Internet Engineering Task Force (IETF)                    P. Psenak, Ed.
Request for Comments: 8665                               S. Previdi, Ed.
Category: Standards Track                                    C. Filsfils
ISSN: 2070-1721                                      Cisco Systems, Inc.
                                                             H. Gredler
                                                           RtBrick Inc.
                                                              R. Shakir
                                                           Google, Inc.
                                                          W. Henderickx
                                                                  Nokia
                                                            J. Tantsura
                                                           Apstra, Inc.
                                                          December 2019


                 OSPF Extensions for Segment Routing

Abstract

  Segment Routing (SR) allows a flexible definition of end-to-end paths
  within IGP topologies by encoding paths as sequences of topological
  subpaths called "segments".  These segments are advertised by the
  link-state routing protocols (IS-IS and OSPF).

  This document describes the OSPFv2 extensions required for Segment
  Routing.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8665.

Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Requirements Language
  2.  Segment Routing Identifiers
    2.1.  SID/Label Sub-TLV
  3.  Segment Routing Capabilities
    3.1.  SR-Algorithm TLV
    3.2.  SID/Label Range TLV
    3.3.  SR Local Block TLV
    3.4.  SRMS Preference TLV
  4.  OSPF Extended Prefix Range TLV
  5.  Prefix-SID Sub-TLV
  6.  Adjacency Segment Identifier (Adj-SID)
    6.1.  Adj-SID Sub-TLV
    6.2.  LAN Adj-SID Sub-TLV
  7.  Elements of Procedure
    7.1.  Intra-area Segment Routing in OSPFv2
    7.2.  Inter-area Segment Routing in OSPFv2
    7.3.  Segment Routing for External Prefixes
    7.4.  Advertisement of Adj-SID
      7.4.1.  Advertisement of Adj-SID on Point-to-Point Links
      7.4.2.  Adjacency SID on Broadcast or NBMA Interfaces
  8.  IANA Considerations
    8.1.  OSPF Router Information (RI) TLVs Registry
    8.2.  OSPFv2 Extended Prefix Opaque LSA TLVs Registry
    8.3.  OSPFv2 Extended Prefix TLV Sub-TLVs Registry
    8.4.  OSPFv2 Extended Link TLV Sub-TLVs Registry
    8.5.  IGP Algorithm Types Registry
  9.  TLV/Sub-TLV Error Handling
  10. Security Considerations
  11. References
    11.1.  Normative References
    11.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  Segment Routing (SR) allows a flexible definition of end-to-end paths
  within IGP topologies by encoding paths as sequences of topological
  subpaths called "segments".  These segments are advertised by the
  link-state routing protocols (IS-IS and OSPF).  Prefix segments
  represent an ECMP-aware shortest path to a prefix (or a node), as per
  the state of the IGP topology.  Adjacency segments represent a hop
  over a specific adjacency between two nodes in the IGP.  A prefix
  segment is typically a multi-hop path while an adjacency segment, in
  most cases, is a one-hop path.  SR's control plane can be applied to
  both IPv6 and MPLS data planes, and it does not require any
  additional signaling (other than IGP extensions).  The IPv6 data
  plane is out of the scope of this specification; it is not applicable
  to OSPFv2, which only supports the IPv4 address family.  When used in
  MPLS networks, SR paths do not require any LDP or RSVP-TE signaling.
  However, SR can interoperate in the presence of LSPs established with
  RSVP or LDP.

  There are additional segment types, e.g., Binding Segment Identifier
  (SID) defined in [RFC8402].

  This document describes the OSPF extensions required for Segment
  Routing.

  Segment Routing architecture is described in [RFC8402].

  Segment Routing use cases are described in [RFC7855].

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Segment Routing Identifiers

  Segment Routing defines various types of Segment Identifiers (SIDs):
  Prefix-SID, Adjacency SID, LAN Adjacency SID, and Binding SID.

  Extended Prefix/Link Opaque Link State Advertisements (LSAs) defined
  in [RFC7684] are used for advertisements of the various SID types.

2.1.  SID/Label Sub-TLV

  The SID/Label Sub-TLV appears in multiple TLVs or sub-TLVs defined
  later in this document.  It is used to advertise the SID or label
  associated with a prefix or adjacency.  The SID/Label Sub-TLV has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         SID/Label (variable)                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     Type:  1

     Length:  3 or 4 octets

     SID/Label:  If the length is set to 3, then the 20 rightmost bits
        represent a label.  If the length is set to 4, then the value
        represents a 32-bit SID.

3.  Segment Routing Capabilities

  Segment Routing requires some additional router capabilities to be
  advertised to other routers in the area.

  These SR capabilities are advertised in the Router Information Opaque
  LSA (defined in [RFC7770]).  The TLVs defined below are applicable to
  both OSPFv2 and OSPFv3; see also [RFC8666].

3.1.  SR-Algorithm TLV

  The SR-Algorithm TLV is a top-level TLV of the Router Information
  Opaque LSA (defined in [RFC7770]).

  The SR-Algorithm TLV is optional.  It SHOULD only be advertised once
  in the Router Information Opaque LSA.  If the SR-Algorithm TLV is not
  advertised by the node, such a node is considered as not being
  Segment Routing capable.

