Internet Engineering Task Force (IETF)                    P. Psenak, Ed.
Request for Comments: 8666                               S. Previdi, Ed.
Category: Standards Track                            Cisco Systems, Inc.
ISSN: 2070-1721                                            December 2019


                OSPFv3 Extensions for Segment Routing

Abstract

  Segment Routing (SR) allows a flexible definition of end-to-end paths
  within IGP topologies by encoding paths as sequences of topological
  subpaths called "segments".  These segments are advertised by the
  link-state routing protocols (IS-IS and OSPF).

  This document describes the OSPFv3 extensions required for Segment
  Routing with the MPLS data plane.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8666.

Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  Segment Routing Identifiers
    3.1.  SID/Label Sub-TLV
  4.  Segment Routing Capabilities
  5.  OSPFv3 Extended Prefix Range TLV
  6.  Prefix-SID Sub-TLV
  7.  Adjacency Segment Identifier (Adj-SID)
    7.1.  Adj-SID Sub-TLV
    7.2.  LAN Adj-SID Sub-TLV
  8.  Elements of Procedure
    8.1.  Intra-area Segment Routing in OSPFv3
    8.2.  Inter-area Segment Routing in OSPFv3
    8.3.  Segment Routing for External Prefixes
    8.4.  Advertisement of Adj-SID
      8.4.1.  Advertisement of Adj-SID on Point-to-Point Links
      8.4.2.  Adjacency SID on Broadcast or NBMA Interfaces
  9.  IANA Considerations
    9.1.  "OSPFv3 Extended-LSA TLVs" Registry
    9.2.  "OSPFv3 Extended-LSA Sub-TLVs" Registry
  10. TLV/Sub-TLV Error Handling
  11. Security Considerations
  12. References
    12.1.  Normative References
    12.2.  Informative References
  Contributors
  Authors' Addresses

1.  Introduction

  Segment Routing (SR) allows a flexible definition of end-to-end paths
  within IGP topologies by encoding paths as sequences of topological
  subpaths called "segments".  These segments are advertised by the
  link-state routing protocols (IS-IS and OSPF).  Prefix segments
  represent an ECMP-aware shortest path to a prefix (or a node) as per
  the state of the IGP topology.  Adjacency segments represent a hop
  over a specific adjacency between two nodes in the IGP.  A prefix
  segment is typically a multi-hop path while an adjacency segment, in
  most cases, is a one-hop path.  SR's control plane can be applied to
  both IPv6 and MPLS data planes, and it does not require any
  additional signaling (other than IGP extensions).  The IPv6 data
  plane is out of the scope of this specification; the OSPFv3 extension
  for SR with the IPv6 data plane will be specified in a separate
  document.  When used in MPLS networks, SR paths do not require any
  LDP or RSVP-TE signaling.  However, SR can interoperate in the
  presence of Label Switched Paths (LSPs) established with RSVP or LDP.

  This document describes the OSPFv3 extensions required for Segment
  Routing with the MPLS data plane.

  Segment Routing architecture is described in [RFC8402].

  Segment Routing use cases are described in [RFC7855].

2.  Terminology

  This section lists some of the terminology used in this document:

  ABR:        Area Border Router

  Adj-SID:    Adjacency Segment Identifier

  AS:         Autonomous System

  ASBR:       Autonomous System Boundary Router

  DR:         Designated Router

  IS-IS:      Intermediate System to Intermediate System

  LDP:        Label Distribution Protocol

  LSP:        Label Switched Path

  MPLS:       Multiprotocol Label Switching

  OSPF:       Open Shortest Path First

  SPF:        Shortest Path First

  RSVP:       Resource Reservation Protocol

  SID:        Segment Identifier

  SR:         Segment Routing

  SRGB:       Segment Routing Global Block

  SRLB:       Segment Routing Local Block

  SRMS:       Segment Routing Mapping Server

  TLV:        Type Length Value

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Segment Routing Identifiers

  Segment Routing defines various types of Segment Identifiers (SIDs):
  Prefix-SID, Adjacency SID, and LAN Adjacency SID.

