Internet Engineering Task Force (IETF)                      J. Dickinson
Request for Comments: 8618                                      J. Hague
Category: Standards Track                                   S. Dickinson
ISSN: 2070-1721                                               Sinodun IT
                                                           T. Manderson
                                                                  ICANN
                                                                J. Bond
                                             Wikimedia Foundation, Inc.
                                                         September 2019


        Compacted-DNS (C-DNS): A Format for DNS Packet Capture

Abstract

  This document describes a data representation for collections of DNS
  messages.  The format is designed for efficient storage and
  transmission of large packet captures of DNS traffic; it attempts to
  minimize the size of such packet capture files but retain the full
  DNS message contents along with the most useful transport metadata.
  It is intended to assist with the development of DNS traffic-
  monitoring applications.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8618.















Dickinson, et al.            Standards Track                    [Page 1]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
  3.  Data Collection Use Cases . . . . . . . . . . . . . . . . . .   5
  4.  Design Considerations . . . . . . . . . . . . . . . . . . . .   8
  5.  Choice of CBOR  . . . . . . . . . . . . . . . . . . . . . . .  10
  6.  C-DNS Format Conceptual Overview  . . . . . . . . . . . . . .  10
    6.1.  Block Parameters  . . . . . . . . . . . . . . . . . . . .  14
    6.2.  Storage Parameters  . . . . . . . . . . . . . . . . . . .  14
      6.2.1.  Optional Data Items . . . . . . . . . . . . . . . . .  15
      6.2.2.  Optional RRs and OPCODEs  . . . . . . . . . . . . . .  16
      6.2.3.  Storage Flags . . . . . . . . . . . . . . . . . . . .  17
      6.2.4.  IP Address Storage  . . . . . . . . . . . . . . . . .  17
  7.  C-DNS Format Detailed Description . . . . . . . . . . . . . .  18
    7.1.  Map Quantities and Indexes  . . . . . . . . . . . . . . .  18
    7.2.  Tabular Representation  . . . . . . . . . . . . . . . . .  18
    7.3.  "File"  . . . . . . . . . . . . . . . . . . . . . . . . .  19
      7.3.1.  "FilePreamble"  . . . . . . . . . . . . . . . . . . .  20
        7.3.1.1.  "BlockParameters" . . . . . . . . . . . . . . . .  20
          7.3.1.1.1.  "StorageParameters" . . . . . . . . . . . . .  21
            7.3.1.1.1.1.  "StorageHints"  . . . . . . . . . . . . .  22
          7.3.1.1.2.  "CollectionParameters"  . . . . . . . . . . .  24
      7.3.2.  "Block" . . . . . . . . . . . . . . . . . . . . . . .  25
        7.3.2.1.  "BlockPreamble" . . . . . . . . . . . . . . . . .  26
        7.3.2.2.  "BlockStatistics" . . . . . . . . . . . . . . . .  27
        7.3.2.3.  "BlockTables" . . . . . . . . . . . . . . . . . .  28
          7.3.2.3.1.  "ClassType" . . . . . . . . . . . . . . . . .  29
          7.3.2.3.2.  "QueryResponseSignature"  . . . . . . . . . .  30
          7.3.2.3.3.  "Question"  . . . . . . . . . . . . . . . . .  33
          7.3.2.3.4.  "RR"  . . . . . . . . . . . . . . . . . . . .  34
          7.3.2.3.5.  "MalformedMessageData"  . . . . . . . . . . .  34




Dickinson, et al.            Standards Track                    [Page 2]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


        7.3.2.4.  "QueryResponse" . . . . . . . . . . . . . . . . .  35
          7.3.2.4.1.  "ResponseProcessingData"  . . . . . . . . . .  36
          7.3.2.4.2.  "QueryResponseExtended" . . . . . . . . . . .  37
        7.3.2.5.  "AddressEventCount" . . . . . . . . . . . . . . .  38
        7.3.2.6.  "MalformedMessage"  . . . . . . . . . . . . . . .  39
  8.  Versioning  . . . . . . . . . . . . . . . . . . . . . . . . .  39
  9.  C-DNS to PCAP . . . . . . . . . . . . . . . . . . . . . . . .  40
    9.1.  Name Compression  . . . . . . . . . . . . . . . . . . . .  42
  10. Data Collection . . . . . . . . . . . . . . . . . . . . . . .  42
    10.1.  Matching Algorithm . . . . . . . . . . . . . . . . . . .  43
    10.2.  Message Identifiers  . . . . . . . . . . . . . . . . . .  45
      10.2.1.  Primary ID (Required)  . . . . . . . . . . . . . . .  45
      10.2.2.  Secondary ID (Optional)  . . . . . . . . . . . . . .  46
    10.3.  Algorithm Parameters . . . . . . . . . . . . . . . . . .  46
    10.4.  Algorithm Requirements . . . . . . . . . . . . . . . . .  46
    10.5.  Algorithm Limitations  . . . . . . . . . . . . . . . . .  47
    10.6.  Workspace  . . . . . . . . . . . . . . . . . . . . . . .  47
    10.7.  Output . . . . . . . . . . . . . . . . . . . . . . . . .  47
    10.8.  Post-Processing  . . . . . . . . . . . . . . . . . . . .  47
  11. Implementation Guidance . . . . . . . . . . . . . . . . . . .  47
    11.1.  Optional Data  . . . . . . . . . . . . . . . . . . . . .  48
    11.2.  Trailing Bytes . . . . . . . . . . . . . . . . . . . . .  48
    11.3.  Limiting Collection of RDATA . . . . . . . . . . . . . .  49
    11.4.  Timestamps . . . . . . . . . . . . . . . . . . . . . . .  49
  12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  49
    12.1.  Transport Types  . . . . . . . . . . . . . . . . . . . .  49
    12.2.  Data Storage Flags . . . . . . . . . . . . . . . . . . .  50
    12.3.  Response-Processing Flags  . . . . . . . . . . . . . . .  51
    12.4.  AddressEvent Types . . . . . . . . . . . . . . . . . . .  51
  13. Security Considerations . . . . . . . . . . . . . . . . . . .  52
  14. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  52
  15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  53
    15.1.  Normative References . . . . . . . . . . . . . . . . . .  53
    15.2.  Informative References . . . . . . . . . . . . . . . . .  55
  Appendix A.  CDDL . . . . . . . . . . . . . . . . . . . . . . . .  58
  Appendix B.  DNS Name Compression Example . . . . . . . . . . . .  69
    B.1.  NSD Compression Algorithm . . . . . . . . . . . . . . . .  70
    B.2.  Knot Authoritative Compression Algorithm  . . . . . . . .  70
    B.3.  Observed Differences  . . . . . . . . . . . . . . . . . .  71
  Appendix C.  Comparison of Binary Formats . . . . . . . . . . . .  71
    C.1.  Comparison with Full PCAP Files . . . . . . . . . . . . .  74
    C.2.  Simple versus Block Coding  . . . . . . . . . . . . . . .  74
    C.3.  Binary versus Text Formats  . . . . . . . . . . . . . . .  75
    C.4.  Performance . . . . . . . . . . . . . . . . . . . . . . .  75
    C.5.  Conclusions . . . . . . . . . . . . . . . . . . . . . . .  75
    C.6.  Block Size Choice . . . . . . . . . . . . . . . . . . . .  76





Dickinson, et al.            Standards Track                    [Page 3]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  Appendix D.  Data Fields for Traffic Regeneration . . . . . . . .  77
    D.1.  Recommended Fields for Traffic Regeneration . . . . . . .  77
    D.2.  Issues with Small Data Captures . . . . . . . . . . . . .  77
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  78
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  79

1.  Introduction

  There has long been a need for server operators to collect DNS
  Queries and Responses on authoritative and recursive name servers for
  monitoring and analysis.  This data is used in a number of ways,
  including traffic monitoring, analyzing network attacks, and "day in
  the life" (DITL) [ditl] analysis.

  A wide variety of tools already exist that facilitate the collection
  of DNS traffic data, such as the DNS Statistics Collector (DSC)
  [dsc], packetq [packetq], dnscap [dnscap], and dnstap [dnstap].
  However, there is no standard exchange format for large DNS packet
  captures.  The PCAP ("packet capture") [pcap] format or the PCAP Next
  Generation (PCAP-NG) [pcapng] format is typically used in practice
  for packet captures, but these file formats can contain a great deal
  of additional information that is not directly pertinent to DNS
  traffic analysis and thus unnecessarily increases the capture file
  size.  Additionally, these tools and formats typically have no filter
  mechanism to selectively record only certain fields at capture time,
  requiring post-processing for anonymization or pseudonymization of
  data to protect user privacy.

  There has also been work on using text-based formats to describe DNS
  packets (for example, see [dnsxml] and [RFC8427]), but this work is
  largely aimed at producing convenient representations of single
  messages.

  Many DNS operators may receive hundreds of thousands of Queries per
  second on a single name server instance, so a mechanism to minimize
  the storage and transmission size (and therefore upload overhead) of
  the data collected is highly desirable.

  The format described in this document, C-DNS (Compacted-DNS), focuses
  on the problem of capturing and storing large packet capture files of
  DNS traffic with the following goals in mind:

  o  Minimize the file size for storage and transmission.

  o  Minimize the overhead of producing the packet capture file and the
     cost of any further (general-purpose) compression of the file.





Dickinson, et al.            Standards Track                    [Page 4]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  This document contains:

  o  A discussion of some common use cases in which DNS data is
     collected; see Section 3.

  o  A discussion of the major design considerations in developing an
     efficient data representation for collections of DNS messages; see
     Section 4.

  o  A description of why the Concise Binary Object Representation
     (CBOR) [RFC7049] was chosen for this format; see Section 5.

  o  A conceptual overview of the C-DNS format; see Section 6.

  o  The definition of the C-DNS format for the collection of DNS
     messages; see Section 7.

  o  Notes on converting C-DNS data to PCAP format; see Section 9.

  o  Some high-level implementation considerations for applications
     designed to produce C-DNS; see Section 10.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  "Packet" refers to an individual IPv4 or IPv6 packet.  Typically,
  packets are UDP datagrams, but such packets may also be part of a TCP
  data stream.  "Message", unless otherwise qualified, refers to a DNS
  payload extracted from a UDP datagram or a TCP data stream.

  The parts of DNS messages are named as they are in [RFC1035].
  Specifically, the DNS message has five sections: Header, Question,
  Answer, Authority, and Additional.

3.  Data Collection Use Cases

  From a purely server operator perspective, collecting full packet
  captures of all packets going into or out of a name server provides
  the most comprehensive picture of network activity.  However, there
  are several design choices or other limitations that are common to
  many DNS installations and operators.





Dickinson, et al.            Standards Track                    [Page 5]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  o  DNS servers are hosted in a variety of situations:

     *  Self-hosted servers

     *  Third-party hosting (including multiple third parties)

     *  Third-party hardware (including multiple third parties)

  o  Data is collected under different conditions:

     *  On well-provisioned servers running in a steady state

     *  On heavily loaded servers

     *  On virtualized servers

     *  On servers that are under DoS attack

     *  On servers that are unwitting intermediaries in DoS attacks

  o  Traffic can be collected via a variety of mechanisms:

     *  Within the name server implementation itself

     *  On the same hardware as the name server itself

     *  Using a network tap on an adjacent host to listen to DNS
        traffic

     *  Using port mirroring to listen from another host

  o  The capabilities of data collection (and upload) networks vary:

     *  Out-of-band networks with the same capacity as the in-band
        network

     *  Out-of-band networks with less capacity than the in-band
        network

     *  Everything being on the in-band network

  Thus, there is a wide range of use cases, from very limited data
  collection environments (third-party hardware, servers that are under
  attack, packet capture on the name server itself and no out-of-band
  network) to "limitless" environments (self-hosted, well-provisioned
  servers, using a network tap or port mirroring with out-of-band
  networks with the same capacity as the in-band network).  In the




Dickinson, et al.            Standards Track                    [Page 6]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  former case, it is infeasible to reliably collect full packet
  captures, especially if the server is under attack.  In the latter
  case, collection of full packet captures may be reasonable.

  As a result of these restrictions, the C-DNS data format is designed
  with the most limited use case in mind, such that:

  o  Data collection will occur on the same hardware as the name server
     itself

  o  Collected data will be stored on the same hardware as the name
     server itself, at least temporarily

  o  Collected data being returned to some central analysis system will
     use the same network interface as the DNS Queries and Responses

  o  There can be multiple third-party servers involved

  Because of these considerations, a major factor in the design of the
  format is minimal storage size of the capture files.

  Another significant consideration for any application that records
  DNS traffic is that the running of the name server software and the
  transmission of DNS Queries and Responses are the most important jobs
  of a name server; capturing data is not.  Any data collection system
  co-located with the name server needs to be intelligent enough to
  carefully manage its CPU, disk, memory, and network utilization.
  This leads to designing a format that requires a relatively low
  overhead to produce and minimizes the requirement for further
  potentially costly compression.

  However, it is also essential that interoperability with less
  restricted infrastructure is maintained.  In particular, it is highly
  desirable that the collection format should facilitate the
  re-creation of common formats (such as PCAP) that are as close to the
  original as is realistic, given the restrictions above.















Dickinson, et al.            Standards Track                    [Page 7]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


4.  Design Considerations

  This section presents some of the major design considerations used in
  the development of the C-DNS format.

  1.  The basic unit of data is a combined DNS Query and the associated
      Response (a "Query/Response (Q/R) data item").  The same
      structure will be used for unmatched Queries and Responses.
      Queries without Responses will be captured omitting the Response
      data.  Responses without Queries will be captured omitting the
      Query data (but using the Question section from the Response, if
      present, as an identifying QNAME).

      *  Rationale: A Query and the associated Response represent the
         basic level of a client's interaction with the server.  Also,
         combining the Query and Response into one item often reduces
         storage requirements due to commonality in the data of the two
         messages.

      In the context of generating a C-DNS file, it is assumed that
      only those DNS payloads that can be parsed to produce a
      well-formed DNS message are stored in the structured Query/
      Response data items of the C-DNS format and that all other
      messages will (optionally) be recorded as separate malformed
      messages.  Parsing a well-formed message means, at a minimum, the
      following:

      *  The packet has a well-formed 12-byte DNS Header with a
         recognized OPCODE.

      *  The section counts are consistent with the section contents.

      *  All of the Resource Records (RRs) can be fully parsed.

  2.  All top-level fields in each Query/Response data item will be
      optional.

      *  Rationale: Different operators will have different
         requirements for data to be available for analysis.  Operators
         with minimal requirements should not have to pay the cost of
         recording full data, though this will limit the ability to
         perform certain kinds of data analysis and also to reconstruct
         packet captures.  For example, omitting the RRs from a
         Response will reduce the C-DNS file size; in principle,
         Responses can be synthesized if there is enough context.
         Operators may have different policies for collecting user data
         and can choose to omit or anonymize certain fields at capture
         time, e.g., client address.



Dickinson, et al.            Standards Track                    [Page 8]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  3.  Multiple Query/Response data items will be collected into blocks
      in the format.  Common data in a block will be abstracted and
      referenced from individual Query/Response data items by indexing.
      The maximum number of Query/Response data items in a block will
      be configurable.

      *  Rationale: This blocking and indexing action provides a
         significant reduction in the volume of file data generated.
         Although this introduces complexity, it provides compression
         of the data that makes use of knowledge of the DNS message
         structure.

      *  It is anticipated that the files produced can be subject to
         further compression using general-purpose compression tools.
         Measurements show that blocking significantly reduces the CPU
         required to perform such strong compression.  See
         Appendix C.2.

      *  Examples of commonality between DNS messages are that in most
         cases the QUESTION RR is the same in the Query and Response
         and that there is a finite set of Query "signatures" (based on
         a subset of attributes).  For many authoritative servers,
         there is very likely to be a finite set of Responses that are
         generated, of which a large number are NXDOMAIN.

  4.  Traffic metadata can optionally be included in each block.
      Specifically, counts of some types of non-DNS packets (e.g.,
      ICMP, TCP resets) sent to the server may be of interest.

  5.  The wire-format content of malformed DNS messages may optionally
      be recorded.

      *  Rationale: Any structured capture format that does not capture
         the DNS payload byte for byte will be limited to some extent
         in that it cannot represent malformed DNS messages.  Only
         those messages that can be fully parsed and transformed into
         the structured format can be fully represented.  Note,
         however, that this can result in rather misleading statistics.
         For example, a malformed Query that cannot be represented in
         the C-DNS format will lead to the (well-formed) DNS Response
         with error code FORMERR appearing as "unmatched".  Therefore,
         it can greatly aid downstream analysis to have the wire format
         of the malformed DNS messages available directly in the
         C-DNS file.







Dickinson, et al.            Standards Track                    [Page 9]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


5.  Choice of CBOR

  This document presents a detailed format description for C-DNS.  The
  format uses CBOR [RFC7049].

  The choice of CBOR was made taking a number of factors into account.

  o  CBOR is a binary representation and thus is economical in storage
     space.

  o  Other binary representations were investigated, and whilst all had
     attractive features, none had a significant advantage over CBOR.
     See Appendix C for some discussion of this.

  o  CBOR is an IETF specification and is familiar to IETF
     participants.  It is based on the now-common ideas of lists and
     objects and thus requires very little familiarization for those in
     the wider industry.

  o  CBOR is a simple format and can easily be implemented from scratch
     if necessary.  Formats that are more complex require library
     support, which may present problems on unusual platforms.

  o  CBOR can also be easily converted to text formats such as JSON
     [RFC8259] for debugging and other human inspection requirements.

  o  CBOR data schemas can be described using the Concise Data
     Definition Language (CDDL) [RFC8610].