  An SR Router can use various algorithms when calculating reachability
  to OSPF routers or prefixes in an OSPF area.  Examples of these
  algorithms are metric-based Shortest Path First (SPF), various
  flavors of Constrained SPF, etc.  The SR-Algorithm TLV allows a
  router to advertise the algorithms currently used by the router to
  other routers in an OSPF area.  The SR-Algorithm TLV has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Algorithm 1 | Algorithm...  |   Algorithm n |               |
  +-                                                             -+
  |                                                               |
  +                                                               +

  where:

     Type:  8

     Length:  Variable, in octets, depending on the number of
        algorithms advertised

     Algorithm:  Single octet identifying the algorithm.  The following
        values are defined by this document:

        0:    Shortest Path First (SPF) algorithm based on link metric.
              This is the standard shortest path algorithm as computed
              by the OSPF protocol.  Consistent with the deployed
              practice for link-state protocols, Algorithm 0 permits
              any node to overwrite the SPF path with a different path
              based on its local policy.  If the SR-Algorithm TLV is
              advertised, Algorithm 0 MUST be included.

        1:    Strict Shortest Path First (SPF) algorithm based on link
              metric.  The algorithm is identical to Algorithm 0, but
              Algorithm 1 requires that all nodes along the path will
              honor the SPF routing decision.  Local policy at the node
              claiming support for Algorithm 1 MUST NOT alter the SPF
              paths computed by Algorithm 1.

  When multiple SR-Algorithm TLVs are received from a given router, the
  receiver MUST use the first occurrence of the TLV in the Router
  Information Opaque LSA.  If the SR-Algorithm TLV appears in multiple
  Router Information Opaque LSAs that have different flooding scopes,
  the SR-Algorithm TLV in the Router Information Opaque LSA with the
  area-scoped flooding scope MUST be used.  If the SR-Algorithm TLV
  appears in multiple Router Information Opaque LSAs that have the same
  flooding scope, the SR-Algorithm TLV in the Router Information (RI)
  Opaque LSA with the numerically smallest Instance ID MUST be used and
  subsequent instances of the SR-Algorithm TLV MUST be ignored.

  The RI LSA can be advertised at any of the defined opaque flooding
  scopes (link, area, or Autonomous System (AS)).  For the purpose of
  SR-Algorithm TLV advertisement, area-scoped flooding is REQUIRED.

3.2.  SID/Label Range TLV

  Prefix-SIDs MAY be advertised in the form of an index as described in
  Section 5.  Such an index defines the offset in the SID/Label space
  advertised by the router.  The SID/Label Range TLV is used to
  advertise such SID/Label space.

  The SID/Label Range TLV is a top-level TLV of the Router Information
  Opaque LSA (defined in [RFC7770]).

  The SID/Label Range TLV MAY appear multiple times and has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Range Size                 |   Reserved    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sub-TLVs (variable)                    |
  +-                                                             -+
  |                                                               |
  +                                                               +

  where:

     Type:  9

     Length:  Variable, in octets, depending on the sub-TLVs

     Range Size:  3-octet SID/label range size (i.e., the number of
        SIDs or labels in the range including the first SID/label).  It
        MUST be greater than 0.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

  Initially, the only supported sub-TLV is the SID/Label Sub-TLV as
  defined in Section 2.1.  The SID/Label Sub-TLV MUST be included in
  the SID/Label Range TLV.  The SID/Label advertised in the SID/Label
  Sub-TLV represents the first SID/Label in the advertised range.

  Only a single SID/Label Sub-TLV MAY be advertised in the SID/Label
  Range TLV.  If more than one SID/Label Sub-TLV is present, the SID/
  Label Range TLV MUST be ignored.

  Multiple occurrences of the SID/Label Range TLV MAY be advertised in
  order to advertise multiple ranges.  In such a case:

  *  The originating router MUST encode each range into a different
     SID/Label Range TLV.

  *  The originating router decides the order in which the set of SID/
     Label Range TLVs are advertised inside the Router Information
     Opaque LSA.  The originating router MUST ensure the order is the
     same after a graceful restart (using checkpointing, nonvolatile
     storage, or any other mechanism) in order to ensure the SID/Label
     range and SID index correspondence is preserved across graceful
     restarts.

  *  The receiving router MUST adhere to the order in which the ranges
     are advertised when calculating a SID/Label from a SID index.

  *  The originating router MUST NOT advertise overlapping ranges.

  *  When a router receives multiple overlapping ranges, it MUST
     conform to the procedures defined in [RFC8660].

  The following example illustrates the advertisement of multiple
  ranges.

  The originating router advertises the following ranges:

        Range 1: Range Size: 100   SID/Label Sub-TLV: 100
        Range 1: Range Size: 100   SID/Label Sub-TLV: 1000
        Range 1: Range Size: 100   SID/Label Sub-TLV: 500

  The receiving routers concatenate the ranges and build the Segment
  Routing Global Block (SRGB) as follows:


     SRGB = [100, 199]
            [1000, 1099]
            [500, 599]

  The indexes span multiple ranges:


        index 0 means label 100
        ...
        index 99 means label 199
        index 100 means label 1000
        index 199 means label 1099
        ...
        index 200 means label 500
        ...

  The RI LSA can be advertised at any of the defined flooding scopes
  (link, area, or autonomous system (AS)).  For the purpose of SID/
  Label Range TLV advertisement, area-scoped flooding is REQUIRED.

3.3.  SR Local Block TLV

  The SR Local Block TLV (SRLB TLV) contains the range of labels the
  node has reserved for Local SIDs.  SIDs from the SRLB MAY be used for
  Adjacency SIDs but also by components other than the OSPF protocol.
  As an example, an application or a controller can instruct the router
  to allocate a specific Local SID.  Some controllers or applications
  can use the control plane to discover the available set of Local SIDs
  on a particular router.  In such cases, the SRLB is advertised in the
  control plane.  The requirement to advertise the SRLB is further
  described in [RFC8660].  The SRLB TLV is used to advertise the SRLB.

  The SRLB TLV is a top-level TLV of the Router Information Opaque LSA
  (defined in [RFC7770]).