3.1.  SID/Label Sub-TLV

  The SID/Label sub-TLV appears in multiple TLVs or sub-TLVs defined
  later in this document.  It is used to advertise the SID or label
  associated with a prefix or adjacency.  The SID/Label sub-TLV has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      SID/Label (variable)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     Type:  7

     Length:  3 or 4 octets.

     SID/Label:  If the length is set to 3, then the 20 rightmost bits
        represent a label.  If the length is set to 4, then the value
        represents a 32-bit SID.

4.  Segment Routing Capabilities

  Segment Routing requires some additional router capabilities to be
  advertised to other routers in the area.

  These SR capabilities are advertised in the OSPFv3 Router Information
  Opaque LSA (defined in [RFC7770]) and specified in [RFC8665].

5.  OSPFv3 Extended Prefix Range TLV

  In some cases, it is useful to advertise attributes for a range of
  prefixes in a single advertisement.  The SR Mapping Server, which is
  described in [RFC8661], is an example of where SIDs for multiple
  prefixes can be advertised.  To optimize such advertisement in case
  of multiple prefixes from a contiguous address range, OSPFv3 Extended
  Prefix Range TLV is defined.

  The OSPFv3 Extended Prefix Range TLV is a top-level TLV of the
  following LSAs defined in [RFC8362]:

     E-Intra-Area-Prefix-LSA

     E-Inter-Area-Prefix-LSA

     E-AS-External-LSA

     E-Type-7-LSA

  Multiple OSPFv3 Extended Prefix Range TLVs MAY be advertised in each
  LSA mentioned above.  The OSPFv3 Extended Prefix Range TLV has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Prefix Length |       AF      |         Range Size            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Flags      |                 Reserved                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Address Prefix (variable)                 |
  |                           ...                                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Sub-TLVs (variable)                      |
  +-                                                             -+
  |                                                               |

  where:

     Type:  9

     Length:  Variable, in octets, depending on the sub-TLVs.

     Prefix Length:  Length of prefix in bits.

     AF:  Address family for the prefix.

        AF:  0 - IPv4 unicast

        AF:  1 - IPv6 unicast

     Range Size:  Represents the number of prefixes that are covered by
        the advertisement.  The Range Size MUST NOT exceed the number
        of prefixes that could be satisfied by the Prefix Length
        without including:

           Addresses from the IPv4 multicast address range
           (224.0.0.0/3), if the AF is IPv4 unicast.

           Addresses other than the IPv6 unicast addresses, if the AF
           is IPv6 unicast.

     Flags:  Reserved.  MUST be zero when sent and are ignored when
        received.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception.

     Address Prefix:  For the address family IPv4 unicast, the
           prefix itself is encoded as a 32-bit value.  The default
           route is represented by a prefix of length 0.

           For the address family IPv6 unicast, the
           prefix is encoded as an even multiple of 32-bit words and
           padded with zeroed bits as necessary.  This encoding
           consumes ((PrefixLength + 31) / 32) 32-bit words.

           Prefix encoding for other address families is
           beyond the scope of this specification.  Prefix encoding for
           other address families can be defined in future Standards
           Track specifications from the IETF stream.

  The range represents the contiguous set of prefixes with the same
  prefix length as specified by the Prefix Length field.  The set
  starts with the prefix that is specified by the Address Prefix field.
  The number of prefixes in the range is equal to the Range Size.

  If the OSPFv3 Extended Prefix Range TLVs advertising the exact same
  range appears in multiple LSAs of the same type, originated by the
  same OSPFv3 router, the LSA with the numerically smallest Instance ID
  MUST be used, and subsequent instances of the OSPFv3 Extended Prefix
  Range TLVs MUST be ignored.

6.  Prefix-SID Sub-TLV

  The Prefix-SID sub-TLV is a sub-TLV of the following OSPFv3 TLVs as
  defined in [RFC8362] and in Section 5:

     Intra-Area Prefix TLV

     Inter-Area Prefix TLV

     External Prefix TLV

     OSPFv3 Extended Prefix Range TLV

  It MAY appear more than once in the parent TLV and has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Type            |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Flags     |  Algorithm    |           Reserved            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       SID/Index/Label (variable)              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     Type:  4

     Length:  7 or 8 octets, depending on the V-Flag.

