Internet Engineering Task Force (IETF)                       G. Selander
Request for Comments: 8613                                   J. Mattsson
Updates: 7252                                               F. Palombini
Category: Standards Track                                    Ericsson AB
ISSN: 2070-1721                                                 L. Seitz
                                                                   RISE
                                                              July 2019


    Object Security for Constrained RESTful Environments (OSCORE)

Abstract

  This document defines Object Security for Constrained RESTful
  Environments (OSCORE), a method for application-layer protection of
  the Constrained Application Protocol (CoAP), using CBOR Object
  Signing and Encryption (COSE).  OSCORE provides end-to-end protection
  between endpoints communicating using CoAP or CoAP-mappable HTTP.
  OSCORE is designed for constrained nodes and networks supporting a
  range of proxy operations, including translation between different
  transport protocols.

  Although an optional functionality of CoAP, OSCORE alters CoAP
  options processing and IANA registration.  Therefore, this document
  updates RFC 7252.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8613.












Selander, et al.             Standards Track                    [Page 1]

RFC 8613                         OSCORE                        July 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Selander, et al.             Standards Track                    [Page 2]

RFC 8613                         OSCORE                        July 2019


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   5
    1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   7
  2.  The OSCORE Option . . . . . . . . . . . . . . . . . . . . . .   8
  3.  The Security Context  . . . . . . . . . . . . . . . . . . . .   8
    3.1.  Security Context Definition . . . . . . . . . . . . . . .   9
    3.2.  Establishment of Security Context Parameters  . . . . . .  11
    3.3.  Requirements on the Security Context Parameters . . . . .  14
  4.  Protected Message Fields  . . . . . . . . . . . . . . . . . .  15
    4.1.  CoAP Options  . . . . . . . . . . . . . . . . . . . . . .  16
    4.2.  CoAP Header Fields and Payload  . . . . . . . . . . . . .  24
    4.3.  Signaling Messages  . . . . . . . . . . . . . . . . . . .  25
  5.  The COSE Object . . . . . . . . . . . . . . . . . . . . . . .  26
    5.1.  ID Context and 'kid context'  . . . . . . . . . . . . . .  27
    5.2.  AEAD Nonce  . . . . . . . . . . . . . . . . . . . . . . .  28
    5.3.  Plaintext . . . . . . . . . . . . . . . . . . . . . . . .  29
    5.4.  Additional Authenticated Data . . . . . . . . . . . . . .  30
  6.  OSCORE Header Compression . . . . . . . . . . . . . . . . . .  31
    6.1.  Encoding of the OSCORE Option Value . . . . . . . . . . .  32
    6.2.  Encoding of the OSCORE Payload  . . . . . . . . . . . . .  33
    6.3.  Examples of Compressed COSE Objects . . . . . . . . . . .  33
  7.  Message Binding, Sequence Numbers, Freshness, and Replay
      Protection  . . . . . . . . . . . . . . . . . . . . . . . . .  36
    7.1.  Message Binding . . . . . . . . . . . . . . . . . . . . .  36
    7.2.  Sequence Numbers  . . . . . . . . . . . . . . . . . . . .  36
    7.3.  Freshness . . . . . . . . . . . . . . . . . . . . . . . .  36
    7.4.  Replay Protection . . . . . . . . . . . . . . . . . . . .  37
    7.5.  Losing Part of the Context State  . . . . . . . . . . . .  38
  8.  Processing  . . . . . . . . . . . . . . . . . . . . . . . . .  39
    8.1.  Protecting the Request  . . . . . . . . . . . . . . . . .  39
    8.2.  Verifying the Request . . . . . . . . . . . . . . . . . .  40
    8.3.  Protecting the Response . . . . . . . . . . . . . . . . .  41
    8.4.  Verifying the Response  . . . . . . . . . . . . . . . . .  43
  9.  Web Linking . . . . . . . . . . . . . . . . . . . . . . . . .  44
  10. CoAP-to-CoAP Forwarding Proxy . . . . . . . . . . . . . . . .  45
  11. HTTP Operations . . . . . . . . . . . . . . . . . . . . . . .  46
    11.1.  The HTTP OSCORE Header Field . . . . . . . . . . . . . .  46
    11.2.  CoAP-to-HTTP Mapping . . . . . . . . . . . . . . . . . .  47
    11.3.  HTTP-to-CoAP Mapping . . . . . . . . . . . . . . . . . .  48
    11.4.  HTTP Endpoints . . . . . . . . . . . . . . . . . . . . .  48
    11.5.  Example: HTTP Client and CoAP Server . . . . . . . . . .  48
    11.6.  Example: CoAP Client and HTTP Server . . . . . . . . . .  50
  12. Security Considerations . . . . . . . . . . . . . . . . . . .  51
    12.1.  End-to-end Protection  . . . . . . . . . . . . . . . . .  51
    12.2.  Security Context Establishment . . . . . . . . . . . . .  52
    12.3.  Master Secret  . . . . . . . . . . . . . . . . . . . . .  52
    12.4.  Replay Protection  . . . . . . . . . . . . . . . . . . .  53



Selander, et al.             Standards Track                    [Page 3]

RFC 8613                         OSCORE                        July 2019


    12.5.  Client Aliveness . . . . . . . . . . . . . . . . . . . .  53
    12.6.  Cryptographic Considerations . . . . . . . . . . . . . .  53
    12.7.  Message Segmentation . . . . . . . . . . . . . . . . . .  54
    12.8.  Privacy Considerations . . . . . . . . . . . . . . . . .  54
  13. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  55
    13.1.  COSE Header Parameters Registry  . . . . . . . . . . . .  55
    13.2.  CoAP Option Numbers Registry . . . . . . . . . . . . . .  55
    13.3.  CoAP Signaling Option Numbers Registry . . . . . . . . .  56
    13.4.  Header Field Registrations . . . . . . . . . . . . . . .  57
    13.5.  Media Type Registration  . . . . . . . . . . . . . . . .  57
    13.6.  CoAP Content-Formats Registry  . . . . . . . . . . . . .  58
    13.7.  OSCORE Flag Bits Registry  . . . . . . . . . . . . . . .  58
    13.8.  Expert Review Instructions . . . . . . . . . . . . . . .  59
  14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  60
    14.1.  Normative References . . . . . . . . . . . . . . . . . .  60
    14.2.  Informative References . . . . . . . . . . . . . . . . .  62
  Appendix A.  Scenario Examples  . . . . . . . . . . . . . . . . .  65
    A.1.  Secure Access to Sensor . . . . . . . . . . . . . . . . .  65
    A.2.  Secure Subscribe to Sensor  . . . . . . . . . . . . . . .  66
  Appendix B.  Deployment Examples  . . . . . . . . . . . . . . . .  68
    B.1.  Security Context Derived Once . . . . . . . . . . . . . .  68
    B.2.  Security Context Derived Multiple Times . . . . . . . . .  70
  Appendix C.  Test Vectors . . . . . . . . . . . . . . . . . . . .  75
    C.1.  Test Vector 1: Key Derivation with Master Salt  . . . . .  75
    C.2.  Test Vector 2: Key Derivation without Master Salt . . . .  77
    C.3.  Test Vector 3: Key Derivation with ID Context . . . . . .  78
    C.4.  Test Vector 4: OSCORE Request, Client . . . . . . . . . .  80
    C.5.  Test Vector 5: OSCORE Request, Client . . . . . . . . . .  81
    C.6.  Test Vector 6: OSCORE Request, Client . . . . . . . . . .  82
    C.7.  Test Vector 7: OSCORE Response, Server  . . . . . . . . .  84
    C.8.  Test Vector 8: OSCORE Response with Partial IV, Server  .  85
  Appendix D.  Overview of Security Properties  . . . . . . . . . .  86
    D.1.  Threat Model  . . . . . . . . . . . . . . . . . . . . . .  86
    D.2.  Supporting Proxy Operations . . . . . . . . . . . . . . .  87
    D.3.  Protected Message Fields  . . . . . . . . . . . . . . . .  87
    D.4.  Uniqueness of (key, nonce)  . . . . . . . . . . . . . . .  88
    D.5.  Unprotected Message Fields  . . . . . . . . . . . . . . .  89
  Appendix E.  CDDL Summary . . . . . . . . . . . . . . . . . . . .  93
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  94
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  94











Selander, et al.             Standards Track                    [Page 4]

RFC 8613                         OSCORE                        July 2019


1.  Introduction

  The Constrained Application Protocol (CoAP) [RFC7252] is a web
  transfer protocol designed for constrained nodes and networks
  [RFC7228]; CoAP may be mapped from HTTP [RFC8075].  CoAP specifies
  the use of proxies for scalability and efficiency and references DTLS
  [RFC6347] for security.  CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP
  proxies require DTLS or TLS [RFC8446] to be terminated at the proxy.
  Therefore, the proxy not only has access to the data required for
  performing the intended proxy functionality, but is also able to
  eavesdrop on, or manipulate any part of, the message payload and
  metadata in transit between the endpoints.  The proxy can also
  inject, delete, or reorder packets since they are no longer protected
  by (D)TLS.

  This document defines the Object Security for Constrained RESTful
  Environments (OSCORE) security protocol, protecting CoAP and CoAP-
  mappable HTTP requests and responses end-to-end across intermediary
  nodes such as CoAP forward proxies and cross-protocol translators
  including HTTP-to-CoAP proxies [RFC8075].  In addition to the core
  CoAP features defined in [RFC7252], OSCORE supports the Observe
  [RFC7641], Block-wise [RFC7959], and No-Response [RFC7967] options,
  as well as the PATCH and FETCH methods [RFC8132].  An analysis of
  end-to-end security for CoAP messages through some types of
  intermediary nodes is performed in [CoAP-E2E-Sec].  OSCORE
  essentially protects the RESTful interactions: the request method,
  the requested resource, the message payload, etc. (see Section 4),
  where "RESTful" refers to the Representational State Transfer (REST)
  Architecture [REST].  OSCORE protects neither the CoAP messaging
  layer nor the CoAP Token, which may change between the endpoints;
  therefore, those are processed as defined in [RFC7252].
  Additionally, since the message formats for CoAP over unreliable
  transport [RFC7252] and for CoAP over reliable transport [RFC8323]
  differ only in terms of CoAP messaging layer, OSCORE can be applied
  to both unreliable and reliable transports (see Figure 1).

  OSCORE works in very constrained nodes and networks, thanks to its
  small message size and the restricted code and memory requirements in
  addition to what is required by CoAP.  Examples of the use of OSCORE
  are given in Appendix A.  OSCORE may be used over any underlying
  layer, such as UDP or TCP, and with non-IP transports (e.g.,
  [CoAP-802.15.4]).  OSCORE may also be used in different ways with
  HTTP.  OSCORE messages may be transported in HTTP, and OSCORE may
  also be used to protect CoAP-mappable HTTP messages, as described
  below.






Selander, et al.             Standards Track                    [Page 5]

RFC 8613                         OSCORE                        July 2019


              +-----------------------------------+
              |            Application            |
              +-----------------------------------+
              +-----------------------------------+  \
              |  Requests / Responses / Signaling |  |
              |-----------------------------------|  |
              |               OSCORE              |  | CoAP
              |-----------------------------------|  |
              | Messaging Layer / Message Framing |  |
              +-----------------------------------+  /
              +-----------------------------------+
              |          UDP / TCP / ...          |
              +-----------------------------------+

             Figure 1: Abstract Layering of CoAP with OSCORE

  OSCORE is designed to protect as much information as possible while
  still allowing CoAP proxy operations (Section 10).  It works with
  existing CoAP-to-CoAP forward proxies [RFC7252], but an OSCORE-aware
  proxy will be more efficient.  HTTP-to-CoAP proxies [RFC8075] and
  CoAP-to-HTTP proxies can also be used with OSCORE, as specified in
  Section 11.  OSCORE may be used together with TLS or DTLS over one or
  more hops in the end-to-end path, e.g., transported with HTTPS in one
  hop and with plain CoAP in another hop.  The use of OSCORE does not
  affect the URI scheme; therefore, OSCORE can be used with any URI
  scheme defined for CoAP or HTTP.  The application decides the
  conditions for which OSCORE is required.

  OSCORE uses pre-shared keys that may have been established out-of-
  band or with a key establishment protocol (see Section 3.2).  The
  technical solution builds on CBOR Object Signing and Encryption
  (COSE) [RFC8152], providing end-to-end encryption, integrity, replay
  protection, and binding of response to request.  A compressed version
  of COSE is used, as specified in Section 6.  The use of OSCORE is
  signaled in CoAP with a new option (Section 2), and in HTTP with a
  new header field (Section 11.1) and content type (Section 13.5).  The
  solution transforms a CoAP/HTTP message into an "OSCORE message"
  before sending, and vice versa after receiving.  The OSCORE message
  is a CoAP/HTTP message related to the original message in the
  following way: the original CoAP/HTTP message is translated to CoAP
  (if not already in CoAP) and protected in a COSE object.  The
  encrypted message fields of this COSE object are transported in the
  CoAP payload/HTTP body of the OSCORE message, and the OSCORE option/
  header field is included in the message.  A sketch of an exchange of
  OSCORE messages, in the case of the original message being CoAP, is
  provided in Figure 2.  The use of OSCORE with HTTP is detailed in
  Section 11.




Selander, et al.             Standards Track                    [Page 6]

RFC 8613                         OSCORE                        July 2019


         Client                                          Server
            |      OSCORE request - POST example.com:      |
            |        Header, Token,                        |
            |        Options: OSCORE, ...,                 |
            |        Payload: COSE ciphertext              |
            +--------------------------------------------->|
            |                                              |
            |<---------------------------------------------+
            |      OSCORE response - 2.04 (Changed):       |
            |        Header, Token,                        |
            |        Options: OSCORE, ...,                 |
            |        Payload: COSE ciphertext              |
            |                                              |

                  Figure 2: Sketch of CoAP with OSCORE

  An implementation supporting this specification MAY implement only
  the client part, MAY implement only the server part, or MAY implement
  only one of the proxy parts.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  Readers are expected to be familiar with the terms and concepts
  described in CoAP [RFC7252], COSE [RFC8152], Concise Binary Object
  Representation (CBOR) [RFC7049], Concise Data Definition Language
  (CDDL) [RFC8610] as summarized in Appendix E, and constrained
  environments [RFC7228].  Additional optional features include Observe
  [RFC7641], Block-wise [RFC7959], No-Response [RFC7967] and CoAP over
  reliable transport [RFC8323].

  The term "hop" is used to denote a particular leg in the end-to-end
  path.  The concept "hop-by-hop" (as in "hop-by-hop encryption" or
  "hop-by-hop fragmentation") opposed to "end-to-end", is used in this
  document to indicate that the messages are processed accordingly in
  the intermediaries, rather than just forwarded to the next node.

  The term "stop processing" is used throughout the document to denote
  that the message is not passed up to the CoAP request/response layer
  (see Figure 1).






Selander, et al.             Standards Track                    [Page 7]

RFC 8613                         OSCORE                        July 2019


  The terms Common Context, Sender Context, Recipient Context, Master
  Secret, Master Salt, Sender ID, Sender Key, Recipient ID, Recipient
  Key, ID Context, and Common IV are defined in Section 3.1.

2.  The OSCORE Option

  The OSCORE option defined in this section (see Figure 3, which
  extends "Table 4: Options" of [RFC7252]) indicates that the CoAP
  message is an OSCORE message and that it contains a compressed COSE
  object (see Sections 5 and 6).  The OSCORE option is critical, safe
  to forward, part of the cache key, and not repeatable.

  +------+---+---+---+---+----------------+--------+--------+---------+
  | No.  | C | U | N | R | Name           | Format | Length | Default |
  +------+---+---+---+---+----------------+--------+--------+---------+
  |   9  | x |   |   |   | OSCORE         |  (*)   | 0-255  | (none)  |
  +------+---+---+---+---+----------------+--------+--------+---------+

      C = Critical,   U = Unsafe,   N = NoCacheKey,   R = Repeatable
      (*) See below.

                       Figure 3: The OSCORE Option

  The OSCORE option includes the OSCORE flag bits (Section 6), the
  Sender Sequence Number, the Sender ID, and the ID Context when these
  fields are present (Section 3).  The detailed format and length is
  specified in Section 6.  If the OSCORE flag bits are all zero (0x00),
  the option value SHALL be empty (Option Length = 0).  An endpoint
  receiving a CoAP message without payload that also contains an OSCORE
  option SHALL treat it as malformed and reject it.

  A successful response to a request with the OSCORE option SHALL
  contain the OSCORE option.  Whether error responses contain the
  OSCORE option depends on the error type (see Section 8).

  For CoAP proxy operations, see Section 10.

3.  The Security Context

  OSCORE requires that client and server establish a shared security
  context used to process the COSE objects.  OSCORE uses COSE with an
  Authenticated Encryption with Associated Data (AEAD, [RFC5116])
  algorithm for protecting message data between a client and a server.
  In this section, we define the security context and how it is derived
  in client and server based on a shared secret and a key derivation
  function.





Selander, et al.             Standards Track                    [Page 8]

RFC 8613                         OSCORE                        July 2019


3.1.  Security Context Definition

  The security context is the set of information elements necessary to
  carry out the cryptographic operations in OSCORE.  For each endpoint,
  the security context is composed of a "Common Context", a "Sender
  Context", and a "Recipient Context".

  The endpoints protect messages to send using the Sender Context and
  verify messages received using the Recipient Context; both contexts
  being derived from the Common Context and other data.  Clients and
  servers need to be able to retrieve the correct security context to
  use.

  An endpoint uses its Sender ID (SID) to derive its Sender Context;
  the other endpoint uses the same ID, now called Recipient ID (RID),
  to derive its Recipient Context.  In communication between two
  endpoints, the Sender Context of one endpoint matches the Recipient
  Context of the other endpoint, and vice versa.  Thus, the two
  security contexts identified by the same IDs in the two endpoints are
  not the same, but they are partly mirrored.  Retrieval and use of the
  security context are shown in Figure 4.

            .---------------------.   .---------------------.
            |    Common Context   | = |    Common Context   |
            +---------------------+   +---------------------+
            |    Sender Context   | = |  Recipient Context  |
            +---------------------+   +---------------------+
            |  Recipient Context  | = |    Sender Context   |
            '---------------------'   '---------------------'
                     Client                   Server
                        |                       |
  Retrieve context for  | OSCORE request:       |
   target resource      |   Token = Token1,     |
  Protect request with  |   kid = SID, ...      |
    Sender Context      +---------------------->| Retrieve context with
                        |                       |  RID = kid
                        |                       | Verify request with
                        |                       |  Recipient Context
                        | OSCORE response:      | Protect response with
                        |   Token = Token1, ... |  Sender Context
  Retrieve context with |<----------------------+
   Token = Token1       |                       |
  Verify request with   |                       |
   Recipient Context    |                       |

           Figure 4: Retrieval and Use of the Security Context





Selander, et al.             Standards Track                    [Page 9]

RFC 8613                         OSCORE                        July 2019


  The Common Context contains the following parameters:

  o  AEAD Algorithm.  The COSE AEAD algorithm to use for encryption.

  o  HKDF Algorithm.  An HMAC-based key derivation function (HKDF,
     [RFC5869]) used to derive the Sender Key, Recipient Key, and
     Common IV.

  o  Master Secret.  Variable length, random byte string (see
     Section 12.3) used to derive AEAD keys and Common IV.

  o  Master Salt.  Optional variable-length byte string containing the
     salt used to derive AEAD keys and Common IV.

  o  ID Context.  Optional variable-length byte string providing
     additional information to identify the Common Context and to
     derive AEAD keys and Common IV.  The use of ID Context is
     described in Section 5.1.

  o  Common IV.  Byte string derived from the Master Secret, Master
     Salt, and ID Context.  Used to generate the AEAD nonce (see
     Section 5.2).  Same length as the nonce of the AEAD Algorithm.

  The Sender Context contains the following parameters:

  o  Sender ID.  Byte string used to identify the Sender Context, to
     derive AEAD keys and Common IV, and to contribute to the
     uniqueness of AEAD nonces.  Maximum length is determined by the
     AEAD Algorithm.

  o  Sender Key. Byte string containing the symmetric AEAD key to
     protect messages to send.  Derived from Common Context and Sender
     ID.  Length is determined by the AEAD Algorithm.

  o  Sender Sequence Number.  Non-negative integer used by the sender
     to enumerate requests and certain responses, e.g., Observe
     notifications.  Used as "Partial IV" [RFC8152] to generate unique
     AEAD nonces.  Maximum value is determined by the AEAD Algorithm.
     Initialization is described in Section 3.2.2.

  The Recipient Context contains the following parameters:

  o  Recipient ID.  Byte string used to identify the Recipient Context,
     to derive AEAD keys and Common IV, and to contribute to the
     uniqueness of AEAD nonces.  Maximum length is determined by the
     AEAD Algorithm.