  The SRLB TLV MAY appear multiple times in the Router Information
  Opaque LSA and has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Range Size                 |   Reserved    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sub-TLVs (variable)                    |
  +-                                                             -+
  |                                                               |
  +                                                               +

  where:

     Type:  14

     Length:  Variable, in octets, depending on the sub-TLVs

     Range Size:  3-octet SID/Label range size (i.e., the number of
        SIDs or labels in the range including the first SID/Label).  It
        MUST be greater than 0.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

  Initially, the only supported sub-TLV is the SID/Label Sub-TLV as
  defined in Section 2.1.  The SID/Label Sub-TLV MUST be included in
  the SRLB TLV.  The SID/Label advertised in the SID/Label Sub-TLV
  represents the first SID/Label in the advertised range.

  Only a single SID/Label Sub-TLV MAY be advertised in the SRLB TLV.
  If more than one SID/Label Sub-TLV is present, the SRLB TLV MUST be
  ignored.

  The originating router MUST NOT advertise overlapping ranges.

  Each time a SID from the SRLB is allocated, it SHOULD also be
  reported to all components (e.g., controller or applications) in
  order for these components to have an up-to-date view of the current
  SRLB allocation.  This is required to avoid collisions between
  allocation instructions.

  Within the context of OSPF, the reporting of Local SIDs is done
  through OSPF sub-TLVs, such as the Adjacency SID (Section 6).
  However, the reporting of allocated Local SIDs can also be done
  through other means and protocols, which are outside the scope of
  this document.

  A router advertising the SRLB TLV MAY also have other label ranges,
  outside of the SRLB, used for its local allocation purposes and not
  advertised in the SRLB TLV.  For example, it is possible that an
  Adjacency SID is allocated using a local label that is not part of
  the SRLB.

  The RI LSA can be advertised at any of the defined flooding scopes
  (link, area, or autonomous system (AS)).  For the purpose of SRLB TLV
  advertisement, area-scoped flooding is REQUIRED.

3.4.  SRMS Preference TLV

  The Segment Routing Mapping Server Preference TLV (SRMS Preference
  TLV) is used to advertise a preference associated with the node that
  acts as an SR Mapping Server.  The role of an SRMS is described in
  [RFC8661].  SRMS preference is defined in [RFC8661].

  The SRMS Preference TLV is a top-level TLV of the Router Information
  Opaque LSA (defined in [RFC7770]).

  The SRMS Preference TLV MAY only be advertised once in the Router
  Information Opaque LSA and has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Preference    |                 Reserved                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     Type:  15

     Length:  4 octets

     Preference:  1 octet, with an SRMS preference value from 0 to 255

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

  When multiple SRMS Preference TLVs are received from a given router,
  the receiver MUST use the first occurrence of the TLV in the Router
  Information Opaque LSA.  If the SRMS Preference TLV appears in
  multiple Router Information Opaque LSAs that have different flooding
  scopes, the SRMS Preference TLV in the Router Information Opaque LSA
  with the narrowest flooding scope MUST be used.  If the SRMS
  Preference TLV appears in multiple Router Information Opaque LSAs
  that have the same flooding scope, the SRMS Preference TLV in the
  Router Information Opaque LSA with the numerically smallest Instance
  ID MUST be used and subsequent instances of the SRMS Preference TLV
  MUST be ignored.

  The RI LSA can be advertised at any of the defined flooding scopes
  (link, area, or autonomous system (AS)).  For the purpose of the SRMS
  Preference TLV advertisement, AS-scoped flooding SHOULD be used.
  This is because SRMS servers can be located in a different area than
  consumers of the SRMS advertisements.  If the SRMS advertisements
  from the SRMS server are only used inside the SRMS server's area,
  area-scoped flooding MAY be used.

4.  OSPF Extended Prefix Range TLV

  In some cases, it is useful to advertise attributes for a range of
  prefixes.  The SR Mapping Server, which is described in [RFC8661], is
  an example where we need a single advertisement to advertise SIDs for
  multiple prefixes from a contiguous address range.

  The OSPF Extended Prefix Range TLV, which is a top-level TLV of the
  Extended Prefix LSA described in [RFC7684] is defined for this
  purpose.

  Multiple OSPF Extended Prefix Range TLVs MAY be advertised in each
  OSPF Extended Prefix Opaque LSA, but all prefix ranges included in a
  single OSPF Extended Prefix Opaque LSA MUST have the same flooding
  scope.  The OSPF Extended Prefix Range TLV has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Prefix Length |     AF        |         Range Size            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Flags       |                Reserved                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Address Prefix (variable)                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Sub-TLVs (variable)                      |
  +-                                                             -+
  |                                                               |

  where:

     Type:  2

     Length:  Variable, in octets, depending on the sub-TLVs

     Prefix Length:  Length of prefix in bits

     AF:  Address family for the prefix.  Currently, the only supported
        value is 0 for IPv4 unicast.  The inclusion of address family
        in this TLV allows for future extension.

     Range Size:  Represents the number of prefixes that are covered by
        the advertisement.  The Range Size MUST NOT exceed the number
        of prefixes that could be satisfied by the Prefix Length
        without including the IPv4 multicast address range
        (224.0.0.0/3).

     Flags:  Single-octet field.  The following flags are defined:

             0  1  2  3  4  5  6  7
           +--+--+--+--+--+--+--+--+
           |IA|  |  |  |  |  |  |  |
           +--+--+--+--+--+--+--+--+

        where:

           IA-Flag:  Inter-Area Flag.  If set, advertisement is of
              inter-area type.  An Area Border Router (ABR) that is
              advertising the OSPF Extended Prefix Range TLV between
              areas MUST set this bit.