     Flags:  Single-octet field.  The following flags are defined:


          0  1  2  3  4  5  6  7
        +--+--+--+--+--+--+--+--+
        |  |NP|M |E |V |L |  |  |
        +--+--+--+--+--+--+--+--+

        where:

        NP-Flag:  No-PHP (Penultimate Hop Popping) Flag.  If set, then
           the penultimate hop MUST NOT pop the Prefix-SID before
           delivering packets to the node that advertised the Prefix-
           SID.

        M-Flag:  Mapping Server Flag.  If set, the SID was advertised
           by an SR Mapping Server as described in [RFC8661].

        E-Flag:  Explicit Null Flag.  If set, any upstream neighbor of
           the Prefix-SID originator MUST replace the Prefix-SID with
           the Explicit NULL label (0 for IPv4, 2 for IPv6) before
           forwarding the packet.

        V-Flag:  Value/Index Flag.  If set, then the Prefix-SID carries
           an absolute value.  If not set, then the Prefix-SID carries
           an index.

        L-Flag:  Local/Global Flag.  If set, then the value/index
           carried by the Prefix-SID has local significance.  If not
           set, then the value/index carried by this sub-TLV has global
           significance.

        Other bits:  Reserved.  These MUST be zero when sent and are
           ignored when received.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception.

     Algorithm:  Single octet identifying the algorithm the Prefix-SID
        is associated with as defined in the IGP Algorithm Types
        registry [ALGOREG].

        A router receiving a Prefix-SID from a remote node and with an
        algorithm value that the remote node has not advertised in the
        SR-Algorithm TLV [RFC8665] MUST ignore the Prefix-SID sub-TLV.

     SID/Index/Label:  According to the V-Flag and L-Flag, it contains:

           V-Flag is set to 0 and L-Flag is set to 0: The SID/Index/
           Label field is a 4-octet index defining the offset in the
           SID/Label space advertised by this router.

           V-Flag is set to 1 and L-Flag is set to 1: The SID/Index/
           Label field is a 3-octet local label where the 20 rightmost
           bits are used for encoding the label value.

           All other combinations of V-Flag and L-Flag are invalid and
           any SID Advertisement received with an invalid setting for
           V- and L-Flags MUST be ignored.

  If an OSPFv3 router advertises multiple Prefix-SIDs for the same
  prefix, topology, and algorithm, all of them MUST be ignored.

  When calculating the outgoing label for the prefix, the router MUST
  take into account, as described below, the E-, NP-, and M-Flags
  advertised by the next-hop router if that router advertised the SID
  for the prefix.  This MUST be done regardless of whether the next-hop
  router contributes to the best path to the prefix.

  The NP-Flag (No-PHP) MUST be set and the E-Flag MUST be clear for
  Prefix-SIDs allocated to prefixes that are propagated between areas
  by an ABR based on intra-area or inter-area reachability, unless the
  advertised prefix is directly attached to such ABR.

  The NP-Flag (No-PHP) MUST be set and the E-Flag MUST be clear for
  Prefix-SIDs allocated to redistributed prefixes, unless the
  redistributed prefix is directly attached to the advertising ASBR.

  If the NP-Flag is not set, then:

     Any upstream neighbor of the Prefix-SID originator MUST pop the
     Prefix-SID.  This is equivalent to the penultimate hop-popping
     mechanism used in the MPLS data plane.

     The received E-Flag is ignored.

  If the NP-Flag is set and the E-Flag is not set, then:

     Any upstream neighbor of the Prefix-SID originator MUST keep the
     Prefix-SID on top of the stack.  This is useful when the
     originator of the Prefix-SID needs to stitch the incoming packet
     into a continuing MPLS LSP to the final destination.  This could
     occur at an ABR (prefix propagation from one area to another) or
     at an ASBR (prefix propagation from one domain to another).