Selander, et al.             Standards Track                   [Page 10]

RFC 8613                         OSCORE                        July 2019


  o  Recipient Key. Byte string containing the symmetric AEAD key to
     verify messages received.  Derived from Common Context and
     Recipient ID.  Length is determined by the AEAD Algorithm.

  o  Replay Window (Server only).  The replay window used to verify
     requests received.  Replay protection is described in Section 7.4
     and Section 3.2.2.

  All parameters except Sender Sequence Number and Replay Window are
  immutable once the security context is established.  An endpoint may
  free up memory by not storing the Common IV, Sender Key, and
  Recipient Key, deriving them when needed.  Alternatively, an endpoint
  may free up memory by not storing the Master Secret and Master Salt
  after the other parameters have been derived.

  Endpoints MAY operate as both client and server and use the same
  security context for those roles.  Independent of being client or
  server, the endpoint protects messages to send using its Sender
  Context, and verifies messages received using its Recipient Context.
  The endpoints MUST NOT change the Sender/Recipient ID when changing
  roles.  In other words, changing the roles does not change the set of
  AEAD keys to be used.

3.2.  Establishment of Security Context Parameters

  Each endpoint derives the parameters in the security context from a
  small set of input parameters.  The following input parameters SHALL
  be preestablished:

  o  Master Secret

  o  Sender ID

  o  Recipient ID

  The following input parameters MAY be preestablished.  In case any of
  these parameters is not preestablished, the default value indicated
  below is used:

  o  AEAD Algorithm

     *  Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

  o  Master Salt

     *  Default is the empty byte string





Selander, et al.             Standards Track                   [Page 11]

RFC 8613                         OSCORE                        July 2019


  o  HKDF Algorithm

     *  Default is HKDF SHA-256

  o  Replay Window

     *  The default mechanism is an anti-replay sliding window (see
        Section 4.1.2.6 of [RFC6347] with a window size of 32

  All input parameters need to be known and agreed on by both
  endpoints, but the Replay Window may be different in the two
  endpoints.  The way the input parameters are preestablished is
  application specific.  Considerations of security context
  establishment are given in Section 12.2 and examples of deploying
  OSCORE in Appendix B.

3.2.1.  Derivation of Sender Key, Recipient Key, and Common IV

  The HKDF MUST be one of the HMAC-based HKDF [RFC5869] algorithms
  defined for COSE [RFC8152].  HKDF SHA-256 is mandatory to implement.
  The security context parameters Sender Key, Recipient Key, and Common
  IV SHALL be derived from the input parameters using the HKDF, which
  consists of the composition of the HKDF-Extract and HKDF-Expand steps
  [RFC5869]:

     output parameter = HKDF(salt, IKM, info, L)

  where:

  o  salt is the Master Salt as defined above

  o  IKM is the Master Secret as defined above

  o  info is the serialization of a CBOR array consisting of (the
     notation follows [RFC8610] as summarized in Appendix E):

     info = [
       id : bstr,
       id_context : bstr / nil,
       alg_aead : int / tstr,
       type : tstr,
       L : uint,
     ]








Selander, et al.             Standards Track                   [Page 12]

RFC 8613                         OSCORE                        July 2019


  where:

  o  id is the Sender ID or Recipient ID when deriving Sender Key and
     Recipient Key, respectively, and the empty byte string when
     deriving the Common IV.

  o  id_context is the ID Context, or nil if ID Context is not
     provided.

  o  alg_aead is the AEAD Algorithm, encoded as defined in [RFC8152].

  o  type is "Key" or "IV".  The label is an ASCII string and does not
     include a trailing NUL byte.

  o  L is the size of the key/nonce for the AEAD Algorithm used, in
     bytes.

  For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
  [RFC8152]) is used, the integer value for alg_aead is 10, the value
  for L is 16 for keys and 13 for the Common IV.  Assuming use of the
  default algorithms HKDF SHA-256 and AES-CCM-16-64-128, the extract
  phase of HKDF produces a pseudorandom key (PRK) as follows:

     PRK = HMAC-SHA-256(Master Salt, Master Secret)

  and as L is smaller than the hash function output size, the expand
  phase of HKDF consists of a single HMAC invocation; therefore, the
  Sender Key, Recipient Key, and Common IV are the first 16 or 13 bytes
  of

     output parameter = HMAC-SHA-256(PRK, info || 0x01)

  where different values of info are used for each derived parameter
  and where || denotes byte string concatenation.

  Note that [RFC5869] specifies that if the salt is not provided, it is
  set to a string of zeros.  For implementation purposes, not providing
  the salt is the same as setting the salt to the empty byte string.
  OSCORE sets the salt default value to empty byte string, which is
  converted to a string of zeroes (see Section 2.2 of [RFC5869]).











Selander, et al.             Standards Track                   [Page 13]

RFC 8613                         OSCORE                        July 2019


3.2.2.  Initial Sequence Numbers and Replay Window

  The Sender Sequence Number is initialized to 0.

  The supported types of replay protection and replay window size is
  application specific and depends on how OSCORE is transported (see
  Section 7.4).  The default mechanism is the anti-replay window of
  received messages used by IPsec AH/ESP and DTLS (see Section 4.1.2.6
  of [RFC6347]) with a window size of 32.

3.3.  Requirements on the Security Context Parameters

  To ensure unique Sender Keys, the quartet (Master Secret, Master
  Salt, ID Context, Sender ID) MUST be unique, i.e., the pair (ID
  Context, Sender ID) SHALL be unique in the set of all security
  contexts using the same Master Secret and Master Salt.  This means
  that Sender ID SHALL be unique in the set of all security contexts
  using the same Master Secret, Master Salt, and ID Context; such a
  requirement guarantees unique (key, nonce) pairs for the AEAD.

  Different methods can be used to assign Sender IDs: a protocol that
  allows the parties to negotiate locally unique identifiers, a trusted
  third party (e.g., [ACE-OAuth]), or the identifiers can be assigned
  out-of-band.  The Sender IDs can be very short (note that the empty
  string is a legitimate value).  The maximum length of Sender ID in
  bytes equals the length of the AEAD nonce minus 6, see Section 5.2.
  For AES-CCM-16-64-128 the maximum length of Sender ID is 7 bytes.

  To simplify retrieval of the right Recipient Context, the Recipient
  ID SHOULD be unique in the sets of all Recipient Contexts used by an
  endpoint.  If an endpoint has the same Recipient ID with different
  Recipient Contexts, i.e., the Recipient Contexts are derived from
  different Common Contexts, then the endpoint may need to try multiple
  times before verifying the right security context associated to the
  Recipient ID.

  The ID Context is used to distinguish between security contexts.  The
  methods used for assigning Sender ID can also be used for assigning
  the ID Context.  Additionally, the ID Context can be used to
  introduce randomness into new Sender and Recipient Contexts (see
  Appendix B.2).  ID Context can be arbitrarily long.










Selander, et al.             Standards Track                   [Page 14]

RFC 8613                         OSCORE                        July 2019


4.  Protected Message Fields

  OSCORE transforms a CoAP message (which may have been generated from
  an HTTP message) into an OSCORE message, and vice versa.  OSCORE
  protects as much of the original message as possible while still
  allowing certain proxy operations (see Sections 10 and 11).  This
  section defines how OSCORE protects the message fields and transfers
  them end-to-end between client and server (in any direction).

  The remainder of this section and later sections focus on the
  behavior in terms of CoAP messages.  If HTTP is used for a particular
  hop in the end-to-end path, then this section applies to the
  conceptual CoAP message that is mappable to/from the original HTTP
  message as discussed in Section 11.  That is, an HTTP message is
  conceptually transformed to a CoAP message and then to an OSCORE
  message, and similarly in the reverse direction.  An actual
  implementation might translate directly from HTTP to OSCORE without
  the intervening CoAP representation.

  Protection of signaling messages (Section 5 of [RFC8323]) is
  specified in Section 4.3.  The other parts of this section target
  request/response messages.

  Message fields of the CoAP message may be protected end-to-end
  between CoAP client and CoAP server in different ways:

  o  Class E: encrypted and integrity protected,

  o  Class I: integrity protected only, or

  o  Class U: unprotected.

  The sending endpoint SHALL transfer Class E message fields in the
  ciphertext of the COSE object in the OSCORE message.  The sending
  endpoint SHALL include Class I message fields in the AAD of the AEAD
  algorithm, allowing the receiving endpoint to detect if the value has
  changed in transfer.  Class U message fields SHALL NOT be protected
  in transfer.  Class I and Class U message field values are
  transferred in the header or options part of the OSCORE message,
  which is visible to proxies.

  Message fields not visible to proxies, i.e., transported in the
  ciphertext of the COSE object, are called "Inner" (Class E).  Message
  fields transferred in the header or options part of the OSCORE
  message, which is visible to proxies, are called "Outer" (Class I or
  Class U).  There are currently no Class I options defined.





Selander, et al.             Standards Track                   [Page 15]

RFC 8613                         OSCORE                        July 2019


  An OSCORE message may contain both an Inner and an Outer instance of
  a certain CoAP message field.  Inner message fields are intended for
  the receiving endpoint, whereas Outer message fields are used to
  enable proxy operations.

4.1.  CoAP Options

  A summary of how options are protected is shown in Figure 5.  Note
  that some options may have both Inner and Outer message fields, which
  are protected accordingly.  Certain options require special
  processing as is described in Section 4.1.3.

  Options that are unknown or for which OSCORE processing is not
  defined SHALL be processed as Class E (and no special processing).
  Specifications of new CoAP options SHOULD define how they are
  processed with OSCORE.  A new COAP option SHOULD be of Class E unless
  it requires proxy processing.  If a new CoAP option is of class U,
  the potential issues with the option being unprotected SHOULD be
  documented (see Appendix D.5).

4.1.1.  Inner Options

  Inner option message fields (Class E) are used to communicate
  directly with the other endpoint.

  The sending endpoint SHALL write the Inner option message fields
  present in the original CoAP message into the plaintext of the COSE
  object (Section 5.3) and then remove the Inner option message fields
  from the OSCORE message.

  The processing of Inner option message fields by the receiving
  endpoint is specified in Sections 8.2 and 8.4.



















Selander, et al.             Standards Track                   [Page 16]

RFC 8613                         OSCORE                        July 2019


                  +------+-----------------+---+---+
                  | No.  | Name            | E | U |
                  +------+-----------------+---+---+
                  |   1  | If-Match        | x |   |
                  |   3  | Uri-Host        |   | x |
                  |   4  | ETag            | x |   |
                  |   5  | If-None-Match   | x |   |
                  |   6  | Observe         | x | x |
                  |   7  | Uri-Port        |   | x |
                  |   8  | Location-Path   | x |   |
                  |   9  | OSCORE          |   | x |
                  |  11  | Uri-Path        | x |   |
                  |  12  | Content-Format  | x |   |
                  |  14  | Max-Age         | x | x |
                  |  15  | Uri-Query       | x |   |
                  |  17  | Accept          | x |   |
                  |  20  | Location-Query  | x |   |
                  |  23  | Block2          | x | x |
                  |  27  | Block1          | x | x |
                  |  28  | Size2           | x | x |
                  |  35  | Proxy-Uri       |   | x |
                  |  39  | Proxy-Scheme    |   | x |
                  |  60  | Size1           | x | x |
                  | 258  | No-Response     | x | x |
                  +------+-----------------+---+---+

                E = Encrypt and Integrity Protect (Inner)
                U = Unprotected (Outer)

                  Figure 5: Protection of CoAP Options

4.1.2.  Outer Options

  Outer option message fields (Class U or I) are used to support proxy
  operations, see Appendix D.2.

  The sending endpoint SHALL include the Outer option message field
  present in the original message in the options part of the OSCORE
  message.  All Outer option message fields, including the OSCORE
  option, SHALL be encoded as described in Section 3.1 of [RFC7252],
  where the delta is the difference from the previously included
  instance of Outer option message field.

  The processing of Outer options by the receiving endpoint is
  specified in Sections 8.2 and 8.4.






Selander, et al.             Standards Track                   [Page 17]

RFC 8613                         OSCORE                        July 2019


  A procedure for integrity-protection-only of Class I option message
  fields is specified in Section 5.4.  Specifications that introduce
  repeatable Class I options MUST specify that proxies MUST NOT change
  the order of the instances of such an option in the CoAP message.

  Note: There are currently no Class I option message fields defined.

4.1.3.  Special Options

  Some options require special processing as specified in this section.

4.1.3.1.  Max-Age

  An Inner Max-Age message field is used to indicate the maximum time a
  response may be cached by the client (as defined in [RFC7252]), end-
  to-end from the server to the client, taking into account that the
  option is not accessible to proxies.  The Inner Max-Age SHALL be
  processed by OSCORE as a normal Inner option, specified in
  Section 4.1.1.

  An Outer Max-Age message field is used to avoid unnecessary caching
  of error responses caused by OSCORE processing at OSCORE-unaware
  intermediary nodes.  A server MAY set a Class U Max-Age message field
  with value zero to such error responses, described in Sections 7.4,
  8.2, and 8.4, since these error responses are cacheable, but
  subsequent OSCORE requests would never create a hit in the
  intermediary node caching it.  Setting the Outer Max-Age to zero
  relieves the intermediary from uselessly caching responses.
  Successful OSCORE responses do not need to include an Outer Max-Age
  option.  Except when the Observe option (see Section 4.1.3.5) is
  used, responses appear to the OSCORE-unaware intermediary as 2.04
  (Changed) responses, which are non-cacheable (see Section 4.2).  For
  Observe responses, which are cacheable, an Outer Max-Age option with
  value 0 may be used to avoid unnecessary proxy caching.

  The Outer Max-Age message field is processed according to
  Section 4.1.2.

4.1.3.2.  Uri-Host and Uri-Port

  When the Uri-Host and Uri-Port are set to their default values (see
  Section 5.10.1 [RFC7252]), they are omitted from the message
  (Section 5.4.4 of [RFC7252]), which is favorable both for overhead
  and privacy.

  In order to support forward proxy operations, Proxy-Scheme, Uri-Host,
  and Uri-Port need to be Class U.  For the use of Proxy-Uri, see
  Section 4.1.3.3.



Selander, et al.             Standards Track                   [Page 18]

RFC 8613                         OSCORE                        July 2019


  Manipulation of unprotected message fields (including Uri-Host, Uri-
  Port, destination IP/port or request scheme) MUST NOT lead to an
  OSCORE message becoming verified by an unintended server.  Different
  servers SHALL have different security contexts.

4.1.3.3.  Proxy-Uri

  When Proxy-Uri is present, the client SHALL first decompose the
  Proxy-Uri value of the original CoAP message into the Proxy-Scheme,
  Uri-Host, Uri-Port, Uri-Path, and Uri-Query options according to
  Section 6.4 of [RFC7252].

  Uri-Path and Uri-Query are Class E options and SHALL be protected and
  processed as Inner options (Section 4.1.1).

  The Proxy-Uri option of the OSCORE message SHALL be set to the
  composition of Proxy-Scheme, Uri-Host, and Uri-Port options as
  specified in Section 6.5 of [RFC7252] and processed as an Outer
  option of Class U (Section 4.1.2).

  Note that replacing the Proxy-Uri value with the Proxy-Scheme and
  Uri-* options works by design for all CoAP URIs (see Section 6 of
  [RFC7252]).  OSCORE-aware HTTP servers should not use the userinfo
  component of the HTTP URI (as defined in Section 3.2.1 of [RFC3986]),
  so that this type of replacement is possible in the presence of CoAP-
  to-HTTP proxies (see Section 11.2).  In future specifications of
  cross-protocol proxying behavior using different URI structures, it
  is expected that the authors will create Uri-* options that allow
  decomposing the Proxy-Uri, and specifying the OSCORE processing.

  An example of how Proxy-Uri is processed is given here.  Assume that
  the original CoAP message contains:

  o  Proxy-Uri = "coap://example.com/resource?q=1"

  During OSCORE processing, Proxy-Uri is split into:

  o  Proxy-Scheme = "coap"

  o  Uri-Host = "example.com"

  o  Uri-Port = "5683" (default)

  o  Uri-Path = "resource"

  o  Uri-Query = "q=1"





Selander, et al.             Standards Track                   [Page 19]

RFC 8613                         OSCORE                        July 2019


  Uri-Path and Uri-Query follow the processing defined in
  Section 4.1.1; thus, they are encrypted and transported in the COSE
  object:

  o  Uri-Path = "resource"

  o  Uri-Query = "q=1"

  The remaining options are composed into the Proxy-Uri included in the
  options part of the OSCORE message, which has value:

  o  Proxy-Uri = "coap://example.com"

  See Sections 6.1 and 12.6 of [RFC7252] for more details.

4.1.3.4.  The Block Options

  Block-wise [RFC7959] is an optional feature.  An implementation MAY
  support CoAP [RFC7252] and the OSCORE option without supporting
  block-wise transfers.  The Block options (Block1, Block2, Size1,
  Size2), when Inner message fields, provide secure message
  segmentation such that each segment can be verified.  The Block
  options, when Outer message fields, enable hop-by-hop fragmentation
  of the OSCORE message.  Inner and Outer block processing may have
  different performance properties depending on the underlying
  transport.  The end-to-end integrity of the message can be verified
  both in case of Inner and Outer Block-wise transfers, provided all
  blocks are received.

4.1.3.4.1.  Inner Block Options

  The sending CoAP endpoint MAY fragment a CoAP message as defined in
  [RFC7959] before the message is processed by OSCORE.  In this case,
  the Block options SHALL be processed by OSCORE as normal Inner
  options (Section 4.1.1).  The receiving CoAP endpoint SHALL process
  the OSCORE message before processing Block-wise as defined in
  [RFC7959].

4.1.3.4.2.  Outer Block Options

  Proxies MAY fragment an OSCORE message using [RFC7959] by introducing
  Block option message fields that are Outer (Section 4.1.2).  Note
  that the Outer Block options are neither encrypted nor integrity
  protected.  As a consequence, a proxy can maliciously inject block
  fragments indefinitely, since the receiving endpoint needs to receive
  the last block (see [RFC7959]) to be able to compose the OSCORE
  message and verify its integrity.  Therefore, applications supporting
  OSCORE and [RFC7959] MUST specify a security policy defining a



Selander, et al.             Standards Track                   [Page 20]

RFC 8613                         OSCORE                        July 2019


  maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
  the maximum size of message that can be handled by the endpoints.
  Messages exceeding this size SHOULD be fragmented by the sending
  endpoint using Inner Block options (Section 4.1.3.4.1).

  An endpoint receiving an OSCORE message with an Outer Block option
  SHALL first process this option according to [RFC7959], until all
  blocks of the OSCORE message have been received or the cumulated
  message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE.  In the
  former case, the processing of the OSCORE message continues as
  defined in this document.  In the latter case, the message SHALL be
  discarded.

  Because of encryption of Uri-Path and Uri-Query, messages to the same
  server may, from the point of view of a proxy, look like they also
  target the same resource.  A proxy SHOULD mitigate a potential mix-up
  of blocks from concurrent requests to the same server, for example,
  using the Request-Tag processing specified in Section 3.3.2 of
  [CoAP-ECHO-REQ-TAG].

4.1.3.5.  Observe

  Observe [RFC7641] is an optional feature.  An implementation MAY
  support CoAP [RFC7252] and the OSCORE option without supporting
  [RFC7641], in which case the Observe-related processing can be
  omitted.

  The support for Observe [RFC7641] with OSCORE targets the
  requirements on forwarding of Section 2.2.1 of [CoAP-E2E-Sec], i.e.,
  that observations go through intermediary nodes, as illustrated in
  Figure 8 of [RFC7641].

  Inner Observe SHALL be used to protect the value of the Observe
  option between the endpoints.  Outer Observe SHALL be used to support
  forwarding by intermediary nodes.

  The server SHALL include a new Partial IV (see Section 5) in
  responses (with or without the Observe option) to Observe
  registrations, except for the first response where Partial IV MAY be
  omitted.

  For cancellations, Section 3.6 of [RFC7641] specifies that all
  options MUST be identical to those in the registration request except
  for the Observe option and the set of ETag options.  For OSCORE
  messages, this matching is to be done to the options in the decrypted
  message.





Selander, et al.             Standards Track                   [Page 21]

RFC 8613                         OSCORE                        July 2019


  [RFC7252] does not specify how the server should act upon receiving
  the same Token in different requests.  When using OSCORE, the server
  SHOULD NOT remove an active observation just because it receives a
  request with the same Token.

  Since POST with the Observe option is not defined, for messages with
  the Observe option, the Outer Code MUST be set to 0.05 (FETCH) for
  requests and to 2.05 (Content) for responses (see Section 4.2).

4.1.3.5.1.  Registrations and Cancellations

  The Inner and Outer Observe options in the request MUST contain the
  Observe value of the original CoAP request; 0 (registration) or 1
  (cancellation).

  Every time a client issues a new request with the Observe option, a
  new Partial IV MUST be used (see Section 5), and so the payload and
  OSCORE option are changed.  The server uses the Partial IV of the new
  request as the 'request_piv' of all associated notifications (see
  Section 5.4).