6.  C-DNS Format Conceptual Overview

  The following figures show purely schematic representations of the
  C-DNS format to convey the high-level structure of the C-DNS format.
  Section 7 provides a detailed discussion of the CBOR representation
  and individual elements.

  Figure 1 shows the C-DNS format at the top level, including the file
  header and data blocks.  The Query/Response data items, Address/Event
  Count data items, and Malformed Message data items link to various
  Block Tables.











Dickinson, et al.            Standards Track                   [Page 10]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


                  +-------+
                  + C-DNS |
                  +-------+--------------------------+
                  | File Type Identifier             |
                  +----------------------------------+
                  | File Preamble                    |
                  | +--------------------------------+
                  | | Format Version                 |
                  | +--------------------------------+
                  | | Block Parameters               |
                  +-+--------------------------------+
                  | Block                            |
                  | +--------------------------------+
                  | | Block Preamble                 |
                  | +--------------------------------+
                  | | Block Statistics               |
                  | +--------------------------------+
                  | | Block Tables                   |
                  | +--------------------------------+
                  | | Query/Response data items      |
                  | +--------------------------------+
                  | | Address/Event Count data items |
                  | +--------------------------------+
                  | | Malformed Message data items   |
                  +-+--------------------------------+
                  | Block                            |
                  | +--------------------------------+
                  | | Block Preamble                 |
                  | +--------------------------------+
                  | | Block Statistics               |
                  | +--------------------------------+
                  | | Block Tables                   |
                  | +--------------------------------+
                  | | Query/Response data items      |
                  | +--------------------------------+
                  | | Address/Event Count data items |
                  | +--------------------------------+
                  | | Malformed Message data items   |
                  +-+--------------------------------+
                  | Further Blocks...                |
                  +----------------------------------+

                       Figure 1: The C-DNS Format

  Figure 2 shows some more-detailed relationships within each Block,
  specifically those between the Query/Response data item and the
  relevant Block Tables.  Some fields have been omitted for clarity.




Dickinson, et al.            Standards Track                   [Page 11]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  +----------------+
  | Query/Response |
  +-------------------------+
  | Time Offset             |
  +-------------------------+            +------------------+
  | Client Address          |---------+->| IP Address array |
  +-------------------------+         |  +------------------+
  | Client Port             |         |
  +-------------------------+         |  +------------------+
  | Transaction ID          |     +---)->| Name/RDATA array |<--------+
  +-------------------------+     |   |  +------------------+         |
  | Query Signature         |--+  |   |                               |
  +-------------------------+  |  |   |  +-----------------+          |
  | Client Hoplimit (q)     |  +--)---)->| Query Signature |          |
  +-------------------------+     |   |  +-----------------+-------+  |
  | Response Delay (r)      |     |   +--| Server Address          |  |
  +-------------------------+     |      +-------------------------+  |
  | Query Name              |--+--+      | Server Port             |  |
  +-------------------------+  |         +-------------------------+  |
  | Query Size (q)          |  |         | Transport Flags         |  |
  +-------------------------+  |         +-------------------------+  |
  | Response Size (r)       |  |         | QR Type                 |  |
  +-------------------------+  |         +-------------------------+  |
  | Response Processing (r) |  |         | QR Signature Flags      |  |
  | +-----------------------+  |         +-------------------------+  |
  | | Bailiwick             |--+         | Query OPCODE (q)        |  |
  | +-----------------------+            +-------------------------+  |
  | | Flags                 |            | QR DNS Flags            |  |
  +-+-----------------------+            +-------------------------+  |
  | Extra Query Info (q)    |            | Query RCODE (q)         |  |
  | +-----------------------+            +-------------------------+  |
  | | Question              |--+---+  +--+-Query Class/Type (q)    |  |
  | +-----------------------+      |  |  +-------------------------+  |
  | | Answer                |--+   |  |  | Query QDCOUNT (q)       |  |
  | +-----------------------+  |   |  |  +-------------------------+  |
  | | Authority             |--+   |  |  | Query ANCOUNT (q)       |  |
  | +-----------------------+  |   |  |  +-------------------------+  |
  | | Additional            |--+   |  |  | Query NSCOUNT (q)       |  |













Dickinson, et al.            Standards Track                   [Page 12]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  +-+-----------------------+  |   |  |  +-------------------------+  |
  | Extra Response Info (r) |  |-+ |  |  | Query ARCOUNT (q)       |  |
  | +-----------------------+  | | |  |  +-------------------------+  |
  | | Answer                |--+ | |  |  | Query EDNS version (q)  |  |
  | +-----------------------+  | | |  |  +-------------------------+  |
  | | Authority             |--+ | |  |  | Query EDNS UDP Size (q) |  |
  | +-----------------------+  | | |  |  +-------------------------+  |
  | | Additional            |--+ | |  |  | Query OPT RDATA (q)     |--+
  +-+-----------------------+    | |  |  +-------------------------+  |
                                 | |  |  | Response RCODE (r)      |  |
                                 | |  |  +-------------------------+  |
  + -----------------------------+ |  +----------+                    |
  |                                |             |                    |
  | + -----------------------------+             |                    |
  | |  +---------------+  +----------+           |                    |
  | +->| Question List |->| Question |           |                    |
  |    | array         |  | array    |           |                    |
  |    +---------------+  +----------+--+        |                    |
  |                       | Name        |--+-----)--------------------+
  |                       +-------------+  |     |  +------------+
  |                       | Class/Type  |--)---+-+->| Class/Type |
  |                       +-------------+  |   |    | array      |
  |                                        |   |    +------------+--+
  |                                        |   |    | CLASS         |
  |    +---------------+  +----------+     |   |    +---------------+
  +--->| RR List array |->| RR array |     |   |    | TYPE          |
       +---------+-----+  +----------+--+  |   |    +---------------+
                          | Name        |--+   |
                          +-------------+      |
                          | Class/Type  |------+
                          +-------------+

      Figure 2: The Query/Response Data Item and Subsidiary Tables

  In Figure 2, data items annotated (q) are only present when a
  Query/Response has a Query, and those annotated (r) are only present
  when a Query/Response Response is present.

  A C-DNS file begins with a file header containing a File Type
  Identifier and a File Preamble.  The File Preamble contains
  information on the file Format Version and an array of Block
  Parameters items (the contents of which include Collection and
  Storage Parameters used for one or more Blocks).

  The file header is followed by a series of Blocks.






Dickinson, et al.            Standards Track                   [Page 13]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  A Block consists of a Block Preamble item, some Block Statistics for
  the traffic stored within the Block, and then various arrays of
  common data collectively called the Block Tables.  This is then
  followed by an array of the Query/Response data items detailing the
  Queries and Responses stored within the Block.  The array of
  Query/Response data items is in turn followed by the Address/Event
  Count data items (an array of per-client counts of particular IP
  events) and then Malformed Message data items (an array of malformed
  messages that are stored in the Block).

  The exact nature of the DNS data will affect what Block size is the
  best fit; however, sample data for a root server indicated that Block
  sizes up to 10,000 Query/Response data items give good results.  See
  Appendix C.6 for more details.

  This design exploits data commonality and block-based storage to
  minimize the C-DNS file size.  As a result, C-DNS cannot be streamed
  below the level of a Block.

6.1.  Block Parameters

  The details of the Block Parameters items are not shown in the
  diagrams but are discussed here for context.

  An array of Block Parameters items is stored in the File Preamble
  (with a minimum of one item at index 0); a Block Parameters item
  consists of a collection of Storage and Collection Parameters that
  applies to any given Block.  An array is used in order to support use
  cases such as wanting to merge C-DNS files from different sources.
  The Block Preamble item then contains an optional index for the Block
  Parameters item that applies for that Block; if not present, the
  index defaults to 0.  Hence, in effect, a global Block Parameters
  item is defined that can then be overridden per Block.

6.2.  Storage Parameters

  The Block Parameters item includes a Storage Parameters item -- this
  contains information about the specific data fields stored in the
  C-DNS file.

  These parameters include:

  o  The sub-second timing resolution used by the data.

  o  Information (hints) on which optional data are omitted.  See
     Section 6.2.1.





Dickinson, et al.            Standards Track                   [Page 14]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  o  Recorded OPCODES [opcodes] and RR TYPEs [rrtypes].  See
     Section 6.2.2.

  o  Flags indicating, for example, whether the data is sampled or
     anonymized.  See Sections 6.2.3 and 14.

  o  Client and server IPv4 and IPv6 address prefixes.  See
     Section 6.2.4.

6.2.1.  Optional Data Items

  To enable implementations to store data to their precise requirements
  in as space-efficient a manner as possible, all fields in the
  following arrays are optional:

  o  Query/Response

  o  Query Signature

  o  Malformed Messages

  In other words, an implementation can choose to omit any data item
  that is not required for its use case (whilst observing the
  restrictions relating to IP address storage described in
  Section 6.2.4).  In addition, implementations may be configured to
  not record all RRs or to only record messages with certain OPCODES.

  This does, however, mean that a consumer of a C-DNS file faces two
  problems:

  1.  How can it quickly determine if a file definitely does not
      contain the data items it requires to complete a particular task
      (e.g., reconstructing DNS traffic or performing a specific piece
      of data analysis)?

  2.  How can it determine whether a data item is not present because
      it was (1) explicitly not recorded or (2) not available/present?

  For example, capturing C-DNS data from within a name server
  implementation makes it unlikely that the Client Hoplimit can be
  recorded.  Or, if there is no Query ARCOUNT recorded and no Query OPT
  RDATA [RFC6891] recorded, is that because no Query contained an OPT
  RR, or because that data was not stored?

  The Storage Parameters item therefore also contains a Storage Hints
  item, which specifies which items the encoder of the file omits from
  the stored data and will therefore never be present.  (This approach
  is taken because a flag that indicated which items were included for



Dickinson, et al.            Standards Track                   [Page 15]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  collection would not guarantee that the item was present -- only that
  it might be.)  An implementation decoding that file can then use
  these flags to quickly determine whether the input data is not rich
  enough for its needs.

  One scenario where this may be particularly important is the case of
  regenerating traffic.  It is possible to collect such a small set of
  data items that an implementation decoding the file cannot determine
  if a given Query/Response data item was generated from just a Query,
  just a Response, or a Query/Response pair.  This makes it impossible
  to reconstruct DNS traffic even if sensible defaults are provided for
  the missing data items.  This is discussed in more detail in
  Section 9.

6.2.2.  Optional RRs and OPCODEs

  Also included in the Storage Parameters item are explicit arrays
  listing the RR TYPEs and the OPCODEs to be recorded.  These arrays
  remove any ambiguity over whether, for example, messages containing
  particular OPCODEs are not present because (1) certain OPCODEs did
  not occur or (2) the implementation is not configured to record them.

  In the case of OPCODEs, for a message to be fully parsable, the
  OPCODE must be known to the collecting implementation.  Any message
  with an OPCODE unknown to the collecting implementation cannot be
  validated as correctly formed and so must be treated as malformed.
  Messages with OPCODES known to the recording application but not
  listed in the Storage Parameters item are discarded by the recording
  application during C-DNS capture (regardless of whether they are
  malformed or not).

  In the case of RRs, each record in a message must be fully parsable,
  including parsing the record RDATA, as otherwise the message cannot
  be validated as correctly formed.  Any RR with an RR TYPE not known
  to the collecting implementation cannot be validated as correctly
  formed and so must be treated as malformed.

  Once a message is correctly parsed, an implementation is free to
  record only a subset of the RRs present.












Dickinson, et al.            Standards Track                   [Page 16]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


6.2.3.  Storage Flags

  The Storage Parameters item contains flags that can be used to
  indicate if:

  o  the data is anonymized,

  o  the data is produced from sample data, or

  o  names in the data have been normalized (converted to uniform
     case).

  The Storage Parameters item also contains optional fields holding
  details of the sampling method used and the anonymization method
  used.  It is RECOMMENDED that these fields contain URIs [RFC3986]
  pointing to resources describing the methods used.  See Section 14
  for further discussion of anonymization and normalization.

6.2.4.  IP Address Storage

  The format can store either full IP addresses or just IP prefixes;
  the Storage Parameters item contains fields to indicate if only IP
  prefixes were stored.

  If the IP address prefixes are absent, then full addresses are
  stored.  In this case, the IP version can be directly inferred from
  the stored address length and the fields "qr-transport-flags" in
  QueryResponseSignature, "ae-transport-flags" in AddressEventCount,
  and "mm-transport-flags" in MalformedMessageData (which contain the
  IP version bit) are optional.

  If IP address prefixes are given, only the prefix bits of addresses
  are stored.  In this case, in order to determine the IP version, the
  fields "qr-transport-flags" in QueryResponseSignature, "ae-transport-
  flags" in AddressEventCount, and "mm-transport-flags" in
  MalformedMessageData MUST be present.  See Sections 7.3.2.3.2 and
  7.3.2.3.5.

  As an example of storing only IP prefixes, if a client IPv6 prefix of
  48 is specified, a client address of 2001:db8:85a3::8a2e:370:7334
  will be stored as 0x20010db885a3, reducing address storage space
  requirements.  Similarly, if a client IPv4 prefix of 16 is specified,
  a client address of 192.0.2.1 will be stored as 0xc000 (192.0).








Dickinson, et al.            Standards Track                   [Page 17]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.  C-DNS Format Detailed Description

  The CDDL definition for the C-DNS format is given in Appendix A.

7.1.  Map Quantities and Indexes

  All map keys are integers with values specified in the CDDL.  String
  keys would significantly bloat the file size.

  All key values specified are positive integers under 24, so their
  CBOR representation is a single byte.  Positive integer values not
  currently used as keys in a map are reserved for use in future
  standard extensions.

  Implementations may choose to add additional implementation-specific
  entries to any map.  Negative integer map keys are reserved for these
  values.  Key values from -1 to -24 also have a single-byte CBOR
  representation, so such implementation-specific extensions are not at
  any space efficiency disadvantage.

  An item described as an index is the index of the data item in the
  referenced array.  Indexes are 0-based.

7.2.  Tabular Representation

  The following sections present the C-DNS specification in tabular
  format with a detailed description of each item.

  In all quantities that contain bit flags, bit 0 indicates the least
  significant bit, i.e., flag "n" in quantity "q" is on if
  "(q & (1 << n)) != 0".

  For the sake of readability, all type and field names defined in the
  CDDL definition are shown in double quotes.  Type names are by
  convention camel case (e.g., "BlockTables"), and field names are
  lowercase with hyphens (e.g., "block-tables").

  For the sake of brevity, the following conventions are used in the
  tables:

  o  The column M marks whether items in a map are mandatory.

     *  X - Mandatory items.

     *  C - Conditionally mandatory items.  Such items are usually
        optional but may be mandatory in some configurations.

     *  If the column is empty, the item is optional.



Dickinson, et al.            Standards Track                   [Page 18]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  o  The column T gives the CBOR datatype of the item.

     *  U - Unsigned integer.

     *  I - Signed integer (i.e., either a CBOR unsigned integer or a
        CBOR negative integer).

     *  B - Boolean.

     *  S - Byte string.

     *  T - Text string.

     *  M - Map.

     *  A - Array.

  In the case of maps and arrays, more information on the type of each
  value, including the CDDL definition name if applicable, is given in
  the description.

7.3.  "File"

  A C-DNS file has an outer structure "File", an array that contains
  the following:

  +---------------+---+---+-------------------------------------------+
  | Field         | M | T | Description                               |
  +---------------+---+---+-------------------------------------------+
  | file-type-id  | X | T | String "C-DNS" identifying the file type. |
  |               |   |   |                                           |
  | file-preamble | X | M | Version and parameter information for the |
  |               |   |   | whole file.  Map of type "FilePreamble";  |
  |               |   |   | see Section 7.3.1.                        |
  |               |   |   |                                           |
  | file-blocks   | X | A | Array of items of type "Block"; see       |
  |               |   |   | Section 7.3.2.  The array may be empty if |
  |               |   |   | the file contains no data.                |
  +---------------+---+---+-------------------------------------------+












Dickinson, et al.            Standards Track                   [Page 19]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.1.  "FilePreamble"

  Information about data in the file.  A map containing the following:

  +----------------------+---+---+------------------------------------+
  | Field                | M | T | Description                        |
  +----------------------+---+---+------------------------------------+
  | major-format-version | X | U | Unsigned integer "1".  The major   |
  |                      |   |   | version of the format used in the  |
  |                      |   |   | file.  See Section 8.              |
  |                      |   |   |                                    |
  | minor-format-version | X | U | Unsigned integer "0".  The minor   |
  |                      |   |   | version of the format used in the  |
  |                      |   |   | file.  See Section 8.              |
  |                      |   |   |                                    |
  | private-version      |   | U | Version indicator available for    |
  |                      |   |   | private use by implementations.    |
  |                      |   |   |                                    |
  | block-parameters     | X | A | Array of items of type             |
  |                      |   |   | "BlockParameters".  See Section    |
  |                      |   |   | 7.3.1.1.  The array must contain   |
  |                      |   |   | at least one entry.  (The          |
  |                      |   |   | "block-parameters-index" item in   |
  |                      |   |   | each "BlockPreamble" indicates     |
  |                      |   |   | which array entry applies to that  |
  |                      |   |   | "Block".)                          |
  +----------------------+---+---+------------------------------------+

7.3.1.1.  "BlockParameters"

  Parameters relating to data storage and collection that apply to one
  or more items of type "Block".  A map containing the following:

  +-----------------------+---+---+-----------------------------------+
  | Field                 | M | T | Description                       |
  +-----------------------+---+---+-----------------------------------+
  | storage-parameters    | X | M | Parameters relating to data       |
  |                       |   |   | storage in a "Block" item.  Map   |
  |                       |   |   | of type "StorageParameters"; see  |
  |                       |   |   | Section 7.3.1.1.1.                |
  |                       |   |   |                                   |
  | collection-parameters |   | M | Parameters relating to collection |
  |                       |   |   | of the data in a "Block" item.    |
  |                       |   |   | Map of type                       |
  |                       |   |   | "CollectionParameters"; see       |
  |                       |   |   | Section 7.3.1.1.2.                |
  +-----------------------+---+---+-----------------------------------+