  If both the NP-Flag and E-Flag are set, then:

     Any upstream neighbor of the Prefix-SID originator MUST replace
     the Prefix-SID with an Explicit NULL label.  This is useful, e.g.,
     when the originator of the Prefix-SID is the final destination for
     the related prefix and the originator wishes to receive the packet
     with the original Traffic Class field [RFC5462].

  When the M-Flag is set, the NP-Flag and the E-Flag MUST be ignored on
  reception.

  As the Mapping Server does not specify the originator of a prefix
  advertisement, it is not possible to determine PHP behavior solely
  based on the Mapping Server Advertisement.  However, PHP behavior
  SHOULD be done in the following cases:

     The Prefix is intra-area type and the downstream neighbor is the
     originator of the prefix.

     The Prefix is inter-area type and the downstream neighbor is an
     ABR, which is advertising prefix reachability and is setting the
     LA-bit in the Prefix Options as described in [RFC8362].

     The Prefix is external type and the downstream neighbor is an
     ASBR, which is advertising prefix reachability and is setting the
     LA-bit in the Prefix Options as described in [RFC8362].

  When a Prefix-SID is advertised in the OSPFv3 Extended Prefix Range
  TLV, then the value advertised in the Prefix-SID sub-TLV is
  interpreted as a starting SID/Label value.

  Example 1: If the following router addresses (loopback addresses)
  need to be mapped into the corresponding Prefix-SID indexes:

            Router-A: 2001:DB8::1/128, Prefix-SID: Index 1
            Router-B: 2001:DB8::2/128, Prefix-SID: Index 2
            Router-C: 2001:DB8::3/128, Prefix-SID: Index 3
            Router-D: 2001:DB8::4/128, Prefix-SID: Index 4

  then the Address Prefix field in the OSPFv3 Extended Prefix Range TLV
  would be set to 2001:DB8::1, the Prefix Length would be set to 128,
  the Range Size would be set to 4, and the Index value in the Prefix-
  SID sub-TLV would be set to 1.

  Example 2: If the following prefixes need to be mapped into the
  corresponding Prefix-SID indexes:

            2001:DB8:1::0/120,   Prefix-SID: Index 51
            2001:DB8:1::100/120, Prefix-SID: Index 52
            2001:DB8:1::200/120, Prefix-SID: Index 53
            2001:DB8:1::300/120, Prefix-SID: Index 54
            2001:DB8:1::400/120, Prefix-SID: Index 55
            2001:DB8:1::500/120, Prefix-SID: Index 56
            2001:DB8:1::600/120, Prefix-SID: Index 57

  then the Prefix field in the OSPFv3 Extended Prefix Range TLV would
  be set to 2001:DB8:1::0, the Prefix Length would be set to 120, the
  Range Size would be set to 7, and the Index value in the Prefix-SID
  sub-TLV would be set to 51.

7.  Adjacency Segment Identifier (Adj-SID)

  An Adjacency Segment Identifier (Adj-SID) represents a router
  adjacency in Segment Routing.

7.1.  Adj-SID Sub-TLV

  The Adj-SID sub-TLV is an optional sub-TLV of the Router-Link TLV as
  defined in [RFC8362].  It MAY appear multiple times in the Router-
  Link TLV.  The Adj-SID sub-TLV has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Type            |              Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Flags         |     Weight    |             Reserved          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   SID/Label/Index (variable)                  |
  +---------------------------------------------------------------+

  where:

     Type:  5

     Length:  7 or 8 octets, depending on the V-Flag.

     Flags:  Single-octet field containing the following flags:

            0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+
           |B|V|L|G|P|     |
           +-+-+-+-+-+-+-+-+

        where:

        B-Flag:  Backup Flag.  If set, the Adj-SID refers to an
           adjacency that is eligible for protection (e.g., using IP
           Fast Reroute (IPFRR) or MPLS-FRR (MPLS Fast Reroute)) as
           described in Section 3.4 of [RFC8402].