  Intermediaries are not assumed to have access to the OSCORE security
  context used by the endpoints; thus, they cannot make requests or
  transform responses with the OSCORE option that pass verification (at
  the receiving endpoint) as having come from the other endpoint.  This
  has the following consequences and limitations for Observe
  operations.

  o  An intermediary node removing the Outer Observe 0 option does not
     change the registration request to a request without the Observe
     option (see Section 2 of [RFC7641]).  Instead other means for
     cancellation may be used as described in Section 3.6 of [RFC7641].

  o  An intermediary node is not able to transform a normal response
     into an OSCORE-protected Observe notification (see Figure 7 of
     [RFC7641]) that verifies as coming from the server.

  o  An intermediary node is not able to initiate an OSCORE protected
     Observe registration (Observe option with value 0) that verifies
     as coming from the client.  An OSCORE-aware intermediary SHALL NOT
     initiate registrations of observations (see Section 10).  If an
     OSCORE-unaware proxy resends an old registration message from a
     client, the replay protection mechanism in the server will be
     triggered.  To prevent this from resulting in the OSCORE-unaware
     proxy canceling the registration, a server MAY respond to a
     replayed registration request with a replay of a cached
     notification.  Alternatively, the server MAY send a new
     notification.



Selander, et al.             Standards Track                   [Page 22]

RFC 8613                         OSCORE                        July 2019


  o  An intermediary node is not able to initiate an OSCORE-protected
     Observe cancellation (Observe option with value 1) that verifies
     as coming from the client.  An application MAY decide to allow
     intermediaries to cancel Observe registrations, e.g., to send the
     Observe option with value 1 (see Section 3.6 of [RFC7641]);
     however, that can also be done with other methods, e.g., by
     sending a RST message.  This is out of scope for this
     specification.

4.1.3.5.2.  Notifications

  If the server accepts an Observe registration, a Partial IV MUST be
  included in all notifications (both successful and error), except for
  the first one where the Partial IV MAY be omitted.  To protect
  against replay, the client SHALL maintain a Notification Number for
  each Observation it registers.  The Notification Number is a non-
  negative integer containing the largest Partial IV of the received
  notifications for the associated Observe registration.  Further
  details of replay protection of notifications are specified in
  Section 7.4.1.

  For notifications, the Inner Observe option value MUST be empty (see
  Section 3.2 of [RFC7252]).  The Outer Observe option in a
  notification is needed for intermediary nodes to allow multiple
  responses to one request, and it MAY be set to the value of the
  Observe option in the original CoAP message.  The client performs
  ordering of notifications and replay protection by comparing their
  Partial IVs and SHALL ignore the Outer Observe option value.

  If the client receives a response to an Observe request without an
  Inner Observe option, then it verifies the response as a non-Observe
  response, as specified in Section 8.4.  If the client receives a
  response to a non-Observe request with an Inner Observe option, then
  it stops processing the message, as specified in Section 8.4.

  A client MUST consider the notification with the highest Partial IV
  as the freshest, regardless of the order of arrival.  In order to
  support existing Observe implementations, the OSCORE client
  implementation MAY set the Observe option value to the three least
  significant bytes of the Partial IV.  Implementations need to make
  sure that the notification without Partial IV is considered the
  oldest.









Selander, et al.             Standards Track                   [Page 23]

RFC 8613                         OSCORE                        July 2019


4.1.3.6.  No-Response

  No-Response [RFC7967] is an optional feature used by the client to
  communicate its disinterest in certain classes of responses to a
  particular request.  An implementation MAY support [RFC7252] and the
  OSCORE option without supporting [RFC7967].

  If used, No-Response MUST be Inner.  The Inner No-Response SHALL be
  processed by OSCORE as specified in Section 4.1.1.  The Outer option
  SHOULD NOT be present.  The server SHALL ignore the Outer No-Response
  option.  The client MAY set the Outer No-Response value to 26
  (suppress all known codes) if the Inner value is set to 26.  The
  client MUST be prepared to receive and discard 5.04 (Gateway Timeout)
  error messages from intermediaries potentially resulting from
  destination time out due to no response.

4.1.3.7.  OSCORE

  The OSCORE option is only defined to be present in OSCORE messages as
  an indication that OSCORE processing has been performed.  The content
  in the OSCORE option is neither encrypted nor integrity protected as
  a whole, but some part of the content of this option is protected
  (see Section 5.4).  Nested use of OSCORE is not supported: If OSCORE
  processing detects an OSCORE option in the original CoAP message,
  then processing SHALL be stopped.

4.2.  CoAP Header Fields and Payload

  A summary of how the CoAP header fields and payload are protected is
  shown in Figure 6, including fields specific to CoAP over UDP and
  CoAP over TCP (marked accordingly in the table).

                      +------------------+---+---+
                      | Field            | E | U |
                      +------------------+---+---+
                      | Version (UDP)    |   | x |
                      | Type (UDP)       |   | x |
                      | Length (TCP)     |   | x |
                      | Token Length     |   | x |
                      | Code             | x |   |
                      | Message ID (UDP) |   | x |
                      | Token            |   | x |
                      | Payload          | x |   |
                      +------------------+---+---+
                E = Encrypt and Integrity Protect (Inner)
                U = Unprotected (Outer)

         Figure 6: Protection of CoAP Header Fields and Payload



Selander, et al.             Standards Track                   [Page 24]

RFC 8613                         OSCORE                        July 2019


  Most CoAP header fields (i.e., the message fields in the fixed 4-byte
  header) are required to be read and/or changed by CoAP proxies; thus,
  they cannot, in general, be protected end-to-end from one endpoint to
  the other.  As mentioned in Section 1, OSCORE protects the CoAP
  request/response layer only and not the CoAP messaging layer
  (Section 2 of [RFC7252]), so fields such as Type and Message ID are
  not protected with OSCORE.

  The CoAP header field Code is protected by OSCORE.  Code SHALL be
  encrypted and integrity protected (Class E) to prevent an
  intermediary from eavesdropping on or manipulating it (e.g., changing
  from GET to DELETE).

  The sending endpoint SHALL write the Code of the original CoAP
  message into the plaintext of the COSE object (see Section 5.3).
  After that, the sending endpoint writes an Outer Code to the OSCORE
  message.  With one exception (see Section 4.1.3.5), the Outer Code
  SHALL be set to 0.02 (POST) for requests and to 2.04 (Changed) for
  responses.  The receiving endpoint SHALL discard the Outer Code in
  the OSCORE message and write the Code of the COSE object plaintext
  (Section 5.3) into the decrypted CoAP message.

  The other currently defined CoAP header fields are Unprotected (Class
  U).  The sending endpoint SHALL write all other header fields of the
  original message into the header of the OSCORE message.  The
  receiving endpoint SHALL write the header fields from the received
  OSCORE message into the header of the decrypted CoAP message.

  The CoAP Payload, if present in the original CoAP message, SHALL be
  encrypted and integrity protected; thus, it is an Inner message
  field.  The sending endpoint writes the payload of the original CoAP
  message into the plaintext (Section 5.3) input to the COSE object.
  The receiving endpoint verifies and decrypts the COSE object, and it
  recreates the payload of the original CoAP message.

4.3.  Signaling Messages

  Signaling messages (CoAP Code 7.00-7.31) were introduced to exchange
  information related to an underlying transport connection in the
  specific case of CoAP over reliable transports [RFC8323].

  OSCORE MAY be used to protect signaling if the endpoints for OSCORE
  coincide with the endpoints for the signaling message.  If OSCORE is
  used to protect signaling then:

  o  To comply with [RFC8323], an initial empty Capabilities and
     Settings Message (CSM) SHALL be sent.  The subsequent signaling
     message SHALL be protected.



Selander, et al.             Standards Track                   [Page 25]

RFC 8613                         OSCORE                        July 2019


  o  Signaling messages SHALL be protected as CoAP request messages,
     except in the case in which the signaling message is a response to
     a previous signaling message; then it SHALL be protected as a CoAP
     response message.  For example, 7.02 (Ping) is protected as a CoAP
     request and 7.03 (Pong) as a CoAP response.

  o  The Outer Code for signaling messages SHALL be set to 0.02 (POST),
     unless it is a response to a previous signaling message, in which
     case it SHALL be set to 2.04 (Changed).

  o  All signaling options, except the OSCORE option, SHALL be Inner
     (Class E).

  NOTE: Option numbers for signaling messages are specific to the CoAP
  Code (see Section 5.2 of [RFC8323]).

  If OSCORE is not used to protect signaling, Signaling messages SHALL
  be unaltered by OSCORE.

5.  The COSE Object

  This section defines how to use COSE [RFC8152] to wrap and protect
  data in the original message.  OSCORE uses the untagged COSE_Encrypt0
  structure (see Section 5.2 of [RFC8152]) with an AEAD algorithm.  The
  AEAD key lengths, AEAD nonce length, and maximum Sender Sequence
  Number are algorithm dependent.

  The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
  [RFC8152] is mandatory to implement.  For AES-CCM-16-64-128, the
  length of Sender Key and Recipient Key is 128 bits; the length of
  AEAD nonce and Common IV is 13 bytes.  The maximum Sender Sequence
  Number is specified in Section 12.

  As specified in [RFC5116], plaintext denotes the data that is to be
  encrypted and integrity protected, and Additional Authenticated Data
  (AAD) denotes the data that is to be integrity protected only.

  The COSE object SHALL be a COSE_Encrypt0 object with fields defined
  as follows:

  o  The 'protected' field is empty.

  o  The 'unprotected' field includes:

     *  The 'Partial IV' parameter.  The value is set to the Sender
        Sequence Number.  All leading bytes of value zero SHALL be
        removed when encoding the Partial IV, except in the case of
        Partial IV value 0, which is encoded to the byte string 0x00.



Selander, et al.             Standards Track                   [Page 26]

RFC 8613                         OSCORE                        July 2019


        This parameter SHALL be present in requests and will not
        typically be present in responses (for two exceptions, see
        Observe notifications (Section 4.1.3.5.2) and Replay Window
        synchronization (Appendix B.1.2)).

     *  The 'kid' parameter.  The value is set to the Sender ID.  This
        parameter SHALL be present in requests and will not typically
        be present in responses.  An example where the Sender ID is
        included in a response is the extension of OSCORE to group
        communication [Group-OSCORE].

     *  Optionally, a 'kid context' parameter (see Section 5.1).  This
        parameter MAY be present in requests and, if so, MUST contain
        an ID Context (see Section 3.1).  This parameter SHOULD NOT be
        present in responses: an example of how 'kid context' can be
        used in responses is given in Appendix B.2.  If 'kid context'
        is present in the request, then the server SHALL use a security
        context with that ID Context when verifying the request.

  o  The 'ciphertext' field is computed from the secret key (Sender Key
     or Recipient Key), AEAD nonce (see Section 5.2), plaintext (see
     Section 5.3), and the AAD (see Section 5.4) following Section 5.2
     of [RFC8152].

  The encryption process is described in Section 5.3 of [RFC8152].

5.1.  ID Context and 'kid context'

  For certain use cases, e.g., deployments where the same Sender ID is
  used with multiple contexts, it is possible (and sometimes necessary,
  see Section 3.3) for the client to use an ID Context to distinguish
  the security contexts (see Section 3.1).  For example:

  o  If the client has a unique identifier in some namespace, then that
     identifier can be used as ID Context.

  o  The ID Context may be used to add randomness into new Sender and
     Recipient Contexts, see Appendix B.2.

  o  In the case of group communication [Group-OSCORE], a group
     identifier is used as ID Context to enable different security
     contexts for a server belonging to multiple groups.

  The Sender ID and ID Context are used to establish the necessary
  input parameters and in the derivation of the security context (see
  Section 3.2).





Selander, et al.             Standards Track                   [Page 27]

RFC 8613                         OSCORE                        July 2019


  While the 'kid' parameter is used to transport the Sender ID, the new
  COSE header parameter 'kid context' is used to transport the ID
  Context in requests, see Figure 7.

  +----------+--------+------------+----------------+-----------------+
  |   Name   |  Label | Value Type | Value Registry |   Description   |
  +----------+--------+------------+----------------+-----------------+
  |   kid    |    10  | bstr       |                | Identifies the  |
  | context  |        |            |                | context for the |
  |          |        |            |                | key identifier  |
  +----------+--------+------------+----------------+-----------------+

   Figure 7: Common Header Parameter 'kid context' for the COSE Object

  If ID Context is non-empty and the client sends a request without
  'kid context' resulting in an error indicating that the server could
  not find the security context, then the client could include the ID
  Context in the 'kid context' when making another request.  Note that
  since the error is unprotected, it may have been spoofed and the real
  response blocked by an on-path attacker.

5.2.  AEAD Nonce

  The high-level design of the AEAD nonce follows Section 4.4 of
  [IV-GEN].  The detailed construction of the AEAD nonce is presented
  here (see Figure 8):

  1.  left-pad the Partial IV (PIV) with zeroes to exactly 5 bytes,

  2.  left-pad the Sender ID of the endpoint that generated the Partial
      IV (ID_PIV) with zeroes to exactly nonce length minus 6 bytes,

  3.  concatenate the size of the ID_PIV (a single byte S) with the
      padded ID_PIV and the padded PIV,

  4.  and then XOR with the Common IV.

  Note that in this specification, only AEAD algorithms that use nonces
  equal or greater than 7 bytes are supported.  The nonce construction
  with S, ID_PIV, and PIV together with endpoint-unique IDs and
  encryption keys makes it easy to verify that the nonces used with a
  specific key will be unique, see Appendix D.4.

  If the Partial IV is not present in a response, the nonce from the
  request is used.  For responses that are not notifications (i.e.,
  when there is a single response to a request), the request and the
  response should typically use the same nonce to reduce message
  overhead.  Both alternatives provide all the required security



Selander, et al.             Standards Track                   [Page 28]

RFC 8613                         OSCORE                        July 2019


  properties, see Section 7.4 and Appendix D.4.  Another non-Observe
  scenario where a Partial IV is included in a response is when the
  server is unable to perform replay protection, see Appendix B.1.2.
  For processing instructions see Section 8.

             <- nonce length minus 6 B -> <-- 5 bytes -->
        +---+-------------------+--------+---------+-----+
        | S |      padding      | ID_PIV | padding | PIV |----+
        +---+-------------------+--------+---------+-----+    |
                                                              |
         <---------------- nonce length ---------------->     |
        +------------------------------------------------+    |
        |                   Common IV                    |->(XOR)
        +------------------------------------------------+    |
                                                              |
         <---------------- nonce length ---------------->     |
        +------------------------------------------------+    |
        |                     Nonce                      |<---+
        +------------------------------------------------+

                     Figure 8: AEAD Nonce Formation

5.3.  Plaintext

  The plaintext is formatted as a CoAP message with a subset of the
  header (see Figure 9) consisting of:

  o  the Code of the original CoAP message as defined in Section 3 of
     [RFC7252]; and

  o  all Inner option message fields (see Section 4.1.1) present in the
     original CoAP message (see Section 4.1).  The options are encoded
     as described in Section 3.1 of [RFC7252], where the delta is the
     difference from the previously included instance of Class E
     option; and

  o  the Payload of original CoAP message, if present, and in that case
     prefixed by the one-byte Payload Marker (0xff).

  NOTE: The plaintext contains all CoAP data that needs to be encrypted
  end-to-end between the endpoints.










Selander, et al.             Standards Track                   [Page 29]

RFC 8613                         OSCORE                        July 2019


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Code      |    Class E options (if any) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1 1 1 1 1 1 1 1|    Payload (if any) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     (only if there is payload)

                           Figure 9: Plaintext

5.4.  Additional Authenticated Data

  The external_aad SHALL be a CBOR array wrapped in a bstr object as
  defined below, following the notation of [RFC8610] as summarized in
  Appendix E:

  external_aad = bstr .cbor aad_array

  aad_array = [
    oscore_version : uint,
    algorithms : [ alg_aead : int / tstr ],
    request_kid : bstr,
    request_piv : bstr,
    options : bstr,
  ]

  where:

  o  oscore_version: contains the OSCORE version number.
     Implementations of this specification MUST set this field to 1.
     Other values are reserved for future versions.

  o  algorithms: contains (for extensibility) an array of algorithms,
     according to this specification only containing alg_aead.

  o  alg_aead: contains the AEAD Algorithm from the security context
     used for the exchange (see Section 3.1).

  o  request_kid: contains the value of the 'kid' in the COSE object of
     the request (see Section 5).

  o  request_piv: contains the value of the 'Partial IV' in the COSE
     object of the request (see Section 5).







Selander, et al.             Standards Track                   [Page 30]

RFC 8613                         OSCORE                        July 2019


  o  options: contains the Class I options (see Section 4.1.2) present
     in the original CoAP message encoded as described in Section 3.1
     of [RFC7252], where the delta is the difference from the
     previously included instance of class I option.

  The oscore_version and algorithms parameters are established out-of-
  band; thus, they are not transported in OSCORE, but the external_aad
  allows to verify that they are the same in both endpoints.

  NOTE: The format of the external_aad is, for simplicity, the same for
  requests and responses, although some parameters, e.g., request_kid,
  need not be integrity protected in all requests.

  The AAD is composed from the external_aad as described in Section 5.3
  of [RFC8152] (the notation follows [RFC8610] as summarized in
  Appendix E):

     AAD = Enc_structure = [ "Encrypt0", h'', external_aad ]

  The following is an example of AAD constructed using AEAD Algorithm =
  AES-CCM-16-64-128 (10), request_kid = 0x00, request_piv = 0x25 and no
  Class I options:

  o  oscore_version: 0x01 (1 byte)

  o  algorithms: 0x810a (2 bytes)

  o  request_kid: 0x00 (1 byte)

  o  request_piv: 0x25 (1 byte)

  o  options: 0x (0 bytes)

  o  aad_array: 0x8501810a4100412540 (9 bytes)

  o  external_aad: 0x498501810a4100412540 (10 bytes)

  o  AAD: 0x8368456e63727970743040498501810a4100412540 (21 bytes)

  Note that the AAD consists of a fixed string of 11 bytes concatenated
  with the external_aad.

6.  OSCORE Header Compression

  The Concise Binary Object Representation (CBOR) [RFC7049] combines
  very small message sizes with extensibility.  The CBOR Object Signing
  and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
  of signed and encrypted data.  However, COSE is constructed to



Selander, et al.             Standards Track                   [Page 31]

RFC 8613                         OSCORE                        July 2019


  support a large number of different stateless use cases and is not
  fully optimized for use as a stateful security protocol, leading to a
  larger than necessary message expansion.  In this section, we define
  a stateless header compression mechanism, simply removing redundant
  information from the COSE objects, which significantly reduces the
  per-packet overhead.  The result of applying this mechanism to a COSE
  object is called the "compressed COSE object".

  The COSE_Encrypt0 object used in OSCORE is transported in the OSCORE
  option and in the Payload.  The Payload contains the ciphertext of
  the COSE object.  The headers of the COSE object are compactly
  encoded as described in the next section.

6.1.  Encoding of the OSCORE Option Value

  The value of the OSCORE option SHALL contain the OSCORE flag bits,
  the 'Partial IV' parameter, the 'kid context' parameter (length and
  value), and the 'kid' parameter as follows:

         0 1 2 3 4 5 6 7 <------------- n bytes -------------->
        +-+-+-+-+-+-+-+-+--------------------------------------
        |0 0 0|h|k|  n  |       Partial IV (if any) ...
        +-+-+-+-+-+-+-+-+--------------------------------------

         <- 1 byte -> <----- s bytes ------>
        +------------+----------------------+------------------+
        | s (if any) | kid context (if any) | kid (if any) ... |
        +------------+----------------------+------------------+

                   Figure 10: The OSCORE Option Value

  o  The first byte, containing the OSCORE flag bits, encodes the
     following set of bits and the length of the 'Partial IV'
     parameter:

     *  The three least significant bits encode the Partial IV length
        n.  If n = 0, then the Partial IV is not present in the
        compressed COSE object.  The values n = 6 and n = 7 are
        reserved.

     *  The fourth least significant bit is the 'kid' flag, k.  It is
        set to 1 if 'kid' is present in the compressed COSE object.

     *  The fifth least significant bit is the 'kid context' flag, h.
        It is set to 1 if the compressed COSE object contains a 'kid
        context' (see Section 5.1).





Selander, et al.             Standards Track                   [Page 32]

RFC 8613                         OSCORE                        July 2019


     *  The sixth-to-eighth least significant bits are reserved for
        future use.  These bits SHALL be set to zero when not in use.
        According to this specification, if any of these bits are set
        to 1, the message is considered to be malformed and
        decompression fails as specified in item 2 of Section 8.2.