Dickinson, et al.            Standards Track                   [Page 20]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.1.1.1.  "StorageParameters"

  Parameters relating to how data is stored in the items of type
  "Block".  A map containing the following:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | ticks-per-second | X | U | Sub-second timing is recorded in       |
  |                  |   |   | ticks.  This specifies the number of   |
  |                  |   |   | ticks in a second.                     |
  |                  |   |   |                                        |
  | max-block-items  | X | U | The maximum number of items stored in  |
  |                  |   |   | any of the arrays in a "Block" item    |
  |                  |   |   | (Q/R, Address/Event Count, or          |
  |                  |   |   | Malformed Message data items).  An     |
  |                  |   |   | indication to a decoder of the         |
  |                  |   |   | resources needed to process the file.  |
  |                  |   |   |                                        |
  | storage-hints    | X | M | Collection of hints as to which fields |
  |                  |   |   | are omitted in the arrays that have    |
  |                  |   |   | optional fields.  Map of type          |
  |                  |   |   | "StorageHints".  See Section           |
  |                  |   |   | 7.3.1.1.1.1.                           |
  |                  |   |   |                                        |
  | opcodes          | X | A | Array of OPCODES [opcodes] (unsigned   |
  |                  |   |   | integers, each in the range 0 to 15    |
  |                  |   |   | inclusive) recorded by the collecting  |
  |                  |   |   | implementation.  See Section 6.2.2.    |
  |                  |   |   |                                        |
  | rr-types         | X | A | Array of RR TYPEs [rrtypes] (unsigned  |
  |                  |   |   | integers, each in the range 0 to 65535 |
  |                  |   |   | inclusive) recorded by the collecting  |
  |                  |   |   | implementation.  See Section 6.2.2.    |
  |                  |   |   |                                        |
  | storage-flags    |   | U | Bit flags indicating attributes of     |
  |                  |   |   | stored data.                           |
  |                  |   |   | Bit 0.  1 if the data has been         |
  |                  |   |   | anonymized.                            |
  |                  |   |   | Bit 1.  1 if the data is sampled data. |
  |                  |   |   | Bit 2.  1 if the names have been       |
  |                  |   |   | normalized (converted to uniform       |
  |                  |   |   | case).                                 |
  |                  |   |   |                                        |
  | client-address   |   | U | IPv4 client address prefix length, in  |
  | -prefix-ipv4     |   |   | the range 1 to 32 inclusive.  If       |
  |                  |   |   | specified, only the address prefix     |
  |                  |   |   | bits are stored.                       |



Dickinson, et al.            Standards Track                   [Page 21]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  |                  |   |   |                                        |
  | client-address   |   | U | IPv6 client address prefix length, in  |
  | -prefix-ipv6     |   |   | the range 1 to 128 inclusive.  If      |
  |                  |   |   | specified, only the address prefix     |
  |                  |   |   | bits are stored.                       |
  |                  |   |   |                                        |
  | server-address   |   | U | IPv4 server address prefix length, in  |
  | -prefix-ipv4     |   |   | the range 1 to 32 inclusive.  If       |
  |                  |   |   | specified, only the address prefix     |
  |                  |   |   | bits are stored.                       |
  |                  |   |   |                                        |
  | server-address   |   | U | IPv6 server address prefix length, in  |
  | -prefix-ipv6     |   |   | the range 1 to 128 inclusive.  If      |
  |                  |   |   | specified, only the address prefix     |
  |                  |   |   | bits are stored.                       |
  |                  |   |   |                                        |
  | sampling-method  |   | T | Information on the sampling method     |
  |                  |   |   | used.  See Section 6.2.3.              |
  |                  |   |   |                                        |
  | anonymization    |   | T | Information on the anonymization       |
  | -method          |   |   | method used.  See Section 6.2.3.       |
  +------------------+---+---+----------------------------------------+

7.3.1.1.1.1.  "StorageHints"

  An indicator of which fields the collecting implementation omits in
  the maps with optional fields.  Note that hints have a top-down
  precedence.  In other words, where a map contains another map, the
  hint on the containing map overrides any hints in the contained map
  and the contained map is omitted.  A map containing the following:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | query-response   | X | U | Hints indicating which "QueryResponse" |
  | -hints           |   |   | fields are omitted; see Section        |
  |                  |   |   | 7.3.2.4.  If a bit is unset, the field |
  |                  |   |   | is omitted from the capture.           |
  |                  |   |   | Bit 0.  time-offset                    |
  |                  |   |   | Bit 1.  client-address-index           |
  |                  |   |   | Bit 2.  client-port                    |
  |                  |   |   | Bit 3.  transaction-id                 |
  |                  |   |   | Bit 4.  qr-signature-index             |
  |                  |   |   | Bit 5.  client-hoplimit                |
  |                  |   |   | Bit 6.  response-delay                 |
  |                  |   |   | Bit 7.  query-name-index               |
  |                  |   |   | Bit 8.  query-size                     |
  |                  |   |   | Bit 9.  response-size                  |



Dickinson, et al.            Standards Track                   [Page 22]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  |                  |   |   | Bit 10.  response-processing-data      |
  |                  |   |   | Bit 11.  query-question-sections       |
  |                  |   |   | Bit 12.  query-answer-sections         |
  |                  |   |   | Bit 13.  query-authority-sections      |
  |                  |   |   | Bit 14.  query-additional-sections     |
  |                  |   |   | Bit 15.  response-answer-sections      |
  |                  |   |   | Bit 16.  response-authority-sections   |
  |                  |   |   | Bit 17.  response-additional-sections  |
  |                  |   |   |                                        |
  | query-response   | X | U | Hints indicating which                 |
  | -signature-hints |   |   | "QueryResponseSignature" fields are    |
  |                  |   |   | omitted; see Section 7.3.2.3.2.  If a  |
  |                  |   |   | bit is unset, the field is omitted     |
  |                  |   |   | from the capture.                      |
  |                  |   |   | Bit 0.  server-address-index           |
  |                  |   |   | Bit 1.  server-port                    |
  |                  |   |   | Bit 2.  qr-transport-flags             |
  |                  |   |   | Bit 3.  qr-type                        |
  |                  |   |   | Bit 4.  qr-sig-flags                   |
  |                  |   |   | Bit 5.  query-opcode                   |
  |                  |   |   | Bit 6.  qr-dns-flags                   |
  |                  |   |   | Bit 7.  query-rcode                    |
  |                  |   |   | Bit 8.  query-classtype-index          |
  |                  |   |   | Bit 9.  query-qdcount                  |
  |                  |   |   | Bit 10.  query-ancount                 |
  |                  |   |   | Bit 11.  query-nscount                 |
  |                  |   |   | Bit 12.  query-arcount                 |
  |                  |   |   | Bit 13.  query-edns-version            |
  |                  |   |   | Bit 14.  query-udp-size                |
  |                  |   |   | Bit 15.  query-opt-rdata-index         |
  |                  |   |   | Bit 16.  response-rcode                |
  |                  |   |   |                                        |
  | rr-hints         | X | U | Hints indicating which optional "RR"   |
  |                  |   |   | fields are omitted; see Section        |
  |                  |   |   | 7.3.2.3.4.  If a bit is unset, the     |
  |                  |   |   | field is omitted from the capture.     |
  |                  |   |   | Bit 0.  ttl                            |
  |                  |   |   | Bit 1.  rdata-index                    |
  | other-data-hints | X | U | Hints indicating which other datatypes |
  |                  |   |   | are omitted.  If a bit is unset, the   |
  |                  |   |   | datatype is omitted from the capture.  |
  |                  |   |   | Bit 0.  malformed-messages             |
  |                  |   |   | Bit 1.  address-event-counts           |
  +------------------+---+---+----------------------------------------+







Dickinson, et al.            Standards Track                   [Page 23]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.1.1.2.  "CollectionParameters"

  Parameters providing information regarding how data in the file was
  collected (applicable for some, but not all, collection
  environments).  The values are informational only and serve as
  metadata to downstream analyzers as to the configuration of a
  collecting implementation.  They can provide context when
  interpreting what data is present/absent from the capture but cannot
  necessarily be validated against the data captured.

  These parameters have no default.  If they do not appear, nothing can
  be inferred about their value.

  A map containing the following items:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | query-timeout    |   | U | To be matched with a Query, a Response |
  |                  |   |   | must arrive within this number of      |
  |                  |   |   | milliseconds.                          |
  |                  |   |   |                                        |
  | skew-timeout     |   | U | The network stack may report a         |
  |                  |   |   | Response before the corresponding      |
  |                  |   |   | Query.  A Response is not considered   |
  |                  |   |   | to be missing a Query until after this |
  |                  |   |   | many microseconds.                     |
  |                  |   |   |                                        |
  | snaplen          |   | U | Collect up to this many bytes per      |
  |                  |   |   | packet.                                |
  |                  |   |   |                                        |
  | promisc          |   | B | "true" if promiscuous mode             |
  |                  |   |   | [pcap-options] was enabled on the      |
  |                  |   |   | interface, "false" otherwise.          |
  |                  |   |   |                                        |
  | interfaces       |   | A | Array of identifiers (of type text     |
  |                  |   |   | string) of the interfaces used for     |
  |                  |   |   | collection.                            |
  |                  |   |   |                                        |
  | server-addresses |   | A | Array of server collection IP          |
  |                  |   |   | addresses (of type byte string).       |
  |                  |   |   | Metadata for downstream analyzers;     |
  |                  |   |   | does not affect collection.            |
  |                  |   |   |                                        |







Dickinson, et al.            Standards Track                   [Page 24]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | vlan-ids         |   | A | Array of identifiers (of type unsigned |
  |                  |   |   | integer, each in the range 1 to 4094   |
  |                  |   |   | inclusive) of VLANs [IEEE802.1Q]       |
  |                  |   |   | selected for collection.  VLAN IDs are |
  |                  |   |   | unique only within an administrative   |
  |                  |   |   | domain.                                |
  |                  |   |   |                                        |
  | filter           |   | T | Filter for input, in "tcpdump"         |
  |                  |   |   | [pcap-filter] style.                   |
  |                  |   |   |                                        |
  | generator-id     |   | T | Implementation-specific human-readable |
  |                  |   |   | string identifying the collection      |
  |                  |   |   | method.                                |
  |                  |   |   |                                        |
  | host-id          |   | T | String identifying the collecting      |
  |                  |   |   | host.                                  |
  +------------------+---+---+----------------------------------------+

7.3.2.  "Block"

  Container for data with common collection and storage parameters.  A
  map containing the following:

  +--------------------+---+---+--------------------------------------+
  | Field              | M | T | Description                          |
  +--------------------+---+---+--------------------------------------+
  | block-preamble     | X | M | Overall information for the "Block"  |
  |                    |   |   | item.  Map of type "BlockPreamble";  |
  |                    |   |   | see Section 7.3.2.1.                 |
  |                    |   |   |                                      |
  | block-statistics   |   | M | Statistics about the "Block" item.   |
  |                    |   |   | Map of type "BlockStatistics"; see   |
  |                    |   |   | Section 7.3.2.2.                     |
  |                    |   |   |                                      |
  | block-tables       |   | M | The arrays containing data           |
  |                    |   |   | referenced by individual             |
  |                    |   |   | "QueryResponse" or                   |
  |                    |   |   | "MalformedMessage" items.  Map of    |
  |                    |   |   | type "BlockTables"; see Section      |
  |                    |   |   | 7.3.2.3.                             |
  |                    |   |   |                                      |
  | query-responses    |   | A | Details of individual C-DNS Q/R data |
  |                    |   |   | items.  Array of items of type       |
  |                    |   |   | "QueryResponse"; see Section         |
  |                    |   |   | 7.3.2.4.  If present, the array must |
  |                    |   |   | not be empty.                        |
  |                    |   |   |                                      |




Dickinson, et al.            Standards Track                   [Page 25]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | address-event      |   | A | Per-client counts of ICMP messages   |
  | -counts            |   |   | and TCP resets.  Array of items of   |
  |                    |   |   | type "AddressEventCount"; see        |
  |                    |   |   | Section 7.3.2.5.  If present, the    |
  |                    |   |   | array must not be empty.             |
  |                    |   |   |                                      |
  | malformed-messages |   | A | Details of malformed DNS messages.   |
  |                    |   |   | Array of items of type               |
  |                    |   |   | "MalformedMessage"; see Section      |
  |                    |   |   | 7.3.2.6.  If present, the array must |
  |                    |   |   | not be empty.                        |
  +--------------------+---+---+--------------------------------------+

7.3.2.1.  "BlockPreamble"

  Overall information for a "Block" item.  A map containing the
  following:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | earliest-time    | C | A | A timestamp (two unsigned integers, of |
  |                  |   |   | type "Timestamp") for the earliest     |
  |                  |   |   | record in the "Block" item.  The first |
  |                  |   |   | integer is the number of seconds since |
  |                  |   |   | the POSIX epoch [posix-time]           |
  |                  |   |   | ("time_t"), excluding leap seconds.    |
  |                  |   |   | The second integer is the number of    |
  |                  |   |   | ticks (see Section 7.3.1.1.1) since    |
  |                  |   |   | the start of the second.  This field   |
  |                  |   |   | is mandatory unless all block items    |
  |                  |   |   | containing a time offset from the      |
  |                  |   |   | start of the Block also omit that time |
  |                  |   |   | offset.                                |
  |                  |   |   |                                        |
  | block-parameters |   | U | The index of the item in the           |
  | -index           |   |   | "block-parameters" array (in the       |
  |                  |   |   | "file-preamble" item) applicable to    |
  |                  |   |   | this block.  If not present, index 0   |
  |                  |   |   | is used.  See Section 7.3.1.           |
  +------------------+---+---+----------------------------------------+










Dickinson, et al.            Standards Track                   [Page 26]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.2.  "BlockStatistics"

  Basic statistical information about a "Block" item.  A map containing
  the following:

  +---------------------+---+---+-------------------------------------+
  | Field               | M | T | Description                         |
  +---------------------+---+---+-------------------------------------+
  | processed-messages  |   | U | Total number of well-formed DNS     |
  |                     |   |   | messages processed from the input   |
  |                     |   |   | traffic stream during collection of |
  |                     |   |   | data in this "Block" item.          |
  |                     |   |   |                                     |
  | qr-data-items       |   | U | Total number of Q/R data items in   |
  |                     |   |   | this "Block" item.                  |
  |                     |   |   |                                     |
  | unmatched-queries   |   | U | Number of unmatched Queries in this |
  |                     |   |   | "Block" item.                       |
  |                     |   |   |                                     |
  | unmatched-responses |   | U | Number of unmatched Responses in    |
  |                     |   |   | this "Block" item.                  |
  |                     |   |   |                                     |
  | discarded-opcode    |   | U | Number of DNS messages processed    |
  |                     |   |   | from the input traffic stream       |
  |                     |   |   | during collection of data in this   |
  |                     |   |   | "Block" item but not recorded       |
  |                     |   |   | because their OPCODE is not in the  |
  |                     |   |   | list to be collected.               |
  |                     |   |   |                                     |
  | malformed-items     |   | U | Number of malformed messages        |
  |                     |   |   | processed from the input traffic    |
  |                     |   |   | stream during collection of data in |
  |                     |   |   | this "Block" item.                  |
  +---------------------+---+---+-------------------------------------+

















Dickinson, et al.            Standards Track                   [Page 27]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.3.  "BlockTables"

  Map of arrays containing data referenced by individual
  "QueryResponse" or "MalformedMessage" items in this "Block".  Each
  element is an array that, if present, must not be empty.

  An item in the "qlist" array contains indexes to values in the "qrr"
  array.  Therefore, if "qlist" is present, "qrr" must also be present.
  Similarly, if "rrlist" is present, "rr" must also be present.

