Internet Engineering Task Force (IETF)                           A. Wang
Request for Comments: 8735                                 China Telecom
Category: Informational                                         X. Huang
ISSN: 2070-1721                                                   C. Kou
                                                                   BUPT
                                                                  Z. Li
                                                           China Mobile
                                                                  P. Mi
                                                    Huawei Technologies
                                                          February 2020


    Scenarios and Simulation Results of PCE in a Native IP Network

Abstract

  Requirements for providing the End-to-End (E2E) performance assurance
  are emerging within the service provider networks.  While there are
  various technology solutions, there is no single solution that can
  fulfill these requirements for a native IP network.  In particular,
  there is a need for a universal E2E solution that can cover both
  intra- and inter-domain scenarios.

  One feasible E2E traffic-engineering solution is the addition of
  central control in a native IP network.  This document describes
  various complex scenarios and simulation results when applying the
  Path Computation Element (PCE) in a native IP network.  This
  solution, referred to as Centralized Control Dynamic Routing (CCDR),
  integrates the advantage of using distributed protocols and the power
  of a centralized control technology, providing traffic engineering
  for native IP networks in a manner that applies equally to intra- and
  inter-domain scenarios.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8735.

Copyright Notice

  Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  CCDR Scenarios
    3.1.  QoS Assurance for Hybrid Cloud-Based Application
    3.2.  Link Utilization Maximization
    3.3.  Traffic Engineering for Multi-domain
    3.4.  Network Temporal Congestion Elimination
  4.  CCDR Simulation
    4.1.  Case Study for CCDR Algorithm
    4.2.  Topology Simulation
    4.3.  Traffic Matrix Simulation
    4.4.  CCDR End-to-End Path Optimization
    4.5.  Network Temporal Congestion Elimination
  5.  CCDR Deployment Consideration
  6.  Security Considerations
  7.  IANA Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  A service provider network is composed of thousands of routers that
  run distributed protocols to exchange reachability information.  The
  path for the destination network is mainly calculated, and
  controlled, by the distributed protocols.  These distributed
  protocols are robust enough to support most applications; however,
  they have some difficulties supporting the complexities needed for
  traffic-engineering applications, e.g., E2E performance assurance, or
  maximizing the link utilization within an IP network.

  Multiprotocol Label Switching (MPLS) using Traffic-Engineering (TE)
  technology (MPLS-TE) [RFC3209] is one solution for TE networks, but
  it introduces an MPLS network along with related technology, which
  would be an overlay of the IP network.  MPLS-TE technology is often
  used for Label Switched Path (LSP) protection and setting up complex
  paths within a domain.  It has not been widely deployed for meeting
  E2E (especially in inter-domain) dynamic performance assurance
  requirements for an IP network.

  Segment Routing [RFC8402] is another solution that integrates some
  advantages of using a distributed protocol and central control
  technology, but it requires the underlying network, especially the
  provider edge router, to do an in-depth label push and pop action
  while adding complexity when coexisting with the non-segment routing
  network.  Additionally, it can only maneuver the E2E paths for MPLS
  and IPv6 traffic via different mechanisms.

  Deterministic Networking (DetNet) [RFC8578] is another possible
  solution.  It is primarily focused on providing bounded latency for a
  flow and introduces additional requirements on the domain edge
  router.  The current DetNet scope is within one domain.  The use
  cases defined in this document do not require the additional
  complexity of deterministic properties and so differ from the DetNet
  use cases.

  This document describes several scenarios for a native IP network
  where a Centralized Control Dynamic Routing (CCDR) framework can
  produce qualitative improvement in efficiency without requiring a
  change to the data-plane behavior on the router.  Using knowledge of
  the Border Gateway Protocol (BGP) session-specific prefixes
  advertised by a router, the network topology and the near-real-time
  link-utilization information from network management systems, a
  central PCE is able to compute an optimal path and give the
  underlying routers the destination address to use to reach the BGP
  nexthop, such that the distributed routing protocol will use the
  computed path via traditional recursive lookup procedure.  Some
  results from simulations of path optimization are also presented to
  concretely illustrate a variety of scenarios where CCDR shows
  significant improvement over traditional distributed routing
  protocols.

  This document is the base document of the following two documents:
  the universal solution document, which is suitable for intra-domain
  and inter-domain TE scenario, is described in [PCE-NATIVE-IP]; and
  the related protocol extension contents is described in
  [PCEP-NATIVE-IP-EXT].