        V-Flag:  Value/Index Flag.  If set, then the Adj-SID carries an
           absolute value.  If not set, then the Adj-SID carries an
           index.

        L-Flag:  Local/Global Flag.  If set, then the value/index
           carried by the Adj-SID has local significance.  If not set,
           then the value/index carried by this sub-TLV has global
           significance.

        G-Flag:  Group Flag.  When set, the G-Flag indicates that the
           Adj-SID refers to a group of adjacencies (and therefore MAY
           be assigned to other adjacencies as well).

        P-Flag.  Persistent Flag.  When set, the P-Flag indicates that
           the Adj-SID is persistently allocated, i.e., the Adj-SID
           value remains the same across router restart and/or
           interface flap.

        Other bits:  Reserved.  These MUST be zero when sent and are
           ignored when received.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception.

     Weight:  Weight used for load-balancing purposes.  The use of the
        weight is defined in [RFC8402].

     SID/Index/Label:  As described in Section 6.

  An SR-capable router MAY allocate an Adj-SID for each of its
  adjacencies and set the B-Flag when the adjacency is eligible for
  protection by an FRR mechanism (IP or MPLS) as described in
  [RFC8402].

  An SR-capable router MAY allocate more than one Adj-SID to an
  adjacency.

  An SR-capable router MAY allocate the same Adj-SID to different
  adjacencies.

  When the P-Flag is not set, the Adj-SID MAY be persistent.  When the
  P-Flag is set, the Adj-SID MUST be persistent.

7.2.  LAN Adj-SID Sub-TLV

  The LAN Adjacency SID is an optional sub-TLV of the Router-Link TLV.
  It MAY appear multiple times in the Router-Link TLV.  It is used to
  advertise a SID/Label for an adjacency to a non-DR router on a
  broadcast, Non-Broadcast Multi-Access (NBMA), or hybrid [RFC6845]
  network.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Flags     |     Weight    |            Reserved           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Neighbor ID                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    SID/Label/Index (variable)                 |
  +---------------------------------------------------------------+

  where:

     Type:  6

     Length:  11 or 12 octets, depending on the V-Flag.

     Flags:  Same as in Section 7.1.

     Weight:  Weight used for load-balancing purposes.  The use of the
        weight is defined in [RFC8402].

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception.

     Neighbor ID:  The Router ID of the neighbor for which the LAN
        Adjacency SID is advertised.

     SID/Index/Label:  As described in Section 6.

        When the P-Flag is not set, the LAN Adjacency SID MAY be
        persistent.  When the P-Flag is set, the LAN Adjacency SID MUST
        be persistent.

8.  Elements of Procedure

8.1.  Intra-area Segment Routing in OSPFv3

  An OSPFv3 router that supports Segment Routing MAY advertise Prefix-
  SIDs for any prefix to which it is advertising reachability (e.g., a
  loopback IP address as described in Section 6).

  A Prefix-SID can also be advertised by SR Mapping Servers (as
  described in [RFC8661]).  A Mapping Server advertises Prefix-SIDs for
  remote prefixes that exist in the OSPFv3 routing domain.  Multiple
  Mapping Servers can advertise Prefix-SIDs for the same prefix, in
  which case the same Prefix-SID MUST be advertised by all of them.
  The SR Mapping Server could use either area flooding scope or
  autonomous system flooding scope when advertising Prefix-SIDs for
  prefixes, based on the configuration of the SR Mapping Server.
  Depending on the flooding scope used, the SR Mapping Server chooses
  the OSPFv3 LSA type that will be used.  If the area flooding scope is
  needed, an E-Intra-Area-Prefix-LSA [RFC8362] is used.  If autonomous
  system flooding scope is needed, an E-AS-External-LSA [RFC8362] is
  used.

  When a Prefix-SID is advertised by the Mapping Server, which is
  indicated by the M-Flag in the Prefix-SID sub-TLV (Section 6), the
  route type as implied by the LSA type is ignored and the Prefix-SID
  is bound to the corresponding prefix independent of the route type.