  The map contains the following items:

  +-------------------+---+---+---------------------------------------+
  | Field             | M | T | Description                           |
  +-------------------+---+---+---------------------------------------+
  | ip-address        |   | A | Array of IP addresses, in network     |
  |                   |   |   | byte order (of type byte string).  If |
  |                   |   |   | client or server address prefixes are |
  |                   |   |   | set, only the address prefix bits are |
  |                   |   |   | stored.  Each string is therefore up  |
  |                   |   |   | to 4 bytes long for an IPv4 address,  |
  |                   |   |   | or up to 16 bytes long for an IPv6    |
  |                   |   |   | address.  See Section 7.3.1.1.1.      |
  |                   |   |   |                                       |
  | classtype         |   | A | Array of RR CLASS and TYPE            |
  |                   |   |   | information.  Type is "ClassType".    |
  |                   |   |   | See Section 7.3.2.3.1.                |
  |                   |   |   |                                       |
  | name-rdata        |   | A | Array where each entry is the         |
  |                   |   |   | contents of a single NAME or RDATA in |
  |                   |   |   | wire format (of type byte string).    |
  |                   |   |   | Note that NAMEs, and labels within    |
  |                   |   |   | RDATA contents, are full domain names |
  |                   |   |   | or labels; no name compression (per   |
  |                   |   |   | [RFC1035]) is used on the individual  |
  |                   |   |   | names/labels within the format.       |
  |                   |   |   |                                       |
  | qr-sig            |   | A | Array of Q/R data item signatures.    |
  |                   |   |   | Type is "QueryResponseSignature".     |
  |                   |   |   | See Section 7.3.2.3.2.                |
  |                   |   |   |                                       |
  | qlist             |   | A | Array of type "QuestionList".  A      |
  |                   |   |   | "QuestionList" is an array of         |
  |                   |   |   | unsigned integers, indexes to         |
  |                   |   |   | "Question" items in the "qrr" array.  |
  |                   |   |   |                                       |





Dickinson, et al.            Standards Track                   [Page 28]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | qrr               |   | A | Array of type "Question".  Each entry |
  |                   |   |   | is the contents of a single Question, |
  |                   |   |   | where a Question is the second or     |
  |                   |   |   | subsequent Question in a Query.  See  |
  |                   |   |   | Section 7.3.2.3.3.                    |
  |                   |   |   |                                       |
  | rrlist            |   | A | Array of type "RRList".  An "RRList"  |
  |                   |   |   | is an array of unsigned integers,     |
  |                   |   |   | indexes to "RR" items in the "rr"     |
  |                   |   |   | array.                                |
  |                   |   |   |                                       |
  | rr                |   | A | Array of type "RR".  Each entry is    |
  |                   |   |   | the contents of a single RR.  See     |
  |                   |   |   | Section 7.3.2.3.4.                    |
  |                   |   |   |                                       |
  | malformed-message |   | A | Array of the contents of malformed    |
  | -data             |   |   | messages.  Array of type              |
  |                   |   |   | "MalformedMessageData".  See Section  |
  |                   |   |   | 7.3.2.3.5.                            |
  +-------------------+---+---+---------------------------------------+

7.3.2.3.1.  "ClassType"

  RR CLASS and TYPE information.  A map containing the following:

              +-------+---+---+--------------------------+
              | Field | M | T | Description              |
              +-------+---+---+--------------------------+
              | type  | X | U | TYPE value [rrtypes].    |
              |       |   |   |                          |
              | class | X | U | CLASS value [rrclasses]. |
              +-------+---+---+--------------------------+



















Dickinson, et al.            Standards Track                   [Page 29]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.3.2.  "QueryResponseSignature"

  Elements of a Q/R data item that are often common between multiple
  individual Q/R data items.  A map containing the following:

  +--------------------+---+---+--------------------------------------+
  | Field              | M | T | Description                          |
  +--------------------+---+---+--------------------------------------+
  | server-address     |   | U | The index in the "ip-address" array  |
  | -index             |   |   | of the server IP address.  See       |
  |                    |   |   | Section 7.3.2.3.                     |
  |                    |   |   |                                      |
  | server-port        |   | U | The server port.                     |
  |                    |   |   |                                      |
  | qr-transport-flags | C | U | Bit flags describing the transport   |
  |                    |   |   | used to service the Query.  Same     |
  |                    |   |   | definition as "mm-transport-flags"   |
  |                    |   |   | in Section 7.3.2.3.5, with an        |
  |                    |   |   | additional indicator for trailing    |
  |                    |   |   | bytes.  See Appendix A.              |
  |                    |   |   | Bit 0.  IP version.  0 if IPv4, 1 if |
  |                    |   |   | IPv6.  See Section 6.2.4.            |
  |                    |   |   | Bits 1-4.  Transport.  4-bit         |
  |                    |   |   | unsigned value where                 |
  |                    |   |   | 0 = UDP [RFC1035]                    |
  |                    |   |   | 1 = TCP [RFC1035]                    |
  |                    |   |   | 2 = TLS [RFC7858]                    |
  |                    |   |   | 3 = DTLS [RFC8094]                   |
  |                    |   |   | 4 = HTTPS [RFC8484]                  |
  |                    |   |   | 15 = Non-standard transport (see     |
  |                    |   |   | below)                               |
  |                    |   |   | Values 5-14 are reserved for future  |
  |                    |   |   | use.                                 |
  |                    |   |   | Bit 5.  1 if trailing bytes in Query |
  |                    |   |   | packet.  See Section 11.2.           |
  |                    |   |   |                                      |
  | qr-type            |   | U | Type of Query/Response transaction   |
  |                    |   |   | based on the definitions in the      |
  |                    |   |   | dnstap schema [dnstap-schema].       |
  |                    |   |   | 0 = Stub.  A transaction between a   |
  |                    |   |   | stub resolver and a DNS server from  |
  |                    |   |   | the perspective of the stub          |
  |                    |   |   | resolver.                            |
  |                    |   |   | 1 = Client.  A transaction between a |
  |                    |   |   | client and a DNS server (a proxy or  |
  |                    |   |   | full recursive resolver) from the    |
  |                    |   |   | perspective of the DNS server.       |




Dickinson, et al.            Standards Track                   [Page 30]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  |                    |   |   | 2 = Resolver.  A transaction between |
  |                    |   |   | a recursive resolver and an          |
  |                    |   |   | authoritative server from the        |
  |                    |   |   | perspective of the recursive         |
  |                    |   |   | resolver.                            |
  |                    |   |   | 3 = Authoritative.  A transaction    |
  |                    |   |   | between a recursive resolver and an  |
  |                    |   |   | authoritative server from the        |
  |                    |   |   | perspective of the authoritative     |
  |                    |   |   | server.                              |
  |                    |   |   | 4 = Forwarder.  A transaction        |
  |                    |   |   | between a downstream forwarder and   |
  |                    |   |   | an upstream DNS server (a recursive  |
  |                    |   |   | resolver) from the perspective of    |
  |                    |   |   | the downstream forwarder.            |
  |                    |   |   | 5 = Tool.  A transaction between a   |
  |                    |   |   | DNS software tool and a DNS server,  |
  |                    |   |   | from the perspective of the tool.    |
  |                    |   |   |                                      |
  | qr-sig-flags       |   | U | Bit flags explicitly indicating      |
  |                    |   |   | attributes of the message pair       |
  |                    |   |   | represented by this Q/R data item    |
  |                    |   |   | (not all attributes may be recorded  |
  |                    |   |   | or deducible).                       |
  |                    |   |   | Bit 0.  1 if a Query was present.    |
  |                    |   |   | Bit 1.  1 if a Response was present. |
  |                    |   |   | Bit 2.  1 if a Query was present and |
  |                    |   |   | it had an OPT RR.                    |
  |                    |   |   | Bit 3.  1 if a Response was present  |
  |                    |   |   | and it had an OPT RR.                |
  |                    |   |   | Bit 4.  1 if a Query was present but |
  |                    |   |   | had no Question.                     |
  |                    |   |   | Bit 5.  1 if a Response was present  |
  |                    |   |   | but had no Question (only one        |
  |                    |   |   | query-name-index is stored per Q/R   |
  |                    |   |   | data item).                          |
  |                    |   |   |                                      |
  | query-opcode       |   | U | Query OPCODE.                        |
  |                    |   |   |                                      |
  | qr-dns-flags       |   | U | Bit flags with values from the Query |
  |                    |   |   | and Response DNS flags.  Flag values |
  |                    |   |   | are 0 if the Query or Response is    |
  |                    |   |   | not present.                         |
  |                    |   |   | Bit 0.  Query Checking Disabled      |
  |                    |   |   | (CD).                                |
  |                    |   |   | Bit 1.  Query Authenticated Data     |
  |                    |   |   | (AD).                                |
  |                    |   |   | Bit 2.  Query reserved (Z).          |



Dickinson, et al.            Standards Track                   [Page 31]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  |                    |   |   | Bit 3.  Query Recursion Available    |
  |                    |   |   | (RA).                                |
  |                    |   |   | Bit 4.  Query Recursion Desired      |
  |                    |   |   | (RD).                                |
  |                    |   |   | Bit 5.  Query TrunCation (TC).       |
  |                    |   |   | Bit 6.  Query Authoritative Answer   |
  |                    |   |   | (AA).                                |
  |                    |   |   | Bit 7.  Query DNSSEC answer OK (DO). |
  |                    |   |   | Bit 8.  Response Checking Disabled   |
  |                    |   |   | (CD).                                |
  |                    |   |   | Bit 9.  Response Authenticated Data  |
  |                    |   |   | (AD).                                |
  |                    |   |   | Bit 10.  Response reserved (Z).      |
  |                    |   |   | Bit 11.  Response Recursion          |
  |                    |   |   | Available (RA).                      |
  |                    |   |   | Bit 12.  Response Recursion Desired  |
  |                    |   |   | (RD).                                |
  |                    |   |   | Bit 13.  Response TrunCation (TC).   |
  |                    |   |   | Bit 14.  Response Authoritative      |
  |                    |   |   | Answer (AA).                         |
  |                    |   |   |                                      |
  | query-rcode        |   | U | Query RCODE.  If the Query contains  |
  |                    |   |   | an OPT RR [RFC6891], this value      |
  |                    |   |   | incorporates any EXTENDED-RCODE      |
  |                    |   |   | value [rcodes].                      |
  |                    |   |   |                                      |
  | query-classtype    |   | U | The index in the "classtype" array   |
  | -index             |   |   | of the CLASS and TYPE of the first   |
  |                    |   |   | Question.  See Section 7.3.2.3.      |
  |                    |   |   |                                      |
  | query-qdcount      |   | U | The QDCOUNT in the Query, or         |
  |                    |   |   | Response if no Query present.        |
  |                    |   |   |                                      |
  | query-ancount      |   | U | Query ANCOUNT.                       |
  |                    |   |   |                                      |
  | query-nscount      |   | U | Query NSCOUNT.                       |
  |                    |   |   |                                      |
  | query-arcount      |   | U | Query ARCOUNT.                       |
  |                    |   |   |                                      |
  | query-edns-version |   | U | The Query EDNS version.  ("EDNS"     |
  |                    |   |   | stands for Extension Mechanisms for  |
  |                    |   |   | DNS.)                                |
  |                    |   |   |                                      |
  | query-udp-size     |   | U | The Query EDNS sender's UDP payload  |
  |                    |   |   | size.                                |
  |                    |   |   |                                      |





Dickinson, et al.            Standards Track                   [Page 32]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | query-opt-rdata    |   | U | The index in the "name-rdata" array  |
  | -index             |   |   | of the OPT RDATA.  See Section       |
  |                    |   |   | 7.3.2.3.                             |
  |                    |   |   |                                      |
  | response-rcode     |   | U | Response RCODE.  If the Response     |
  |                    |   |   | contains an OPT RR [RFC6891], this   |
  |                    |   |   | value incorporates any EXTENDED-     |
  |                    |   |   | RCODE value [rcodes].                |
  +--------------------+---+---+--------------------------------------+

  Version 1.0 of C-DNS supports transport values corresponding to DNS
  transports defined in IETF Standards Track documents at the time of
  writing.  There are numerous non-standard methods of sending DNS
  messages over various transports using a variety of protocols, but
  they are out of scope for this document.  With the current
  specification, these can be generically stored using value 15
  (Non-standard transport), or implementations are free to use the
  negative integer map keys to define their own mappings.  Such
  non-standard transports may also be the subject of a future extension
  to the specification.

7.3.2.3.3.  "Question"

  Details on individual Questions in a Question section.  A map
  containing the following:

  +-----------------+---+---+-----------------------------------------+
  | Field           | M | T | Description                             |
  +-----------------+---+---+-----------------------------------------+
  | name-index      | X | U | The index in the "name-rdata" array of  |
  |                 |   |   | the QNAME.  See Section 7.3.2.3.        |
  |                 |   |   |                                         |
  | classtype-index | X | U | The index in the "classtype" array of   |
  |                 |   |   | the CLASS and TYPE of the Question.     |
  |                 |   |   | See Section 7.3.2.3.                    |
  +-----------------+---+---+-----------------------------------------+















Dickinson, et al.            Standards Track                   [Page 33]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.3.4.  "RR"

  Details on individual RRs in RR sections.  A map containing the
  following:

  +-----------------+---+---+-----------------------------------------+
  | Field           | M | T | Description                             |
  +-----------------+---+---+-----------------------------------------+
  | name-index      | X | U | The index in the "name-rdata" array of  |
  |                 |   |   | the NAME.  See Section 7.3.2.3.         |
  |                 |   |   |                                         |
  | classtype-index | X | U | The index in the "classtype" array of   |
  |                 |   |   | the CLASS and TYPE of the RR.  See      |
  |                 |   |   | Section 7.3.2.3.                        |
  |                 |   |   |                                         |
  | ttl             |   | U | The RR Time to Live.                    |
  |                 |   |   |                                         |
  | rdata-index     |   | U | The index in the "name-rdata" array of  |
  |                 |   |   | the RR RDATA.  See Section 7.3.2.3.     |
  +-----------------+---+---+-----------------------------------------+

7.3.2.3.5.  "MalformedMessageData"

  Details on malformed DNS messages stored in this "Block" item.  A map
  containing the following:

  +--------------------+---+---+--------------------------------------+
  | Field              | M | T | Description                          |
  +--------------------+---+---+--------------------------------------+
  | server-address     |   | U | The index in the "ip-address" array  |
  | -index             |   |   | of the server IP address.  See       |
  |                    |   |   | Section 7.3.2.3.                     |
  |                    |   |   |                                      |
  | server-port        |   | U | The server port.                     |
  |                    |   |   |                                      |
  | mm-transport-flags | C | U | Bit flags describing the transport   |
  |                    |   |   | used to service the Query.  See      |
  |                    |   |   | Section 6.2.4.                       |
  |                    |   |   | Bits 1-4.  Transport.  4-bit         |
  |                    |   |   | unsigned value where                 |
  |                    |   |   | 0 = UDP [RFC1035]                    |
  |                    |   |   | 1 = TCP [RFC1035]                    |
  |                    |   |   | 2 = TLS [RFC7858]                    |
  |                    |   |   | 3 = DTLS [RFC8094]                   |
  |                    |   |   | 4 = HTTPS [RFC8484]                  |
  |                    |   |   | 15 = Non-standard transport          |
  |                    |   |   | Values 5-14 are reserved for future  |
  |                    |   |   | use.                                 |



Dickinson, et al.            Standards Track                   [Page 34]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  |                    |   |   |                                      |
  | mm-payload         |   | S | The payload (raw bytes) of the DNS   |
  |                    |   |   | message.                             |
  +--------------------+---+---+--------------------------------------+

7.3.2.4.  "QueryResponse"

  Details on individual Q/R data items.

  Note that there is no requirement that the elements of the
  "query-responses" array are presented in strict chronological order.

  A map containing the following items:

  +----------------------+---+---+------------------------------------+
  | Field                | M | T | Description                        |
  +----------------------+---+---+------------------------------------+
  | time-offset          |   | U | Q/R timestamp as an offset in      |
  |                      |   |   | ticks (see Section 7.3.1.1.1) from |
  |                      |   |   | "earliest-time".  The timestamp is |
  |                      |   |   | the timestamp of the Query, or the |
  |                      |   |   | Response if there is no Query.     |
  |                      |   |   |                                    |
  | client-address-index |   | U | The index in the "ip-address"      |
  |                      |   |   | array of the client IP address.    |
  |                      |   |   | See Section 7.3.2.3.               |
  |                      |   |   |                                    |
  | client-port          |   | U | The client port.                   |
  |                      |   |   |                                    |
  | transaction-id       |   | U | DNS transaction identifier.        |
  |                      |   |   |                                    |
  | qr-signature-index   |   | U | The index in the "qr-sig" array of |
  |                      |   |   | the "QueryResponseSignature" item. |
  |                      |   |   | See Section 7.3.2.3.               |
  |                      |   |   |                                    |
  | client-hoplimit      |   | U | The IPv4 TTL or IPv6 Hoplimit from |
  |                      |   |   | the Query packet.                  |
  |                      |   |   |                                    |
  | response-delay       |   | I | The time difference between Query  |
  |                      |   |   | and Response, in ticks.  See       |
  |                      |   |   | Section 7.3.1.1.1.  Only present   |
  |                      |   |   | if there is a Query and a          |
  |                      |   |   | Response.  The delay can be        |
  |                      |   |   | negative if the network            |
  |                      |   |   | stack/capture library returns      |
  |                      |   |   | packets out of order.              |
  |                      |   |   |                                    |




Dickinson, et al.            Standards Track                   [Page 35]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | query-name-index     |   | U | The index in the "name-rdata"      |
  |                      |   |   | array of the item containing the   |
  |                      |   |   | QNAME for the first Question.  See |
  |                      |   |   | Section 7.3.2.3.                   |
  |                      |   |   |                                    |
  | query-size           |   | U | DNS Query message size (see        |
  |                      |   |   | below).                            |
  |                      |   |   |                                    |
  | response-size        |   | U | DNS Response message size (see     |
  |                      |   |   | below).                            |
  |                      |   |   |                                    |
  | response-processing  |   | M | Data on Response processing.  Map  |
  | -data                |   |   | of type "ResponseProcessingData".  |
  |                      |   |   | See Section 7.3.2.4.1.             |
  |                      |   |   |                                    |
  | query-extended       |   | M | Extended Query data.  Map of type  |
  |                      |   |   | "QueryResponseExtended".  See      |
  |                      |   |   | Section 7.3.2.4.2.                 |
  |                      |   |   |                                    |
  | response-extended    |   | M | Extended Response data.  Map of    |
  |                      |   |   | type "QueryResponseExtended".  See |
  |                      |   |   | Section 7.3.2.4.2.                 |
  +----------------------+---+---+------------------------------------+

  The "query-size" and "response-size" fields hold the DNS message
  size.  For UDP, this is the size of the UDP payload that contained
  the DNS message.  For TCP, it is the size of the DNS message as
  specified in the two-byte message length header.  Trailing bytes in
  UDP Queries are routinely observed in traffic to authoritative
  servers, and this value allows a calculation of how many trailing
  bytes were present.

7.3.2.4.1.  "ResponseProcessingData"

  Information on the server processing that produced the Response.  A
  map containing the following:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | bailiwick-index  |   | U | The index in the "name-rdata" array of |
  |                  |   |   | the owner name for the Response        |
  |                  |   |   | bailiwick.  See Section 7.3.2.3.       |
  |                  |   |   |                                        |
  | processing-flags |   | U | Flags relating to Response processing. |
  |                  |   |   | Bit 0.  1 if the Response came from    |
  |                  |   |   | cache.                                 |
  +------------------+---+---+----------------------------------------+



Dickinson, et al.            Standards Track                   [Page 36]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.4.2.  "QueryResponseExtended"

  Extended data on the Q/R data item.