2.  Terminology

  In this document, PCE is used as defined in [RFC5440].  The following
  terms are used as described here:

  BRAS:   Broadband Remote Access Server

  CD:     Congestion Degree

  CR:     Core Router

  CCDR:   Centralized Control Dynamic Routing

  E2E:    End to End

  IDC:    Internet Data Center

  MAN:    Metro Area Network

  QoS:    Quality of Service

  SR:     Service Router

  TE:     Traffic Engineering

  UID:    Utilization Increment Degree

  WAN:    Wide Area Network

3.  CCDR Scenarios

  The following sections describe various deployment scenarios where
  applying the CCDR framework is intuitively expected to produce
  improvements based on the macro-scale properties of the framework and
  the scenario.

3.1.  QoS Assurance for Hybrid Cloud-Based Application

  With the emergence of cloud computing technologies, enterprises are
  putting more and more services on a public-oriented cloud environment
  while keeping core business within their private cloud.  The
  communication between the private and public cloud sites spans the
  WAN.  The bandwidth requirements between them are variable, and the
  background traffic between these two sites varies over time.
  Enterprise applications require assurance of the E2E QoS performance
  on demand for variable bandwidth services.

  CCDR, which integrates the merits of distributed protocols and the
  power of centralized control, is suitable for this scenario.  The
  possible solution framework is illustrated below:

                           +------------------------+
                           | Cloud-Based Application|
                           +------------------------+
                                       |
                                 +-----------+
                                 |    PCE    |
                                 +-----------+
                                       |
                                       |
                              //--------------\\
                         /////                  \\\\\
    Private Cloud Site ||       Distributed          |Public Cloud Site
                        |       Control Network      |
                         \\\\\                  /////
                              \\--------------//

              Figure 1: Hybrid Cloud Communication Scenario

  As illustrated in Figure 1, the source and destination of the "Cloud-
  Based Application" traffic are located at "Private Cloud Site" and
  "Public Cloud Site", respectively.

  By default, the traffic path between the private and public cloud
  site is determined by the distributed control network.  When an
  application requires E2E QoS assurance, it can send these
  requirements to the PCE and let the PCE compute one E2E path, which
  is based on the underlying network topology and real traffic
  information, in order to accommodate the application's QoS
  requirements.  Section 4.4 of this document describes the simulation
  results for this use case.

3.2.  Link Utilization Maximization

  Network topology within a Metro Area Network (MAN) is generally in a
  star mode as illustrated in Figure 2, with different devices
  connected to different customer types.  The traffic from these
  customers is often in a tidal pattern with the links between the Core
  Router (CR) / Broadband Remote Access Server (BRAS) and CR/Service
  Router (SR) experiencing congestion in different periods due to
  subscribers under BRAS often using the network at night and the
  leased line users under SR often using the network during the
  daytime.  The link between BRAS/SR and CR must satisfy the maximum
  traffic volume between them, respectively, which causes these links
  to often be underutilized.

                           +--------+
                           |   CR   |
                           +----|---+
                                |
                    |-------|--------|-------|
                    |       |        |       |
                 +--|-+   +-|+    +--|-+   +-|+
                 |BRAS|   |SR|    |BRAS|   |SR|
                 +----+   +--+    +----+   +--+

             Figure 2: Star-Mode Network Topology within MAN

  If we consider connecting the BRAS/SR with a local link loop (which
  is usually lower cost) and control the overall MAN topology with the
  CCDR framework, we can exploit the tidal phenomena between the BRAS/
  CR and SR/CR links, maximizing the utilization of these central trunk
  links (which are usually higher cost than the local loops).

                                    +-------+
                                -----  PCE  |
                                |   +-------+
                           +----|---+
                           |   CR   |
                           +----|---+
                                |
                    |-------|--------|-------|
                    |       |        |       |
                 +--|-+   +-|+    +--|-+   +-|+
                 |BRAS-----SR|    |BRAS-----SR|
                 +----+   +--+    +----+   +--+

             Figure 3: Link Utilization Maximization via CCDR

3.3.  Traffic Engineering for Multi-domain

  Service provider networks are often comprised of different domains,
  interconnected with each other, forming a very complex topology as
  illustrated in Figure 4.  Due to the traffic pattern to/from the MAN
  and IDC, the utilization of the links between them are often
  asymmetric.  It is almost impossible to balance the utilization of
  these links via a distributed protocol, but this unbalance can be
  overcome utilizing the CCDR framework.