  Advertisement of the Prefix-SID by the Mapping Server using an Inter-
  Area Prefix TLV, External-Prefix TLV, or Intra-Area-Prefix TLV
  [RFC8362] does not itself contribute to the prefix reachability.  The
  NU-bit [RFC5340] MUST be set in the PrefixOptions field of the LSA,
  which is used by the Mapping Server to advertise SID or SID Range,
  which prevents the advertisement from contributing to prefix
  reachability.

  An SR Mapping Server MUST use the OSPFv3 Extended Prefix Range TLVs
  when advertising SIDs for prefixes.  Prefixes of different route
  types can be combined in a single OSPFv3 Extended Prefix Range TLV
  advertised by an SR Mapping Server.

  Area-scoped OSPFv3 Extended Prefix Range TLVs are propagated between
  areas, similar to propagation of prefixes between areas.  Same rules
  that are used for propagating prefixes between areas [RFC5340] are
  used for the propagation of the prefix ranges.

8.2.  Inter-area Segment Routing in OSPFv3

  In order to support SR in a multiarea environment, OSPFv3 MUST
  propagate Prefix-SID information between areas.  The following
  procedure is used to propagate Prefix-SIDs between areas.

  When an OSPFv3 ABR advertises an Inter-Area-Prefix-LSA from an intra-
  area prefix to all its connected areas, it will also include the
  Prefix-SID sub-TLV as described in Section 6.  The Prefix-SID value
  will be set as follows:

     The ABR will look at its best path to the prefix in the source
     area and find the advertising router associated with the best path
     to that prefix.

     The ABR will then determine if this router advertised a Prefix-SID
     for the prefix and use it when advertising the Prefix-SID to other
     connected areas.

     If no Prefix-SID was advertised for the prefix in the source area
     by the router that contributes to the best path to the prefix, the
     originating ABR will use the Prefix-SID advertised by any other
     router when propagating the Prefix-SID for the prefix to other
     areas.

  When an OSPFv3 ABR advertises an Inter-Area-Prefix-LSA from an inter-
  area route to all its connected areas, it will also include the
  Prefix-SID sub-TLV as described in Section 6.  The Prefix-SID value
  will be set as follows:

     The ABR will look at its best path to the prefix in the backbone
     area and find the advertising router associated with the best path
     to that prefix.

     The ABR will then determine if this router advertised a Prefix-SID
     for the prefix and use it when advertising the Prefix-SID to other
     connected areas.

     If no Prefix-SID was advertised for the prefix in the backbone
     area by the ABR that contributes to the best path to the prefix,
     the originating ABR will use the Prefix-SID advertised by any
     other router when propagating the Prefix-SID for the prefix to
     other areas.

8.3.  Segment Routing for External Prefixes

  AS-External-LSAs are flooded domain wide.  When an ASBR, which
  supports SR, originates an E-AS-External-LSA, it SHOULD also include
  a Prefix-SID sub-TLV as described in Section 6.  The Prefix-SID value
  will be set to the SID that has been reserved for that prefix.

  When a Not-So-Stubby Area (NSSA) [RFC3101] ABR translates an E-NSSA-
  LSA into an E-AS-External-LSA, it SHOULD also advertise the Prefix-
  SID for the prefix.  The NSSA ABR determines its best path to the
  prefix advertised in the translated E-NSSA-LSA and finds the
  advertising router associated with that path.  If the advertising
  router has advertised a Prefix-SID for the prefix, then the NSSA ABR
  uses it when advertising the Prefix-SID for the E-AS-External-LSA.
  Otherwise, the Prefix-SID advertised by any other router will be
  used.

8.4.  Advertisement of Adj-SID

  The Adjacency Segment Routing Identifier (Adj-SID) is advertised
  using the Adj-SID sub-TLV as described in Section 7.

8.4.1.  Advertisement of Adj-SID on Point-to-Point Links

  An Adj-SID MAY be advertised for any adjacency on a point-to-point
  (P2P) link that is in neighbor state 2-Way or higher.  If the
  adjacency on a P2P link transitions from the FULL state, then the
  Adj-SID for that adjacency MAY be removed from the area.  If the
  adjacency transitions to a state lower than 2-Way, then the Adj-SID
  Advertisement MUST be withdrawn from the area.