  Each item in the map is present only if collection of the relevant
  details is configured.

  A map containing the following items:

  +------------------+---+---+----------------------------------------+
  | Field            | M | T | Description                            |
  +------------------+---+---+----------------------------------------+
  | question-index   |   | U | The index in the "qlist" array of the  |
  |                  |   |   | entry listing any second and           |
  |                  |   |   | subsequent Questions in the Question   |
  |                  |   |   | section for the Query or Response.     |
  |                  |   |   | See Section 7.3.2.3.                   |
  |                  |   |   |                                        |
  | answer-index     |   | U | The index in the "rrlist" array of the |
  |                  |   |   | entry listing the Answer RR sections   |
  |                  |   |   | for the Query or Response.  See        |
  |                  |   |   | Section 7.3.2.3.                       |
  |                  |   |   |                                        |
  | authority-index  |   | U | The index in the "rrlist" array of the |
  |                  |   |   | entry listing the Authority RR         |
  |                  |   |   | sections for the Query or Response.    |
  |                  |   |   | See Section 7.3.2.3.                   |
  |                  |   |   |                                        |
  | additional-index |   | U | The index in the "rrlist" array of the |
  |                  |   |   | entry listing the Additional RR        |
  |                  |   |   | sections for the Query or Response.    |
  |                  |   |   | See Section 7.3.2.3.  Note that Query  |
  |                  |   |   | OPT RR data can optionally be stored   |
  |                  |   |   | in the QuerySignature.                 |
  +------------------+---+---+----------------------------------------+
















Dickinson, et al.            Standards Track                   [Page 37]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.5.  "AddressEventCount"

  Counts of various IP-related events relating to traffic with
  individual client addresses.  A map containing the following:

  +--------------------+---+---+--------------------------------------+
  | Field              | M | T | Description                          |
  +--------------------+---+---+--------------------------------------+
  | ae-type            | X | U | The type of event.  The following    |
  |                    |   |   | event types are currently defined:   |
  |                    |   |   | 0.  TCP reset.                       |
  |                    |   |   | 1.  ICMP time exceeded.              |
  |                    |   |   | 2.  ICMP destination unreachable.    |
  |                    |   |   | 3.  ICMPv6 time exceeded.            |
  |                    |   |   | 4.  ICMPv6 destination unreachable.  |
  |                    |   |   | 5.  ICMPv6 packet too big.           |
  |                    |   |   |                                      |
  | ae-code            |   | U | A code relating to the event.  For   |
  |                    |   |   | ICMP or ICMPv6 events, this MUST be  |
  |                    |   |   | the ICMP [RFC792] or ICMPv6          |
  |                    |   |   | [RFC4443] code.  For other events,   |
  |                    |   |   | the contents are undefined.          |
  |                    |   |   |                                      |
  | ae-transport-flags | C | U | Bit flags describing the transport   |
  |                    |   |   | used to service the event.  See      |
  |                    |   |   | Section 6.2.4.                       |
  |                    |   |   | Bit 0.  IP version.  0 if IPv4, 1 if |
  |                    |   |   | IPv6.                                |
  |                    |   |   | Bits 1-4.  Transport.  4-bit         |
  |                    |   |   | unsigned value where                 |
  |                    |   |   | 0 = UDP [RFC1035]                    |
  |                    |   |   | 1 = TCP [RFC1035]                    |
  |                    |   |   | 2 = TLS [RFC7858]                    |
  |                    |   |   | 3 = DTLS [RFC8094]                   |
  |                    |   |   | 4 = HTTPS [RFC8484]                  |
  |                    |   |   | 15 = Non-standard transport          |
  |                    |   |   | Values 5-14 are reserved for future  |
  |                    |   |   | use.                                 |
  |                    |   |   |                                      |
  | ae-address-index   | X | U | The index in the "ip-address" array  |
  |                    |   |   | of the client address.  See Section  |
  |                    |   |   | 7.3.2.3.                             |
  |                    |   |   |                                      |
  | ae-count           | X | U | The number of occurrences of this    |
  |                    |   |   | event during the Block collection    |
  |                    |   |   | period.                              |
  +--------------------+---+---+--------------------------------------+




Dickinson, et al.            Standards Track                   [Page 38]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


7.3.2.6.  "MalformedMessage"

  Details on Malformed Message data items.  A map containing the
  following:

  +----------------------+---+---+------------------------------------+
  | Field                | M | T | Description                        |
  +----------------------+---+---+------------------------------------+
  | time-offset          |   | U | Message timestamp as an offset in  |
  |                      |   |   | ticks (see Section 7.3.1.1.1) from |
  |                      |   |   | "earliest-time".                   |
  |                      |   |   |                                    |
  | client-address-index |   | U | The index in the "ip-address"      |
  |                      |   |   | array of the client IP address.    |
  |                      |   |   | See Section 7.3.2.3.               |
  |                      |   |   |                                    |
  | client-port          |   | U | The client port.                   |
  |                      |   |   |                                    |
  | message-data-index   |   | U | The index in the "malformed-       |
  |                      |   |   | message-data" array of the message |
  |                      |   |   | data for this message.  See        |
  |                      |   |   | Section 7.3.2.3.                   |
  +----------------------+---+---+------------------------------------+

8.  Versioning

  The C-DNS File Preamble includes a file Format Version; a major and
  minor version number are required fields.  This document defines
  version 1.0 of the C-DNS specification.  This section describes the
  intended use of these version numbers in future specifications.

  It is noted that version 1.0 includes many optional fields;
  therefore, consumers of version 1.0 should be inherently robust to
  parsing files with variable data content.

  Within a major version, a new minor version MUST be a strict superset
  of the previous minor version, with no semantic changes to existing
  fields.  New keys MAY be added to existing maps, and new maps MAY be
  added.  A consumer capable of reading a particular major.minor
  version MUST also be capable of reading all previous minor versions
  of the same major version.  It SHOULD also be capable of parsing all
  subsequent minor versions, ignoring any keys or maps that it does not
  recognize.








Dickinson, et al.            Standards Track                   [Page 39]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  A new major version indicates changes to the format that are not
  backwards compatible with previous major versions.  A consumer
  capable of only reading a particular major version (greater than 1)
  is neither required nor expected to be capable of reading a previous
  major version.

9.  C-DNS to PCAP

  It is usually possible to reconstruct PCAP files from the C-DNS
  format in a lossy fashion.  Some of the issues with reconstructing
  both the DNS payload and the full packet stream are outlined here.

  The reconstruction of well-formed DNS messages depends on two
  factors:

  1.  Whether or not a particular subset of the optional fields were
      captured in the C-DNS file, specifically the data fields
      necessary to reconstruct a valid IP header and DNS payload for
      both Query and Response (see Appendix D.1).  Clearly, if not all
      these data fields were captured, the reconstruction is likely to
      be imperfect even if reasonable defaults are provided for the
      reconstruction.

  2.  Whether or not at least one field was captured that unambiguously
      identifies the Query/Response data item as containing just a
      Query, just a Response, or a Query/Response pair.  Obviously, the
      qr-sig-flags defined in Section 7.3.2.3.2 is such a field;
      however, this field is optional.  For more details, see
      Appendix D.2.

  It is noted again that simply having hints that indicate that certain
  data fields were not omitted does not guarantee that those data
  fields were actually captured.  Therefore, the ability to reconstruct
  PCAP data (in the absence of defaults) can in principle vary for each
  record captured in a C-DNS file, and between Blocks that have
  differing hints.

  Even if all sections of the Response were captured, one cannot
  reconstruct the DNS Response payload exactly, due to the fact that
  some DNS names in the message on the wire may have been compressed.
  Section 9.1 discusses this in more detail.










Dickinson, et al.            Standards Track                   [Page 40]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  Some transport information is not captured in the C-DNS format.  For
  example, the following aspects of the original packet stream cannot
  be reconstructed from the C-DNS format:

  o  IP fragmentation

  o  TCP stream information:

     *  Multiple DNS messages may have been sent in a single TCP
        segment

     *  A DNS payload may have been split across multiple TCP segments

     *  Multiple DNS messages may have been sent on a single TCP
        session

  o  TLS session information:

     *  TLS version or cipher suites

     *  TLS-related features such as TCP Fast Open (TFO) [RFC7413] or
        TLS session resumption [RFC5077]

  o  DNS-over-HTTPS [RFC8484] message details:

     *  Whether the message used POST or GET

     *  HTTPS Headers

  o  Malformed DNS messages if the wire format is not recorded

  o  Any non-DNS messages that were in the original packet stream,
     e.g., ICMP

  Simple assumptions can be made on the reconstruction: fragmented and
  DNS-over-TCP messages can be reconstructed into single packets, and a
  single TCP session can be constructed for each TCP packet.

  Additionally, if malformed messages and non-DNS packets are captured
  separately, they can be merged with packet captures reconstructed
  from C-DNS to produce a more complete packet stream.










Dickinson, et al.            Standards Track                   [Page 41]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


9.1.  Name Compression

  All the names stored in the C-DNS format are full domain names; no
  name compression (per [RFC1035]) is used on the individual names
  within the format.  Therefore, when reconstructing a packet, name
  compression must be used in order to reproduce the on-the-wire
  representation of the packet.

  Name compression per [RFC1035] works by substituting trailing
  sections of a name with a reference back to the occurrence of those
  sections earlier in the message.  Not all name server software uses
  the same algorithm when compressing domain names within the
  Responses.  Some attempt maximum recompression at the expense of
  runtime resources, others use heuristics to balance compression and
  speed, and others use different rules for what is a valid compression
  target.

  This means that Responses to the same Query from different name
  server software that match in terms of DNS payload content (header,
  counts, RRs with name compression removed) do not necessarily match
  byte for byte on the wire.

  Therefore, it is not possible to ensure that the DNS Response payload
  is reconstructed byte for byte from C-DNS data.  However, it can at
  least, in principle, be reconstructed to have the correct payload
  length (since the original Response length is captured) if there is
  enough knowledge of the commonly implemented name compression
  algorithms.  For example, a simplistic approach would be to try each
  algorithm in turn to see if it reproduces the original length,
  stopping at the first match.  This would not guarantee that the
  correct algorithm has been used, as it is possible to match the
  length whilst still not matching the on-the-wire bytes; however,
  without further information added to the C-DNS data, this is the best
  that can be achieved.

  Appendix B presents an example of two different compression
  algorithms used by well-known name server software.

10.  Data Collection

  This section describes a non-normative proposed algorithm for the
  processing of a captured stream of DNS Queries and Responses and
  production of a stream of Q/R data items, matching Queries and
  Responses where possible.







Dickinson, et al.            Standards Track                   [Page 42]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  For the purposes of this discussion, it is assumed that the input has
  been preprocessed such that:

  1.  All IP fragmentation reassembly, TCP stream reassembly, and
      so on, have already been performed.

  2.  Each message is associated with transport metadata required to
      generate the Primary ID (see Section 10.2.1).

  3.  Each message has a well-formed DNS Header of 12 bytes, and (if
      present) the first Question in the Question section can be parsed
      to generate the Secondary ID (see below).  As noted earlier, this
      requirement can result in a malformed Query being removed in the
      preprocessing stage, but the correctly formed Response with RCODE
      of FORMERR being present.

  DNS messages are processed in the order they are delivered to the
  implementation.

  It should be noted that packet capture libraries do not necessarily
  provide packets in strict chronological order.  This can, for
  example, arise on multi-core platforms where packets arriving at a
  network device are processed by different cores.  On systems where
  this behavior has been observed, the timestamps associated with each
  packet are consistent; Queries always have a timestamp prior to the
  Response timestamp.  However, the order in which these packets appear
  in the packet capture stream is not necessarily strictly
  chronological; a Response can appear in the capture stream before the
  Query that provoked the Response.  For this discussion, this
  non-chronological delivery is termed "skew".

  In the presence of skew, Response packets can arrive for matching
  before the corresponding Query.  To avoid generating false instances
  of Responses without a matching Query, and Queries without a matching
  Response, the matching algorithm must take the possibility of skew
  into account.

10.1.  Matching Algorithm

  A schematic representation of the algorithm for matching Q/R data
  items is shown in Figure 3.  It takes individual DNS Query or
  Response messages as input, and it outputs matched Q/R data items.
  The numbers in the figure identify matching operations listed in
  Table 1.  Specific details of the algorithm -- for example, queues,
  timers, and identifiers -- are given in the following sections.






Dickinson, et al.            Standards Track                   [Page 43]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


                      .----------------------.
                      | Process next message |<------------------+
                      `----------------------'                   |
                                  |                              |
                  +------------------------------+               |
                  | Generate message identifiers |               |
                  +------------------------------+               |
                                  |                              |
                         Response | Query                        |
                  +--------------< >---------------+             |
                  |                                |             |
        +--------------------+           +--------------------+  |
        | Find earliest QR   |           | Create QR item (2) |  |
        | item in OFIFO (1)  |           +--------------------+  |
        +--------------------+                     |             |
                   |                        +---------------+    |
             Match | No match               | Append new QR |    |
         +--------< >------+                | item to OFIFO |    |
         |                 |                +---------------+    |
   +-----------+      +--------+                   |             |
   | Update QR |      | Add to |          +-------------------+  |
   | item (3)  |      | RFIFO  |          | Find earliest QR  |  |
   +-----------+      +--------+          | item in RFIFO (1) |  |
         |                 |              +-------------------+  |
         +-----------------+                       |             |
                   |                               |             |
                   |     +----------------+  Match | No match    |
                   |     | Remove R       |-------< >-----+      |
                   |     | from RFIFO (3) |               |      |
                   |     +----------------+               |      |
                   |              |                       |      |
                   +--------------+-----------------------+      |
                                  |                              |
           +----------------------------------------------+      |
           | Update all timed-out (QT) OFIFO QR items (4) |      |
           +----------------------------------------------+      |
                                  |                              |
                  +--------------------------------+             |
                  | Remove all timed-out (ST) R    |             |
                  | from RFIFO, create QR item (5) |             |
                  +--------------------------------+             |
              ____________________|_______________________       |
             /                                            /      |
            /  Remove all consecutive done entries from  /-------+
           /   front of OFIFO for further processing    /
          /____________________________________________/





Dickinson, et al.            Standards Track                   [Page 44]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


          OFIFO = output FIFO containing Q/R data items (Section 10.6)
          RFIFO = Response FIFO containing unmatched Response items
                  (Section 10.6)
          QT = Query Timeout (Section 10.3)
          ST = Skew Timeout (Section 10.3)

               Figure 3: Query/Response Matching Algorithm

        +-----------+-------------------------------------------+
        | Reference | Operation                                 |
        +-----------+-------------------------------------------+
        | (1)       | Find earliest QR item in FIFO where:      |
        |           | * QR.done = false                         |
        |           | * QR.Q.PrimaryID == R.PrimaryID           |
        |           | and, if both QR.Q and R have SecondaryID: |
        |           | * QR.Q.SecondaryID == R.SecondaryID       |
        |           |                                           |
        | (2)       | Set:                                      |
        |           | QR.Q := Q                                 |
        |           | QR.R := nil                               |
        |           | QR.done := false                          |
        |           |                                           |
        | (3)       | Set:                                      |
        |           | QR.R := R                                 |
        |           | QR.done := true                           |
        |           |                                           |
        | (4)       | Set:                                      |
        |           | QR.done := true                           |
        |           |                                           |
        | (5)       | Set:                                      |
        |           | QR.Q := nil                               |
        |           | QR.R := R                                 |
        |           | QR.done := true                           |
        +-----------+-------------------------------------------+

           Table 1: Operations Used in the Matching Algorithm

10.2.  Message Identifiers

10.2.1.  Primary ID (Required)

  A Primary ID is constructed for each message.  It is composed of the
  following data:

  1.  Source IP Address

  2.  Destination IP Address




Dickinson, et al.            Standards Track                   [Page 45]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  3.  Source Port

  4.  Destination Port

  5.  Transport

  6.  DNS Message ID

10.2.2.  Secondary ID (Optional)

  If present, the first Question in the Question section is used as a
  Secondary ID for each message.  Note that there may be well-formed
  DNS Queries that have a QDCOUNT of 0, and some Responses may have a
  QDCOUNT of 0 (for example, Responses with RCODE=FORMERR or NOTIMP).
  In this case, the Secondary ID is not used in matching.

10.3.  Algorithm Parameters

  1.  Query Timeout (QT).  A Query arrives with timestamp t1.  If no
      Response matching that Query has arrived before other input
      arrives timestamped later than (t1 + QT), a Q/R data item
      containing only a Query is recorded.  The QT value is typically
      on the order of 5 seconds.

  2.  Skew Timeout (ST).  A Response arrives with timestamp t2.  If a
      Response has not been matched by a Query before input arrives
      timestamped later than (t2 + ST), a Q/R data item containing only
      a Response is recorded.  The ST value is typically a few
      microseconds.

10.4.  Algorithm Requirements

  The algorithm is designed to handle the following input data:

  1.  Multiple Queries with the same Primary ID (but different
      Secondary ID) arriving before any Responses for these Queries
      are seen.

  2.  Multiple Queries with the same Primary and Secondary ID arriving
      before any Responses for these Queries are seen.

  3.  Queries for which no later Response can be found within the
      specified timeout.

  4.  Responses for which no previous Query can be found within the
      specified timeout.





Dickinson, et al.            Standards Track                   [Page 46]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


10.5.  Algorithm Limitations

  For cases 1 and 2 listed in the above requirements, it is not
  possible to unambiguously match Queries with Responses.  This
  algorithm chooses to match to the earliest Query with the correct
  Primary and Secondary ID.

