         +------+  |
        |                |   \2   |                   |
        |                |    \   |                   |
        | +------+       |     \  |         +------+  |
  CE3 ****| PE 3 | ----- R3 ---- R4 ------- | PE 4 |**** CE4
        | +------+                          +------+  |
        |                                             |
         \                                           /
          \_________________________________________/

          Figure 5: Example Topology with Four Internal Routers

  Note: In Figure 5, the cost of all the links is 1, unless explicitly
  marked otherwise.

  In the figure above, we still consider the same previous
  requirements, so PE1->PE2 LSP should be optimized (P flag set), while
  PE3->PE4 should be link disjoint and may use a costlier path.

  Regarding PE1->PE2, there are two paths that are satisfying the
  constraints (ECMP): PE1->R1->R4->R2->PE2 (path 1) and
  PE1->R1->R3->R4->R2->PE2 (path 2).  An implementation may choose one
  of the paths.

  If the implementation elects only one path, there is a chance that
  picking up one path may prevent link disjointness.  In our example,
  if path 2 is used for PE1->PE2, there is no room left for PE3->PE4,
  while if path 1 is used, PE3->PE4 can be placed on R3->R4 link.

  When the P flag is set for an LSP and when ECMPs are available, an
  implementation should aim to select a path that allows disjointness.

5.6.  Disjointness Computation Issues

  There may be some cases where the PCE is not able to provide a set of
  disjoint paths for one or more LSPs in the association.

  When the T flag is set (Strict disjointness), if disjointness cannot
  be ensured for one or more LSPs, the PCE MUST reply to a PCReq with a
  PCRep message containing a NO-PATH object.  In case of a PCRpt
  message, the PCE MUST return a PCErr message with Error-Type 26
  (Association Error) and Error-value 7 (Cannot join the association
  group).

  In case of a network event leading to an impossible strict
  disjointness, the PCE MUST send a PCUpd message containing an empty
  Explicit Route Object (ERO) to the corresponding PCCs.  In addition
  to the empty ERO object, the PCE MAY add the NO-PATH-VECTOR TLV
  [RFC5440] in the LSP object.

  This document adds new bits in the Flags field of the NO-PATH-VECTOR
  TLV:

  *  bit 11: When set, the PCE indicates that it could not find a
     disjoint path for this LSP.

  *  bit 10: When set, the PCE indicates that it does not support the
     requested disjointness computation.

  When the T flag is unset, the PCE is allowed to relax disjointness by
  applying a requested objective function (Section 5.3) if specified.
  Otherwise, if no objective function is specified, the PCE is allowed
  to reduce the required level of disjointness as it deems fit.  The
  actual level of disjointness of the paths computed by the PCE can be
  reported through the DISJOINTNESS-STATUS TLV by setting the
  appropriate flags in the TLV.  While the DISJOINTNESS-CONFIGURATION
  TLV defines the desired level of disjointness required by
  configuration, the DISJOINTNESS-STATUS TLV defines the achieved level
  of disjointness computed.

  There are some cases where the PCE may need to completely relax the
  disjointness constraint in order to provide a path to all the LSPs
  that are part of the association.  A mechanism that allows the PCE to
  fully relax a constraint is considered by the authors as more global
  to PCEP rather than linked to the disjointness use case.  As a
  consequence, it is considered out of scope of the document.  See
  [PCE-OPTIONAL] for a proposed mechanism.

6.  Security Considerations

  This document defines one new PCEP Association type, which by itself
  does not add any new security concerns beyond those discussed in
  [RFC5440], [RFC8231], [RFC7470], and [RFC8697].  But adding of a
  spurious LSP into the Disjoint Association Group could lead to
  recomputation and setup of all LSPs in the group, which could be used
  to overwhelm the PCE and the network.

  A spurious LSP can have flags that are inconsistent with those of the
  legitimate LSPs of the group and thus cause LSP allocation for the
  legitimate LSPs to fail with an error.  Also, certain combinations of
  flags (notably, the 'T' bit) can result in conflicts that cannot be
  resolved.