              This bit is used to prevent redundant flooding of Prefix
              Range TLVs between areas as follows:

                 An ABR only propagates an inter-area Prefix Range
                 advertisement from the backbone area to connected
                 nonbackbone areas if the advertisement is considered
                 to be the best one.  The following rules are used to
                 select the best range from the set of advertisements
                 for the same Prefix Range:

                    An ABR always prefers intra-area Prefix Range
                    advertisements over inter-area advertisements.

                    An ABR does not consider inter-area Prefix Range
                    advertisements coming from nonbackbone areas.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

     Address Prefix:  For the address family IPv4 unicast, the prefix
        itself is encoded as a 32-bit value.  The default route is
        represented by a prefix of length 0.  Prefix encoding for other
        address families is beyond the scope of this specification.

5.  Prefix-SID Sub-TLV

  The Prefix-SID Sub-TLV is a sub-TLV of the OSPF Extended Prefix TLV
  described in [RFC7684] and the OSPF Extended Prefix Range TLV
  described in Section 4.  It MAY appear more than once in the parent
  TLV and has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Flags    |   Reserved    |      MT-ID    |    Algorithm  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     SID/Index/Label (variable)                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     Type:  2

     Length:  7 or 8 octets, depending on the V-Flag

     Flags:  Single-octet field.  The following flags are defined:


             0  1  2  3  4  5  6  7
           +--+--+--+--+--+--+--+--+
           |  |NP|M |E |V |L |  |  |
           +--+--+--+--+--+--+--+--+

        where:

           NP-Flag:  No-PHP (Penultimate Hop Popping) Flag.  If set,
              then the penultimate hop MUST NOT pop the Prefix-SID
              before delivering packets to the node that advertised the
              Prefix-SID.

           M-Flag:  Mapping Server Flag.  If set, the SID was
              advertised by an SR Mapping Server as described in
              [RFC8661].

           E-Flag:  Explicit Null Flag.  If set, any upstream neighbor
              of the Prefix-SID originator MUST replace the Prefix-SID
              with the Explicit NULL label (0 for IPv4) before
              forwarding the packet.

           V-Flag:  Value/Index Flag.  If set, then the Prefix-SID
              carries an absolute value.  If not set, then the Prefix-
              SID carries an index.

           L-Flag:  Local/Global Flag.  If set, then the value/index
              carried by the Prefix-SID has local significance.  If not
              set, then the value/index carried by this sub-TLV has
              global significance.

           Other bits:  Reserved.  These MUST be zero when sent and are
              ignored when received.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

     MT-ID:  Multi-Topology ID (as defined in [RFC4915])

     Algorithm:  Single octet identifying the algorithm the Prefix-SID
        is associated with as defined in Section 3.1

        A router receiving a Prefix-SID from a remote node and with an
        algorithm value that the remote node has not advertised in the
        SR-Algorithm TLV (Section 3.1) MUST ignore the Prefix-SID Sub-
        TLV.

     SID/Index/Label:  According to the V- and L-Flags, it contains:

           V-Flag is set to 0 and L-Flag is set to 0: The SID/Index/
           Label field is a 4-octet index defining the offset in the
           SID/Label space advertised by this router.

           V-Flag is set to 1 and L-Flag is set to 1: The SID/Index/
           Label field is a 3-octet local label where the 20 rightmost
           bits are used for encoding the label value.

           All other combinations of V-Flag and L-Flag are invalid and
           any SID Advertisement received with an invalid setting for
           V- and L-Flags MUST be ignored.

  If an OSPF router advertises multiple Prefix-SIDs for the same
  prefix, topology, and algorithm, all of them MUST be ignored.

  When calculating the outgoing label for the prefix, the router MUST
  take into account, as described below, the E-, NP-, and M-Flags
  advertised by the next-hop router if that router advertised the SID
  for the prefix.  This MUST be done regardless of whether the next-hop
  router contributes to the best path to the prefix.

  The NP-Flag (No-PHP) MUST be set and the E-Flag MUST be clear for
  Prefix-SIDs allocated to inter-area prefixes that are originated by
  the ABR based on intra-area or inter-area reachability between areas
  unless the advertised prefix is directly attached to the ABR.

  The NP-Flag (No-PHP) MUST be set and the E-Flag MUST be clear for
  Prefix-SIDs allocated to redistributed prefixes, unless the
  redistributed prefix is directly attached to the Autonomous System
  Boundary Router (ASBR).

  If the NP-Flag is not set, then:

     Any upstream neighbor of the Prefix-SID originator MUST pop the
     Prefix-SID.  This is equivalent to the penultimate hop-popping
     mechanism used in the MPLS data plane.

     The received E-Flag is ignored.

  If the NP-Flag is set and the E-Flag is not set, then:

     Any upstream neighbor of the Prefix-SID originator MUST keep the
     Prefix-SID on top of the stack.  This is useful when the
     originator of the Prefix-SID needs to stitch the incoming packet
     into a continuing MPLS LSP to the final destination.  This could
     occur at an ABR (prefix propagation from one area to another) or
     at an ASBR (prefix propagation from one domain to another).

  If both the NP-Flag and E-Flag are set, then:

     Any upstream neighbor of the Prefix-SID originator MUST replace
     the Prefix-SID with an Explicit NULL label.  This is useful, e.g.,
     when the originator of the Prefix-SID is the final destination for
     the related prefix and the originator wishes to receive the packet
     with the original EXP bits.

  When the M-Flag is set, the NP-Flag and the E-Flag MUST be ignored on
  reception.