10.6.  Workspace

  The algorithm employs two FIFO queues:

  o  OFIFO: an output FIFO containing Q/R data items in chronological
     order.

  o  RFIFO: a FIFO holding Responses without a matching Query in order
     of arrival.

10.7.  Output

  The output is a list of Q/R data items.  Both the Query and Response
  elements are optional in these items; therefore, Q/R data items have
  one of three types of content:

  1.  A matched pair of Query and Response messages

  2.  A Query message with no Response

  3.  A Response message with no Query

  The timestamp of a list item is that of the Query for cases 1 and 2
  and that of the Response for case 3.

10.8.  Post-Processing

  When ending a capture, all items in the RFIFO are timed out
  immediately, generating Response only entries to the OFIFO.  These
  and all other remaining entries in the OFIFO should be treated as
  timed-out Queries.

11.  Implementation Guidance

  Whilst this document makes no specific recommendations with respect
  to "Canonical CBOR" (see Section 3.9 of [RFC7049]), the following
  guidance may be of use to implementers.

  Adherence to the first two rules given in Section 3.9 of [RFC7049]
  will minimize file sizes.




Dickinson, et al.            Standards Track                   [Page 47]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  Adherence to the last two rules given in Section 3.9 of [RFC7049] for
  all maps and arrays would unacceptably constrain implementations --
  for example, in the use case of real-time data collection in
  constrained environments where outputting Block Tables after Q/R data
  items and allowing indefinite-length maps and arrays could reduce
  memory requirements.

  It is recommended that implementations that have fundamental
  restrictions on what data fields they can collect SHOULD always store
  hints with the bits unset for those fields, i.e., they unambiguously
  indicate that those data fields will be omitted from captured C-DNS.

11.1.  Optional Data

  When decoding C-DNS data, some of the items required for a particular
  function that the consumer wishes to perform may be missing.
  Consumers should consider providing configurable default values to be
  used in place of the missing values in their output.

11.2.  Trailing Bytes

  A DNS Query message in a UDP or TCP payload can be followed by some
  additional (spurious) bytes, which are not stored in C-DNS.

  When DNS traffic is sent over TCP, each message is prefixed with a
  two-byte length field, which gives the message length, excluding the
  two-byte length field.  In this context, trailing bytes can occur in
  two circumstances, with different results:

  1.  The number of bytes consumed by fully parsing the message is less
      than the number of bytes given in the length field (i.e., the
      length field is incorrect and too large).  In this case, the
      surplus bytes are considered trailing bytes in a manner analogous
      to UDP and recorded as such.  If only this case occurs, it is
      possible to process a packet containing multiple DNS messages
      where one or more have trailing bytes.

  2.  There are surplus bytes between the end of a well-formed message
      and the start of the length field for the next message.  In this
      case, the first of the surplus bytes will be processed as the
      first byte of the next length field, and parsing will proceed
      from there, almost certainly leading to the next and any
      subsequent messages in the packet being considered malformed.
      This will not generate a trailing-bytes record for the processed
      well-formed message.






Dickinson, et al.            Standards Track                   [Page 48]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


11.3.  Limiting Collection of RDATA

  Implementations should consider providing a configurable maximum
  RDATA size for captures -- for example, to avoid memory issues when
  confronted with large zone transfer records.

11.4.  Timestamps

  The preamble to each block includes a timestamp of the earliest
  record in the Block.  As described in Section 7.3.2.1, the timestamp
  is an array of two unsigned integers.  The first is a POSIX "time_t"
  [posix-time].  Consumers of C-DNS should be aware of this, as it
  excludes leap seconds and therefore may cause minor anomalies in the
  data, e.g., when calculating Query throughput.

12.  IANA Considerations

  IANA has created a registry "C-DNS DNS Capture Format" containing the
  subregistries defined in Sections 12.1 to 12.4 inclusive.

  In all cases, new entries may be added to the subregistries by Expert
  Review as defined in [RFC8126].  Experts are expected to exercise
  their own expert judgment and should consider the following general
  guidelines in addition to any provided guidelines that are particular
  to a subregistry.

  o  There should be a real and compelling use for any new value.

  o  Values assigned should be carefully chosen to minimize storage
     requirements for common cases.

12.1.  Transport Types

  IANA has created a registry "C-DNS Transports" of C-DNS transport
  type identifiers.  The primary purpose of this registry is to provide
  unique identifiers for all transports used for DNS Queries.

  The following note is included in this registry: "In version 1.0 of
  C-DNS [RFC8618], there is a field to identify the type of DNS
  transport.  This field is 4 bits in size."











Dickinson, et al.            Standards Track                   [Page 49]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  The initial contents of the registry are as follows.  See
  Sections 7.3.2.3.2, 7.3.2.3.5, and 7.3.2.5 of this document:

           +------------+------------------------+-----------+
           | Identifier | Name                   | Reference |
           +------------+------------------------+-----------+
           |     0      | UDP                    | RFC 8618  |
           |     1      | TCP                    | RFC 8618  |
           |     2      | TLS                    | RFC 8618  |
           |     3      | DTLS                   | RFC 8618  |
           |     4      | HTTPS                  | RFC 8618  |
           |    5-14    | Unassigned             |           |
           |     15     | Non-standard transport | RFC 8618  |
           +------------+------------------------+-----------+

  Expert reviewers should take the following point into consideration:
  Is the requested DNS transport described by a Standards Track RFC?

12.2.  Data Storage Flags

  IANA has created a registry "C-DNS Storage Flags" of C-DNS data
  storage flags.  The primary purpose of this registry is to provide
  indicators giving hints on processing of the data stored.

  The following note is included in this registry: "In version 1.0 of
  C-DNS [RFC8618], there is a field describing attributes of the data
  recorded.  The field is a CBOR [RFC7049] unsigned integer holding bit
  flags."

  The initial contents of the registry are as follows.  See
  Section 7.3.1.1.1 of this document:

  +------+------------------+-----------------------------+-----------+
  | Bit  | Name             | Description                 | Reference |
  +------+------------------+-----------------------------+-----------+
  |  0   | anonymized-data  | The data has been           | RFC 8618  |
  |      |                  | anonymized.                 |           |
  |      |                  |                             |           |
  |  1   | sampled-data     | The data is sampled data.   | RFC 8618  |
  |      |                  |                             |           |
  |  2   | normalized-names | Names in the data have been | RFC 8618  |
  |      |                  | normalized.                 |           |
  |      |                  |                             |           |
  | 3-63 | Unassigned       |                             |           |
  +------+------------------+-----------------------------+-----------+






Dickinson, et al.            Standards Track                   [Page 50]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


12.3.  Response-Processing Flags

  IANA has created a registry "C-DNS Response Flags" of C-DNS response-
  processing flags.  The primary purpose of this registry is to provide
  indicators giving hints on the generation of a particular Response.

  The following note is included in this registry: "In version 1.0 of
  C-DNS [RFC8618], there is a field describing attributes of the
  Responses recorded.  The field is a CBOR [RFC7049] unsigned integer
  holding bit flags."

  The initial contents of the registry are as follows.  See
  Section 7.3.2.4.1 of this document:

    +------+------------+-------------------------------+-----------+
    | Bit  | Name       | Description                   | Reference |
    +------+------------+-------------------------------+-----------+
    |  0   | from-cache | The Response came from cache. | RFC 8618  |
    | 1-63 | Unassigned |                               |           |
    +------+------------+-------------------------------+-----------+

12.4.  AddressEvent Types

  IANA has created a registry "C-DNS Address Event Types" of C-DNS
  AddressEvent types.  The primary purpose of this registry is to
  provide unique identifiers of different types of C-DNS address events
  and so specify the contents of the optional companion field "ae-code"
  for each type.

  The following note is included in this registry: "In version 1.0 of
  C-DNS [RFC8618], there is a field identifying types of the events
  related to client addresses.  This field is a CBOR [RFC7049] unsigned
  integer.  There is a related optional field "ae-code", which, if
  present, holds an additional CBOR unsigned integer giving additional
  information specific to the event type."
















Dickinson, et al.            Standards Track                   [Page 51]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  The initial contents of the registry are as follows.  See
  Section 7.3.2.5 of this document:

  +------------------------+---------------+--------------+-----------+
  |       Identifier       | Event Type    | ae-code      | Reference |
  |                        |               | Contents     |           |
  +------------------------+---------------+--------------+-----------+
  |           0            | TCP reset     | None         | RFC 8618  |
  |                        |               |              |           |
  |           1            | ICMP time     | ICMP code    | RFC 8618  |
  |                        | exceeded      | [icmpcodes]  |           |
  |                        |               |              |           |
  |           2            | ICMP          | ICMP code    | RFC 8618  |
  |                        | destination   | [icmpcodes]  |           |
  |                        | unreachable   |              |           |
  |                        |               |              |           |
  |           3            | ICMPv6 time   | ICMPv6 code  | RFC 8618  |
  |                        | exceeded      | [icmp6codes] |           |
  |                        |               |              |           |
  |           4            | ICMPv6        | ICMPv6 code  | RFC 8618  |
  |                        | destination   | [icmp6codes] |           |
  |                        | unreachable   |              |           |
  |                        |               |              |           |
  |           5            | ICMPv6 packet | ICMPv6 code  | RFC 8618  |
  |                        | too big       | [icmp6codes] |           |
  |                        |               |              |           |
  | 6-18446744073709551615 | Unassigned    |              |           |
  +------------------------+---------------+--------------+-----------+

  Expert reviewers should take the following point into consideration:
  "ae-code" contents must be defined for a type or, if not appropriate,
  specified as "None".  A specification of "None" requires less storage
  and is therefore preferred.

13.  Security Considerations

  Any control interface MUST perform authentication and encryption.

  Any data upload MUST be authenticated and encrypted.

14.  Privacy Considerations

  Storage of DNS traffic by operators in PCAP and other formats is a
  long-standing and widespread practice.  Section 2.5 of
  [DNS-Priv-Cons] provides an analysis of the risks to Internet users
  regarding the storage of DNS traffic data in servers (recursive
  resolvers, authoritative servers, and rogue servers).




Dickinson, et al.            Standards Track                   [Page 52]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  Section 5.2 of [DNS-Priv-Svc] describes mitigations for those risks
  for data stored on recursive resolvers (but that could by extension
  apply to authoritative servers).  These include data-handling
  practices and methods for data minimization, IP address
  pseudonymization, and anonymization.  Appendix C of [DNS-Priv-Svc]
  presents an analysis of seven published anonymization processes.  In
  addition, the ICANN Root Server System Advisory Committee (RSSAC)
  have recently published [RSSAC04] ("Recommendations on Anonymization
  Processes for Source IP Addresses Submitted for Future Analysis").

  The above analyses consider full data capture (e.g., using PCAP) as a
  baseline for privacy considerations; therefore, this format
  specification introduces no new user privacy issues beyond those of
  full data capture (which are quite severe).  It does provide
  mechanisms to selectively record only certain fields at the time of
  data capture, to improve user privacy and to explicitly indicate that
  data is sampled, anonymized, or both.  It also provides flags to
  indicate if data normalization has been performed; data normalization
  increases user privacy by reducing the potential for fingerprinting
  individuals.  However, a trade-off is the potential reduction of the
  capacity to identify attack traffic via Query name signatures.
  Operators should carefully consider their operational requirements
  and privacy policies and SHOULD capture at the source the minimum
  user data required to meet their needs.

15.  References

15.1.  Normative References

  [pcap-filter]
             tcpdump.org, "Manpage of PCAP-FILTER", November 2017,
             <https://www.tcpdump.org/manpages/pcap-filter.7.html>.

  [pcap-options]
             tcpdump.org, "Manpage of PCAP", July 2018,
             <https://www.tcpdump.org/manpages/pcap.3pcap.html>.

  [posix-time]
             The Open Group, "IEEE Standard for Information
             Technology--Portable Operating System Interface (POSIX(R))
             Base Specifications, Issue 7", IEEE Standard 1003.1-2017,
             Section 4.16, DOI 10.1109/IEEESTD.2018.8277153.

  [RFC792]   Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, DOI 10.17487/RFC0792, September 1981,
             <https://www.rfc-editor.org/info/rfc792>.





Dickinson, et al.            Standards Track                   [Page 53]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
             November 1987, <https://www.rfc-editor.org/info/rfc1035>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", STD 89,
             RFC 4443, DOI 10.17487/RFC4443, March 2006,
             <https://www.rfc-editor.org/info/rfc4443>.

  [RFC6891]  Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
             for DNS (EDNS(0))", STD 75, RFC 6891,
             DOI 10.17487/RFC6891, April 2013,
             <https://www.rfc-editor.org/info/rfc6891>.

  [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
             Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
             October 2013, <https://www.rfc-editor.org/info/rfc7049>.

  [RFC7858]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
             and P. Hoffman, "Specification for DNS over Transport
             Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,
             May 2016, <https://www.rfc-editor.org/info/rfc7858>.

  [RFC8094]  Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
             Transport Layer Security (DTLS)", RFC 8094,
             DOI 10.17487/RFC8094, February 2017,
             <https://www.rfc-editor.org/info/rfc8094>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.



Dickinson, et al.            Standards Track                   [Page 54]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  [RFC8484]  Hoffman, P. and P. McManus, "DNS Queries over HTTPS
             (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
             <https://www.rfc-editor.org/info/rfc8484>.

  [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
             Definition Language (CDDL): A Notational Convention to
             Express Concise Binary Object Representation (CBOR) and
             JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
             June 2019, <https://www.rfc-editor.org/info/rfc8610>.

15.2.  Informative References

  [Avro]     The Apache Software Foundation, "Apache Avro(TM)", 2019,
             <https://avro.apache.org/>.

  [ditl]     DNS-OARC, "DITL", 2018,
             <https://www.dns-oarc.net/oarc/data/ditl>.

  [DNS-Priv-Cons]
             Bortzmeyer, S. and S. Dickinson, "DNS Privacy
             Considerations", Work in Progress,
             draft-ietf-dprive-rfc7626-bis-00, July 2019.

  [DNS-Priv-Svc]
             Dickinson, S., Overeinder, B., van Rijswijk-Deij, R., and
             A. Mankin, "Recommendations for DNS Privacy Service
             Operators", Work in Progress, draft-ietf-dprive-bcp-op-03,
             July 2019.

  [dnscap]   DNS-OARC, "DNSCAP", 2018,
             <https://www.dns-oarc.net/tools/dnscap>.

  [dnstap]   "dnstap", 2016, <https://dnstap.info/>.

  [dnstap-schema]
             "dnstap schema", commit d860ec1, November 2016,
             <https://github.com/dnstap/dnstap.pb/blob/master/
             dnstap.proto>.

  [dnsxml]   Daley, J., Ed., Morris, S., and J. Dickinson, "dnsxml - A
             standard XML representation of DNS data", Work in
             Progress, draft-daley-dnsxml-00, July 2013.

  [dsc]      Wessels, D. and J. Lundstrom, "DSC", 2016,
             <https://www.dns-oarc.net/tools/dsc>.

  [gzip]     "gzip", <https://www.gzip.org/>.




Dickinson, et al.            Standards Track                   [Page 55]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  [icmp6codes]
             IANA, "ICMPv6 "Code" Fields",
             <https://www.iana.org/assignments/icmpv6-parameters/>.

  [icmpcodes]
             IANA, "Code Fields",
             <https://www.iana.org/assignments/icmp-parameters/>.

  [IEEE802.1Q]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks--Bridges and Bridged Networks", IEEE
             Standard 802.1Q.

  [Knot]     "Knot DNS", <https://www.knot-dns.cz/>.

  [lz4]      "LZ4", <https://lz4.github.io/lz4/>.

  [mmark]    Gieben, M., "mmark", commit de69698, May 2019,
             <https://github.com/mmarkdown/mmark>.

  [NSD]      NLnet Labs, "NSD", 2019,
             <https://www.nlnetlabs.nl/projects/nsd/about/>.

  [opcodes]  IANA, "DNS OpCodes",
             <https://www.iana.org/assignments/dns-parameters/>.

  [packetq]  .SE - The Internet Infrastructure Foundation, "PacketQ",
             commit c9b2e89, February 2019,
             <https://github.com/DNS-OARC/PacketQ>.

  [pcap]     "PCAP", 2019, <https://www.tcpdump.org/>.

  [pcapng]   "pcapng: PCAP next generation file format specification",
             commit 3c35b6a, March 2019,
             <https://github.com/pcapng/pcapng>.

  [Protocol-Buffers]
             Google LLC, "Protocol Buffers",
             <https://developers.google.com/protocol-buffers/>.

  [rcodes]   IANA, "DNS RCODEs",
             <https://www.iana.org/assignments/dns-parameters/>.

  [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
             "Transport Layer Security (TLS) Session Resumption without
             Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
             January 2008, <https://www.rfc-editor.org/info/rfc5077>.




Dickinson, et al.            Standards Track                   [Page 56]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  [RFC7413]  Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
             Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
             <https://www.rfc-editor.org/info/rfc7413>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RFC8427]  Hoffman, P., "Representing DNS Messages in JSON",
             RFC 8427, DOI 10.17487/RFC8427, July 2018,
             <https://www.rfc-editor.org/info/rfc8427>.

  [rrclasses]
             IANA, "DNS CLASSes",
             <https://www.iana.org/assignments/dns-parameters/>.

  [rrtypes]  IANA, "Resource Record (RR) TYPEs",
             <https://www.iana.org/assignments/dns-parameters/>.

  [RSSAC04]  ICANN, "Recommendations on Anonymization Processes for
             Source IP Addresses Submitted for Future Analysis",
             August 2018, <https://www.icann.org/en/system/files/files/
             rssac-040-07aug18-en.pdf>.