                 +---+                +---+
                 |MAN|----------------|IDC|
                 +---+       |        +---+
                   |     ----------     |
                   |-----|Backbone|-----|
                   |     ----|-----     |
                   |         |          |
                 +---+       |        +---+
                 |IDC|----------------|MAN|
                 +---+                +---+

     Figure 4: Traffic Engineering for Complex Multi-domain Topology

  A solution for this scenario requires the gathering of NetFlow
  information, analysis of the source/destination autonomous system
  (AS), and determining what the main cause of the congested link(s)
  is.  After this, the operator can use the external Border Gateway
  Protocol (eBGP) sessions to schedule the traffic among the different
  domains according to the solution described in the CCDR framework.

3.4.  Network Temporal Congestion Elimination

  In more general situations, there is often temporal congestion within
  the service provider's network, for example, due to daily or weekly
  periodic bursts or large events that are scheduled well in advance.
  Such congestion phenomena often appear regularly, and if the service
  provider has methods to mitigate it, it will certainly improve their
  network operation capabilities and increase satisfaction for
  customers.  CCDR is also suitable for such scenarios, as the
  controller can schedule traffic out of the congested links, lowering
  their utilization during these times.  Section 4.5 describes the
  simulation results of this scenario.

4.  CCDR Simulation

  The following sections describe a specific case study to illustrate
  the workings of the CCDR algorithm with concrete paths/metrics, as
  well as a procedure for generating topology and traffic matrices and
  the results from simulations applying CCDR for E2E QoS (assured path
  and congestion elimination) over the generated topologies and traffic
  matrices.  In all cases examined, the CCDR algorithm produces
  qualitatively significant improvement over the reference (OSPF)
  algorithm, suggesting that CCDR will have broad applicability.

  The structure and scale of the simulated topology is similar to that
  of the real networks.  Multiple different traffic matrices were
  generated to simulate different congestion conditions in the network.
  Only one of them is illustrated since the others produce similar
  results.

4.1.  Case Study for CCDR Algorithm

  In this section, we consider a specific network topology for case
  study: examining the path selected by OSPF and CCDR and evaluating
  how and why the paths differ.  Figure 5 depicts the topology of the
  network in this case.  There are eight forwarding devices in the
  network.  The original cost and utilization are marked on it as shown
  in the figure.  For example, the original cost and utilization for
  the link (1, 2) are 3 and 50%, respectively.  There are two flows: f1
  and f2.  Both of these two flows are from node 1 to node 8.  For
  simplicity, it is assumed that the bandwidth of the link in the
  network is 10 Mb/s.  The flow rate of f1 is 1 Mb/s and the flow rate
  of f2 is 2 Mb/s.  The threshold of the link in congestion is 90%.

  If the OSPF protocol, which adopts Dijkstra's algorithm (IS-IS is
  similar because it also uses Dijkstra's algorithm), is applied in the
  network, the two flows from node 1 to node 8 can only use the OSPF
  path (p1: 1->2->3->8).  This is because Dijkstra's algorithm mainly
  considers the original cost of the link.  Since CCDR considers cost
  and utilization simultaneously, the same path as OSPF will not be
  selected due to the severe congestion of the link (2, 3).  In this
  case, f1 will select the path (p2: 1->5->6->7->8) since the new cost
  of this path is better than that of the OSPF path.  Moreover, the
  path p2 is also better than the path (p3: 1->2->4->7->8) for flow f1.
  However, f2 will not select the same path since it will cause new
  congestion in the link (6, 7).  As a result, f2 will select the path
  (p3: 1->2->4->7->8).


        +----+      f1                +-------> +-----+ ----> +-----+
        |Edge|-----------+            |+--------|  3  |-------|  8  |
        |Node|---------+ |            ||+-----> +-----+ ----> +-----+
        +----+         | |       4/95%|||              6/50%     |
                       | |            |||                   5/60%|
                       | v            |||                        |
        +----+       +-----+ -----> +-----+      +-----+      +-----+
        |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
        |Node|-----> +-----+ -----> +-----+7/60% +-----+5/45% +-----+
        +----+  f2      |     3/50%                              |
                        |                                        |
                        |   3/60%   +-----+ 5/55%+-----+   3/75% |
                        +-----------|  5  |------|  6  |---------+
                                    +-----+      +-----+
                  (a) Dijkstra's Algorithm (OSPF/IS-IS)