  The flag bits are registered in the "OSCORE Flag Bits" registry
  specified in Section 13.7.

  o  The following n bytes encode the value of the Partial IV, if the
     Partial IV is present (n > 0).

  o  The following 1 byte encodes the length s of the 'kid context'
     (Section 5.1), if the 'kid context' flag is set (h = 1).

  o  The following s bytes encode the 'kid context', if the 'kid
     context' flag is set (h = 1).

  o  The remaining bytes encode the value of the 'kid', if the 'kid' is
     present (k = 1).

  Note that the 'kid' MUST be the last field of the OSCORE option
  value, even in the case in which reserved bits are used and
  additional fields are added to it.

  The length of the OSCORE option thus depends on the presence and
  length of Partial IV, 'kid context', 'kid', as specified in this
  section, and on the presence and length of additional parameters, as
  defined in the future documents registering those parameters.

6.2.  Encoding of the OSCORE Payload

  The payload of the OSCORE message SHALL encode the ciphertext of the
  COSE object.

6.3.  Examples of Compressed COSE Objects

  This section covers a list of OSCORE Header Compression examples for
  requests and responses.  The examples assume the COSE_Encrypt0 object
  is set (which means the CoAP message and cryptographic material is
  known).  Note that the full CoAP unprotected message, as well as the
  full security context, is not reported in the examples, but only the
  input necessary to the compression mechanism, i.e., the COSE_Encrypt0
  object.  The output is the compressed COSE object as defined in
  Section 6, divided into two parts, since the object is transported in
  two CoAP fields: the OSCORE option and payload.





Selander, et al.             Standards Track                   [Page 33]

RFC 8613                         OSCORE                        July 2019


  1.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
      0x25, and Partial IV = 0x05

      Before compression (24 bytes):

        [
          h'',
          { 4:h'25', 6:h'05' },
          h'aea0155667924dff8a24e4cb35b9',
        ]

      After compression (17 bytes):

        Flag byte: 0b00001001 = 0x09 (1 byte)

        Option Value: 0x090525 (3 bytes)

        Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

  2.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
      empty string, and Partial IV = 0x00

      Before compression (23 bytes):

        [
          h'',
          { 4:h'', 6:h'00' },
          h'aea0155667924dff8a24e4cb35b9',
        ]

      After compression (16 bytes):

        Flag byte: 0b00001001 = 0x09 (1 byte)

        Option Value: 0x0900 (2 bytes)

        Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

  3.  Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
      empty string, Partial IV = 0x05, and kid context = 0x44616c656b

      Before compression (30 bytes):

        [
          h'',
          { 4:h'', 6:h'05', 10:h'44616c656b' },
          h'aea0155667924dff8a24e4cb35b9',
        ]



Selander, et al.             Standards Track                   [Page 34]

RFC 8613                         OSCORE                        July 2019


      After compression (22  bytes):

        Flag byte: 0b00011001 = 0x19 (1 byte)

        Option Value: 0x19050544616c656b (8 bytes)

        Payload: 0xae a0155667924dff8a24e4cb35b9 (14 bytes)

  4.  Response with ciphertext = 0xaea0155667924dff8a24e4cb35b9 and no
      Partial IV

      Before compression (18 bytes):

        [
          h'',
          {},
          h'aea0155667924dff8a24e4cb35b9',
        ]

      After compression (14 bytes):

        Flag byte: 0b00000000 = 0x00 (1 byte)

        Option Value: 0x (0 bytes)

        Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

  5.  Response with ciphertext = 0xaea0155667924dff8a24e4cb35b9 and
      Partial IV = 0x07

      Before compression (21 bytes):

        [
          h'',
          { 6:h'07' },
          h'aea0155667924dff8a24e4cb35b9',
        ]

      After compression (16 bytes):

        Flag byte: 0b00000001 = 0x01 (1 byte)

        Option Value: 0x0107 (2 bytes)

        Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)






Selander, et al.             Standards Track                   [Page 35]

RFC 8613                         OSCORE                        July 2019


7.  Message Binding, Sequence Numbers, Freshness, and Replay Protection

7.1.  Message Binding

  In order to prevent response delay and mismatch attacks
  [CoAP-Actuators] from on-path attackers and compromised
  intermediaries, OSCORE binds responses to the requests by including
  the 'kid' and Partial IV of the request in the AAD of the response.
  Therefore, the server needs to store the 'kid' and Partial IV of the
  request until all responses have been sent.

7.2.  Sequence Numbers

  An AEAD nonce MUST NOT be used more than once per AEAD key.  The
  uniqueness of (key, nonce) pairs is shown in Appendix D.4, and in
  particular depends on a correct usage of Partial IVs (which encode
  the Sender Sequence Numbers, see Section 5).  If messages are
  processed concurrently, the operation of reading and increasing the
  Sender Sequence Number MUST be atomic.

7.2.1.  Maximum Sequence Number

  The maximum Sender Sequence Number is algorithm dependent (see
  Section 12) and SHALL be less than 2^40.  If the Sender Sequence
  Number exceeds the maximum, the endpoint MUST NOT process any more
  messages with the given Sender Context.  If necessary, the endpoint
  SHOULD acquire a new security context before this happens.  The
  latter is out of scope of this document.

7.3.  Freshness

  For requests, OSCORE provides only the guarantee that the request is
  not older than the security context.  For applications having
  stronger demands on request freshness (e.g., control of actuators),
  OSCORE needs to be augmented with mechanisms providing freshness (for
  example, as specified in [CoAP-ECHO-REQ-TAG]).

  Assuming an honest server (see Appendix D), the message binding
  guarantees that a response is not older than its request.  For
  responses that are not notifications (i.e., when there is a single
  response to a request), this gives absolute freshness.  For
  notifications, the absolute freshness gets weaker with time, and it
  is RECOMMENDED that the client regularly re-register the observation.
  Note that the message binding does not guarantee that a misbehaving
  server created the response before receiving the request, i.e., it
  does not verify server aliveness.





Selander, et al.             Standards Track                   [Page 36]

RFC 8613                         OSCORE                        July 2019


  For requests and notifications, OSCORE also provides relative
  freshness in the sense that the received Partial IV allows a
  recipient to determine the relative order of requests or responses.

7.4.  Replay Protection

  In order to protect from replay of requests, the server's Recipient
  Context includes a Replay Window.  A server SHALL verify that the
  Sender Sequence Number received in the 'Partial IV' parameter of the
  COSE object (see Section 6.1) has not been received before.  If this
  verification fails, the server SHALL stop processing the message, and
  it MAY optionally respond with a 4.01 (Unauthorized) error message.
  Also, the server MAY set an Outer Max-Age option with value zero to
  inform any intermediary that the response is not to be cached.  The
  diagnostic payload MAY contain the string "Replay detected".  The
  size and type of the Replay Window depends on the use case and the
  protocol with which the OSCORE message is transported.  In case of
  reliable and ordered transport from endpoint to endpoint, e.g., TCP,
  the server MAY just store the last received Partial IV and require
  that newly received Partial IVs equal the last received Partial IV +
  1.  However, in the case of mixed reliable and unreliable transports
  and where messages may be lost, such a replay mechanism may be too
  restrictive and the default replay window may be more suitable (see
  Section 3.2.2).

  Responses (with or without Partial IV) are protected against replay
  as they are bound to the request and the fact that only a single
  response is accepted.  In this case the Partial IV is not used for
  replay protection of responses.

  The operation of validating the Partial IV and updating the replay
  protection MUST be atomic.

7.4.1.  Replay Protection of Notifications

  The following applies additionally when the Observe option is
  supported.

  The Notification Number (see Section 4.1.3.5.2) is initialized to the
  Partial IV of the first successfully verified notification in
  response to the registration request.  A client MUST only accept at
  most one Observe notification without Partial IV, and treat it as the
  oldest notification received.  A client receiving a notification
  containing a Partial IV SHALL compare the Partial IV with the
  Notification Number associated to that Observe registration.  The
  client MUST stop processing notifications with a Partial IV that has





Selander, et al.             Standards Track                   [Page 37]

RFC 8613                         OSCORE                        July 2019


  been previously received.  Applications MAY decide that a client only
  processes notifications that have a greater Partial IV than the
  Notification Number.

  If the verification of the response succeeds, and the received
  Partial IV was greater than the Notification Number, then the client
  SHALL overwrite the corresponding Notification Number with the
  received Partial IV.

7.5.  Losing Part of the Context State

  To prevent reuse of an AEAD nonce with the same AEAD key or the
  acceptance of replayed messages, an endpoint needs to handle the
  situation of losing rapidly changing parts of the context, such as
  the Sender Sequence Number and Replay Window.  These are typically
  stored in RAM and therefore lost in the case of, e.g., an unplanned
  reboot.  There are different alternatives to recover, for example:

  1.  The endpoints can reuse an existing Security Context after
      updating the mutable parts of the security context (Sender
      Sequence Number and Replay Window).  This requires that the
      mutable parts of the security context are available throughout
      the lifetime of the device or that the device can establish a
      fresh security context after loss of mutable security context
      data.  Examples are given based on careful use of nonvolatile
      memory, see Appendix B.1.1 and the use of the Echo option, see
      Appendix B.1.2.  If an endpoint makes use of a partial security
      context stored in nonvolatile memory, it MUST NOT reuse a
      previous Sender Sequence Number and MUST NOT accept previously
      received messages.

  2.  The endpoints can reuse an existing shared Master Secret and
      derive new Sender and Recipient Contexts, see Appendix B.2 for an
      example.  This typically requires a good source of randomness.

  3.  The endpoints can use a trusted third-party-assisted key
      establishment protocol such as [OSCORE-PROFILE].  This requires
      the execution of a three-party protocol and may require a good
      source of randomness.

  4.  The endpoints can run a key exchange protocol providing forward
      secrecy resulting in a fresh Master Secret, from which an
      entirely new Security Context is derived.  This requires a good
      source of randomness, and additionally, the transmission and
      processing of the protocol may have a non-negligible cost, e.g.,
      in terms of power consumption.





Selander, et al.             Standards Track                   [Page 38]

RFC 8613                         OSCORE                        July 2019


  The endpoints need to be configured with information about which
  method is used.  The choice of method may depend on capabilities of
  the devices deployed and the solution architecture.  Using a key
  exchange protocol is necessary for deployments that require forward
  secrecy.

8.  Processing

  This section describes the OSCORE message processing.  Additional
  processing for Observe or Block-wise are described in subsections.

  Note that, analogously to [RFC7252] where the Token and source/
  destination pair are used to match a response with a request, both
  endpoints MUST keep the association (Token, {Security Context,
  Partial IV of the request}), in order to be able to find the Security
  Context and compute the AAD to protect or verify the response.  The
  association MAY be forgotten after it has been used to successfully
  protect or verify the response, with the exception of Observe
  processing, where the association MUST be kept as long as the
  Observation is active.

  The processing of the Sender Sequence Number follows the procedure
  described in Section 3 of [IV-GEN].

8.1.  Protecting the Request

  Given a CoAP request, the client SHALL perform the following steps to
  create an OSCORE request:

  1.  Retrieve the Sender Context associated with the target resource.

  2.  Compose the AAD and the plaintext, as described in Sections 5.3
      and 5.4.

  3.  Encode the Partial IV (Sender Sequence Number in network byte
      order) and increment the Sender Sequence Number by one.  Compute
      the AEAD nonce from the Sender ID, Common IV, and Partial IV as
      described in Section 5.2.

  4.  Encrypt the COSE object using the Sender Key. Compress the COSE
      object as specified in Section 6.

  5.  Format the OSCORE message according to Section 4.  The OSCORE
      option is added (see Section 4.1.2).







Selander, et al.             Standards Track                   [Page 39]

RFC 8613                         OSCORE                        July 2019


8.2.  Verifying the Request

  A server receiving a request containing the OSCORE option SHALL
  perform the following steps:

  1.  Discard Code and all Class E options (marked in Figure 5 with 'x'
      in column E) present in the received message.  For example, an
      If-Match Outer option is discarded, but an Uri-Host Outer option
      is not discarded.

  2.  Decompress the COSE object (Section 6) and retrieve the Recipient
      Context associated with the Recipient ID in the 'kid' parameter,
      additionally using the 'kid context', if present.  Note that the
      Recipient Context MAY be retrieved by deriving a new security
      context, e.g. as described in Appendix B.2.  If either the
      decompression or the COSE message fails to decode, or the server
      fails to retrieve a Recipient Context with Recipient ID
      corresponding to the 'kid' parameter received, then the server
      SHALL stop processing the request.

      *  If either the decompression or the COSE message fails to
         decode, the server MAY respond with a 4.02 (Bad Option) error
         message.  The server MAY set an Outer Max-Age option with
         value zero.  The diagnostic payload MAY contain the string
         "Failed to decode COSE".

      *  If the server fails to retrieve a Recipient Context with
         Recipient ID corresponding to the 'kid' parameter received,
         the server MAY respond with a 4.01 (Unauthorized) error
         message.  The server MAY set an Outer Max-Age option with
         value zero.  The diagnostic payload MAY contain the string
         "Security context not found".

  3.  Verify that the Partial IV has not been received before using the
      Replay Window, as described in Section 7.4.

  4.  Compose the AAD, as described in Section 5.4.

  5.  Compute the AEAD nonce from the Recipient ID, Common IV, and the
      Partial IV, received in the COSE object.











Selander, et al.             Standards Track                   [Page 40]

RFC 8613                         OSCORE                        July 2019


  6.  Decrypt the COSE object using the Recipient Key, as per
      Section 5.3 of [RFC8152].  (The decrypt operation includes the
      verification of the integrity.)

      *  If decryption fails, the server MUST stop processing the
         request and MAY respond with a 4.00 (Bad Request) error
         message.  The server MAY set an Outer Max-Age option with
         value zero.  The diagnostic payload MAY contain the string
         "Decryption failed".

      *  If decryption succeeds, update the Replay Window, as described
         in Section 7.

  7.  Add decrypted Code, options, and payload to the decrypted
      request.  The OSCORE option is removed.

  8.  The decrypted CoAP request is processed according to [RFC7252].

8.2.1.  Supporting Block-wise

  If Block-wise is supported, insert the following step before any
  other:

  A.  If Block-wise is present in the request, then process the Outer
  Block options according to [RFC7959], until all blocks of the request
  have been received (see Section 4.1.3.4).

8.3.  Protecting the Response

  If a CoAP response is generated in response to an OSCORE request, the
  server SHALL perform the following steps to create an OSCORE
  response.  Note that CoAP error responses derived from CoAP
  processing (step 8 in Section 8.2) are protected, as well as
  successful CoAP responses, while the OSCORE errors (steps 2, 3, and 6
  in Section 8.2) do not follow the processing below but are sent as
  simple CoAP responses, without OSCORE processing.

  1.  Retrieve the Sender Context in the Security Context associated
      with the Token.

  2.  Compose the AAD and the plaintext, as described in Sections 5.3
      and 5.4.

  3.  Compute the AEAD nonce as described in Section 5.2:

      *  Either use the AEAD nonce from the request, or





Selander, et al.             Standards Track                   [Page 41]

RFC 8613                         OSCORE                        July 2019


      *  Encode the Partial IV (Sender Sequence Number in network byte
         order) and increment the Sender Sequence Number by one.
         Compute the AEAD nonce from the Sender ID, Common IV, and
         Partial IV.

  4.  Encrypt the COSE object using the Sender Key. Compress the COSE
      object as specified in Section 6.  If the AEAD nonce was
      constructed from a new Partial IV, this Partial IV MUST be
      included in the message.  If the AEAD nonce from the request was
      used, the Partial IV MUST NOT be included in the message.

  5.  Format the OSCORE message according to Section 4.  The OSCORE
      option is added (see Section 4.1.2).

8.3.1.  Supporting Observe

  If Observe is supported, insert the following step between steps 2
  and 3 of Section 8.3:

  A.  If the response is an Observe notification:

  o  If the response is the first notification:

     *  compute the AEAD nonce as described in Section 5.2:

        +  Either use the AEAD nonce from the request, or

        +  Encode the Partial IV (Sender Sequence Number in network
           byte order) and increment the Sender Sequence Number by one.
           Compute the AEAD nonce from the Sender ID, Common IV, and
           Partial IV.

        Then, go to 4.

  o  If the response is not the first notification:

     *  encode the Partial IV (Sender Sequence Number in network byte
        order) and increment the Sender Sequence Number by one.
        Compute the AEAD nonce from the Sender ID, Common IV, and
        Partial IV, then go to 4.











Selander, et al.             Standards Track                   [Page 42]

RFC 8613                         OSCORE                        July 2019


8.4.  Verifying the Response

  A client receiving a response containing the OSCORE option SHALL
  perform the following steps:

  1.  Discard Code and all Class E options (marked in Figure 5 with 'x'
      in column E) present in the received message.  For example, ETag
      Outer option is discarded, as well as Max-Age Outer option.

  2.  Retrieve the Recipient Context in the Security Context associated
      with the Token.  Decompress the COSE object (Section 6).  If
      either the decompression or the COSE message fails to decode,
      then go to 8.

  3.  Compose the AAD, as described in Section 5.4.

  4.  Compute the AEAD nonce

      *  If the Partial IV is not present in the response, the AEAD
         nonce from the request is used.

      *  If the Partial IV is present in the response, compute the AEAD
         nonce from the Recipient ID, Common IV, and the Partial IV,
         received in the COSE object.

  5.  Decrypt the COSE object using the Recipient Key, as per
      Section 5.3 of [RFC8152].  (The decrypt operation includes the
      verification of the integrity.)  If decryption fails, then go to
      8.

  6.  Add decrypted Code, options and payload to the decrypted request.
      The OSCORE option is removed.

  7.  The decrypted CoAP response is processed according to [RFC7252].

  8.  In case any of the previous erroneous conditions apply: the
      client SHALL stop processing the response.

8.4.1.  Supporting Block-wise

  If Block-wise is supported, insert the following step before any
  other:

  A.  If Block-wise is present in the response, then process the Outer
  Block options according to [RFC7959], until all blocks of the
  response have been received (see Section 4.1.3.4).





Selander, et al.             Standards Track                   [Page 43]

RFC 8613                         OSCORE                        July 2019


8.4.2.  Supporting Observe

  If Observe is supported:

  Insert the following step between step 5 and step 6:

  A.  If the request was an Observe registration, then:

  o  If the Partial IV is not present in the response, and the Inner
     Observe option is present, and the AEAD nonce from the request was
     already used once, then go to 8.

  o  If the Partial IV is present in the response and the Inner Observe
     option is present, then follow the processing described in
     Section 4.1.3.5.2 and Section 7.4.1, then:

     *  initialize the Notification Number (if first successfully
        verified notification), or

     *  overwrite the Notification Number (if the received Partial IV
        was greater than the Notification Number).

  Replace step 8 of Section 8.4 with:

  B.  In case any of the previous erroneous conditions apply: the
  client SHALL stop processing the response.  An error condition
  occurring while processing a response to an observation request does
  not cancel the observation.  A client MUST NOT react to failure by
  re-registering the observation immediately.

9.  Web Linking

  The use of OSCORE MAY be indicated by a target "osc" attribute in a
  web link [RFC8288] to a resource, e.g., using a link-format document
  [RFC6690] if the resource is accessible over CoAP.

  The "osc" attribute is a hint indicating that the destination of that
  link is only accessible using OSCORE, and unprotected access to it is
  not supported.  Note that this is simply a hint, it does not include
  any security context material or any other information required to
  run OSCORE.

  A value MUST NOT be given for the "osc" attribute; any present value
  MUST be ignored by parsers.  The "osc" attribute MUST NOT appear more
  than once in a given link-value; occurrences after the first MUST be
  ignored by parsers.





Selander, et al.             Standards Track                   [Page 44]

RFC 8613                         OSCORE                        July 2019


  The example in Figure 11 shows a use of the "osc" attribute: the
  client does resource discovery on a server and gets back a list of
  resources, one of which includes the "osc" attribute indicating that
  the resource is protected with OSCORE.  The link-format notation (see
  Section 5 of [RFC6690]) is used.

                     REQ: GET /.well-known/core

                     RES: 2.05 Content
                        </sensors/temp>;osc,
                        </sensors/light>;if="sensor"

                         Figure 11: The Web Link

10.  CoAP-to-CoAP Forwarding Proxy

  CoAP is designed for proxy operations (see Section 5.7 of [RFC7252]).

  OSCORE is designed to work with OSCORE-unaware CoAP proxies.
  Security requirements for forwarding are listed in Section 2.2.1 of
  [CoAP-E2E-Sec].  Proxy processing of the (Outer) Proxy-Uri option
  works as defined in [RFC7252].  Proxy processing of the (Outer) Block
  options works as defined in [RFC7959].

  However, not all CoAP proxy operations are useful:

  o  Since a CoAP response is only applicable to the original CoAP
     request, caching is in general not useful.  In support of existing
     proxies, OSCORE uses the Outer Max-Age option, see
     Section 4.1.3.1.

  o  Proxy processing of the (Outer) Observe option as defined in
     [RFC7641] is specified in Section 4.1.3.5.