  [snappy]   "snappy", <https://google.github.io/snappy/>.

  [snzip]    "Snzip, a compression/decompression tool based on snappy",
             commit 809c6f2, October 2018,
             <https://github.com/kubo/snzip>.

  [xz]       "XZ Utils", <https://tukaani.org/xz/>.

  [zstd]     "Zstandard - Real-time data compression algorithm",
             <https://facebook.github.io/zstd/>.
















Dickinson, et al.            Standards Track                   [Page 57]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


Appendix A.  CDDL

  This appendix gives a CDDL [RFC8610] specification for C-DNS.

  CDDL does not permit a range of allowed values to be specified for a
  bitfield.  Where necessary, those values are given as a CDDL group,
  but the group definition is commented out to prevent CDDL tooling
  from warning that the group is unused.

  ; CDDL specification of the file format for C-DNS,
  ; which describes a collection of DNS messages and
  ; traffic metadata.

  ;
  ; The overall structure of a file.
  ;
  File = [
      file-type-id  : "C-DNS",
      file-preamble : FilePreamble,
      file-blocks   : [* Block],
  ]

  ;
  ; The File Preamble.
  ;
  FilePreamble = {
      major-format-version => 1,
      minor-format-version => 0,
      ? private-version    => uint,
      block-parameters     => [+ BlockParameters],
  }
  major-format-version = 0
  minor-format-version = 1
  private-version      = 2
  block-parameters     = 3

  BlockParameters = {
      storage-parameters      => StorageParameters,
      ? collection-parameters => CollectionParameters,
  }
  storage-parameters    = 0
  collection-parameters = 1

    IPv6PrefixLength = 1..128
    IPv4PrefixLength = 1..32
    OpcodeRange = 0..15
    RRTypeRange = 0..65535




Dickinson, et al.            Standards Track                   [Page 58]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


    StorageParameters = {
        ticks-per-second             => uint,
        max-block-items              => uint,
        storage-hints                => StorageHints,
        opcodes                      => [+ OpcodeRange],
        rr-types                     => [+ RRTypeRange],
        ? storage-flags              => StorageFlags,
        ? client-address-prefix-ipv4 => IPv4PrefixLength,
        ? client-address-prefix-ipv6 => IPv6PrefixLength,
        ? server-address-prefix-ipv4 => IPv4PrefixLength,
        ? server-address-prefix-ipv6 => IPv6PrefixLength,
        ? sampling-method            => tstr,
        ? anonymization-method       => tstr,
    }
    ticks-per-second           = 0
    max-block-items            = 1
    storage-hints              = 2
    opcodes                    = 3
    rr-types                   = 4
    storage-flags              = 5
    client-address-prefix-ipv4 = 6
    client-address-prefix-ipv6 = 7
    server-address-prefix-ipv4 = 8
    server-address-prefix-ipv6 = 9
    sampling-method            = 10
    anonymization-method       = 11

      ; A hint indicates whether the collection method will always omit
      ; the item from the file.
      StorageHints = {
          query-response-hints           => QueryResponseHints,
          query-response-signature-hints =>
              QueryResponseSignatureHints,
          rr-hints                       => RRHints,
          other-data-hints               => OtherDataHints,
      }
      query-response-hints           = 0
      query-response-signature-hints = 1
      rr-hints                       = 2
      other-data-hints               = 3

        QueryResponseHintValues = &(
            time-offset                  : 0,
            client-address-index         : 1,
            client-port                  : 2,
            transaction-id               : 3,
            qr-signature-index           : 4,
            client-hoplimit              : 5,



Dickinson, et al.            Standards Track                   [Page 59]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


            response-delay               : 6,
            query-name-index             : 7,
            query-size                   : 8,
            response-size                : 9,
            response-processing-data     : 10,
            query-question-sections      : 11,    ; Second & subsequent
                                                  ; Questions
            query-answer-sections        : 12,
            query-authority-sections     : 13,
            query-additional-sections    : 14,
            response-answer-sections     : 15,
            response-authority-sections  : 16,
            response-additional-sections : 17,
        )
        QueryResponseHints = uint .bits QueryResponseHintValues

        QueryResponseSignatureHintValues = &(
            server-address-index  : 0,
            server-port           : 1,
            qr-transport-flags    : 2,
            qr-type               : 3,
            qr-sig-flags          : 4,
            query-opcode          : 5,
            qr-dns-flags          : 6,
            query-rcode           : 7,
            query-classtype-index : 8,
            query-qdcount         : 9,
            query-ancount         : 10,
            query-nscount         : 11,
            query-arcount         : 12,
            query-edns-version    : 13,
            query-udp-size        : 14,
            query-opt-rdata-index : 15,
            response-rcode        : 16,
        )
        QueryResponseSignatureHints =
            uint .bits QueryResponseSignatureHintValues

        RRHintValues = &(
            ttl         : 0,
            rdata-index : 1,
        )
        RRHints = uint .bits RRHintValues

        OtherDataHintValues = &(
            malformed-messages   : 0,
            address-event-counts : 1,
        )



Dickinson, et al.            Standards Track                   [Page 60]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


        OtherDataHints = uint .bits OtherDataHintValues

      StorageFlagValues = &(
          anonymized-data      : 0,
          sampled-data         : 1,
          normalized-names     : 2,
      )
      StorageFlags = uint .bits StorageFlagValues

   ; Metadata about data collection
   VLANIdRange = 1..4094

   CollectionParameters = {
        ? query-timeout      => uint,             ; Milliseconds
        ? skew-timeout       => uint,             ; Microseconds
        ? snaplen            => uint,
        ? promisc            => bool,
        ? interfaces         => [+ tstr],
        ? server-addresses   => [+ IPAddress],
        ? vlan-ids           => [+ VLANIdRange],
        ? filter             => tstr,
        ? generator-id       => tstr,
        ? host-id            => tstr,
    }
    query-timeout      = 0
    skew-timeout       = 1
    snaplen            = 2
    promisc            = 3
    interfaces         = 4
    server-addresses   = 5
    vlan-ids           = 6
    filter             = 7
    generator-id       = 8
    host-id            = 9

  ;
  ; Data in the file is stored in Blocks.
  ;
  Block = {
      block-preamble          => BlockPreamble,
      ? block-statistics      => BlockStatistics, ; Much of this
                                                  ; could be derived
      ? block-tables          => BlockTables,
      ? query-responses       => [+ QueryResponse],
      ? address-event-counts  => [+ AddressEventCount],
      ? malformed-messages    => [+ MalformedMessage],
  }




Dickinson, et al.            Standards Track                   [Page 61]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  block-preamble        = 0
  block-statistics      = 1
  block-tables          = 2
  query-responses       = 3
  address-event-counts  = 4
  malformed-messages    = 5

  ;
  ; The (mandatory) preamble to a Block.
  ;
  BlockPreamble = {
      ? earliest-time          => Timestamp,
      ? block-parameters-index => uint .default 0,
  }
  earliest-time          = 0
  block-parameters-index = 1

  ; Ticks are sub-second intervals.  The number of ticks in a second is
  ; file/block metadata.  Signed and unsigned tick types are defined.
  ticks = int
  uticks = uint

  Timestamp = [
      timestamp-secs   : uint,      ; POSIX time
      timestamp-ticks  : uticks,
  ]

  ;
  ; Statistics about the Block contents.
  ;
  BlockStatistics = {
      ? processed-messages  => uint,
      ? qr-data-items       => uint,
      ? unmatched-queries   => uint,
      ? unmatched-responses => uint,
      ? discarded-opcode    => uint,
      ? malformed-items     => uint,
  }
  processed-messages  = 0
  qr-data-items       = 1
  unmatched-queries   = 2
  unmatched-responses = 3
  discarded-opcode    = 4
  malformed-items     = 5







Dickinson, et al.            Standards Track                   [Page 62]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  ;
  ; Tables of common data referenced from records in a Block.
  ;
  BlockTables = {
      ? ip-address             => [+ IPAddress],
      ? classtype              => [+ ClassType],
      ? name-rdata             => [+ bstr],    ; Holds both names
                                               ; and RDATA
      ? qr-sig                 => [+ QueryResponseSignature],
      ? QuestionTables,
      ? RRTables,
      ? malformed-message-data => [+ MalformedMessageData],
  }
  ip-address             = 0
  classtype              = 1
  name-rdata             = 2
  qr-sig                 = 3
  qlist                  = 4
  qrr                    = 5
  rrlist                 = 6
  rr                     = 7
  malformed-message-data = 8

  IPv4Address = bstr .size (0..4)
  IPv6Address = bstr .size (0..16)
  IPAddress = IPv4Address / IPv6Address

  ClassType = {
      type  => uint,
      class => uint,
  }
  type  = 0
  class = 1

  QueryResponseSignature = {
      ? server-address-index  => uint,
      ? server-port           => uint,
      ? qr-transport-flags    => QueryResponseTransportFlags,
      ? qr-type               => QueryResponseType,
      ? qr-sig-flags          => QueryResponseFlags,
      ? query-opcode          => uint,
      ? qr-dns-flags          => DNSFlags,
      ? query-rcode           => uint,
      ? query-classtype-index => uint,
      ? query-qdcount         => uint,
      ? query-ancount         => uint,
      ? query-nscount         => uint,
      ? query-arcount         => uint,



Dickinson, et al.            Standards Track                   [Page 63]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


      ? query-edns-version    => uint,
      ? query-udp-size        => uint,
      ? query-opt-rdata-index => uint,
      ? response-rcode        => uint,
  }
  server-address-index  = 0
  server-port           = 1
  qr-transport-flags    = 2
  qr-type               = 3
  qr-sig-flags          = 4
  query-opcode          = 5
  qr-dns-flags          = 6
  query-rcode           = 7
  query-classtype-index = 8
  query-qdcount         = 9
  query-ancount         = 10
  query-nscount         = 11
  query-arcount         = 12
  query-edns-version    = 13
  query-udp-size        = 14
  query-opt-rdata-index = 15
  response-rcode        = 16

    ; Transport gives the values that may appear in bits 1..4 of
    ; TransportFlags.  There is currently no way to express this in
    ; CDDL, so Transport is unused.  To avoid confusion when used
    ; with CDDL tools, it is commented out.
    ;
    ; Transport = &(
    ;     udp               : 0,
    ;     tcp               : 1,
    ;     tls               : 2,
    ;     dtls              : 3,
    ;     https             : 4,
    ;     non-standard      : 15,
    ; )

    TransportFlagValues = &(
        ip-version         : 0,     ; 0=IPv4, 1=IPv6
    ) / (1..4)
    TransportFlags = uint .bits TransportFlagValues

    QueryResponseTransportFlagValues = &(
        query-trailingdata : 5,
    ) / TransportFlagValues
    QueryResponseTransportFlags =
        uint .bits QueryResponseTransportFlagValues




Dickinson, et al.            Standards Track                   [Page 64]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


    QueryResponseType = &(
        stub      : 0,
        client    : 1,
        resolver  : 2,
        auth      : 3,
        forwarder : 4,
        tool      : 5,
    )

    QueryResponseFlagValues = &(
        has-query               : 0,
        has-response            : 1,
        query-has-opt           : 2,
        response-has-opt        : 3,
        query-has-no-question   : 4,
        response-has-no-question: 5,
    )
    QueryResponseFlags = uint .bits QueryResponseFlagValues

    DNSFlagValues = &(
        query-cd   : 0,
        query-ad   : 1,
        query-z    : 2,
        query-ra   : 3,
        query-rd   : 4,
        query-tc   : 5,
        query-aa   : 6,
        query-do   : 7,
        response-cd: 8,
        response-ad: 9,
        response-z : 10,
        response-ra: 11,
        response-rd: 12,
        response-tc: 13,
        response-aa: 14,
    )
    DNSFlags = uint .bits DNSFlagValues














Dickinson, et al.            Standards Track                   [Page 65]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  QuestionTables = (
      qlist => [+ QuestionList],
      qrr   => [+ Question]
  )

    QuestionList = [+ uint]           ; Index of Question

    Question = {                      ; Second and subsequent Questions
        name-index      => uint,      ; Index to a name in the
                                      ; name-rdata table
        classtype-index => uint,
    }
    name-index      = 0
    classtype-index = 1

  RRTables = (
      rrlist => [+ RRList],
      rr     => [+ RR]
  )

    RRList = [+ uint]                     ; Index of RR

    RR = {
        name-index      => uint,          ; Index to a name in the
                                          ; name-rdata table
        classtype-index => uint,
        ? ttl           => uint,
        ? rdata-index   => uint,          ; Index to RDATA in the
                                          ; name-rdata table
    }
    ; Other map key values already defined above.
    ttl         = 2
    rdata-index = 3

  MalformedMessageData = {
      ? server-address-index   => uint,
      ? server-port            => uint,
      ? mm-transport-flags     => TransportFlags,
      ? mm-payload             => bstr,
  }
  ; Other map key values already defined above.
  mm-transport-flags      = 2
  mm-payload              = 3








Dickinson, et al.            Standards Track                   [Page 66]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  ;
  ; A single Query/Response data item.
  ;
  QueryResponse = {
      ? time-offset              => uticks,     ; Time offset from
                                                ; start of Block
      ? client-address-index     => uint,
      ? client-port              => uint,
      ? transaction-id           => uint,
      ? qr-signature-index       => uint,
      ? client-hoplimit          => uint,
      ? response-delay           => ticks,
      ? query-name-index         => uint,
      ? query-size               => uint,       ; DNS size of Query
      ? response-size            => uint,       ; DNS size of Response
      ? response-processing-data => ResponseProcessingData,
      ? query-extended           => QueryResponseExtended,
      ? response-extended        => QueryResponseExtended,
  }
  time-offset              = 0
  client-address-index     = 1
  client-port              = 2
  transaction-id           = 3
  qr-signature-index       = 4
  client-hoplimit          = 5
  response-delay           = 6
  query-name-index         = 7
  query-size               = 8
  response-size            = 9
  response-processing-data = 10
  query-extended           = 11
  response-extended        = 12

  ResponseProcessingData = {
      ? bailiwick-index  => uint,
      ? processing-flags => ResponseProcessingFlags,
  }
  bailiwick-index = 0
  processing-flags = 1

    ResponseProcessingFlagValues = &(
        from-cache : 0,
    )
    ResponseProcessingFlags = uint .bits ResponseProcessingFlagValues







Dickinson, et al.            Standards Track                   [Page 67]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  QueryResponseExtended = {
      ? question-index   => uint,       ; Index of QuestionList
      ? answer-index     => uint,       ; Index of RRList
      ? authority-index  => uint,
      ? additional-index => uint,
  }
  question-index   = 0
  answer-index     = 1
  authority-index  = 2
  additional-index = 3

  ;
  ; Address event data.
  ;
  AddressEventCount = {
      ae-type              => &AddressEventType,
      ? ae-code            => uint,
      ae-address-index     => uint,
      ? ae-transport-flags => TransportFlags,
      ae-count             => uint,
  }
  ae-type            = 0
  ae-code            = 1
  ae-address-index   = 2
  ae-transport-flags = 3
  ae-count           = 4

  AddressEventType = (
      tcp-reset              : 0,
      icmp-time-exceeded     : 1,
      icmp-dest-unreachable  : 2,
      icmpv6-time-exceeded   : 3,
      icmpv6-dest-unreachable: 4,
      icmpv6-packet-too-big  : 5,
  )

  ;
  ; Malformed messages.
  ;
  MalformedMessage = {
      ? time-offset           => uticks,   ; Time offset from
                                           ; start of Block
      ? client-address-index  => uint,
      ? client-port           => uint,
      ? message-data-index    => uint,
  }
  ; Other map key values already defined above.
  message-data-index = 3



Dickinson, et al.            Standards Track                   [Page 68]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


Appendix B.  DNS Name Compression Example

  The basic algorithm, which follows the guidance in [RFC1035], is
  simply to collect each name, and the offset in the packet at which it
  starts, during packet construction.  As each name is added, it is
  offered to each of the collected names in order of collection,
  starting from the first name.  If (1) labels at the end of the name
  can be replaced with a reference back to part (or all) of the earlier
  name and (2) the uncompressed part of the name is shorter than any
  compression already found, the earlier name is noted as the
  compression target for the name.

  The following tables illustrate the step-by-step process of adding
  names and performing name compression.  In an example packet, the
  first name added is foo.example, which cannot be compressed.

         +---+-------------+--------------+--------------------+
         | N | Name        | Uncompressed | Compression Target |
         +---+-------------+--------------+--------------------+
         | 1 | foo.example | foo.example  | None               |
         +---+-------------+--------------+--------------------+

  The next name added is bar.example.  This is matched against
  foo.example.  The example part of this can be used as a compression
  target, with the remaining uncompressed part of the name being bar.

       +---+-------------+--------------+-----------------------+
       | N | Name        | Uncompressed | Compression Target    |
       +---+-------------+--------------+-----------------------+
       | 1 | foo.example | foo.example  | None                  |
       | 2 | bar.example | bar          | 1 + offset to example |
       +---+-------------+--------------+-----------------------+

  The third name added is www.bar.example.  This is first matched
  against foo.example, and as before this is recorded as a compression
  target, with the remaining uncompressed part of the name being
  www.bar.  It is then matched against the second name, which again can
  be a compression target.  Because the remaining uncompressed part of
  the name is www, this is an improved compression, and so it is
  adopted.

     +---+-----------------+--------------+-----------------------+
     | N | Name            | Uncompressed | Compression Target    |
     +---+-----------------+--------------+-----------------------+
     | 1 | foo.example     | foo.example  | None                  |
     | 2 | bar.example     | bar          | 1 + offset to example |
     | 3 | www.bar.example | www          | 2                     |
     +---+-----------------+--------------+-----------------------+



Dickinson, et al.            Standards Track                   [Page 69]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  As an optimization, if a name is already perfectly compressed (in
  other words, the uncompressed part of the name is empty), then no
  further names will be considered for compression.