        +----+      f1                          +-----+ ----> +-----+
        |Edge|-----------+             +--------|  3  |-------|  8  |
        |Node|---------+ |             |        +-----+ ----> +-----+
        +----+         | |       4/95% |               6/50%    ^|^
                       | |             |                   5/60%|||
                       | v             |                        |||
        +----+       +-----+ -----> +-----+ ---> +-----+ ---> +-----+
        |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
        |Node|-----> +-----+        +-----+7/60% +-----+5/45% +-----+
        +----+  f2     ||     3/50%                              |^
                       ||                                        ||
                       ||   3/60%   +-----+5/55% +-----+   3/75% ||
                       |+-----------|  5  |------|  6  |---------+|
                       +----------> +-----+ ---> +-----+ ---------+
                     (b) CCDR Algorithm

                Figure 5: Case Study for CCDR's Algorithm

4.2.  Topology Simulation

  Moving on from the specific case study, we now consider a class of
  networks more representative of real deployments, with a fully linked
  core network that serves to connect edge nodes, which themselves
  connect to only a subset of the core.  An example of such a topology
  is shown in Figure 6 for the case of 4 core nodes and 5 edge nodes.
  The CCDR simulations presented in this work use topologies involving
  100 core nodes and 400 edge nodes.  While the resulting graph does
  not fit on this page, this scale of network is similar to what is
  deployed in production environments.

                                  +----+
                                 /|Edge|\
                                | +----+ |
                                |        |
                                |        |
                  +----+    +----+     +----+
                  |Edge|----|Core|-----|Core|---------+
                  +----+    +----+     +----+         |
                          /  |    \   /   |           |
                    +----+   |     \ /    |           |
                    |Edge|   |      X     |           |
                    +----+   |     / \    |           |
                          \  |    /   \   |           |
                  +----+    +----+     +----+         |
                  |Edge|----|Core|-----|Core|         |
                  +----+    +----+     +----+         |
                              |          |            |
                              |          +------\   +----+
                              |                  ---|Edge|
                              +-----------------/   +----+

                     Figure 6: Topology of Simulation

  For the simulations, the number of links connecting one edge node to
  the set of core nodes is randomly chosen between two and thirty, and
  the total number of links is more than 20,000.  Each link has a
  congestion threshold, which can be arbitrarily set, for example, to
  90% of the nominal link capacity without affecting the simulation
  results.

4.3.  Traffic Matrix Simulation

  For each topology, a traffic matrix is generated based on the link
  capacity of the topology.  It can result in many kinds of situations
  such as congestion, mild congestion, and non-congestion.

  In the CCDR simulation, the dimension of the traffic matrix is
  500*500 (100 core nodes plus 400 edge nodes).  About 20% of links are
  overloaded when the Open Shortest Path First (OSPF) protocol is used
  in the network.

4.4.  CCDR End-to-End Path Optimization

  The CCDR E2E path optimization entails finding the best path, which
  is the lowest in metric value, as well as having utilization far
  below the congestion threshold for each link of the path.  Based on
  the current state of the network, the PCE within CCDR framework
  combines the shortest path algorithm with a penalty theory of
  classical optimization and graph theory.

  Given a background traffic matrix, which is unscheduled, when a set
  of new flows comes into the network, the E2E path optimization finds
  the optimal paths for them.  The selected paths bring the least
  congestion degree to the network.

  The link Utilization Increment Degree (UID), when the new flows are
  added into the network, is shown in Figure 7.  The first graph in
  Figure 7 is the UID with OSPF, and the second graph is the UID with
  CCDR E2E path optimization.  The average UID of the first graph is
  more than 30%. After path optimization, the average UID is less than
  5%. The results show that the CCDR E2E path optimization has an eye-
  catching decrease in UID relative to the path chosen based on OSPF.

  While real-world results invariably differ from simulations (for
  example, real-world topologies are likely to exhibit correlation in
  the attachment patterns for edge nodes to the core, which are not
  reflected in these results), the dramatic nature of the improvement
  in UID and the choice of simulated topology to resemble real-world
  conditions suggest that real-world deployments will also experience
  significant improvement in UID results.