  Optionally, a CoAP proxy MAY detect OSCORE and act accordingly.  An
  OSCORE-aware CoAP proxy:

  o  SHALL bypass caching for the request if the OSCORE option is
     present.

  o  SHOULD avoid caching responses to requests with an OSCORE option.

  In the case of Observe (see Section 4.1.3.5), the OSCORE-aware CoAP
  proxy:

  o  SHALL NOT initiate an Observe registration.





Selander, et al.             Standards Track                   [Page 45]

RFC 8613                         OSCORE                        July 2019


  o  MAY verify the order of notifications using Partial IV rather than
     the Observe option.

11.  HTTP Operations

  The CoAP request/response model may be mapped to HTTP and vice versa
  as described in Section 10 of [RFC7252].  The HTTP-CoAP mapping is
  further detailed in [RFC8075].  This section defines the components
  needed to map and transport OSCORE messages over HTTP hops.  By
  mapping between HTTP and CoAP and by using cross-protocol proxies,
  OSCORE may be used end-to-end between, e.g., an HTTP client and a
  CoAP server.  Examples are provided in Sections 11.5 and 11.6.

11.1.  The HTTP OSCORE Header Field

  The HTTP OSCORE header field (see Section 13.4) is used for carrying
  the content of the CoAP OSCORE option when transporting OSCORE
  messages over HTTP hops.

  The HTTP OSCORE header field is only used in POST requests and
  responses with HTTP Status Code 200 (OK).  When used, the HTTP header
  field Content-Type is set to 'application/oscore' (see Section 13.5)
  indicating that the HTTP body of this message contains the OSCORE
  payload (see Section 6.2).  No additional semantics are provided by
  other message fields.

  Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234],
  including the following core ABNF syntax rules defined by that
  specification: ALPHA (letters) and DIGIT (decimal digits), the HTTP
  OSCORE header field value is as follows.

  base64url-char = ALPHA / DIGIT / "-" / "_"

  OSCORE = 2*base64url-char

  The HTTP OSCORE header field is not appropriate to list in the
  Connection header field (see Section 6.1 of [RFC7230]) since it is
  not hop-by-hop.  OSCORE messages are generally not useful when served
  from cache (i.e., they will generally be marked Cache-Control: no-
  cache) and so interaction with Vary is not relevant (Section 7.1.4 of
  [RFC7231]).  Since the HTTP OSCORE header field is critical for
  message processing, moving it from headers to trailers renders the
  message unusable in case trailers are ignored (see Section 4.1 of
  [RFC7230]).







Selander, et al.             Standards Track                   [Page 46]

RFC 8613                         OSCORE                        July 2019


  In general, intermediaries are not allowed to insert, delete, or
  modify the OSCORE header.  In general, changes to the HTTP OSCORE
  header field will violate the integrity of the OSCORE message
  resulting in an error.  For the same reason the HTTP OSCORE header
  field is generally not preserved across redirects.

  Since redirects are not defined in the mappings between HTTP and CoAP
  ([RFC8075] [RFC7252]), a number of conditions need to be fulfilled
  for redirects to work.  For CoAP-client-to-HTTP-server redirects,
  such conditions include:

  o  the CoAP-to-HTTP proxy follows the redirect, instead of the CoAP
     client as in the HTTP case.

  o  the CoAP-to-HTTP proxy copies the HTTP OSCORE header field and
     body to the new request.

  o  the target of the redirect has the necessary OSCORE security
     context required to decrypt and verify the message.

  Since OSCORE requires the HTTP body to be preserved across redirects,
  the HTTP server is RECOMMENDED to reply with 307 (Temporary Redirect)
  or 308 (Permanent Redirect) instead of 301 (Moved Permanently) or 302
  (Found).

  For the case of HTTP-client-to-CoAP-server redirects, although
  redirect is not defined for CoAP servers [RFC7252], an HTTP client
  receiving a redirect should generate a new OSCORE request for the
  server it was redirected to.

11.2.  CoAP-to-HTTP Mapping

  Section 10.1 of [RFC7252] describes the fundamentals of the CoAP-to-
  HTTP cross-protocol mapping process.  The additional rules for OSCORE
  messages are as follows:

  o  The HTTP OSCORE header field value is set to:

     *  AA if the CoAP OSCORE option is empty; otherwise,

     *  the value of the CoAP OSCORE option (Section 6.1) in base64url
        (Section 5 of [RFC4648]) encoding without padding.
        Implementation notes for this encoding are given in Appendix C
        of [RFC7515].

  o  The HTTP Content-Type is set to 'application/oscore' (see
     Section 13.5), independent of CoAP Content-Format.




Selander, et al.             Standards Track                   [Page 47]

RFC 8613                         OSCORE                        July 2019


11.3.  HTTP-to-CoAP Mapping

  Section 10.2 of [RFC7252] and [RFC8075] specify the behavior of an
  HTTP-to-CoAP proxy.  The additional rules for HTTP messages with the
  OSCORE header field are as follows.

  o  The CoAP OSCORE option is set as follows:

     *  empty if the value of the HTTP OSCORE header field is a single
        zero byte (0x00) represented by AA; otherwise,

     *  the value of the HTTP OSCORE header field decoded from
        base64url (Section 5 of [RFC4648]) without padding.
        Implementation notes for this encoding are given in Appendix C
        of [RFC7515].

  o  The CoAP Content-Format option is omitted, the content format for
     OSCORE (Section 13.6) MUST NOT be used.

11.4.  HTTP Endpoints

  Restricted to subsets of HTTP and CoAP supporting a bijective
  mapping, OSCORE can be originated or terminated in HTTP endpoints.

  The sending HTTP endpoint uses [RFC8075] to translate the HTTP
  message into a CoAP message.  The CoAP message is then processed with
  OSCORE as defined in this document.  The OSCORE message is then
  mapped to HTTP as described in Section 11.2 and sent in compliance
  with the rules in Section 11.1.

  The receiving HTTP endpoint maps the HTTP message to a CoAP message
  using [RFC8075] and Section 11.3.  The resulting OSCORE message is
  processed as defined in this document.  If successful, the plaintext
  CoAP message is translated to HTTP for normal processing in the
  endpoint.

11.5.  Example: HTTP Client and CoAP Server

  This section gives an example of what a request and a response
  between an HTTP client and a CoAP server could look like.  The
  example is not a test vector but intended as an illustration of how
  the message fields are translated in the different steps.

  Mapping and notation here is based on "Simple Form" (Section 5.4.1 of
  [RFC8075]).






Selander, et al.             Standards Track                   [Page 48]

RFC 8613                         OSCORE                        July 2019


  [HTTP request -- Before client object security processing]

    GET http://proxy.url/hc/?target_uri=coap://server.url/orders
     HTTP/1.1

  [HTTP request -- HTTP Client to Proxy]

    POST http://proxy.url/hc/?target_uri=coap://server.url/ HTTP/1.1
    Content-Type: application/oscore
    OSCORE: CSU
    Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

  [CoAP request -- Proxy to CoAP Server]

    POST coap://server.url/
    OSCORE: 09 25
    Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

  [CoAP request -- After server object security processing]

    GET coap://server.url/orders

  [CoAP response -- Before server object security processing]

    2.05 Content
    Content-Format: 0
    Payload: Exterminate! Exterminate!

  [CoAP response -- CoAP Server to Proxy]

    2.04 Changed
    OSCORE: [empty]
    Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

  [HTTP response -- Proxy to HTTP Client]

    HTTP/1.1 200 OK
    Content-Type: application/oscore
    OSCORE: AA
    Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

  [HTTP response -- After client object security processing]

    HTTP/1.1 200 OK
    Content-Type: text/plain
    Body: Exterminate! Exterminate!





Selander, et al.             Standards Track                   [Page 49]

RFC 8613                         OSCORE                        July 2019


  Note that the HTTP Status Code 200 (OK) in the next-to-last message
  is the mapping of CoAP Code 2.04 (Changed), whereas the HTTP Status
  Code 200 (OK) in the last message is the mapping of the CoAP Code
  2.05 (Content), which was encrypted within the compressed COSE object
  carried in the Body of the HTTP response.

11.6.  Example: CoAP Client and HTTP Server

  This section gives an example of what a request and a response
  between a CoAP client and an HTTP server could look like.  The
  example is not a test vector but intended as an illustration of how
  the message fields are translated in the different steps.

  [CoAP request -- Before client object security processing]

    GET coap://proxy.url/
    Proxy-Uri=http://server.url/orders

  [CoAP request -- CoAP Client to Proxy]

    POST coap://proxy.url/
    Proxy-Uri=http://server.url/
    OSCORE: 09 25
    Payload: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

  [HTTP request -- Proxy to HTTP Server]

    POST http://server.url/ HTTP/1.1
    Content-Type: application/oscore
    OSCORE: CSU
    Body: 09 07 01 13 61 f7 0f d2 97 b1 [binary]

  [HTTP request -- After server object security processing]

    GET http://server.url/orders HTTP/1.1

  [HTTP response -- Before server object security processing]

    HTTP/1.1 200 OK
    Content-Type: text/plain
    Body: Exterminate! Exterminate!

  [HTTP response -- HTTP Server to Proxy]

    HTTP/1.1 200 OK
    Content-Type: application/oscore
    OSCORE: AA
    Body: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]



Selander, et al.             Standards Track                   [Page 50]

RFC 8613                         OSCORE                        July 2019


  [CoAP response -- Proxy to CoAP Client]

    2.04 Changed
    OSCORE: [empty]
    Payload: 00 31 d1 fc f6 70 fb 0c 1d d5 ... [binary]

  [CoAP response -- After client object security processing]

    2.05 Content
    Content-Format: 0
    Payload: Exterminate! Exterminate!

  Note that the HTTP Code 2.04 (Changed) in the next-to-last message is
  the mapping of HTTP Status Code 200 (OK), whereas the CoAP Code 2.05
  (Content) in the last message is the value that was encrypted within
  the compressed COSE object carried in the Body of the HTTP response.

12.  Security Considerations

  An overview of the security properties is given in Appendix D.

12.1.  End-to-end Protection

  In scenarios with intermediary nodes such as proxies or gateways,
  transport layer security such as (D)TLS only protects data hop-by-
  hop.  As a consequence, the intermediary nodes can read and modify
  any information.  The trust model where all intermediary nodes are
  considered trustworthy is problematic, not only from a privacy
  perspective, but also from a security perspective, as the
  intermediaries are free to delete resources on sensors and falsify
  commands to actuators (such as "unlock door", "start fire alarm",
  "raise bridge").  Even in the rare cases where all the owners of the
  intermediary nodes are fully trusted, attacks and data breaches make
  such an architecture brittle.

  (D)TLS protects hop-by-hop the entire message.  OSCORE protects end-
  to-end all information that is not required for proxy operations (see
  Section 4).  (D)TLS and OSCORE can be combined, thereby enabling end-
  to-end security of the message payload, in combination with hop-by-
  hop protection of the entire message, during transport between
  endpoint and intermediary node.  In particular, when OSCORE is used
  with HTTP, the additional TLS protection of HTTP hops is RECOMMENDED,
  e.g., between an HTTP endpoint and a proxy translating between HTTP
  and CoAP.







Selander, et al.             Standards Track                   [Page 51]

RFC 8613                         OSCORE                        July 2019


  Applications need to consider that certain message fields and
  messages types are not protected end-to-end and may be spoofed or
  manipulated.  The consequences of unprotected message fields are
  analyzed in Appendix D.5.

12.2.  Security Context Establishment

  The use of COSE_Encrypt0 and AEAD to protect messages as specified in
  this document requires an established security context.  The method
  to establish the security context described in Section 3.2 is based
  on a common Master Secret and unique Sender IDs.  The necessary input
  parameters may be preestablished or obtained using a key
  establishment protocol augmented with establishment of Sender/
  Recipient ID, such as a key exchange protocol or the OSCORE profile
  of the Authentication and Authorization for Constrained Environments
  (ACE) framework [OSCORE-PROFILE].  Such a procedure must ensure that
  the requirements of the security context parameters for the intended
  use are complied with (see Section 3.3) even in error situations.
  While recipient IDs are allowed to coincide between different
  security contexts (see Section 3.3), this may cause a server to
  process multiple verifications before finding the right security
  context or rejecting a message.  Considerations for deploying OSCORE
  with a fixed Master Secret are given in Appendix B.

12.3.  Master Secret

  OSCORE uses HKDF [RFC5869] and the established input parameters to
  derive the security context.  The required properties of the security
  context parameters are discussed in Section 3.3; in this section, we
  focus on the Master Secret.  In this specification, HKDF denotes the
  composition of the expand and extract functions as defined in
  [RFC5869] and the Master Secret is used as Input Keying Material
  (IKM).

  Informally, HKDF takes as source an IKM containing some good amount
  of randomness but not necessarily distributed uniformly (or for which
  an attacker has some partial knowledge) and derive from it one or
  more cryptographically strong secret keys [RFC5869].

  Therefore, the main requirement for the OSCORE Master Secret, in
  addition to being secret, is that it have a good amount of
  randomness.  The selected key establishment schemes must ensure that
  the necessary properties for the Master Secret are fulfilled.  For
  pre-shared key deployments and key transport solutions such as
  [OSCORE-PROFILE], the Master Secret can be generated offline using a
  good random number generator.  Randomness requirements for security
  are described in [RFC4086].




Selander, et al.             Standards Track                   [Page 52]

RFC 8613                         OSCORE                        July 2019


12.4.  Replay Protection

  Replay attacks need to be considered in different parts of the
  implementation.  Most AEAD algorithms require a unique nonce for each
  message, for which the Sender Sequence Numbers in the COSE message
  field 'Partial IV' is used.  If the recipient accepts any sequence
  number larger than the one previously received, then the problem of
  sequence number synchronization is avoided.  With reliable transport,
  it may be defined that only messages with sequence numbers that are
  equal to the previous sequence number + 1 are accepted.  An adversary
  may try to induce a device reboot for the purpose of replaying a
  message (see Section 7.5).

  Note that sharing a security context between servers may open up for
  replay attacks, for example, if the Replay Windows are not
  synchronized.

12.5.  Client Aliveness

  A verified OSCORE request enables the server to verify the identity
  of the entity who generated the message.  However, it does not verify
  that the client is currently involved in the communication, since the
  message may be a delayed delivery of a previously generated request,
  which now reaches the server.  To verify the aliveness of the client
  the server may use the Echo option in the response to a request from
  the client (see [CoAP-ECHO-REQ-TAG]).

12.6.  Cryptographic Considerations

  The maximum Sender Sequence Number is dependent on the AEAD
  algorithm.  The maximum Sender Sequence Number is 2^40 - 1, or any
  algorithm-specific lower limit, after which a new security context
  must be generated.  The mechanism to build the AEAD nonce
  (Section 5.2) assumes that the nonce is at least 56 bits, and the
  Partial IV is at most 40 bits.  The mandatory-to-implement AEAD
  algorithm AES-CCM-16-64-128 is selected for compatibility with CCM*.
  AEAD algorithms that require unpredictable nonces are not supported.

  In order to prevent cryptanalysis when the same plaintext is
  repeatedly encrypted by many different users with distinct AEAD keys,
  the AEAD nonce is formed by mixing the sequence number with a secret
  per-context initialization vector (Common IV) derived along with the
  keys (see Section 3.1 of [RFC8152]), and by using a Master Salt in
  the key derivation (see [MF00] for an overview).  The Master Secret,
  Sender Key, Recipient Key, and Common IV must be secret, the rest of
  the parameters may be public.  The Master Secret must have a good
  amount of randomness (see Section 12.3).




Selander, et al.             Standards Track                   [Page 53]

RFC 8613                         OSCORE                        July 2019


  The ID Context, Sender ID, and Partial IV are always at least
  implicitly integrity protected, as manipulation leads to the wrong
  nonce or key being used and therefore results in decryption failure.

12.7.  Message Segmentation

  The Inner Block options enable the sender to split large messages
  into OSCORE-protected blocks such that the receiving endpoint can
  verify blocks before having received the complete message.  The Outer
  Block options allow for arbitrary proxy fragmentation operations that
  cannot be verified by the endpoints but that can, by policy, be
  restricted in size since the Inner Block options allow for secure
  fragmentation of very large messages.  A maximum message size (above
  which the sending endpoint fragments the message and the receiving
  endpoint discards the message, if complying to the policy) may be
  obtained as part of normal resource discovery.

12.8.  Privacy Considerations

  Privacy threats executed through intermediary nodes are considerably
  reduced by means of OSCORE.  End-to-end integrity protection and
  encryption of the message payload and all options that are not used
  for proxy operations provide mitigation against attacks on sensor and
  actuator communication, which may have a direct impact on the
  personal sphere.

  The unprotected options (Figure 5) may reveal privacy-sensitive
  information, see Appendix D.5.  CoAP headers sent in plaintext allow,
  for example, matching of CON and ACK (CoAP Message Identifier),
  matching of request and responses (Token) and traffic analysis.
  OSCORE does not provide protection for HTTP header fields that are
  not both CoAP-mappable and Class E.  The HTTP message fields that are
  visible to on-path entities are only used for the purpose of
  transporting the OSCORE message, whereas the application-layer
  message is encoded in CoAP and encrypted.

  COSE message fields, i.e., the OSCORE option, may reveal information
  about the communicating endpoints.  For example, 'kid' and 'kid
  context', which are intended to help the server find the right
  context, may reveal information about the client.  Tracking 'kid' and
  'kid context' to one server may be used for correlating requests from
  one client.

  Unprotected error messages reveal information about the security
  state in the communication between the endpoints.  Unprotected
  signaling messages reveal information about the reliable transport





Selander, et al.             Standards Track                   [Page 54]

RFC 8613                         OSCORE                        July 2019


  used on a leg of the path.  Using the mechanisms described in
  Section 7.5 may reveal when a device goes through a reboot.  This can
  be mitigated by the device storing the precise state of Sender
  Sequence Number and Replay Window on a clean shutdown.

  The length of message fields can reveal information about the
  message.  Applications may use a padding scheme to protect against
  traffic analysis.

13.  IANA Considerations

13.1.  COSE Header Parameters Registry

  The 'kid context' parameter has been added to the "COSE Header
  Parameters" registry:

  o  Name: kid context

  o  Label: 10

  o  Value Type: bstr

  o  Value Registry:

  o  Description: Identifies the context for the key identifier

  o  Reference: Section 5.1 of this document

13.2.  CoAP Option Numbers Registry

  The OSCORE option has been added to the "CoAP Option Numbers"
  registry:

            +--------+-----------------+-------------------+
            | Number | Name            | Reference         |
            +--------+-----------------+-------------------+
            |     9  | OSCORE          | [RFC8613]         |
            +--------+-----------------+-------------------+













Selander, et al.             Standards Track                   [Page 55]

RFC 8613                         OSCORE                        July 2019


  Furthermore, the following existing entries in the "CoAP Option
  Numbers" registry have been updated with a reference to the document
  specifying OSCORE processing of that option:

      +--------+-----------------+-------------------------------+
      | Number | Name            |          Reference            |
      +--------+-----------------+-------------------------------+
      |   1    | If-Match        | [RFC7252] [RFC8613]           |
      |   3    | Uri-Host        | [RFC7252] [RFC8613]           |
      |   4    | ETag            | [RFC7252] [RFC8613]           |
      |   5    | If-None-Match   | [RFC7252] [RFC8613]           |
      |   6    | Observe         | [RFC7641] [RFC8613]           |
      |   7    | Uri-Port        | [RFC7252] [RFC8613]           |
      |   8    | Location-Path   | [RFC7252] [RFC8613]           |
      |  11    | Uri-Path        | [RFC7252] [RFC8613]           |
      |  12    | Content-Format  | [RFC7252] [RFC8613]           |
      |  14    | Max-Age         | [RFC7252] [RFC8613]           |
      |  15    | Uri-Query       | [RFC7252] [RFC8613]           |
      |  17    | Accept          | [RFC7252] [RFC8613]           |
      |  20    | Location-Query  | [RFC7252] [RFC8613]           |
      |  23    | Block2          | [RFC7959] [RFC8323] [RFC8613] |
      |  27    | Block1          | [RFC7959] [RFC8323] [RFC8613] |
      |  28    | Size2           | [RFC7959] [RFC8613]           |
      |  35    | Proxy-Uri       | [RFC7252] [RFC8613]           |
      |  39    | Proxy-Scheme    | [RFC7252] [RFC8613]           |
      |  60    | Size1           | [RFC7252] [RFC8613]           |
      | 258    | No-Response     | [RFC7967] [RFC8613]           |
      +--------+-----------------+-------------------------------+

  Future additions to the "CoAP Option Numbers" registry need to
  provide a reference to the document where the OSCORE processing of
  that CoAP Option is defined.