B.1.  NSD Compression Algorithm

  Using the above basic algorithm, the packet lengths of Responses
  generated by the Name Server Daemon (NSD) [NSD] can be matched almost
  exactly.  At the time of writing, a tiny number (<.01%) of the
  reconstructed packets had incorrect lengths.

B.2.  Knot Authoritative Compression Algorithm

  The Knot Authoritative name server [Knot] uses different compression
  behavior, which is the result of internal optimization designed to
  balance runtime speed with compression size gains.  In brief, and
  omitting complications, Knot Authoritative will only consider the
  QNAME and names in the immediately preceding RR section in an RRSET
  as compression targets.

  A set of smart heuristics as described below can be implemented to
  mimic this, and while not perfect, it produces output nearly, but not
  quite, as good a match as with NSD.  The heuristics are as follows:

  1.  A match is only perfect if the name is completely compressed AND
      the TYPE of the section in which the name occurs matches the TYPE
      of the name used as the compression target.

  2.  If the name occurs in RDATA:

      *  If the compression target name is in a Query, then only the
         first RR in an RRSET can use that name as a compression
         target.

      *  The compression target name MUST be in RDATA.

      *  The name section TYPE must match the compression target name
         section TYPE.

      *  The compression target name MUST be in the immediately
         preceding RR in the RRSET.

  Using this algorithm, less than 0.1% of the reconstructed packets had
  incorrect lengths.







Dickinson, et al.            Standards Track                   [Page 70]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


B.3.  Observed Differences

  In sample traffic collected on a root name server, around 2-4% of
  Responses generated by Knot had different packet lengths than those
  produced by NSD.

Appendix C.  Comparison of Binary Formats

  Several binary serialization formats were considered.  For
  completeness, they were also compared to JSON.

  o  Apache Avro [Avro].  Data is stored according to a predefined
     schema.  The schema itself is always included in the data file.
     Data can therefore be stored untagged, for a smaller serialization
     size, and be written and read by an Avro library.

     *  At the time of writing, Avro libraries are available for C,
        C++, C#, Java, Python, Ruby, and PHP.  Optionally, tools are
        available for C++, Java, and C# to generate code for encoding
        and decoding.

  o  Google Protocol Buffers [Protocol-Buffers].  Data is stored
     according to a predefined schema.  The schema is used by a
     generator to generate code for encoding and decoding the data.
     Data can therefore be stored untagged, for a smaller serialization
     size.  The schema is not stored with the data, so unlike Avro, it
     cannot be read with a generic library.

     *  Code must be generated for a particular data schema to read and
        write data using that schema.  At the time of writing, the
        Google code generator can currently generate code for encoding
        and decoding a schema for C++, Go, Java, Python, Ruby, C#,
        Objective-C, JavaScript, and PHP.

  o  CBOR [RFC7049].  This serialization format is comparable to JSON
     but with a binary representation.  It does not use a predefined
     schema, so data is always stored tagged.  However, CBOR data
     schemas can be described using CDDL [RFC8610], and tools exist to
     verify that data files conform to the schema.

     *  CBOR is a simple format and is simple to implement.  At the
        time of writing, the CBOR website lists implementations for 16
        languages.








Dickinson, et al.            Standards Track                   [Page 71]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  Avro and Protocol Buffers both allow storage of untagged data, but
  because they rely on the data schema for this, their implementation
  is considerably more complex than CBOR.  Using Avro or Protocol
  Buffers in an unsupported environment would require notably greater
  development effort compared to CBOR.

  A test program was written that reads input from a PCAP file and
  writes output using one of two basic structures: either a simple
  structure, where each Query/Response pair is represented in a single
  record entry, or the C-DNS block structure.

  The resulting output files were then compressed using a variety of
  common general-purpose lossless compression tools to explore the
  compressibility of the formats.  The compression tools employed were:

  o  snzip [snzip].  A command-line compression tool based on the
     Google Snappy library [snappy].

  o  lz4 [lz4].  The command-line compression tool from the reference C
     LZ4 implementation.

  o  gzip [gzip].  The ubiquitous GNU zip tool.

  o  zstd [zstd].  Compression using the Zstandard algorithm.

  o  xz [xz].  A popular compression tool noted for high compression.

  In all cases, the compression tools were run using their default
  settings.

  Note that this document does not mandate the use of compression, nor
  any particular compression scheme, but it anticipates that in
  practice output data will be subject to general-purpose compression,
  and so this should be taken into consideration.

  "test.pcap", a 662 MB capture of sample data from a root instance,
  was used for the comparison.  The following table shows the formatted
  size and size after compression (abbreviated to Comp. in the table
  headers), together with the task Resident Set Size (RSS) and the user
  time taken by the compression.  File sizes are in MB, RSS is in kB,
  and user time is in seconds.










Dickinson, et al.            Standards Track                   [Page 72]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  +-------------+-----------+-------+------------+-------+-----------+
  | Format      | File Size | Comp. | Comp. Size |   RSS | User Time |
  +-------------+-----------+-------+------------+-------+-----------+
  | PCAP        |    661.87 | snzip |     212.48 |  2696 |      1.26 |
  |             |           | lz4   |     181.58 |  6336 |      1.35 |
  |             |           | gzip  |     153.46 |  1428 |     18.20 |
  |             |           | zstd  |      87.07 |  3544 |      4.27 |
  |             |           | xz    |      49.09 | 97416 |    160.79 |
  |             |           |       |            |       |           |
  | JSON simple |   4113.92 | snzip |     603.78 |  2656 |      5.72 |
  |             |           | lz4   |     386.42 |  5636 |      5.25 |
  |             |           | gzip  |     271.11 |  1492 |     73.00 |
  |             |           | zstd  |     133.43 |  3284 |      8.68 |
  |             |           | xz    |      51.98 | 97412 |    600.74 |
  |             |           |       |            |       |           |
  | Avro simple |    640.45 | snzip |     148.98 |  2656 |      0.90 |
  |             |           | lz4   |     111.92 |  5828 |      0.99 |
  |             |           | gzip  |     103.07 |  1540 |     11.52 |
  |             |           | zstd  |      49.08 |  3524 |      2.50 |
  |             |           | xz    |      22.87 | 97308 |     90.34 |
  |             |           |       |            |       |           |
  | CBOR simple |    764.82 | snzip |     164.57 |  2664 |      1.11 |
  |             |           | lz4   |     120.98 |  5892 |      1.13 |
  |             |           | gzip  |     110.61 |  1428 |     12.88 |
  |             |           | zstd  |      54.14 |  3224 |      2.77 |
  |             |           | xz    |      23.43 | 97276 |    111.48 |
  |             |           |       |            |       |           |
  | PBuf simple |    749.51 | snzip |     167.16 |  2660 |      1.08 |
  |             |           | lz4   |     123.09 |  5824 |      1.14 |
  |             |           | gzip  |     112.05 |  1424 |     12.75 |
  |             |           | zstd  |      53.39 |  3388 |      2.76 |
  |             |           | xz    |      23.99 | 97348 |    106.47 |
  |             |           |       |            |       |           |
  | JSON block  |    519.77 | snzip |     106.12 |  2812 |      0.93 |
  |             |           | lz4   |     104.34 |  6080 |      0.97 |
  |             |           | gzip  |      57.97 |  1604 |     12.70 |
  |             |           | zstd  |      61.51 |  3396 |      3.45 |
  |             |           | xz    |      27.67 | 97524 |    169.10 |
  |             |           |       |            |       |           |
  | Avro block  |     60.45 | snzip |      48.38 |  2688 |      0.20 |
  |             |           | lz4   |      48.78 |  8540 |      0.22 |
  |             |           | gzip  |      39.62 |  1576 |      2.92 |
  |             |           | zstd  |      29.63 |  3612 |      1.25 |
  |             |           | xz    |      18.28 | 97564 |     25.81 |
  |             |           |       |            |       |           |






Dickinson, et al.            Standards Track                   [Page 73]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  | CBOR block  |     75.25 | snzip |      53.27 |  2684 |      0.24 |
  |             |           | lz4   |      51.88 |  8008 |      0.28 |
  |             |           | gzip  |      41.17 |  1548 |      4.36 |
  |             |           | zstd  |      30.61 |  3476 |      1.48 |
  |             |           | xz    |      18.15 | 97556 |     38.78 |
  |             |           |       |            |       |           |
  | PBuf block  |     67.98 | snzip |      51.10 |  2636 |      0.24 |
  |             |           | lz4   |      52.39 |  8304 |      0.24 |
  |             |           | gzip  |      40.19 |  1520 |      3.63 |
  |             |           | zstd  |      31.61 |  3576 |      1.40 |
  |             |           | xz    |      17.94 | 97440 |     33.99 |
  +-------------+-----------+-------+------------+-------+-----------+

  The above results are discussed in the following sections.

C.1.  Comparison with Full PCAP Files

  An important first consideration is whether moving away from PCAP
  offers significant benefits.

  The simple binary formats are typically larger than PCAP, even though
  they omit some information such as Ethernet Media Access Control
  (MAC) addresses.  But not only do they require less CPU to compress
  than PCAP, the resulting compressed files are smaller than compressed
  PCAP.

C.2.  Simple versus Block Coding

  The intention of the block coding is to perform data deduplication on
  Query/Response records within the block.  The simple and block
  formats shown above store exactly the same information for each
  Query/Response record.  This information is parsed from the DNS
  traffic in the input PCAP file, and in all cases each field has an
  identifier and the field data is typed.

  The data deduplication on the block formats show an order-of-
  magnitude reduction in the size of the format file size against the
  simple formats.  As would be expected, the compression tools are able
  to find and exploit a lot of this duplication, but as the
  deduplication process uses knowledge of DNS traffic, it is able to
  retain a size advantage.  This advantage reduces as stronger
  compression is applied, as again would be expected, but even with the
  strongest compression applied the block-formatted data remains around
  75% of the size of the simple format and its compression requires
  roughly a third of the CPU time.






Dickinson, et al.            Standards Track                   [Page 74]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


C.3.  Binary versus Text Formats

  Text data formats offer many advantages over binary formats,
  particularly in the areas of ad hoc data inspection and extraction.
  It was therefore felt worthwhile to carry out a direct comparison,
  implementing JSON versions of the simple and block formats.

  Concentrating on JSON block format, the format files produced are a
  significant fraction of an order of magnitude larger than binary
  formats.  The impact on file size after compression is as might be
  expected from that starting point; the stronger compression produces
  files that are 150% of the size of similarly compressed binary format
  and require over 4x more CPU to compress.

C.4.  Performance

  Concentrating again on the block formats, all three produce format
  files that are close to an order of magnitude smaller than the
  original "test.pcap" file.  CBOR produces the largest files and Avro
  the smallest, 20% smaller than CBOR.

  However, once compression is taken into account, the size difference
  narrows.  At medium compression (with gzip), the size difference is
  4%.  Using strong compression (with xz), the difference reduces to
  2%, with Avro the largest and Protocol Buffers the smallest, although
  CBOR and Protocol Buffers require slightly more compression CPU.

  The measurements presented above do not include data on the CPU
  required to generate the format files.  Measurements indicate that
  writing Avro requires 10% more CPU than CBOR or Protocol Buffers.  It
  appears, therefore, that Avro's advantage in compression CPU usage is
  probably offset by a larger CPU requirement in writing Avro.

C.5.  Conclusions

  The above assessments lead us to the choice of a binary format file
  using blocking.

  As noted previously, this document anticipates that output data will
  be subject to compression.  There is no compelling case for one
  particular binary serialization format in terms of either final file
  size or machine resources consumed, so the choice must be largely
  based on other factors.  CBOR was therefore chosen as the binary
  serialization format for the reasons listed in Section 5.







Dickinson, et al.            Standards Track                   [Page 75]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


C.6.  Block Size Choice

  Given the choice of a CBOR format using blocking, the question arises
  of what an appropriate default value for the maximum number of
  Query/Response pairs in a block should be.  This has two components:

  1.  What is the impact on performance of using different block sizes
      in the format file?

  2.  What is the impact on the size of the format file before and
      after compression?

  The following table addresses the performance question, showing the
  impact on the performance of a C++ program converting "test.pcap"
  to C-DNS.  File sizes are in MB, RSS is in kB, and user time is
  in seconds.

             +------------+-----------+--------+-----------+
             | Block Size | File Size |    RSS | User Time |
             +------------+-----------+--------+-----------+
             |      1,000 |    133.46 | 612.27 |     15.25 |
             |      5,000 |     89.85 | 676.82 |     14.99 |
             |     10,000 |     76.87 | 752.40 |     14.53 |
             |     20,000 |     67.86 | 750.75 |     14.49 |
             |     40,000 |     61.88 | 736.30 |     14.29 |
             |     80,000 |     58.08 | 694.16 |     14.28 |
             |    160,000 |     55.94 | 733.84 |     14.44 |
             |    320,000 |     54.41 | 799.20 |     13.97 |
             +------------+-----------+--------+-----------+

  Therefore, increasing block size tends to increase maximum RSS a
  little, with no significant effect (if anything, a small reduction)
  on CPU consumption.


















Dickinson, et al.            Standards Track                   [Page 76]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  The following table demonstrates the effect of increasing block size
  on output file size for different compressions.

     +------------+--------+-------+-------+-------+-------+-------+
     | Block Size |   None | snzip |   lz4 |  gzip |  zstd |    xz |
     +------------+--------+-------+-------+-------+-------+-------+
     |      1,000 | 133.46 | 90.52 | 90.03 | 74.65 | 44.78 | 25.63 |
     |      5,000 |  89.85 | 59.69 | 59.43 | 46.99 | 37.33 | 22.34 |
     |     10,000 |  76.87 | 50.39 | 50.28 | 38.94 | 33.62 | 21.09 |
     |     20,000 |  67.86 | 43.91 | 43.90 | 33.24 | 32.62 | 20.16 |
     |     40,000 |  61.88 | 39.63 | 39.69 | 29.44 | 28.72 | 19.52 |
     |     80,000 |  58.08 | 36.93 | 37.01 | 27.05 | 26.25 | 19.00 |
     |    160,000 |  55.94 | 35.10 | 35.06 | 25.44 | 24.56 | 19.63 |
     |    320,000 |  54.41 | 33.87 | 33.74 | 24.36 | 23.44 | 18.66 |
     +------------+--------+-------+-------+-------+-------+-------+

  There is obviously scope for tuning the default block size to the
  compression being employed, traffic characteristics, frequency of
  output file rollover, etc.  Using a strong compression scheme, block
  sizes over 10,000 Query/Response pairs would seem to offer limited
  improvements.

Appendix D.  Data Fields for Traffic Regeneration

D.1.  Recommended Fields for Traffic Regeneration

  This section specifies the data fields that would need to be captured
  in order to perform the fullest PCAP traffic reconstruction for
  well-formed DNS messages that is possible with C-DNS.

  o  All data fields in the QueryResponse type except response-
     processing-data.

  o  All data fields in the QueryResponseSignature type except qr-type.

  o  All data fields in the RR TYPE.

D.2.  Issues with Small Data Captures

  At the other extreme, an interesting corner case arises when opting
  to perform captures with a smaller data set than that recommended
  above.  The following list specifies a subset of the above data
  fields; if only these data fields are captured, then even a minimal
  traffic reconstruction is problematic because there is not enough
  information to determine if the Query/Response data item contained
  just a Query, just a Response, or a Query/Response pair.





Dickinson, et al.            Standards Track                   [Page 77]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


  o  The following data fields from the QueryResponse type:

     *  time-offset

     *  client-address-index

     *  client-port

     *  transaction-id

     *  query-name-index

  o  The following data fields from the QueryResponseSignature type:

     *  server-address-index

     *  server-port

     *  qr-transport-flags

     *  query-classtype-index

  In this case, simply also capturing the qr-sig-flags will provide
  enough information to perform a minimal traffic reconstruction
  (assuming that suitable defaults for the remaining fields are
  provided).  Additionally, capturing response-delay, query-opcode, and
  response-rcode will avoid having to rely on potentially misleading
  defaults for these values and should result in a PCAP that represents
  the basics of the real traffic flow.

Acknowledgements

  The authors wish to thank CZ.NIC -- in particular, Tomas Gavenciak --
  for many useful discussions on binary formats, compression, and
  packet matching.  Thanks also to Jan Vcelak and Wouter Wijngaards for
  discussions on name compression, and Paul Hoffman for a detailed
  review of this document and the C-DNS CDDL.

  Thanks also to Robert Edmonds, Jerry Lundstrom, Richard Gibson,
  Stephane Bortzmeyer, and many other members of DNSOP for review.

  Also, thanks to Miek Gieben for [mmark].









Dickinson, et al.            Standards Track                   [Page 78]

RFC 8618         C-DNS: A Format for DNS Packet Capture   September 2019


Authors' Addresses

  John Dickinson
  Sinodun IT
  Magdalen Centre
  Oxford Science Park
  Oxford  OX4 4GA
  United Kingdom
  Email: [email protected]


  Jim Hague
  Sinodun IT
  Magdalen Centre
  Oxford Science Park
  Oxford  OX4 4GA
  United Kingdom
  Email: [email protected]


  Sara Dickinson
  Sinodun IT
  Magdalen Centre
  Oxford Science Park
  Oxford  OX4 4GA
  United Kingdom
  Email: [email protected]


  Terry Manderson
  ICANN
  12025 Waterfront Drive
  Suite 300
  Los Angeles, CA  90094-2536
  United States of America
  Email: [email protected]


  John Bond
  Wikimedia Foundation, Inc.
  1 Montgomery Street
  Suite 1600
  San Francisco, CA  94104
  United States of America
  Email: [email protected]






Dickinson, et al.            Standards Track                   [Page 79]