         +-----------------------------------------------------------+
         |                *                               *    *    *|
       60|                *                             * * *  *    *|
         |*      *       **     * *         *   *   *  ** * *  * * **|
         |*   * ** *   * **   *** **  *   * **  * * *  ** * *  *** **|
         |* * * ** *  ** **   *** *** **  **** ** ***  **** ** *** **|
       40|* * * ***** ** ***  *** *** **  **** ** *** ***** ****** **|
   UID(%)|* * ******* ** ***  *** ******* **** ** *** ***** *********|
         |*** ******* ** **** *********** *********** ***************|
         |******************* *********** *********** ***************|
       20|******************* ***************************************|
         |******************* ***************************************|
         |***********************************************************|
         |***********************************************************|
        0+-----------------------------------------------------------+
        0    100   200   300   400   500   600   700   800   900  1000
         +-----------------------------------------------------------+
         |                                                           |
       60|                                                           |
         |                                                           |
         |                                                           |
         |                                                           |
       40|                                                           |
   UID(%)|                                                           |
         |                                                           |
         |                                                           |
       20|                                                           |
         |                                                          *|
         |                                     *                    *|
         |        *         *  *    *       *  **                 * *|
        0+-----------------------------------------------------------+
        0    100   200   300   400   500   600   700   800   900  1000
                              Flow Number

         Figure 7: Simulation Results with Congestion Elimination

4.5.  Network Temporal Congestion Elimination

  During the simulations, different degrees of network congestion were
  considered.  To examine the effect of CCDR on link congestion, we
  consider the Congestion Degree (CD) of a link, defined as the link
  utilization beyond its threshold.

  The CCDR congestion elimination performance is shown in Figure 8.
  The first graph is the CD distribution before the process of
  congestion elimination.  The average CD of all congested links is
  about 20%. The second graph shown in Figure 8 is the CD distribution
  after using the congestion elimination process.  It shows that only
  twelve links among the total 20,000 exceed the threshold, and all the
  CD values are less than 3%. Thus, after scheduling the traffic away
  from the congested paths, the degree of network congestion is greatly
  eliminated and the network utilization is in balance.

              Before congestion elimination
          +-----------------------------------------------------------+
          |                *                            ** *   ** ** *|
        20|                *                     *      **** * ** ** *|
          |*      *       **     * **       **  **** * ***** *********|
          |*   *  * *   * **** ****** *  ** *** **********************|
        15|* * * ** *  ** **** ********* *****************************|
          |* * ******  ******* ********* *****************************|
    CD(%) |* ********* ******* ***************************************|
        10|* ********* ***********************************************|
          |*********** ***********************************************|
          |***********************************************************|
         5|***********************************************************|
          |***********************************************************|
          |***********************************************************|
         0+-----------------------------------------------------------+
             0            0.5            1            1.5            2

                       After congestion elimination
         +-----------------------------------------------------------+
         |                                                           |
       20|                                                           |
         |                                                           |
         |                                                           |
       15|                                                           |
         |                                                           |
   CD(%) |                                                           |
       10|                                                           |
         |                                                           |
         |                                                           |
       5 |                                                           |
         |                                                           |
         |        *        **  * *  *  **   *  **                 *  |
       0 +-----------------------------------------------------------+
          0            0.5            1            1.5            2
                           Link Number(*10000)

         Figure 8: Simulation Results with Congestion Elimination

  It is clear that by using an active path-computation mechanism that
  is able to take into account observed link traffic/congestion, the
  occurrence of congestion events can be greatly reduced.  Only when a
  preponderance of links in the network are near their congestion
  threshold will the central controller be unable to find a clear path
  as opposed to when a static metric-based procedure is used, which
  will produce congested paths once a single bottleneck approaches its
  capacity.  More detailed information about the algorithm can be found
  in [PTCS].

5.  CCDR Deployment Consideration

  The above CCDR scenarios and simulation results demonstrate that a
  single general solution can be found that copes with multiple complex
  situations.  The specific situations considered are not known to have
  any special properties, so it is expected that the benefits
  demonstrated will have general applicability.  Accordingly, the
  integrated use of a centralized controller for the more complex
  optimal path computations in a native IP network should result in
  significant improvements without impacting the underlying network
  infrastructure.

  For intra-domain or inter-domain native IP TE scenarios, the
  deployment of a CCDR solution is similar with the centralized
  controller being able to compute paths along with no changes being
  required to the underlying network infrastructure.  This universal
  deployment characteristic can facilitate a generic traffic-
  engineering solution where operators do not need to differentiate
  between intra-domain and inter-domain TE cases.