  As the Mapping Server does not specify the originator of a prefix
  advertisement, it is not possible to determine PHP behavior solely
  based on the Mapping Server Advertisement.  However, PHP behavior
  SHOULD be done in the following cases:

     The Prefix is intra-area type and the downstream neighbor is the
     originator of the prefix.

     The Prefix is inter-area type and the downstream neighbor is an
     ABR, which is advertising prefix reachability and is also
     generating the Extended Prefix TLV with the A-Flag set for this
     prefix as described in Section 2.1 of [RFC7684].

     The Prefix is external type and the downstream neighbor is an
     ASBR, which is advertising prefix reachability and is also
     generating the Extended Prefix TLV with the A-Flag set for this
     prefix as described in Section 2.1 of [RFC7684].

  When a Prefix-SID is advertised in an Extended Prefix Range TLV, then
  the value advertised in the Prefix-SID Sub-TLV is interpreted as a
  starting SID/Label value.

  Example 1: If the following router addresses (loopback addresses)
  need to be mapped into the corresponding Prefix-SID indexes:

            Router-A: 192.0.2.1/32, Prefix-SID: Index 1
            Router-B: 192.0.2.2/32, Prefix-SID: Index 2
            Router-C: 192.0.2.3/32, Prefix-SID: Index 3
            Router-D: 192.0.2.4/32, Prefix-SID: Index 4

  then the Prefix field in the Extended Prefix Range TLV would be set
  to 192.0.2.1, Prefix Length would be set to 32, Range Size would be
  set to 4, and the Index value in the Prefix-SID Sub-TLV would be set
  to 1.

  Example 2: If the following prefixes need to be mapped into the
  corresponding Prefix-SID indexes:

             192.0.2.0/30, Prefix-SID: Index 51
             192.0.2.4/30, Prefix-SID: Index 52
             192.0.2.8/30, Prefix-SID: Index 53
            192.0.2.12/30, Prefix-SID: Index 54
            192.0.2.16/30, Prefix-SID: Index 55
            192.0.2.20/30, Prefix-SID: Index 56
            192.0.2.24/30, Prefix-SID: Index 57

  then the Prefix field in the Extended Prefix Range TLV would be set
  to 192.0.2.0, Prefix Length would be set to 30, Range Size would be
  7, and the Index value in the Prefix-SID Sub-TLV would be set to 51.

6.  Adjacency Segment Identifier (Adj-SID)

  An Adjacency Segment Identifier (Adj-SID) represents a router
  adjacency in Segment Routing.

6.1.  Adj-SID Sub-TLV

  Adj-SID is an optional sub-TLV of the Extended Link TLV defined in
  [RFC7684].  It MAY appear multiple times in the Extended Link TLV.
  The Adj-SID Sub-TLV has the following format:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Flags     |    Reserved   |   MT-ID       |  Weight       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   SID/Label/Index (variable)                  |
  +---------------------------------------------------------------+

  where:

     Type:  2

     Length:  7 or 8 octets, depending on the V-Flag

     Flags:  Single-octet field containing the following flags:


            0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+
           |B|V|L|G|P|     |
           +-+-+-+-+-+-+-+-+

        where:

           B-Flag:  Backup Flag.  If set, the Adj-SID refers to an
              adjacency that is eligible for protection (e.g., using IP
              Fast Reroute or MPLS-FRR (MPLS-Fast Reroute) as described
              in Section 2.1 of [RFC8402].

           V-Flag:  Value/Index Flag.  If set, then the Adj-SID carries
              an absolute value.  If not set, then the Adj-SID carries
              an index.

           L-Flag:  Local/Global Flag.  If set, then the value/index
              carried by the Adj-SID has local significance.  If not
              set, then the value/index carried by this sub-TLV has
              global significance.

           G-Flag:  Group Flag.  When set, the G-Flag indicates that
              the Adj-SID refers to a group of adjacencies (and
              therefore MAY be assigned to other adjacencies as well).

           P-Flag:  Persistent Flag.  When set, the P-Flag indicates
              that the Adj-SID is persistently allocated, i.e., the
              Adj-SID value remains consistent across router restart
              and/or interface flap.

           Other bits:  Reserved.  These MUST be zero when sent and are
              ignored when received.

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

     MT-ID:  Multi-Topology ID (as defined in [RFC4915]

     Weight:  Weight used for load-balancing purposes.  The use of the
        weight is defined in [RFC8402].

     SID/Index/Label:  As described in Section 5

  An SR-capable router MAY allocate an Adj-SID for each of its
  adjacencies and set the B-Flag when the adjacency is eligible for
  protection by an FRR mechanism (IP or MPLS) as described in
  Section 3.5 of [RFC8402].

  An SR-capable router MAY allocate more than one Adj-SID to an
  adjacency.

  An SR-capable router MAY allocate the same Adj-SID to different
  adjacencies.

  When the P-Flag is not set, the Adj-SID MAY be persistent.  When the
  P-Flag is set, the Adj-SID MUST be persistent.

6.2.  LAN Adj-SID Sub-TLV

  The LAN Adjacency SID is an optional sub-TLV of the Extended Link TLV
  defined in [RFC7684].  It MAY appear multiple times in the Extended
  Link TLV.  It is used to advertise a SID/Label for an adjacency to a
  non-DR (Designated Router) router on a broadcast, Non-Broadcast
  Multi-Access (NBMA), or hybrid [RFC6845] network.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Type             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Flags     |    Reserved   |     MT-ID     |    Weight     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Neighbor ID                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    SID/Label/Index (variable)                 |
  +---------------------------------------------------------------+

  where:

     Type:  3

     Length:  11 or 12 octets, depending on the V-Flag

     Flags:  Same as in Section 6.1

     Reserved:  SHOULD be set to 0 on transmission and MUST be ignored
        on reception

     MT-ID:  Multi-Topology ID (as defined in [RFC4915])

     Weight:  Weight used for load-balancing purposes.  The use of the
        weight is defined in [RFC8402].