8.4.2.  Adjacency SID on Broadcast or NBMA Interfaces

  Broadcast, NBMA, or hybrid [RFC6845] networks in OSPFv3 are
  represented by a star topology where the DR is the central point to
  which all other routers on the broadcast, NBMA, or hybrid network
  connect.  As a result, routers on the broadcast, NBMA, or hybrid
  network advertise only their adjacency to the DR.  Routers that do
  not act as DR do not form or advertise adjacencies with each other.
  They do, however, maintain 2-Way adjacency state with each other and
  are directly reachable.

  When Segment Routing is used, each router on the broadcast, NBMA, or
  hybrid network MAY advertise the Adj-SID for its adjacency to the DR
  using the Adj-SID sub-TLV as described in Section 7.1.

  SR-capable routers MAY also advertise a LAN Adjacency SID for other
  neighbors (e.g., Backup Designated Router (BDR), DR-OTHER, etc.) on
  the broadcast, NBMA, or hybrid network using the LAN Adj-SID sub-TLV
  as described in Section 7.2.

9.  IANA Considerations

  This specification updates two existing OSPFv3 registries.

9.1.  "OSPFv3 Extended-LSA TLVs" Registry

  The following values have been allocated:

  +-------+----------------------------------+---------------+
  | Value | Description                      | Reference     |
  +=======+==================================+===============+
  | 9     | OSPFv3 Extended Prefix Range TLV | This document |
  +-------+----------------------------------+---------------+

               Table 1: OSPFv3 Extended-LSA TLVs

9.2.  "OSPFv3 Extended-LSA Sub-TLVs" Registry

  The following values have been allocated:

  +-------+---------------------+---------------+
  | Value | Description         | Reference     |
  +=======+=====================+===============+
  | 4     | Prefix-SID sub-TLV  | This document |
  +-------+---------------------+---------------+
  | 5     | Adj-SID sub-TLV     | This document |
  +-------+---------------------+---------------+
  | 6     | LAN Adj-SID sub-TLV | This document |
  +-------+---------------------+---------------+
  | 7     | SID/Label sub-TLV   | This document |
  +-------+---------------------+---------------+

       Table 2: OSPFv3 Extended-LSA Sub-TLVs

10.  TLV/Sub-TLV Error Handling

  For any new TLVs/sub-TLVs defined in this document, if the length is
  invalid, the LSA in which it is advertised is considered malformed
  and MUST be ignored.  Errors SHOULD be logged subject to rate
  limiting.

11.  Security Considerations

  With the OSPFv3 Segment Routing extensions defined herein, OSPFv3
  will now program the MPLS data plane [RFC3031].  Previously, LDP
  [RFC5036] or another label distribution mechanism was required to
  advertise MPLS labels and program the MPLS data plane.

  In general, the same types of attacks that can be carried out on the
  IP control plane can be carried out on the MPLS control plane
  resulting in traffic being misrouted in the respective data planes.
  However, the latter can be more difficult to detect and isolate.

  Existing security extensions, as described in [RFC5340] and
  [RFC8362], apply to these Segment Routing extensions.  While OSPFv3
  is under a single administrative domain, there can be deployments
  where potential attackers have access to one or more networks in the
  OSPFv3 routing domain.  In these deployments, stronger authentication
  mechanisms, such as those specified in [RFC4552] or [RFC7166], SHOULD
  be used.

  Implementations MUST ensure that malformed TLVs and sub-TLVs defined
  in this document are detected and that they do not provide a
  vulnerability for attackers to crash the OSPFv3 router or routing
  process.  Reception of a malformed TLV or sub-TLV SHOULD be counted
  and/or logged for further analysis.  Logging of malformed TLVs and
  sub-TLVs SHOULD be rate limited to prevent a Denial-of-Service (DoS)
  attack (distributed or otherwise) from overloading the OSPFv3 control
  plane.