  Also, as stated in [RFC8697], much of the information carried in the
  ASSOCIATION object reflects information that can also be derived from
  the LSP database, but association provides a much easier grouping of
  related LSPs and messages.  This holds true for the DAT as well;
  thus, this could provide an adversary with the opportunity to
  eavesdrop on the relationship between the LSPs and understand the
  network topology.

  Thus, securing the PCEP session using Transport Layer Security (TLS)
  [RFC8253], as per the recommendations and best current practices in
  BCP 195 [RFC7525], is RECOMMENDED.

7.  IANA Considerations

7.1.  Association Type

  This document defines a new Association type, originally described in
  [RFC8697].  IANA has assigned the following new value in the
  "ASSOCIATION Type Field" subregistry [RFC8697] within the "Path
  Computation Element Protocol (PCEP) Numbers" registry:

               +======+======================+===========+
               | Type | Name                 | Reference |
               +======+======================+===========+
               | 2    | Disjoint Association | RFC 8800  |
               +------+----------------------+-----------+

                     Table 1: ASSOCIATION Type Field

7.2.  PCEP TLVs

  This document defines two new PCEP TLVs.  IANA has assigned the
  following values in the "PCEP TLV Type Indicators" subregistry within
  the "Path Computation Element Protocol (PCEP) Numbers" registry:

          +==========+============================+===========+
          | TLV Type | TLV Name                   | Reference |
          +==========+============================+===========+
          | 46       | DISJOINTNESS-CONFIGURATION | RFC 8800  |
          +----------+----------------------------+-----------+
          | 47       | DISJOINTNESS-STATUS        | RFC 8800  |
          +----------+----------------------------+-----------+

                    Table 2: PCEP TLV Type Indicators

  IANA has created a new subregistry, named "DISJOINTNESS-CONFIGURATION
  TLV Flag Field", within the "Path Computation Element Protocol (PCEP)
  Numbers" registry to manage the Flags field in the DISJOINTNESS-
  CONFIGURATION TLV.  New values are to be assigned by Standards Action
  [RFC8126].  Each bit should be tracked with the following qualities:

  *  Bit number (count from 0 as the most significant bit)

  *  Flag Name

  *  Reference

  The initial contents of this subregistry are shown below:

             +======+=========================+===========+
             | Bit  | Name                    | Reference |
             +======+=========================+===========+
             | 31   | L - Link Diverse        | RFC 8800  |
             +------+-------------------------+-----------+
             | 30   | N - Node Diverse        | RFC 8800  |
             +------+-------------------------+-----------+
             | 29   | S - SRLG Diverse        | RFC 8800  |
             +------+-------------------------+-----------+
             | 28   | P - Shortest Path       | RFC 8800  |
             +------+-------------------------+-----------+
             | 27   | T - Strict Disjointness | RFC 8800  |
             +------+-------------------------+-----------+
             | 0-26 | Unassigned              |           |
             +------+-------------------------+-----------+

                Table 3: DISJOINTNESS-CONFIGURATION TLV
                               Flag Field

7.3.  Objective Functions

  This document defines three new objective functions.  IANA has made
  the following allocations in the "Objective Function" subregistry
  within the "Path Computation Element Protocol (PCEP) Numbers"
  registry:

           +============+=======================+===========+
           | Code Point | Name                  | Reference |
           +============+=======================+===========+
           | 15         | Minimize the number   | RFC 8800  |
           |            | of Shared Links (MSL) |           |
           +------------+-----------------------+-----------+
           | 16         | Minimize the number   | RFC 8800  |
           |            | of Shared SRLGs (MSS) |           |
           +------------+-----------------------+-----------+
           | 17         | Minimize the number   | RFC 8800  |
           |            | of Shared Nodes (MSN) |           |
           +------------+-----------------------+-----------+

                      Table 4: Objective Function

7.4.  NO-PATH-VECTOR Bit Flags

  This document defines new bits for the NO-PATH-VECTOR TLV in the "NO-
  PATH-VECTOR TLV Flag Field" subregistry of the "Path Computation
  Element Protocol (PCEP) Numbers" registry.  IANA has made the
  following allocations:

         +============+===========================+===========+
         | Bit Number | Name                      | Reference |
         +============+===========================+===========+
         | 11         | Disjoint path not found   | RFC 8800  |
         +------------+---------------------------+-----------+
         | 10         | Requested disjoint        | RFC 8800  |
         |            | computation not supported |           |
         +------------+---------------------------+-----------+

                 Table 5: NO-PATH-VECTOR TLV Flag Field

7.5.  PCEP-ERROR Codes

  This document defines two new Error-values within existing Error-
  Types related to disjoint association.  IANA has allocated the
  following new Error-values in the "PCEP-ERROR Object Error Types and
  Values" subregistry within the "Path Computation Element Protocol
  (PCEP) Numbers" registry:

   +============+===========+============================+===========+
   | Error-Type | Meaning   | Error-value                | Reference |
   +============+===========+============================+===========+
   | 6          | Mandatory |                            | [RFC5440] |
   |            | Object    |                            |           |
   |            | missing   |                            |           |
   +------------+-----------+----------------------------+-----------+
   |            |           | 15: DISJOINTNESS-          | RFC 8800  |
   |            |           | CONFIGURATION TLV missing  |           |
   +------------+-----------+----------------------------+-----------+
   | 10         | Reception |                            | [RFC5440] |
   |            | of an     |                            |           |
   |            | invalid   |                            |           |
   |            | object    |                            |           |
   +------------+-----------+----------------------------+-----------+
   |            |           | 32: Incompatible OF code   | RFC 8800  |
   +------------+-----------+----------------------------+-----------+

            Table 6: PCEP-ERROR Object Error Types and Values

8.  Manageability Considerations

8.1.  Control of Function and Policy

  An operator SHOULD be allowed to configure the Disjoint Association
  Groups and disjoint parameters at the PCEP peers and associate them
  with the LSPs.  The operator MUST be allowed to set the Operator-
  configured Association Range.  The operator SHOULD be allowed to set
  the local policies to define various disjoint computational behavior
  at the PCE.

8.2.  Information and Data Models

  An implementation SHOULD allow the operator to view the disjoint
  associations configured or created dynamically.  Furthermore,
  implementations SHOULD allow to view disjoint associations reported
  by each peer and the current set of LSPs in this association.  The
  PCEP YANG module [PCEP-YANG] includes association group information.

8.3.  Liveness Detection and Monitoring

  Mechanisms defined in this document do not imply any new liveness
  detection and monitoring requirements in addition to those already
  listed in [RFC5440].

8.4.  Verification of Correct Operations

  Apart from the operation verification requirements already listed in
  [RFC5440], a PCEP implementation SHOULD provide parameters related to
  disjoint path computation, such as number of DAG, number of disjoint
  path computation failures, etc.  A PCEP implementation SHOULD log
  failure events (e.g., incompatible Flags).

8.5.  Requirements on Other Protocols

  Mechanisms defined in this document do not imply any new requirements
  on other protocols.

8.6.  Impact on Network Operations

  Mechanisms defined in Section 8.6 of [RFC5440] also apply to PCEP
  extensions defined in this document.  Additionally, a PCEP
  implementation SHOULD allow a limit to be placed on the number of
  LSPs that can belong to a DAG.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <https://www.rfc-editor.org/info/rfc5440>.

  [RFC5541]  Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
             Objective Functions in the Path Computation Element
             Communication Protocol (PCEP)", RFC 5541,
             DOI 10.17487/RFC5541, June 2009,
             <https://www.rfc-editor.org/info/rfc5541>.

  [RFC7470]  Zhang, F. and A. Farrel, "Conveying Vendor-Specific
             Constraints in the Path Computation Element Communication
             Protocol", RFC 7470, DOI 10.17487/RFC7470, March 2015,
             <https://www.rfc-editor.org/info/rfc7470>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8231]  Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for Stateful PCE", RFC 8231,
             DOI 10.17487/RFC8231, September 2017,
             <https://www.rfc-editor.org/info/rfc8231>.