     Neighbor ID:  The Router ID of the neighbor for which the LAN
        Adjacency SID is advertised

     SID/Index/Label:  As described in Section 5

  When the P-Flag is not set, the LAN Adjacency SID MAY be persistent.
  When the P-Flag is set, the LAN Adjacency SID MUST be persistent.

7.  Elements of Procedure

7.1.  Intra-area Segment Routing in OSPFv2

  An OSPFv2 router that supports Segment Routing MAY advertise Prefix-
  SIDs for any prefix to which it is advertising reachability (e.g., a
  loopback IP address as described in Section 5).

  A Prefix-SID can also be advertised by the SR Mapping Servers (as
  described in [RFC8661]).  A Mapping Server advertises Prefix-SIDs for
  remote prefixes that exist in the OSPFv2 routing domain.  Multiple
  Mapping Servers can advertise Prefix-SIDs for the same prefix; in
  which case, the same Prefix-SID MUST be advertised by all of them.
  The flooding scope of the OSPF Extended Prefix Opaque LSA that is
  generated by the SR Mapping Server could be either area scoped or AS
  scoped and is determined based on the configuration of the SR Mapping
  Server.

  An SR Mapping Server MUST use the OSPF Extended Prefix Range TLV when
  advertising SIDs for prefixes.  Prefixes of different route types can
  be combined in a single OSPF Extended Prefix Range TLV advertised by
  an SR Mapping Server.  Because the OSPF Extended Prefix Range TLV
  doesn't include a Route-Type field, as in the OSPF Extended Prefix
  TLV, it is possible to include adjacent prefixes from different route
  types in the OSPF Extended Prefix Range TLV.

  Area-scoped OSPF Extended Prefix Range TLVs are propagated between
  areas.  Similar to propagation of prefixes between areas, an ABR only
  propagates the OSPF Extended Prefix Range TLV that it considers to be
  the best from the set it received.  The rules used to pick the best
  OSPF Extended Prefix Range TLV are described in Section 4.

  When propagating an OSPF Extended Prefix Range TLV between areas,
  ABRs MUST set the IA-Flag.  This is used to prevent redundant
  flooding of the OSPF Extended Prefix Range TLV between areas as
  described in Section 4.

7.2.  Inter-area Segment Routing in OSPFv2

  In order to support SR in a multiarea environment, OSPFv2 MUST
  propagate Prefix-SID information between areas.  The following
  procedure is used to propagate Prefix-SIDs between areas.

  When an OSPF ABR advertises a Type-3 Summary LSA from an intra-area
  prefix to all its connected areas, it will also originate an OSPF
  Extended Prefix Opaque LSA as described in [RFC7684].  The flooding
  scope of the OSPF Extended Prefix Opaque LSA type will be set to
  area-local scope.  The route type in the OSPF Extended Prefix TLV is
  set to inter-area.  The Prefix-SID Sub-TLV will be included in this
  LSA and the Prefix-SID value will be set as follows:

     The ABR will look at its best path to the prefix in the source
     area and find the advertising router associated with the best path
     to that prefix.

     The ABR will then determine if this router advertised a Prefix-SID
     for the prefix and use it when advertising the Prefix-SID to other
     connected areas.

     If no Prefix-SID was advertised for the prefix in the source area
     by the router that contributes to the best path to the prefix, the
     originating ABR will use the Prefix-SID advertised by any other
     router when propagating the Prefix-SID for the prefix to other
     areas.

  When an OSPF ABR advertises Type-3 Summary LSAs from an inter-area
  route to all its connected areas, it will also originate an OSPF
  Extended Prefix Opaque LSA as described in [RFC7684].  The flooding
  scope of the OSPF Extended Prefix Opaque LSA type will be set to
  area-local scope.  The route type in the OSPF Extended Prefix TLV is
  set to inter-area.  The Prefix-SID Sub-TLV will be included in this
  LSA and the Prefix-SID will be set as follows:

     The ABR will look at its best path to the prefix in the backbone
     area and find the advertising router associated with the best path
     to that prefix.

     The ABR will then determine if such a router advertised a Prefix-
     SID for the prefix and use it when advertising the Prefix-SID to
     other connected areas.

     If no Prefix-SID was advertised for the prefix in the backbone
     area by the ABR that contributes to the best path to the prefix,
     the originating ABR will use the Prefix-SID advertised by any
     other router when propagating the Prefix-SID for the prefix to
     other areas.

7.3.  Segment Routing for External Prefixes

  Type-5 LSAs are flooded domain wide.  When an ASBR, which supports
  SR, generates Type-5 LSAs, it SHOULD also originate OSPF Extended
  Prefix Opaque LSAs as described in [RFC7684].  The flooding scope of
  the OSPF Extended Prefix Opaque LSA type is set to AS-wide scope.
  The route type in the OSPF Extended Prefix TLV is set to external.
  The Prefix-SID Sub-TLV is included in this LSA and the Prefix-SID
  value will be set to the SID that has been reserved for that prefix.

  When a Not-So-Stubby Area (NSSA) [RFC3101] ABR translates Type-7 LSAs
  into Type-5 LSAs, it SHOULD also advertise the Prefix-SID for the
  prefix.  The NSSA ABR determines its best path to the prefix
  advertised in the translated Type-7 LSA and finds the advertising
  router associated with that path.  If the advertising router has
  advertised a Prefix-SID for the prefix, then the NSSA ABR uses it
  when advertising the Prefix-SID for the Type-5 prefix.  Otherwise,
  the Prefix-SID advertised by any other router will be used.