13.3.  CoAP Signaling Option Numbers Registry

  The OSCORE option has been added to the "CoAP Signaling Option
  Numbers" registry:

    +------------+--------+---------------------+-------------------+
    | Applies to | Number | Name                | Reference         |
    +------------+--------+---------------------+-------------------+
    | 7.xx (all) |     9  | OSCORE              | [RFC8613]         |
    +------------+--------+---------------------+-------------------+








Selander, et al.             Standards Track                   [Page 56]

RFC 8613                         OSCORE                        July 2019


13.4.  Header Field Registrations

  The HTTP OSCORE header field has been added to the "Message Headers"
  registry:

    +-------------------+----------+----------+---------------------+
    | Header Field Name | Protocol | Status   | Reference           |
    +-------------------+----------+----------+---------------------+
    | OSCORE            | http     | standard | [RFC8613],          |
    |                   |          |          | Section 11.1        |
    +-------------------+----------+----------+---------------------+

13.5.  Media Type Registration

  This section registers the 'application/oscore' media type in the
  "Media Types" registry.  This media type is used to indicate that the
  content is an OSCORE message.  The OSCORE body cannot be understood
  without the OSCORE header field value and the security context.

    Type name: application

    Subtype name: oscore

    Required parameters: N/A

    Optional parameters: N/A

    Encoding considerations: binary

    Security considerations: See the Security Considerations section
       of [RFC8613].

    Interoperability considerations: N/A

    Published specification: [RFC8613]

    Applications that use this media type: IoT applications sending
       security content over HTTP(S) transports.

    Fragment identifier considerations: N/A

    Additional information:

    *  Deprecated alias names for this type: N/A
    *  Magic number(s): N/A
    *  File extension(s): N/A
    *  Macintosh file type code(s): N/A




Selander, et al.             Standards Track                   [Page 57]

RFC 8613                         OSCORE                        July 2019


    Person & email address to contact for further information:
       IESG <[email protected]>

    Intended usage: COMMON

    Restrictions on usage: N/A

    Author: Goeran Selander <[email protected]>

    Change Controller: IESG

    Provisional registration?  No

13.6.  CoAP Content-Formats Registry

  This section registers the media type 'application/oscore' media type
  in the "CoAP Content-Formats" registry.  This Content-Format for the
  OSCORE payload is defined for potential future use cases and SHALL
  NOT be used in the OSCORE message.  The OSCORE payload cannot be
  understood without the OSCORE option value and the security context.

   +----------------------+----------+----------+-------------------+
   | Media Type           | Encoding |   ID     |     Reference     |
   +----------------------+----------+----------+-------------------+
   | application/oscore   |          |  10001   | [RFC8613]         |
   +----------------------+----------+----------+-------------------+

13.7.  OSCORE Flag Bits Registry

  This document defines a subregistry for the OSCORE flag bits within
  the "CoRE Parameters" registry.  The name of the subregistry is
  "OSCORE Flag Bits".  The registry has been created with the Expert
  Review policy [RFC8126].  Guidelines for the experts are provided in
  Section 13.8.

  The columns of the registry are as follows:

  o  Bit Position: This indicates the position of the bit in the set of
     OSCORE flag bits, starting at 0 for the most significant bit.  The
     bit position must be an integer or a range of integers, in the
     range 0 to 63.

  o  Name: The name is present to make it easier to refer to and
     discuss the registration entry.  The value is not used in the
     protocol.  Names are to be unique in the table.

  o  Description: This contains a brief description of the use of the
     bit.



Selander, et al.             Standards Track                   [Page 58]

RFC 8613                         OSCORE                        July 2019


  o  Reference: This contains a pointer to the specification defining
     the entry.

  The initial contents of the registry are in the table below.  The
  reference column for all rows is this document.  The entries with Bit
  Position of 0 and 1 are marked as 'Reserved'.  The entry with Bit
  Position of 1 will be specified in a future document and will be used
  to expand the space for the OSCORE flag bits in Section 6.1, so that
  entries 8-63 of the registry are defined.

+--------------+-------------+-----------------------------+-----------+
| Bit Position | Name        | Description                 | Reference |
+--------------+-------------+-----------------------------+-----------+
|       0      | Reserved    |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       1      | Reserved    |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       2      | Unassigned  |                             |           |
+--------------+-------------+-----------------------------+-----------+
|       3      | Kid Context | Set to 1 if kid context     | [RFC8613] |
|              | Flag        | is present in the           |           |
|              |             | compressed COSE object      |           |
+--------------+-------------+-----------------------------+-----------+
|       4      | Kid Flag    | Set to 1 if kid is present  | [RFC8613] |
|              |             | in the compressed COSE      |           |
|              |             | object                      |           |
+--------------+-------------+-----------------------------+-----------+
|     5-7      | Partial IV  | Encodes the Partial IV      | [RFC8613] |
|              | Length      | length; can have value      |           |
|              |             | 0 to 5                      |           |
+--------------+-------------+-----------------------------+-----------+
|    8-63      | Unassigned  |                             |           |
+--------------+-------------+-----------------------------+-----------+

13.8.  Expert Review Instructions

  The expert reviewers for the registry defined in this document are
  expected to ensure that the usage solves a valid use case that could
  not be solved better in a different way, that it is not going to
  duplicate one that is already registered, and that the registered
  point is likely to be used in deployments.  They are furthermore
  expected to check the clarity of purpose and use of the requested
  code points.  Experts should take into account the expected usage of
  entries when approving point assignment, and the length of the
  encoded value should be weighed against the number of code points
  left that encode to that size and the size of device it will be used





Selander, et al.             Standards Track                   [Page 59]

RFC 8613                         OSCORE                        July 2019


  on.  Experts should block registration for entries 8-63 until these
  points are defined (i.e., until the mechanism for the OSCORE flag
  bits expansion via bit 1 is specified).

14.  References

14.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             DOI 10.17487/RFC4086, June 2005,
             <https://www.rfc-editor.org/info/rfc4086>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <https://www.rfc-editor.org/info/rfc4648>.

  [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <https://www.rfc-editor.org/info/rfc5234>.

  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
             January 2012, <https://www.rfc-editor.org/info/rfc6347>.

  [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
             Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
             October 2013, <https://www.rfc-editor.org/info/rfc7049>.

  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.

  [RFC7231]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
             DOI 10.17487/RFC7231, June 2014,
             <https://www.rfc-editor.org/info/rfc7231>.







Selander, et al.             Standards Track                   [Page 60]

RFC 8613                         OSCORE                        July 2019


  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7641]  Hartke, K., "Observing Resources in the Constrained
             Application Protocol (CoAP)", RFC 7641,
             DOI 10.17487/RFC7641, September 2015,
             <https://www.rfc-editor.org/info/rfc7641>.

  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
             the Constrained Application Protocol (CoAP)", RFC 7959,
             DOI 10.17487/RFC7959, August 2016,
             <https://www.rfc-editor.org/info/rfc7959>.

  [RFC8075]  Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
             E. Dijk, "Guidelines for Mapping Implementations: HTTP to
             the Constrained Application Protocol (CoAP)", RFC 8075,
             DOI 10.17487/RFC8075, February 2017,
             <https://www.rfc-editor.org/info/rfc8075>.

  [RFC8132]  van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
             FETCH Methods for the Constrained Application Protocol
             (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
             <https://www.rfc-editor.org/info/rfc8132>.

  [RFC8152]  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
             RFC 8152, DOI 10.17487/RFC8152, July 2017,
             <https://www.rfc-editor.org/info/rfc8152>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8288]  Nottingham, M., "Web Linking", RFC 8288,
             DOI 10.17487/RFC8288, October 2017,
             <https://www.rfc-editor.org/info/rfc8288>.

  [RFC8323]  Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
             Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
             Application Protocol) over TCP, TLS, and WebSockets",
             RFC 8323, DOI 10.17487/RFC8323, February 2018,
             <https://www.rfc-editor.org/info/rfc8323>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.




Selander, et al.             Standards Track                   [Page 61]

RFC 8613                         OSCORE                        July 2019


  [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
             Definition Language (CDDL): A Notational Convention to
             Express Concise Binary Object Representation (CBOR) and
             JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
             June 2019, <https://www.rfc-editor.org/info/rfc8610>.

14.2.  Informative References

  [ACE-OAuth]
             Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
             H. Tschofenig, "Authentication and Authorization for
             Constrained Environments (ACE) using the OAuth 2.0
             Framework (ACE-OAuth)", Work in Progress, draft-ietf-ace-
             oauth-authz-24, March 2019.

  [CoAP-802.15.4]
             Bormann, C., "Constrained Application Protocol (CoAP) over
             IEEE 802.15.4 Information Element for IETF", Work in
             Progress, draft-bormann-6lo-coap-802-15-ie-00, April 2016.

  [CoAP-Actuators]
             Mattsson, J., Fornehed, J., Selander, G., Palombini, F.,
             and C. Amsuess, "Controlling Actuators with CoAP", Work in
             Progress, draft-mattsson-core-coap-actuators-06, September
             2018.

  [CoAP-E2E-Sec]
             Selander, G., Palombini, F., and K. Hartke, "Requirements
             for CoAP End-To-End Security", Work in Progress, draft-
             hartke-core-e2e-security-reqs-03, July 2017.

  [CoAP-ECHO-REQ-TAG]
             Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
             Request-Tag, and Token Processing", Work in Progress,
             draft-ietf-core-echo-request-tag-04, March 2019.

  [Group-OSCORE]
             Tiloca, M., Selander, G., Palombini, F., and J. Park,
             "Group OSCORE - Secure Group Communication for CoAP", Work
             in Progress, draft-ietf-core-oscore-groupcomm-04, March
             2019.

  [IV-GEN]   McGrew, D., "Generation of Deterministic Initialization
             Vectors (IVs) and Nonces", Work in Progress, draft-mcgrew-
             iv-gen-03, October 2013.






Selander, et al.             Standards Track                   [Page 62]

RFC 8613                         OSCORE                        July 2019


  [MF00]     McGrew, D. and S. Fluhrer, "Attacks on Additive Encryption
             of Redundant Plaintext and Implications on Internet
             Security", Proceedings of the Seventh Annual Workshop on
             Selected Areas in Cryptography (SAC 2000) Springer-
             Verlag., pp. 14-28, 2000.

  [OSCORE-PROFILE]
             Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
             "OSCORE profile of the Authentication and Authorization
             for Constrained Environments Framework", Work in
             Progress, draft-ietf-ace-oscore-profile-07, February 2019.

  [REST]     Fielding, R., "Architectural Styles and the Design of
             Network-based Software Architectures", Ph.D.
             Dissertation, University of California, Irvine, 2010.

  [RFC3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
             Text on Security Considerations", BCP 72, RFC 3552,
             DOI 10.17487/RFC3552, July 2003,
             <https://www.rfc-editor.org/info/rfc3552>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <https://www.rfc-editor.org/info/rfc5116>.

  [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
             Key Derivation Function (HKDF)", RFC 5869,
             DOI 10.17487/RFC5869, May 2010,
             <https://www.rfc-editor.org/info/rfc5869>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <https://www.rfc-editor.org/info/rfc6690>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <https://www.rfc-editor.org/info/rfc7228>.

  [RFC7515]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
             Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
             2015, <https://www.rfc-editor.org/info/rfc7515>.




Selander, et al.             Standards Track                   [Page 63]

RFC 8613                         OSCORE                        July 2019


  [RFC7967]  Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
             Bose, "Constrained Application Protocol (CoAP) Option for
             No Server Response", RFC 7967, DOI 10.17487/RFC7967,
             August 2016, <https://www.rfc-editor.org/info/rfc7967>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.










































Selander, et al.             Standards Track                   [Page 64]

RFC 8613                         OSCORE                        July 2019


Appendix A.  Scenario Examples

  This section gives examples of OSCORE, targeting scenarios in
  Section 2.2.1.1 of [CoAP-E2E-Sec].  The message exchanges are made,
  based on the assumption that there is a security context established
  between client and server.  For simplicity, these examples only
  indicate the content of the messages without going into detail of the
  (compressed) COSE message format.

A.1.  Secure Access to Sensor

  This example illustrates a client requesting the alarm status from a
  server.

     Client  Proxy  Server
       |       |       |
       +------>|       |            Code: 0.02 (POST)
       | POST  |       |           Token: 0x8c
       |       |       |          OSCORE: [kid:5f, Partial IV:42]
       |       |       |         Payload: {Code:0.01,
       |       |       |                   Uri-Path:"alarm_status"}
       |       |       |
       |       +------>|            Code: 0.02 (POST)
       |       | POST  |           Token: 0x7b
       |       |       |          OSCORE: [kid:5f, Partial IV:42]
       |       |       |         Payload: {Code:0.01,
       |       |       |                   Uri-Path:"alarm_status"}
       |       |       |
       |       |<------+            Code: 2.04 (Changed)
       |       |  2.04 |           Token: 0x7b
       |       |       |          OSCORE: -
       |       |       |         Payload: {Code:2.05, "0"}
       |       |       |
       |<------+       |            Code: 2.04 (Changed)
       |  2.04 |       |           Token: 0x8c
       |       |       |          OSCORE: -
       |       |       |         Payload: {Code:2.05, "0"}
       |       |       |

  Square brackets [ ... ] indicate content of compressed COSE object.
  Curly brackets { ... } indicate encrypted data.

                   Figure 12: Secure Access to Sensor

  The CoAP request/response Codes are encrypted by OSCORE and only
  dummy Codes (POST/Changed) are visible in the header of the OSCORE
  message.  The option Uri-Path ("alarm_status") and payload ("0") are
  encrypted.



Selander, et al.             Standards Track                   [Page 65]

RFC 8613                         OSCORE                        July 2019


  The COSE header of the request contains an identifier (5f),
  indicating which security context was used to protect the message and
  a Partial IV (42).

  The server verifies the request as specified in Section 8.2.  The
  client verifies the response as specified in Section 8.4.

A.2.  Secure Subscribe to Sensor

  This example illustrates a client requesting subscription to a blood
  sugar measurement resource (GET /glucose), first receiving the value
  220 mg/dl and then a second value 180 mg/dl.

     Client  Proxy  Server
       |       |       |
       +------>|       |            Code: 0.05 (FETCH)
       | FETCH |       |           Token: 0x83
       |       |       |         Observe: 0
       |       |       |          OSCORE: [kid:ca, Partial IV:15]
       |       |       |         Payload: {Code:0.01,
       |       |       |                   Observe:0,
       |       |       |                   Uri-Path:"glucose"}
       |       |       |
       |       +------>|            Code: 0.05 (FETCH)
       |       | FETCH |           Token: 0xbe
       |       |       |         Observe: 0
       |       |       |          OSCORE: [kid:ca, Partial IV:15]
       |       |       |         Payload: {Code:0.01,
       |       |       |                   Observe:0,
       |       |       |                   Uri-Path:"glucose"}
       |       |       |
       |       |<------+            Code: 2.05 (Content)
       |       |  2.05 |           Token: 0xbe
       |       |       |         Observe: 7
       |       |       |          OSCORE: -
       |       |       |         Payload: {Code:2.05,
       |       |       |                   Observe:-,
       |       |       |                   Content-Format:0, "220"}
       |       |       |
       |<------+       |            Code: 2.05 (Content)
       |  2.05 |       |           Token: 0x83
       |       |       |         Observe: 7
       |       |       |          OSCORE: -
       |       |       |         Payload: {Code:2.05,
       |       |       |                   Observe:-,
       |       |       |                   Content-Format:0, "220"}
      ...     ...     ...
       |       |       |



Selander, et al.             Standards Track                   [Page 66]

RFC 8613                         OSCORE                        July 2019


       |       |<------+            Code: 2.05 (Content)
       |       |  2.05 |           Token: 0xbe
       |       |       |         Observe: 8
       |       |       |          OSCORE: [Partial IV:36]
       |       |       |         Payload: {Code:2.05,
       |       |       |                   Observe:-,
       |       |       |                   Content-Format:0, "180"}
       |       |       |
       |<------+       |            Code: 2.05 (Content)
       |  2.05 |       |           Token: 0x83
       |       |       |         Observe: 8
       |       |       |          OSCORE: [Partial IV:36]
       |       |       |         Payload: {Code:2.05,
       |       |       |                   Observe:-,
       |       |       |                   Content-Format:0, "180"}
       |       |       |

  Square brackets [ ... ] indicate content of compressed COSE object
  header.  Curly brackets { ... } indicate encrypted data.

                  Figure 13: Secure Subscribe to Sensor

  The dummy Codes (FETCH/Content) are used to allow forwarding of
  Observe messages.  The options Content-Format (0) and the payload
  ("220" and "180") are encrypted.

  The COSE header of the request contains an identifier (ca),
  indicating the security context used to protect the message and a
  Partial IV (15).  The COSE header of the second response contains the
  Partial IV (36).  The first response uses the Partial IV of the
  request.

  The server verifies that the Partial IV has not been received before.
  The client verifies that the responses are bound to the request and
  that the Partial IVs are greater than any Partial IV previously
  received in a response bound to the request, except for the
  notification without Partial IV, which is considered the oldest.














Selander, et al.             Standards Track                   [Page 67]

RFC 8613                         OSCORE                        July 2019


Appendix B.  Deployment Examples

  For many Internet of Things (IoT) deployments, a 128-bit uniformly
  random Master Key is sufficient for encrypting all data exchanged
  with the IoT device throughout its lifetime.  Two examples are given
  in this section.  In the first example, the security context is only
  derived once from the Master Secret.  In the second example, security
  contexts are derived multiple times using random inputs.

B.1.  Security Context Derived Once

  An application that only derives the security context once needs to
  handle the loss of mutable security context parameters, e.g., due to
  reboot.

B.1.1.  Sender Sequence Number

  In order to handle loss of Sender Sequence Numbers, the device may
  implement procedures for writing to nonvolatile memory during normal
  operations and updating the security context after reboot, provided
  that the procedures comply with the requirements on the security
  context parameters (Section 3.3).  This section gives an example of
  such a procedure.

  There are known issues related to writing to nonvolatile memory.  For
  example, flash drives may have a limited number of erase operations
  during its lifetime.  Also, the time for a write operation to
  nonvolatile memory to be completed may be unpredictable, e.g., due to
  caching, which could result in important security context data not
  being stored at the time when the device reboots.

  However, many devices have predictable limits for writing to
  nonvolatile memory, are physically limited to only send a small
  amount of messages per minute, and may have no good source of
  randomness.

  To prevent reuse of Sender Sequence Number, an endpoint may perform
  the following procedure during normal operations:

  o  Before using a Sender Sequence Number that is evenly divisible by
     K, where K is a positive integer, store the Sender Sequence Number
     (SSN1) in nonvolatile memory.  After booting, the endpoint
     initiates the new Sender Sequence Number (SSN2) to the value
     stored in persistent memory plus K plus F: SSN2 = SSN1 + K + F,
     where F is a positive integer.






Selander, et al.             Standards Track                   [Page 68]

RFC 8613                         OSCORE                        July 2019


     *  Writing to nonvolatile memory can be costly; the value K gives
        a trade-off between frequency of storage operations and
        efficient use of Sender Sequence Numbers.

     *  Writing to nonvolatile memory may be subject to delays, or
        failure; F MUST be set so that the last Sender Sequence Number
        used before reboot is never larger than SSN2.

  If F cannot be set so SSN2 is always larger than the last Sender
  Sequence Number used before reboot, the method described in this
  section MUST NOT be used.

B.1.2.  Replay Window

  In case of loss of security context on the server, to prevent
  accepting replay of previously received requests, the server may
  perform the following procedure after booting:

  o  The server updates its Sender Sequence Number as specified in
     Appendix B.1.1 to be used as Partial IV in the response containing
     the Echo option (next bullet).

  o  For each stored security context, the first time after booting,
     the server receives an OSCORE request, the server responds with an
     OSCORE protected 4.01 (Unauthorized), containing only the Echo
     option [CoAP-ECHO-REQ-TAG] and no diagnostic payload.  The server
     MUST use its Partial IV when generating the AEAD nonce and MUST
     include the Partial IV in the response (see Section 5).  If the
     server with use of the Echo option can verify a second OSCORE
     request as fresh, then the Partial IV of the second request is set
     as the lower limit of the Replay Window of that security context.

B.1.3.  Notifications

  To prevent the acceptance of replay of previously received
  notifications, the client may perform the following procedure after
  booting:

  o  The client forgets about earlier registrations and removes all
     Notification Numbers.  The client then registers again using the
     Observe option.










Selander, et al.             Standards Track                   [Page 69]

RFC 8613                         OSCORE                        July 2019


B.2.  Security Context Derived Multiple Times

  An application that does not require forward secrecy may allow
  multiple security contexts to be derived from one Master Secret.  The
  requirements on the security context parameters MUST be fulfilled
  (Section 3.3) even if the client or server is rebooted,
  recommissioned, or in error cases.

  This section gives an example of a protocol that adds randomness to
  the ID Context parameter and uses that together with input parameters
  preestablished between client and server, in particular Master
  Secret, Master Salt, and Sender/Recipient ID (see Section 3.2), to
  derive new security contexts.  The random input is transported
  between client and server in the 'kid context' parameter.  This
  protocol MUST NOT be used unless both endpoints have good sources of
  randomness.