  To deploy the CCDR solution, the PCE should collect the underlying
  network topology dynamically, for example, via Border Gateway
  Protocol - Link State (BGP-LS) [RFC7752].  It also needs to gather
  the network traffic information periodically from the network
  management platform.  The simulation results show that the PCE can
  compute the E2E optimal path within seconds; thus, it can cope with a
  change to the underlying network in a matter of minutes.  More agile
  requirements would need to increase the sample rate of the underlying
  network and decrease the detection and notification interval of the
  underlying network.  The methods of gathering this information as
  well as decreasing its latency are out of the scope of this document.

6.  Security Considerations

  This document considers mainly the integration of distributed
  protocols and the central control capability of a PCE.  While it can
  certainly simplify the management of a network in various traffic-
  engineering scenarios as described in this document, the centralized
  control also brings a new point that may be easily attacked.
  Solutions for CCDR scenarios need to consider protection of the PCE
  and communication with the underlying devices.

  [RFC5440] and [RFC8253] provide additional information.

  The control priority and interaction process should also be carefully
  designed for the combination of the distributed protocol and central
  control.  Generally, the central control instructions should have
  higher priority than the forwarding actions determined by the
  distributed protocol.  When communication between PCE and the
  underlying devices is disrupted, the distributed protocol should take
  control of the underlying network.  [PCE-NATIVE-IP] provides more
  considerations corresponding to the solution.

7.  IANA Considerations

  This document has no IANA actions.

8.  References

8.1.  Normative References

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <https://www.rfc-editor.org/info/rfc5440>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <https://www.rfc-editor.org/info/rfc7752>.

  [RFC8253]  Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
             "PCEPS: Usage of TLS to Provide a Secure Transport for the
             Path Computation Element Communication Protocol (PCEP)",
             RFC 8253, DOI 10.17487/RFC8253, October 2017,
             <https://www.rfc-editor.org/info/rfc8253>.

8.2.  Informative References

  [PCE-NATIVE-IP]
             Wang, A., Zhao, Q., Khasanov, B., and H. Chen, "PCE in
             Native IP Network", Work in Progress, Internet-Draft,
             draft-ietf-teas-pce-native-ip-05, 9 January 2020,
             <https://tools.ietf.org/html/draft-ietf-teas-pce-native-
             ip-05>.

  [PCEP-NATIVE-IP-EXT]
             Wang, A., Khasanov, B., Fang, S., and C. Zhu, "PCEP
             Extension for Native IP Network", Work in Progress,
             Internet-Draft, draft-ietf-pce-pcep-extension-native-ip-
             05, 17 February 2020, <https://tools.ietf.org/html/draft-
             ietf-pce-pcep-extension-native-ip-05>.

  [PTCS]     Zhang, P., Xie, K., Kou, C., Huang, X., Wang, A., and Q.
             Sun, "A Practical Traffic Control Scheme With Load
             Balancing Based on PCE Architecture",
             DOI 10.1109/ACCESS.2019.2902610, IEEE Access 18526773,
             March 2019,
             <https://ieeexplore.ieee.org/document/8657733>.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <https://www.rfc-editor.org/info/rfc3209>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC8578]  Grossman, E., Ed., "Deterministic Networking Use Cases",
             RFC 8578, DOI 10.17487/RFC8578, May 2019,
             <https://www.rfc-editor.org/info/rfc8578>.

Acknowledgements

  The authors would like to thank Deborah Brungard, Adrian Farrel,
  Huaimo Chen, Vishnu Beeram, and Lou Berger for their support and
  comments on this document.

  Thanks to Benjamin Kaduk for his careful review and valuable
  suggestions on this document.  Also, thanks to Roman Danyliw, Alvaro
  Retana, and Éric Vyncke for their reviews and comments.

Contributors

  Lu Huang contributed to the content of this document.

Authors' Addresses

  Aijun Wang
  China Telecom
  Beiqijia Town, Changping District
  Beijing
  Beijing, 102209
  China

  Email: [email protected]


  Xiaohong Huang
  Beijing University of Posts and Telecommunications
  No.10 Xitucheng Road, Haidian District
  Beijing
  China

  Email: [email protected]


  Caixia Kou
  Beijing University of Posts and Telecommunications
  No.10 Xitucheng Road, Haidian District
  Beijing
  China

  Email: [email protected]


  Zhenqiang Li
  China Mobile
  32 Xuanwumen West Ave, Xicheng District
  Beijing
  100053
  China

  Email: [email protected]


  Penghui Mi
  Huawei Technologies
  Tower C of Bldg.2, Cloud Park, No.2013 of Xuegang Road
  Shenzhen
  Bantian,Longgang District, 518129
  China

  Email: [email protected]