7.4.  Advertisement of Adj-SID

  The Adjacency Segment Routing Identifier (Adj-SID) is advertised
  using the Adj-SID Sub-TLV as described in Section 6.

7.4.1.  Advertisement of Adj-SID on Point-to-Point Links

  An Adj-SID MAY be advertised for any adjacency on a point-to-point
  (P2P) link that is in neighbor state 2-Way or higher.  If the
  adjacency on a P2P link transitions from the FULL state, then the
  Adj-SID for that adjacency MAY be removed from the area.  If the
  adjacency transitions to a state lower than 2-Way, then the Adj-SID
  Advertisement MUST be withdrawn from the area.

7.4.2.  Adjacency SID on Broadcast or NBMA Interfaces

  Broadcast, NBMA, or hybrid [RFC6845] networks in OSPF are represented
  by a star topology where the Designated Router (DR) is the central
  point to which all other routers on the broadcast, NBMA, or hybrid
  network connect.  As a result, routers on the broadcast, NBMA, or
  hybrid network advertise only their adjacency to the DR.  Routers
  that do not act as DR do not form or advertise adjacencies with each
  other.  They do, however, maintain 2-Way adjacency state with each
  other and are directly reachable.

  When Segment Routing is used, each router on the broadcast, NBMA, or
  hybrid network MAY advertise the Adj-SID for its adjacency to the DR
  using the Adj-SID Sub-TLV as described in Section 6.1.

  SR-capable routers MAY also advertise a LAN Adjacency SID for other
  neighbors (e.g., Backup Designated Router, DR-OTHER, etc.) on the
  broadcast, NBMA, or hybrid network using the LAN Adj-SID Sub-TLV as
  described in Section 6.2.

8.  IANA Considerations

  This specification updates several existing OSPF registries and
  creates a new IGP registry.

8.1.  OSPF Router Information (RI) TLVs Registry

  The following values have been allocated:

  +-------+---------------------+---------------+
  | Value | TLV Name            | Reference     |
  +=======+=====================+===============+
  | 8     | SR-Algorithm TLV    | This document |
  +-------+---------------------+---------------+
  | 9     | SID/Label Range TLV | This document |
  +-------+---------------------+---------------+
  | 14    | SR Local Block TLV  | This document |
  +-------+---------------------+---------------+
  | 15    | SRMS Preference TLV | This document |
  +-------+---------------------+---------------+

     Table 1: OSPF Router Information (RI) TLVs

8.2.  OSPFv2 Extended Prefix Opaque LSA TLVs Registry

  The following values have been allocated:

  +-------+--------------------------------+---------------+
  | Value | Description                    | Reference     |
  +=======+================================+===============+
  | 2     | OSPF Extended Prefix Range TLV | This document |
  +-------+--------------------------------+---------------+

       Table 2: OSPFv2 Extended Prefix Opaque LSA TLVs

8.3.  OSPFv2 Extended Prefix TLV Sub-TLVs Registry

  The following values have been allocated:

  +-------+--------------------+---------------+
  | Value | Description        | Reference     |
  +=======+====================+===============+
  | 1     | SID/Label Sub-TLV  | This document |
  +-------+--------------------+---------------+
  | 2     | Prefix-SID Sub-TLV | This document |
  +-------+--------------------+---------------+

   Table 3: OSPFv2 Extended Prefix TLV Sub-TLVs

8.4.  OSPFv2 Extended Link TLV Sub-TLVs Registry

  The following initial values have been allocated:

  +-------+---------------------------+---------------+
  | Value | Description               | Reference     |
  +=======+===========================+===============+
  | 1     | SID/Label Sub-TLV         | This document |
  +-------+---------------------------+---------------+
  | 2     | Adj-SID Sub-TLV           | This document |
  +-------+---------------------------+---------------+
  | 3     | LAN Adj-SID/Label Sub-TLV | This document |
  +-------+---------------------------+---------------+

        Table 4: OSPFv2 Extended Link TLV Sub-TLVs

8.5.  IGP Algorithm Types Registry

  IANA has set up a subregistry called "IGP Algorithm Type" under the
  "Interior Gateway Protocol (IGP) Parameters" registry.  The
  registration policy for this registry is "Standards Action"
  ([RFC8126] and [RFC7120]).

  Values in this registry come from the range 0-255.

  The initial values in the IGP Algorithm Type registry are as follows:

  +-------+--------------------------------------------+-----------+
  | Value | Description                                | Reference |
  +=======+============================================+===========+
  | 0     | Shortest Path First (SPF) algorithm based  | This      |
  |       | on link metric.  This is the standard      | document  |
  |       | shortest path algorithm as computed by the |           |
  |       | IGP protocol.  Consistent with the         |           |
  |       | deployed practice for link-state           |           |
  |       | protocols, Algorithm 0 permits any node to |           |
  |       | overwrite the SPF path with a different    |           |
  |       | path based on its local policy.            |           |
  +-------+--------------------------------------------+-----------+
  | 1     | Strict Shortest Path First (SPF) algorithm | This      |
  |       | based on link metric.  The algorithm is    | document  |
  |       | identical to Algorithm 0, but Algorithm 1  |           |
  |       | requires that all nodes along the path     |           |
  |       | will honor the SPF routing decision.       |           |
  |       | Local policy at the node claiming support  |           |
  |       | for Algorithm 1 MUST NOT alter the SPF     |           |
  |       | paths computed by Algorithm 1.             |           |
  +-------+--------------------------------------------+-----------+

                     Table 5: IGP Algorithm Types

9.  TLV/Sub-TLV Error Handling

  For any new TLVs/sub-TLVs defined in this document, if the length is
  invalid, the LSA in which it is advertised is considered malformed
  and MUST be ignored.  An error SHOULD be logged subject to rate
  limiting.