  During normal requests, the ID Context of an established security
  context may be sent in the 'kid context', which, together with 'kid',
  facilitates for the server to locate a security context.
  Alternatively, the 'kid context' may be omitted since the ID Context
  is expected to be known to both client and server; see Section 5.1.

  The protocol described in this section may only be needed when the
  mutable part of security context is lost in the client or server,
  e.g., when the endpoint has rebooted.  The protocol may additionally
  be used whenever the client and server need to derive a new security
  context.  For example, if a device is provisioned with one fixed set
  of input parameters (including Master Secret, Sender and Recipient
  Identifiers), then a randomized ID Context ensures that the security
  context is different for each deployment.

  Note that the server needs to be configured to run this protocol when
  it is not able to retrieve an existing security context, instead of
  stopping processing the message as described in step 2 of
  Section 8.2.

  The protocol is described below with reference to Figure 14.  The
  client or the server may initiate the protocol, in the latter case
  step 1 is omitted.











Selander, et al.             Standards Track                   [Page 70]

RFC 8613                         OSCORE                        July 2019


                     Client                Server
                       |                      |
1. Protect with         |      request #1      |
  ID Context = ID1     |--------------------->| 2. Verify with
                       |  kid_context = ID1   |    ID Context = ID1
                       |                      |
                       |      response #1     |    Protect with
3. Verify with          |<---------------------|    ID Context = R2||ID1
  ID Context = R2||ID1 |   kid_context = R2   |
                       |                      |
  Protect with         |      request #2      |
  ID Context = R2||R3  |--------------------->| 4. Verify with
                       | kid_context = R2||R3 |    ID Context = R2||R3
                       |                      |
                       |      response #2     |    Protect with
5. Verify with          |<---------------------|    ID Context = R2||R3
  ID Context = R2||R3  |                      |

       Figure 14: Protocol for Establishing a New Security Context

  1.  (Optional) If the client does not have a valid security context
      with the server, e.g., because of reboot or because this is the
      first time it contacts the server, then it generates a random
      string R1 and uses this as ID Context together with the input
      parameters shared with the server to derive a first security
      context.  The client sends an OSCORE request to the server
      protected with the first security context, containing R1 wrapped
      in a CBOR bstr as 'kid context'.  The request may target a
      special resource used for updating security contexts.

  2.  The server receives an OSCORE request for which it does not have
      a valid security context, either because the client has generated
      a new security context ID1 = R1 or because the server has lost
      part of its security context, e.g., ID Context, Sender Sequence
      Number or Replay Window.  If the server is able to verify the
      request (see Section 8.2) with the new derived first security
      context using the received ID1 (transported in 'kid context') as
      ID Context and the input parameters associated to the received
      'kid', then the server generates a random string R2 and derives a
      second security context with ID Context = ID2 = R2 || ID1.  The
      server sends a 4.01 (Unauthorized) response protected with the
      second security context, containing R2 wrapped in a CBOR bstr as
      'kid context', and caches R2.  R2 MUST NOT be reused as that may
      lead to reuse of key and nonce in response #1.  Note that the
      server may receive several requests #1 associated with one
      security context, leading to multiple parallel protocol runs.
      Multiple instances of R2 may need to be cached until one of the
      protocol runs is completed, see Appendix B.2.1.



Selander, et al.             Standards Track                   [Page 71]

RFC 8613                         OSCORE                        July 2019


  3.  The client receives a response with 'kid context' containing a
      CBOR bstr wrapping R2 to an OSCORE request it made with ID
      Context = ID1.  The client derives a second security context
      using ID Context = ID2 = R2 || ID1.  If the client can verify the
      response (see Section 8.4) using the second security context,
      then the client makes a request protected with a third security
      context derived from ID Context = ID3 = R2 || R3, where R3 is a
      random byte string generated by the client.  The request includes
      R2 || R3 wrapped in a CBOR bstr as 'kid context'.

  4.  If the server receives a request with 'kid context' containing a
      CBOR bstr wrapping ID3, where the first part of ID3 is identical
      to an R2 sent in a previous response #1, which it has not
      received before, then the server derives a third security context
      with ID Context = ID3.  The server MUST NOT accept replayed
      request #2 messages.  If the server can verify the request (see
      Section 8.2) with the third security context, then the server
      marks the third security context to be used with this client and
      removes all instances of R2 associated to this security context
      from the cache.  This security context replaces the previous
      security context with the client, and the first and the second
      security contexts are deleted.  The server responds using the
      same security context as in the request.

  5.  If the client receives a response to the request with the third
      security context and the response verifies (see Section 8.4),
      then the client marks the third security context to be used with
      this server.  This security context replaces the previous
      security context with the server, and the first and second
      security contexts are deleted.

  If verification fails in any step, the endpoint stops processing that
  message.

  The length of the nonces R1, R2, and R3 is application specific.  The
  application needs to set the length of each nonce such that the
  probability of its value being repeated is negligible; typically, at
  least 8 bytes long.  Since R2 may be generated as the result of a
  replayed request #1, the probability for collision of R2s is impacted
  by the birthday paradox.  For example, setting the length of R2 to 8
  bytes results in an average collision after 2^32 response #1
  messages, which should not be an issue for a constrained server
  handling on the order of one request per second.








Selander, et al.             Standards Track                   [Page 72]

RFC 8613                         OSCORE                        July 2019


  Request #2 can be an ordinary request.  The server performs the
  action of the request and sends response #2 after having successfully
  completed the operations related to the security context in step 4.
  The client acts on response #2 after having successfully completed
  step 5.

  When sending request #2, the client is assured that the Sender Key
  (derived with the random value R3) has never been used before.  When
  receiving response #2, the client is assured that the response
  (protected with a key derived from the random value R3 and the Master
  Secret) was created by the server in response to request #2.

  Similarly, when receiving request #2, the server is assured that the
  request (protected with a key derived from the random value R2 and
  the Master Secret) was created by the client in response to response
  #1.  When sending response #2, the server is assured that the Sender
  Key (derived with the random value R2) has never been used before.

  Implementation and denial-of-service considerations are made in
  Appendix B.2.1 and Appendix B.2.2.

B.2.1.  Implementation Considerations

  This section add some implementation considerations to the protocol
  described in the previous section.

  The server may only have space for a few security contexts or only be
  able to handle a few protocol runs in parallel.  The server may
  legitimately receive multiple request #1 messages using the same
  immutable security context, e.g., because of packet loss.  Replays of
  old request #1 messages could be difficult for the server to
  distinguish from legitimate.  The server needs to handle the case
  when the maximum number of cached R2s is reached.  If the server
  receives a request #1 and is not capable of executing it then it may
  respond with an unprotected 5.03 (Service Unavailable) error message.
  The server may clear up state from protocol runs that never complete,
  e.g., set a timer when caching R2, and remove R2 and the associated
  security contexts from the cache at timeout.  Additionally, state
  information can be flushed at reboot.

  As an alternative to caching R2, the server could generate R2 in such
  a way that it can be sent (in response #1) and verified (at reception
  of request #2) as the value of R2 it had generated.  Such a procedure
  MUST NOT lead to the server accepting replayed request #2 messages.
  One construction described in the following is based on using a
  secret random HMAC key K_HMAC per set of immutable security context
  parameters associated with a client.  This construction allows the




Selander, et al.             Standards Track                   [Page 73]

RFC 8613                         OSCORE                        July 2019


  server to handle verification of R2 in response #2 at the cost of
  storing the K_HMAC keys and a slightly larger message overhead in
  response #1.  Steps below refer to modifications to Appendix B.2:

  o  In step 2, R2 is generated in the following way.  First, the
     server generates a random K_HMAC (unless it already has one
     associated with the security context), then it sets R2 = S2 ||
     HMAC(K_HMAC, S2) where S2 is a random byte string, and the HMAC is
     truncated to 8 bytes.  K_HMAC may have an expiration time, after
     which it is erased.  Note that neither R2, S2, nor the derived
     first and second security contexts need to be cached.

  o  In step 4, instead of verifying that R2 coincides with a cached
     value, the server looks up the associated K_HMAC and verifies the
     truncated HMAC, and the processing continues accordingly depending
     on verification success or failure.  K_HMAC is used until a run of
     the protocol is completed (after verification of request #2), or
     until it expires (whatever comes first), after which K_HMAC is
     erased.  (The latter corresponds to removing the cached values of
     R2 in step 4 of Appendix B.2 and makes the server reject replays
     of request #2.)

  The length of S2 is application specific and the probability for
  collision of S2s is impacted by the birthday paradox.  For example,
  setting the length of S2 to 8 bytes results in an average collision
  after 2^32 response #1 messages, which should not be an issue for a
  constrained server handling on the order of one request per second.

  Two endpoints sharing a security context may accidentally initiate
  two instances of the protocol at the same time, each in the role of
  client, e.g., after a power outage affecting both endpoints.  Such a
  race condition could potentially lead to both protocols failing, and
  both endpoints repeatedly reinitiating the protocol without
  converging.  Both endpoints can detect this situation, and it can be
  handled in different ways.  The requests could potentially be more
  spread out in time, for example, by only initiating this protocol
  when the endpoint actually needs to make a request, potentially
  adding a random delay before requests immediately after reboot or if
  such parallel protocol runs are detected.

B.2.2.  Attack Considerations

  An on-path attacker may inject a message causing the endpoint to
  process verification of the message.  A message crafted without
  access to the Master Secret will fail to verify.






Selander, et al.             Standards Track                   [Page 74]

RFC 8613                         OSCORE                        July 2019


  Replaying an old request with a value of 'kid_context' that the
  server does not recognize could trigger the protocol.  This causes
  the server to generate the first and second security context and send
  a response.  But if the client did not expect a response, it will be
  discarded.  This may still result in a denial-of-service attack
  against the server, e.g., because of not being able to manage the
  state associated with many parallel protocol runs, and it may prevent
  legitimate client requests.  Implementation alternatives with less
  data caching per request #1 message are favorable in this respect;
  see Appendix B.2.1.

  Replaying response #1 in response to some request other than request
  #1 will fail to verify, since response #1 is associated to request
  #1, through the dependencies of ID Contexts and the Partial IV of
  request #1 included in the external_aad of response #1.

  If request #2 has already been well received, then the server has a
  valid security context, so a replay of request #2 is handled by the
  normal replay protection mechanism.  Similarly, if response #2 has
  already been received, a replay of response #2 to some other request
  from the client will fail by the normal verification of binding of
  response to request.

Appendix C.  Test Vectors

  This appendix includes the test vectors for different examples of
  CoAP messages using OSCORE.  Given a set of inputs, OSCORE defines
  how to set up the Security Context in both the client and the server.

  Note that in Appendix C.4 and all following test vectors the Token
  and the Message ID of the OSCORE-protected CoAP messages are set to
  the same value of the unprotected CoAP message to help the reader
  with comparisons.

C.1.  Test Vector 1: Key Derivation with Master Salt

  In this test vector, a Master Salt of 8 bytes is used.  The default
  values are used for AEAD Algorithm and HKDF.

C.1.1.  Client

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Master Salt: 0x9e7ca92223786340 (8 bytes)

  o  Sender ID: 0x (0 byte)



Selander, et al.             Standards Track                   [Page 75]

RFC 8613                         OSCORE                        July 2019


  o  Recipient ID: 0x01 (1 byte)

  From the previous parameters,

  o  info (for Sender Key): 0x8540f60a634b657910 (9 bytes)

  o  info (for Recipient Key): 0x854101f60a634b657910 (10 bytes)

  o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

  Outputs:

  o  Sender Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

  o  Recipient Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

  o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0x4622d4dd6d944168eefb54987c (13 bytes)

  o  recipient nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)

C.1.2.  Server

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Master Salt: 0x9e7ca92223786340 (8 bytes)

  o  Sender ID: 0x01 (1 byte)

  o  Recipient ID: 0x (0 byte)

  From the previous parameters,

  o  info (for Sender Key): 0x854101f60a634b657910 (10 bytes)

  o  info (for Recipient Key): 0x8540f60a634b657910 (9 bytes)

  o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

  Outputs:

  o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)



Selander, et al.             Standards Track                   [Page 76]

RFC 8613                         OSCORE                        July 2019


  o  Recipient Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

  o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)

  o  recipient nonce: 0x4622d4dd6d944168eefb54987c (13 bytes)

C.2.  Test Vector 2: Key Derivation without Master Salt

  In this test vector, the default values are used for AEAD Algorithm,
  HKDF, and Master Salt.

C.2.1.  Client

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Sender ID: 0x00 (1 byte)

  o  Recipient ID: 0x01 (1 byte)

  From the previous parameters,

  o  info (for Sender Key): 0x854100f60a634b657910 (10 bytes)

  o  info (for Recipient Key): 0x854101f60a634b657910 (10 bytes)

  o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

  Outputs:

  o  Sender Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

  o  Recipient Key: 0xe57b5635815177cd679ab4bcec9d7dda (16 bytes)

  o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0xbf35ae297d2dace910c52e99f9 (13 bytes)

  o  recipient nonce: 0xbf35ae297d2dace810c52e99f9 (13 bytes)



Selander, et al.             Standards Track                   [Page 77]

RFC 8613                         OSCORE                        July 2019


C.2.2.  Server

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Sender ID: 0x01 (1 byte)

  o  Recipient ID: 0x00 (1 byte)

  From the previous parameters,

  o  info (for Sender Key): 0x854101f60a634b657910 (10 bytes)

  o  info (for Recipient Key): 0x854100f60a634b657910 (10 bytes)

  o  info (for Common IV): 0x8540f60a6249560d (8 bytes)

  Outputs:

  o  Sender Key: 0xe57b5635815177cd679ab4bcec9d7dda (16 bytes)

  o  Recipient Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

  o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0xbf35ae297d2dace810c52e99f9 (13 bytes)

  o  recipient nonce: 0xbf35ae297d2dace910c52e99f9 (13 bytes)

C.3.  Test Vector 3: Key Derivation with ID Context

  In this test vector, a Master Salt of 8 bytes and an ID Context of 8
  bytes are used.  The default values are used for AEAD Algorithm and
  HKDF.

C.3.1.  Client

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Master Salt: 0x9e7ca92223786340 (8 bytes)

  o  Sender ID: 0x (0 byte)



Selander, et al.             Standards Track                   [Page 78]

RFC 8613                         OSCORE                        July 2019


  o  Recipient ID: 0x01 (1 byte)

  o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

  From the previous parameters,

  o  info (for Sender Key): 0x85404837cbf3210017a2d30a634b657910 (17
     bytes)

  o  info (for Recipient Key): 0x8541014837cbf3210017a2d30a634b657910
     (18 bytes)

  o  info (for Common IV): 0x85404837cbf3210017a2d30a6249560d (16
     bytes)

  Outputs:

  o  Sender Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

  o  Recipient Key: 0xe39a0c7c77b43f03b4b39ab9a268699f (16 bytes)

  o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

  o  recipient nonce: 0x2da58fb85ff1b81d0b7181b85e (13 bytes)

C.3.2.  Server

  Inputs:

  o  Master Secret: 0x0102030405060708090a0b0c0d0e0f10 (16 bytes)

  o  Master Salt: 0x9e7ca92223786340 (8 bytes)

  o  Sender ID: 0x01 (1 byte)

  o  Recipient ID: 0x (0 byte)

  o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

  From the previous parameters,

  o  info (for Sender Key): 0x8541014837cbf3210017a2d30a634b657910 (18
     bytes)



Selander, et al.             Standards Track                   [Page 79]

RFC 8613                         OSCORE                        July 2019


  o  info (for Recipient Key): 0x85404837cbf3210017a2d30a634b657910 (17
     bytes)

  o  info (for Common IV): 0x85404837cbf3210017a2d30a6249560d (16
     bytes)

  Outputs:

  o  Sender Key: 0xe39a0c7c77b43f03b4b39ab9a268699f (16 bytes)

  o  Recipient Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

  o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

  From the previous parameters and a Partial IV equal to 0 (both for
  sender and recipient):

  o  sender nonce: 0x2da58fb85ff1b81d0b7181b85e (13 bytes)

  o  recipient nonce: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

C.4.  Test Vector 4: OSCORE Request, Client

  This section contains a test vector for an OSCORE-protected CoAP GET
  request using the security context derived in Appendix C.1.  The
  unprotected request only contains the Uri-Path and Uri-Host options.

  Unprotected CoAP request:
  0x44015d1f00003974396c6f63616c686f737483747631 (22 bytes)

  Common Context:

  o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

  o  Key Derivation Function: HKDF SHA-256

  o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

  Sender Context:

  o  Sender ID: 0x (0 byte)

  o  Sender Key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

  o  Sender Sequence Number: 20






Selander, et al.             Standards Track                   [Page 80]

RFC 8613                         OSCORE                        July 2019


  The following COSE and cryptographic parameters are derived:

  o  Partial IV: 0x14 (1 byte)

  o  kid: 0x (0 byte)

  o  aad_array: 0x8501810a40411440 (8 bytes)

  o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

  o  plaintext: 0x01b3747631 (5 bytes)

  o  encryption key: 0xf0910ed7295e6ad4b54fc793154302ff (16 bytes)

  o  nonce: 0x4622d4dd6d944168eefb549868 (13 bytes)

  From the previous parameter, the following is derived:

  o  OSCORE option value: 0x0914 (2 bytes)

  o  ciphertext: 0x612f1092f1776f1c1668b3825e (13 bytes)

  From there:

  o  Protected CoAP request (OSCORE message): 0x44025d1f00003974396c6f6
     3616c686f7374620914ff612f1092f1776f1c1668b3825e (35 bytes)

C.5.  Test Vector 5: OSCORE Request, Client

  This section contains a test vector for an OSCORE-protected CoAP GET
  request using the security context derived in Appendix C.2.  The
  unprotected request only contains the Uri-Path and Uri-Host options.

  Unprotected CoAP request:
  0x440171c30000b932396c6f63616c686f737483747631 (22 bytes)

  Common Context:

  o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

  o  Key Derivation Function: HKDF SHA-256

  o  Common IV: 0xbe35ae297d2dace910c52e99f9 (13 bytes)

  Sender Context:

  o  Sender ID: 0x00 (1 bytes)




Selander, et al.             Standards Track                   [Page 81]

RFC 8613                         OSCORE                        July 2019


  o  Sender Key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

  o  Sender Sequence Number: 20

  The following COSE and cryptographic parameters are derived:

  o  Partial IV: 0x14 (1 byte)

  o  kid: 0x00 (1 byte)

  o  aad_array: 0x8501810a4100411440 (9 bytes)

  o  AAD: 0x8368456e63727970743040498501810a4100411440 (21 bytes)

  o  plaintext: 0x01b3747631 (5 bytes)

  o  encryption key: 0x321b26943253c7ffb6003b0b64d74041 (16 bytes)

  o  nonce: 0xbf35ae297d2dace910c52e99ed (13 bytes)

  From the previous parameter, the following is derived:

  o  OSCORE option value: 0x091400 (3 bytes)

  o  ciphertext: 0x4ed339a5a379b0b8bc731fffb0 (13 bytes)

  From there:

  o  Protected CoAP request (OSCORE message): 0x440271c30000b932396c6f6
     3616c686f737463091400ff4ed339a5a379b0b8bc731fffb0 (36 bytes)

C.6.  Test Vector 6: OSCORE Request, Client

  This section contains a test vector for an OSCORE-protected CoAP GET
  request for an application that sets the ID Context and requires it
  to be sent in the request, so 'kid context' is present in the
  protected message.  This test vector uses the security context
  derived in Appendix C.3.  The unprotected request only contains the
  Uri-Path and Uri-Host options.

  Unprotected CoAP request:
  0x44012f8eef9bbf7a396c6f63616c686f737483747631 (22 bytes)

  Common Context:

  o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

  o  Key Derivation Function: HKDF SHA-256



Selander, et al.             Standards Track                   [Page 82]

RFC 8613                         OSCORE                        July 2019


  o  Common IV: 0x2ca58fb85ff1b81c0b7181b85e (13 bytes)

  o  ID Context: 0x37cbf3210017a2d3 (8 bytes)

  Sender Context:

  o  Sender ID: 0x (0 bytes)

  o  Sender Key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

  o  Sender Sequence Number: 20

  The following COSE and cryptographic parameters are derived:

  o  Partial IV: 0x14 (1 byte)

  o  kid: 0x (0 byte)

  o  kid context: 0x37cbf3210017a2d3 (8 bytes)

  o  aad_array: 0x8501810a40411440 (8 bytes)

  o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

  o  plaintext: 0x01b3747631 (5 bytes)

  o  encryption key: 0xaf2a1300a5e95788b356336eeecd2b92 (16 bytes)

  o  nonce: 0x2ca58fb85ff1b81c0b7181b84a (13 bytes)

  From the previous parameter, the following is derived:

  o  OSCORE option value: 0x19140837cbf3210017a2d3 (11 bytes)

  o  ciphertext: 0x72cd7273fd331ac45cffbe55c3 (13 bytes)

  From there:

  o  Protected CoAP request (OSCORE message):
     0x44022f8eef9bbf7a396c6f63616c686f73746b19140837cbf3210017a2d3ff
     72cd7273fd331ac45cffbe55c3 (44 bytes)










Selander, et al.             Standards Track                   [Page 83]

RFC 8613                         OSCORE                        July 2019


C.7.  Test Vector 7: OSCORE Response, Server

  This section contains a test vector for an OSCORE-protected 2.05
  (Content) response to the request in Appendix C.4.  The unprotected
  response has payload "Hello World!" and no options.  The protected
  response does not contain a 'kid' nor a Partial IV.  Note that some
  parameters are derived from the request.