  [RFC8253]  Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
             "PCEPS: Usage of TLS to Provide a Secure Transport for the
             Path Computation Element Communication Protocol (PCEP)",
             RFC 8253, DOI 10.17487/RFC8253, October 2017,
             <https://www.rfc-editor.org/info/rfc8253>.

  [RFC8685]  Zhang, F., Zhao, Q., Gonzalez de Dios, O., Casellas, R.,
             and D. King, "Path Computation Element Communication
             Protocol (PCEP) Extensions for the Hierarchical Path
             Computation Element (H-PCE) Architecture", RFC 8685,
             DOI 10.17487/RFC8685, December 2019,
             <https://www.rfc-editor.org/info/rfc8685>.

  [RFC8697]  Minei, I., Crabbe, E., Sivabalan, S., Ananthakrishnan, H.,
             Dhody, D., and Y. Tanaka, "Path Computation Element
             Communication Protocol (PCEP) Extensions for Establishing
             Relationships between Sets of Label Switched Paths
             (LSPs)", RFC 8697, DOI 10.17487/RFC8697, January 2020,
             <https://www.rfc-editor.org/info/rfc8697>.

9.2.  Informative References

  [PCE-OPTIONAL]
             Li, C., Zheng, H., and S. Litkowski, "Extension for
             Stateful PCE to allow Optional Processing of PCEP
             Objects", Work in Progress, Internet-Draft, draft-dhody-
             pce-stateful-pce-optional-06, 9 July 2020,
             <https://tools.ietf.org/html/draft-dhody-pce-stateful-pce-
             optional-06>.

  [PCEP-YANG]
             Dhody, D., Hardwick, J., Beeram, V., and J. Tantsura, "A
             YANG Data Model for Path Computation Element
             Communications Protocol (PCEP)", Work in Progress,
             Internet-Draft, draft-ietf-pce-pcep-yang-14, 7 July 2020,
             <https://tools.ietf.org/html/draft-ietf-pce-pcep-yang-14>.

  [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
             Computation Element (PCE)-Based Architecture", RFC 4655,
             DOI 10.17487/RFC4655, August 2006,
             <https://www.rfc-editor.org/info/rfc4655>.

  [RFC6007]  Nishioka, I. and D. King, "Use of the Synchronization
             VECtor (SVEC) List for Synchronized Dependent Path
             Computations", RFC 6007, DOI 10.17487/RFC6007, September
             2010, <https://www.rfc-editor.org/info/rfc6007>.

  [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
             2015, <https://www.rfc-editor.org/info/rfc7525>.

  [RFC8281]  Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for PCE-Initiated LSP Setup in a Stateful PCE
             Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
             <https://www.rfc-editor.org/info/rfc8281>.

Acknowledgments

  A special thanks to the authors of [RFC8697]; this document borrows
  some text from it.  The authors would also like to thank Adrian
  Farrel and Julien Meuric for the valuable comments.

  Thanks to Emmanuel Baccelli for the RTGDIR review.

  Thanks to Dale Worley for a detailed GENART review.

  Thanks to Alvaro Retana, Benjamin Kaduk, Suresh Krishnan, Roman
  Danyliw, Alissa Cooper, and Éric Vyncke for the IESG review.

Contributors

  Dhruv Dhody
  Huawei Technologies
  Divyashree Techno Park, Whitefiled
  Bangalore 560066
  Karnataka
  India

  Email: [email protected]


Authors' Addresses

  Stephane Litkowski
  Cisco Systems, Inc.

  Email: [email protected]


  Siva Sivabalan
  Ciena Corporation

  Email: [email protected]


  Colby Barth
  Juniper Networks

  Email: [email protected]


  Mahendra Singh Negi
  RtBrick India
  N-17L, Floor-1, 18th Cross Rd, HSR Layout Sector-3
  Bangalore 560102
  Karnataka
  India

  Email: [email protected]