10.  Security Considerations

  With the OSPFv2 Segment Routing extensions defined herein, OSPFv2
  will now program the MPLS data plane [RFC3031] in addition to the IP
  data plane.  Previously, LDP [RFC5036] or another label distribution
  mechanism was required to advertise MPLS labels and program the MPLS
  data plane.

  In general, the same types of attacks that can be carried out on the
  IP control plane can be carried out on the MPLS control plane
  resulting in traffic being misrouted in the respective data planes.
  However, the latter can be more difficult to detect and isolate.

  Existing security extensions as described in [RFC2328] and [RFC7684]
  apply to these Segment Routing extensions.  While OSPF is under a
  single administrative domain, there can be deployments where
  potential attackers have access to one or more networks in the OSPF
  routing domain.  In these deployments, stronger authentication
  mechanisms such as those specified in [RFC7474] SHOULD be used.

  Implementations MUST assure that malformed TLVs and sub-TLVs defined
  in this document are detected and do not provide a vulnerability for
  attackers to crash the OSPFv2 router or routing process.  Reception
  of malformed TLVs or sub-TLVs SHOULD be counted and/or logged for
  further analysis.  Logging of malformed TLVs and sub-TLVs SHOULD be
  rate limited to prevent a Denial of Service (DoS) attack (distributed
  or otherwise) from overloading the OSPF control plane.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
             DOI 10.17487/RFC2328, April 1998,
             <https://www.rfc-editor.org/info/rfc2328>.

  [RFC3101]  Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option",
             RFC 3101, DOI 10.17487/RFC3101, January 2003,
             <https://www.rfc-editor.org/info/rfc3101>.

  [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
             Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
             RFC 4915, DOI 10.17487/RFC4915, June 2007,
             <https://www.rfc-editor.org/info/rfc4915>.

  [RFC6845]  Sheth, N., Wang, L., and J. Zhang, "OSPF Hybrid Broadcast
             and Point-to-Multipoint Interface Type", RFC 6845,
             DOI 10.17487/RFC6845, January 2013,
             <https://www.rfc-editor.org/info/rfc6845>.

  [RFC7120]  Cotton, M., "Early IANA Allocation of Standards Track Code
             Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
             2014, <https://www.rfc-editor.org/info/rfc7120>.

  [RFC7684]  Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,
             Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute
             Advertisement", RFC 7684, DOI 10.17487/RFC7684, November
             2015, <https://www.rfc-editor.org/info/rfc7684>.

  [RFC7770]  Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
             S. Shaffer, "Extensions to OSPF for Advertising Optional
             Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
             February 2016, <https://www.rfc-editor.org/info/rfc7770>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC8660]  Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing with MPLS Data Plane", RFC 8660,
             DOI 10.17487/RFC8660, December 2019,
             <https://www.rfc-editor.org/info/rfc8660>.

  [RFC8661]  Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
             Decraene, B., and S. Litkowski, "Segment Routing
             Interworking with LDP", RFC 8661, DOI 10.17487/RFC8661,
             December 2019, <https://www.rfc-editor.org/info/rfc8661>.

11.2.  Informative References

  [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031,
             DOI 10.17487/RFC3031, January 2001,
             <https://www.rfc-editor.org/info/rfc3031>.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
             October 2007, <https://www.rfc-editor.org/info/rfc5036>.

  [RFC7474]  Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
             "Security Extension for OSPFv2 When Using Manual Key
             Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
             <https://www.rfc-editor.org/info/rfc7474>.

  [RFC7855]  Previdi, S., Ed., Filsfils, C., Ed., Decraene, B.,
             Litkowski, S., Horneffer, M., and R. Shakir, "Source
             Packet Routing in Networking (SPRING) Problem Statement
             and Requirements", RFC 7855, DOI 10.17487/RFC7855, May
             2016, <https://www.rfc-editor.org/info/rfc7855>.

  [RFC8666]  Psenak, P., Ed. and S. Previdi, Ed., "OSPFv3 Extensions
             for Segment Routing", RFC 8666, DOI 10.17487/RFC8666,
             December 2019, <https://www.rfc-editor.org/info/rfc8666>.

Acknowledgements

  We would like to thank Anton Smirnov for his contribution.

  Thanks to Acee Lindem for the detailed review of the document,
  corrections, as well as discussion about details of the encoding.

Contributors

  The following people gave a substantial contribution to the content
  of this document: Acee Lindem, Ahmed Bashandy, Martin Horneffer,
  Bruno Decraene, Stephane Litkowski, Igor Milojevic, and Saku Ytti.

Authors' Addresses

  Peter Psenak (editor)
  Cisco Systems, Inc.
  Apollo Business Center, Mlynske nivy 43
  821 09 Bratislava
  Slovakia

  Email: [email protected]


  Stefano Previdi (editor)
  Cisco Systems, Inc.
  Via Del Serafico, 200
  00142 Rome
  Italy

  Email: [email protected]


  Clarence Filsfils
  Cisco Systems, Inc.
  Brussels
  Belgium

  Email: [email protected]


  Hannes Gredler
  RtBrick Inc.

  Email: [email protected]


  Rob Shakir
  Google, Inc.
  1600 Amphitheatre Parkway
  Mountain View, CA 94043
  United States of America

  Email: [email protected]


  Wim Henderickx
  Nokia
  Copernicuslaan 50
  2018 Antwerp
  Belgium

  Email: [email protected]


  Jeff Tantsura
  Apstra, Inc.

  Email: [email protected]