  Unprotected CoAP response:
  0x64455d1f00003974ff48656c6c6f20576f726c6421 (21 bytes)

  Common Context:

  o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

  o  Key Derivation Function: HKDF SHA-256

  o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

  Sender Context:

  o  Sender ID: 0x01 (1 byte)

  o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

  o  Sender Sequence Number: 0

  The following COSE and cryptographic parameters are derived:

  o  aad_array: 0x8501810a40411440 (8 bytes)

  o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

  o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

  o  encryption key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

  o  nonce: 0x4622d4dd6d944168eefb549868 (13 bytes)

  From the previous parameter, the following is derived:

  o  OSCORE option value: 0x (0 bytes)

  o  ciphertext: 0xdbaad1e9a7e7b2a813d3c31524378303cdafae119106 (22
     bytes)






Selander, et al.             Standards Track                   [Page 84]

RFC 8613                         OSCORE                        July 2019


  From there:

  o  Protected CoAP response (OSCORE message):
     0x64445d1f0000397490ffdbaad1e9a7e7b2a813d3c31524378303cdafae119106
     (32 bytes)

C.8.  Test Vector 8: OSCORE Response with Partial IV, Server

  This section contains a test vector for an OSCORE protected 2.05
  (Content) response to the request in Appendix C.4.  The unprotected
  response has payload "Hello World!" and no options.  The protected
  response does not contain a 'kid', but contains a Partial IV.  Note
  that some parameters are derived from the request.

  Unprotected CoAP response:
  0x64455d1f00003974ff48656c6c6f20576f726c6421 (21 bytes)

  Common Context:

  o  AEAD Algorithm: 10 (AES-CCM-16-64-128)

  o  Key Derivation Function: HKDF SHA-256

  o  Common IV: 0x4622d4dd6d944168eefb54987c (13 bytes)

  Sender Context:

  o  Sender ID: 0x01 (1 byte)

  o  Sender Key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

  o  Sender Sequence Number: 0

  The following COSE and cryptographic parameters are derived:

  o  Partial IV: 0x00 (1 byte)

  o  aad_array: 0x8501810a40411440 (8 bytes)

  o  AAD: 0x8368456e63727970743040488501810a40411440 (20 bytes)

  o  plaintext: 0x45ff48656c6c6f20576f726c6421 (14 bytes)

  o  encryption key: 0xffb14e093c94c9cac9471648b4f98710 (16 bytes)

  o  nonce: 0x4722d4dd6d944169eefb54987c (13 bytes)





Selander, et al.             Standards Track                   [Page 85]

RFC 8613                         OSCORE                        July 2019


  From the previous parameter, the following is derived:

  o  OSCORE option value: 0x0100 (2 bytes)

  o  ciphertext: 0x4d4c13669384b67354b2b6175ff4b8658c666a6cf88e (22
     bytes)

  From there:

  o  Protected CoAP response (OSCORE message): 0x64445d1f00003974920100
     ff4d4c13669384b67354b2b6175ff4b8658c666a6cf88e (34 bytes)

Appendix D.  Overview of Security Properties

D.1.  Threat Model

  This section describes the threat model using the terms of [RFC3552].

  It is assumed that the endpoints running OSCORE have not themselves
  been compromised.  The attacker is assumed to have control of the
  CoAP channel over which the endpoints communicate, including
  intermediary nodes.  The attacker is capable of launching any passive
  or active on-path or off-path attacks; including eavesdropping,
  traffic analysis, spoofing, insertion, modification, deletion, delay,
  replay, man-in-the-middle, and denial-of-service attacks.  This means
  that the attacker can read any CoAP message on the network and
  undetectably remove, change, or inject forged messages onto the wire.

  OSCORE targets the protection of the CoAP request/response layer
  (Section 2 of [RFC7252]) between the endpoints, including the CoAP
  Payload, Code, Uri-Path/Uri-Query, and the other Class E option
  instances (Section 4.1).

  OSCORE does not protect the CoAP messaging layer (Section 2 of
  [RFC7252]) or other lower layers involved in routing and transporting
  the CoAP requests and responses.

  Additionally, OSCORE does not protect Class U option instances
  (Section 4.1), as these are used to support CoAP forward proxy
  operations (see Section 5.7.2 of [RFC7252]).  The supported proxies
  (forwarding, cross-protocol, e.g., CoAP to CoAP-mappable protocols
  such as HTTP) must be able to change certain Class U options (by
  instruction from the Client), resulting in the CoAP request being
  redirected to the server.  Changes caused by the proxy may result in
  the request not reaching the server or reaching the wrong server.
  For cross-protocol proxies, mappings are done on the Outer part of





Selander, et al.             Standards Track                   [Page 86]

RFC 8613                         OSCORE                        July 2019


  the message so these protocols are essentially used as transport.
  Manipulation of these options may thus impact whether the protected
  message reaches or does not reach the destination endpoint.

  Attacks on unprotected CoAP message fields generally causes denial-
  of-service attacks which are out of scope of this document, more
  details are given in Appendix D.5.

  Attacks against the CoAP request-response layer are in scope.  OSCORE
  is intended to protect against eavesdropping, spoofing, insertion,
  modification, deletion, replay, and man-in-the middle attacks.

  OSCORE is susceptible to traffic analysis as discussed later in
  Appendix D.

D.2.  Supporting Proxy Operations

  CoAP is designed to work with intermediaries reading and/or changing
  CoAP message fields to perform supporting operations in constrained
  environments, e.g., forwarding and cross-protocol translations.

  Securing CoAP on the transport layer protects the entire message
  between the endpoints, in which case CoAP proxy operations are not
  possible.  In order to enable proxy operations, security on the
  transport layer needs to be terminated at the proxy; in which case,
  the CoAP message in its entirety is unprotected in the proxy.

  Requirements for CoAP end-to-end security are specified in
  [CoAP-E2E-Sec], in particular, forwarding is detailed in
  Section 2.2.1.  The client and server are assumed to be honest, while
  proxies and gateways are only trusted to perform their intended
  operations.

  By working at the CoAP layer, OSCORE enables different CoAP message
  fields to be protected differently, which allows message fields
  required for proxy operations to be available to the proxy while
  message fields intended for the other endpoint remain protected.  In
  the remainder of this section, we analyze how OSCORE protects the
  protected message fields and the consequences of message fields
  intended for proxy operation being unprotected.

D.3.  Protected Message Fields

  Protected message fields are included in the plaintext (Section 5.3)
  and the AAD (Section 5.4) of the COSE_Encrypt0 object and encrypted
  using an AEAD algorithm.





Selander, et al.             Standards Track                   [Page 87]

RFC 8613                         OSCORE                        July 2019


  OSCORE depends on a preestablished random Master Secret
  (Section 12.3) used to derive encryption keys, and a construction for
  making (key, nonce) pairs unique (Appendix D.4).  Assuming this is
  true, and the keys are used for no more data than indicated in
  Section 7.2.1, OSCORE should provide the following guarantees:

  o  Confidentiality: An attacker should not be able to determine the
     plaintext contents of a given OSCORE message or determine that
     different plaintexts are related (Section 5.3).

  o  Integrity: An attacker should not be able to craft a new OSCORE
     message with protected message fields different from an existing
     OSCORE message that will be accepted by the receiver.

  o  Request-response binding: An attacker should not be able to make a
     client match a response to the wrong request.

  o  Non-replayability: An attacker should not be able to cause the
     receiver to accept a message that it has previously received and
     accepted.

  In the above, the attacker is anyone except the endpoints, e.g., a
  compromised intermediary.  Informally, OSCORE provides these
  properties by AEAD-protecting the plaintext with a strong key and
  uniqueness of (key, nonce) pairs.  AEAD encryption [RFC5116] provides
  confidentiality and integrity for the data.  Response-request binding
  is provided by including the 'kid' and Partial IV of the request in
  the AAD of the response.  Non-replayability of requests and
  notifications is provided by using unique (key, nonce) pairs and a
  replay protection mechanism (application dependent, see Section 7.4).

  OSCORE is susceptible to a variety of traffic analysis attacks based
  on observing the length and timing of encrypted packets.  OSCORE does
  not provide any specific defenses against this form of attack, but
  the application may use a padding mechanism to prevent an attacker
  from directly determining the length of the padding.  However,
  information about padding may still be revealed by side-channel
  attacks observing differences in timing.

D.4.  Uniqueness of (key, nonce)

  In this section, we show that (key, nonce) pairs are unique as long
  as the requirements in Sections 3.3 and 7.2.1 are followed.

  Fix a Common Context (Section 3.1) and an endpoint, called the
  encrypting endpoint.  An endpoint may alternate between client and
  server roles, but each endpoint always encrypts with the Sender Key
  of its Sender Context.  Sender Keys are (stochastically) unique since



Selander, et al.             Standards Track                   [Page 88]

RFC 8613                         OSCORE                        July 2019


  they are derived with HKDF using unique Sender IDs, so messages
  encrypted by different endpoints use different keys.  It remains to
  be proven that the nonces used by the fixed endpoint are unique.

  Since the Common IV is fixed, the nonces are determined by PIV, where
  PIV takes the value of the Partial IV of the request or of the
  response, and by the Sender ID of the endpoint generating that
  Partial IV (ID_PIV).  The nonce construction (Section 5.2) with the
  size of the ID_PIV (S) creates unique nonces for different (ID_PIV,
  PIV) pairs.  There are two cases:

  A.  For requests, and responses with Partial IV (e.g., Observe
  notifications):

  o  ID_PIV = Sender ID of the encrypting endpoint

  o  PIV = current Partial IV of the encrypting endpoint

  Since the encrypting endpoint steps the Partial IV for each use, the
  nonces used in case A are all unique as long as the number of
  encrypted messages is kept within the required range (Section 7.2.1).

  B.  For responses without Partial IV (e.g., single response to a
  request):

  o  ID_PIV = Sender ID of the endpoint generating the request

  o  PIV = Partial IV of the request

  Since the Sender IDs are unique, ID_PIV is different from the Sender
  ID of the encrypting endpoint.  Therefore, the nonces in case B are
  different compared to nonces in case A, where the encrypting endpoint
  generated the Partial IV.  Since the Partial IV of the request is
  verified for replay (Section 7.4) associated to this Recipient
  Context, PIV is unique for this ID_PIV, which makes all nonces in
  case B distinct.

D.5.  Unprotected Message Fields

  This section analyzes attacks on message fields that are not
  protected by OSCORE according to the threat model Appendix D.1.

D.5.1.  CoAP Header Fields

  o  Version.  The CoAP version [RFC7252] is not expected to be
     sensitive to disclosure.  Currently, there is only one CoAP
     version defined.  A change of this parameter is potentially a




Selander, et al.             Standards Track                   [Page 89]

RFC 8613                         OSCORE                        July 2019


     denial-of-service attack.  Future versions of CoAP need to analyze
     attacks to OSCORE-protected messages due to an adversary changing
     the CoAP version.

  o  Token/Token Length.  The Token field is a client-local identifier
     for differentiating between concurrent requests [RFC7252].  CoAP
     proxies are allowed to read and change Token and Token Length
     between hops.  An eavesdropper reading the Token can match
     requests to responses that can be used in traffic analysis.  In
     particular, this is true for notifications, where multiple
     responses are matched to one request.  Modifications of Token and
     Token Length by an on-path attacker may become a denial-of-service
     attack, since it may prevent the client to identify to which
     request the response belongs or to find the correct information to
     verify integrity of the response.

  o  Code.  The Outer CoAP Code of an OSCORE message is POST or FETCH
     for requests with corresponding response codes.  An endpoint
     receiving the message discards the Outer CoAP Code and uses the
     Inner CoAP Code instead (see Section 4.2).  Hence, modifications
     from attackers to the Outer Code do not impact the receiving
     endpoint.  However, changing the Outer Code from FETCH to a Code
     value for a method that does not work with Observe (such as POST)
     may, depending on proxy implementation since Observe is undefined
     for several Codes, cause the proxy to not forward notifications,
     which is a denial-of-service attack.  The use of FETCH rather than
     POST reveals no more than what is revealed by the presence of the
     Outer Observe option.

  o  Type/Message ID.  The Type/Message ID fields [RFC7252] reveal
     information about the UDP transport binding, e.g., an eavesdropper
     reading the Type or Message ID gain information about how UDP
     messages are related to each other.  CoAP proxies are allowed to
     change Type and Message ID.  These message fields are not present
     in CoAP over TCP [RFC8323] and do not impact the request/response
     message.  A change of these fields in a UDP hop is a denial-of-
     service attack.  By sending an ACK, an attacker can make the
     endpoint believe that it does not need to retransmit the previous
     message.  By sending a RST, an attacker may be able to cancel an
     observation.  By changing a NON to a CON, the attacker can cause
     the receiving endpoint to ACK messages for which no ACK was
     requested.

  o  Length.  This field contains the length of the message [RFC8323],
     which may be used for traffic analysis.  This message field is not
     present in CoAP over UDP and does not impact the request/response
     message.  A change of Length is a denial-of-service attack similar
     to changing TCP header fields.



Selander, et al.             Standards Track                   [Page 90]

RFC 8613                         OSCORE                        July 2019


D.5.2.  CoAP Options

  o  Max-Age. The Outer Max-Age is set to zero to avoid unnecessary
     caching of OSCORE error responses.  Changing this value thus may
     cause unnecessary caching.  No additional information is carried
     with this option.

  o  Proxy-Uri/Proxy-Scheme.  These options are used in CoAP forward
     proxy deployments.  With OSCORE, the Proxy-Uri option does not
     contain the Uri-Path/Uri-Query parts of the URI.  The other parts
     of Proxy-Uri cannot be protected because forward proxies need to
     change them in order to perform their functions.  The server can
     verify what scheme is used in the last hop, but not what was
     requested by the client or what was used in previous hops.

  o  Uri-Host/Uri-Port.  In forward proxy deployments, the Uri-Host/
     Uri-Port may be changed by an adversary, and the application needs
     to handle the consequences of that (see Section 4.1.3.2).  The
     Uri-Host may either be omitted, reveal information equivalent to
     that of the IP address, or reveal more privacy-sensitive
     information, which is discouraged.

  o  Observe.  The Outer Observe option is intended for a proxy to
     support forwarding of Observe messages, but it is ignored by the
     endpoints since the Inner Observe option determines the processing
     in the endpoints.  Since the Partial IV provides absolute ordering
     of notifications, it is not possible for an intermediary to spoof
     reordering (see Section 4.1.3.5).  The absence of Partial IV,
     since only allowed for the first notification, does not prevent
     correct ordering of notifications.  The size and distributions of
     notifications over time may reveal information about the content
     or nature of the notifications.  Cancellations (Section 4.1.3.5.1)
     are not bound to the corresponding registrations in the same way
     responses are bound to requests in OSCORE (see Appendix D.3).
     However, that does not make attacks based on mismatched
     cancellations possible, since for cancellations to be accepted,
     all options in the decrypted message except for ETag options MUST
     be the same (see Section 4.1.3.5).

  o  Block1/Block2/Size1/Size2.  The Outer Block options enable
     fragmentation of OSCORE messages in addition to segmentation
     performed by the Inner Block options.  The presence of these
     options indicates a large message being sent, and the message size
     can be estimated and used for traffic analysis.  Manipulating
     these options is a potential denial-of-service attack, e.g.,
     injection of alleged Block fragments.  The specification of a





Selander, et al.             Standards Track                   [Page 91]

RFC 8613                         OSCORE                        July 2019


     maximum size of message, MAX_UNFRAGMENTED_SIZE
     (Section 4.1.3.4.2), above which messages will be dropped, is
     intended as one measure to mitigate this kind of attack.

  o  No-Response.  The Outer No-Response option is used to support
     proxy functionality, specifically to avoid error transmissions
     from proxies to clients, and to avoid bandwidth reduction to
     servers by proxies applying congestion control when not receiving
     responses.  Modifying or introducing this option is a potential
     denial-of-service attack against the proxy operations, but since
     the option has an Inner value, its use can be securely agreed upon
     between the endpoints.  The presence of this option is not
     expected to reveal any sensitive information about the message
     exchange.

  o  OSCORE.  The OSCORE option contains information about the
     compressed COSE header.  Changing this field may cause OSCORE
     verification to fail.

D.5.3.  Error and Signaling Messages

  Error messages occurring during CoAP processing are protected end-to-
  end.  Error messages occurring during OSCORE processing are not
  always possible to protect, e.g., if the receiving endpoint cannot
  locate the right security context.  For this setting, unprotected
  error messages are allowed as specified to prevent extensive
  retransmissions.  Those error messages can be spoofed or manipulated,
  which is a potential denial-of-service attack.

  This document specifies OPTIONAL error codes and specific diagnostic
  payloads for OSCORE processing error messages.  Such messages might
  reveal information about how many and which security contexts exist
  on the server.  Servers MAY want to omit the diagnostic payload of
  error messages, use the same error code for all errors, or avoid
  responding altogether in case of OSCORE processing errors, if that is
  a security concern for the application.  Moreover, clients MUST NOT
  rely on the error code or the diagnostic payload to trigger specific
  actions, as these errors are unprotected and can be spoofed or
  manipulated.

  Signaling messages used in CoAP over TCP [RFC8323] are intended to be
  hop-by-hop; spoofing signaling messages can be used as a denial-of-
  service attack of a TCP connection.








Selander, et al.             Standards Track                   [Page 92]

RFC 8613                         OSCORE                        July 2019


D.5.4.  HTTP Message Fields

  In contrast to CoAP, where OSCORE does not protect header fields to
  enable CoAP-CoAP proxy operations, the use of OSCORE with HTTP is
  restricted to transporting a protected CoAP message over an HTTP hop.
  Any unprotected HTTP message fields may reveal information about the
  transport of the OSCORE message and enable various denial-of-service
  attacks.  It is RECOMMENDED to additionally use TLS [RFC8446] for
  HTTP hops, which enables encryption and integrity protection of
  headers, but still leaves some information for traffic analysis.

Appendix E.  CDDL Summary

  Data structure definitions in the present specification employ the
  CDDL language for conciseness and precision [RFC8610].  This appendix
  summarizes the small subset of CDDL that is used in the present
  specification.

  Within the subset being used here, a CDDL rule is of the form "name =
  type", where "name" is the name given to the "type".  A "type" can be
  one of:

  o  a reference to another named type, by giving its name.  The
     predefined named types used in the present specification are as
     follows: "uint", an unsigned integer (as represented in CBOR by
     major type 0); "int", an unsigned or negative integer (as
     represented in CBOR by major type 0 or 1); "bstr", a byte string
     (as represented in CBOR by major type 2); "tstr", a text string
     (as represented in CBOR by major type 3);

  o  a choice between two types, by giving both types separated by a
     "/";

  o  an array type (as represented in CBOR by major type 4), where the
     sequence of elements of the array is described by giving a
     sequence of entries separated by commas ",", and this sequence is
     enclosed by square brackets "[" and "]".  Arrays described by an
     array description contain elements that correspond one-to-one to
     the sequence of entries given.  Each entry of an array description
     is of the form "name : type", where "name" is the name given to
     the entry and "type" is the type of the array element
     corresponding to this entry.









Selander, et al.             Standards Track                   [Page 93]

RFC 8613                         OSCORE                        July 2019


Acknowledgments

  The following individuals provided input to this document: Christian
  Amsuess, Tobias Andersson, Carsten Bormann, Joakim Brorsson, Ben
  Campbell, Esko Dijk, Jaro Fietz, Thomas Fossati, Martin Gunnarsson,
  Klaus Hartke, Rikard Hoeglund, Mirja Kuehlewind, Kathleen Moriarty,
  Eric Rescorla, Michael Richardson, Adam Roach, Jim Schaad, Peter van
  der Stok, Dave Thaler, Martin Thomson, Marco Tiloca, William Vignat,
  and Malisa Vucinic.

  Ludwig Seitz and Goeran Selander worked on this document as part of
  the CelticPlus project CyberWI, with funding from Vinnova.  Ludwig
  Seitz had additional funding from the SSF project SEC4Factory under
  the grant RIT17-0032.

Authors' Addresses

  Goeran Selander
  Ericsson AB

  Email: [email protected]


  John Mattsson
  Ericsson AB

  Email: [email protected]


  Francesca Palombini
  Ericsson AB

  Email: [email protected]


  Ludwig Seitz
  RISE

  Email: [email protected]












Selander, et al.             Standards Track                   [Page 94]