12.  References

12.1.  Normative References

  [ALGOREG]  IANA, "Interior Gateway Protocol (IGP) Parameters",
             <https://www.iana.org/assignments/igp-parameters>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031,
             DOI 10.17487/RFC3031, January 2001,
             <https://www.rfc-editor.org/info/rfc3031>.

  [RFC3101]  Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option",
             RFC 3101, DOI 10.17487/RFC3101, January 2003,
             <https://www.rfc-editor.org/info/rfc3101>.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
             October 2007, <https://www.rfc-editor.org/info/rfc5036>.

  [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
             for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008,
             <https://www.rfc-editor.org/info/rfc5340>.

  [RFC5462]  Andersson, L. and R. Asati, "Multiprotocol Label Switching
             (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
             Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
             2009, <https://www.rfc-editor.org/info/rfc5462>.

  [RFC6845]  Sheth, N., Wang, L., and J. Zhang, "OSPF Hybrid Broadcast
             and Point-to-Multipoint Interface Type", RFC 6845,
             DOI 10.17487/RFC6845, January 2013,
             <https://www.rfc-editor.org/info/rfc6845>.

  [RFC7770]  Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
             S. Shaffer, "Extensions to OSPF for Advertising Optional
             Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
             February 2016, <https://www.rfc-editor.org/info/rfc7770>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8362]  Lindem, A., Roy, A., Goethals, D., Reddy Vallem, V., and
             F. Baker, "OSPFv3 Link State Advertisement (LSA)
             Extensibility", RFC 8362, DOI 10.17487/RFC8362, April
             2018, <https://www.rfc-editor.org/info/rfc8362>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC8661]  Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
             Decraene, B., and S. Litkowski, "Segment Routing MPLS
             Interworking with LDP", RFC 8661, DOI 10.17487/RFC8661,
             December 2019, <https://www.rfc-editor.org/info/rfc8661>.

  [RFC8665]  Psenak, P., Ed., Previdi, S., Ed., Filfils, C., Gredler,
             H., Shakir, R., Henderickx, W., and J. Tantsura, "OSPF
             Extensions for Segment Routing", RFC 8665,
             DOI 10.17487/RFC8665, December 2019,
             <https://www.rfc-editor.org/info/rfc8665>.

12.2.  Informative References

  [RFC4552]  Gupta, M. and N. Melam, "Authentication/Confidentiality
             for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,
             <https://www.rfc-editor.org/info/rfc4552>.

  [RFC7166]  Bhatia, M., Manral, V., and A. Lindem, "Supporting
             Authentication Trailer for OSPFv3", RFC 7166,
             DOI 10.17487/RFC7166, March 2014,
             <https://www.rfc-editor.org/info/rfc7166>.

  [RFC7855]  Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
             Litkowski, S., Horneffer, M., and R. Shakir, "Source
             Packet Routing in Networking (SPRING) Problem Statement
             and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
             2016, <https://www.rfc-editor.org/info/rfc7855>.

Contributors

  The following people gave a substantial contribution to the content
  of this document and should be considered coauthors:


     Clarence Filsfils
     Cisco Systems, Inc.
     Brussels
     Belgium

     Email: [email protected]


     Hannes Gredler
     RtBrick Inc.
     Austria

     Email: [email protected]


     Rob Shakir
     Google, Inc.
     United States of America

     Email: [email protected]


     Wim Henderickx
     Nokia
     Belgium

     Email: [email protected]


     Jeff Tantsura
     Apstra, Inc.
     United States of America

     Email: [email protected]

  Thanks to Acee Lindem for his substantial contribution to the content
  of this document.

  We would like to thank Anton Smirnov for his contribution as well.

Authors' Addresses

  Peter Psenak (editor)
  Cisco Systems, Inc.
  Eurovea Centre, Central 3, Pribinova Street 10
  81109 Bratislava
  Slovakia

  Email: [email protected]


  Stefano Previdi (editor)
  Cisco Systems, Inc.

  Email: [email protected]