Internet Engineering Task Force (IETF)                          N. Akiya
Request for Comments: 8611                           Big Switch Networks
Updates: 8029                                                 G. Swallow
Category: Standards Track                                           SETC
ISSN: 2070-1721                                             S. Litkowski
                                                            B. Decraene
                                                                 Orange
                                                               J. Drake
                                                       Juniper Networks
                                                                M. Chen
                                                                 Huawei
                                                              June 2019


   Label Switched Path (LSP) Ping and Traceroute Multipath Support
             for Link Aggregation Group (LAG) Interfaces

Abstract

  This document defines extensions to the MPLS Label Switched Path
  (LSP) Ping and Traceroute mechanisms as specified in RFC 8029.  The
  extensions allow the MPLS LSP Ping and Traceroute mechanisms to
  discover and exercise specific paths of Layer 2 (L2) Equal-Cost
  Multipath (ECMP) over Link Aggregation Group (LAG) interfaces.
  Additionally, a mechanism is defined to enable the determination of
  the capabilities supported by a Label Switching Router (LSR).

  This document updates RFC 8029.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8611.









Akiya, et al.                Standards Track                    [Page 1]

RFC 8611                    LSP Ping for LAG                   June 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Background  . . . . . . . . . . . . . . . . . . . . . . .   3
    1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
    1.3.  Requirements Language . . . . . . . . . . . . . . . . . .   4
  2.  Overview of Solution  . . . . . . . . . . . . . . . . . . . .   4
  3.  LSR Capability Discovery  . . . . . . . . . . . . . . . . . .   6
    3.1.  Initiator LSR Procedures  . . . . . . . . . . . . . . . .   7
    3.2.  Responder LSR Procedures  . . . . . . . . . . . . . . . .   7
  4.  Mechanism to Discover L2 ECMP . . . . . . . . . . . . . . . .   7
    4.1.  Initiator LSR Procedures  . . . . . . . . . . . . . . . .   7
    4.2.  Responder LSR Procedures  . . . . . . . . . . . . . . . .   8
    4.3.  Additional Initiator LSR Procedures . . . . . . . . . . .  10
  5.  Mechanism to Validate L2 ECMP Traversal . . . . . . . . . . .  11
    5.1.  Incoming LAG Member Links Verification  . . . . . . . . .  11
      5.1.1.  Initiator LSR Procedures  . . . . . . . . . . . . . .  11
      5.1.2.  Responder LSR Procedures  . . . . . . . . . . . . . .  12
      5.1.3.  Additional Initiator LSR Procedures . . . . . . . . .  12
    5.2.  Individual End-to-End Path Verification . . . . . . . . .  14
  6.  LSR Capability TLV  . . . . . . . . . . . . . . . . . . . . .  14
  7.  LAG Description Indicator Flag: G . . . . . . . . . . . . . .  15
  8.  Local Interface Index Sub-TLV . . . . . . . . . . . . . . . .  16
  9.  Remote Interface Index Sub-TLV  . . . . . . . . . . . . . . .  17
  10. Detailed Interface and Label Stack TLV  . . . . . . . . . . .  17
    10.1.  Sub-TLVs . . . . . . . . . . . . . . . . . . . . . . . .  19
      10.1.1.  Incoming Label Stack Sub-TLV . . . . . . . . . . . .  19
      10.1.2.  Incoming Interface Index Sub-TLV . . . . . . . . . .  20
  11. Rate-Limiting on Echo Request/Reply Messages  . . . . . . . .  21
  12. Security Considerations . . . . . . . . . . . . . . . . . . .  21
  13. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
    13.1.  LSR Capability TLV . . . . . . . . . . . . . . . . . . .  22
      13.1.1.  LSR Capability Flags . . . . . . . . . . . . . . . .  22



Akiya, et al.                Standards Track                    [Page 2]

RFC 8611                    LSP Ping for LAG                   June 2019


    13.2.  Local Interface Index Sub-TLV  . . . . . . . . . . . . .  22
      13.2.1.  Interface Index Flags  . . . . . . . . . . . . . . .  22
    13.3.  Remote Interface Index Sub-TLV . . . . . . . . . . . . .  23
    13.4.  Detailed Interface and Label Stack TLV . . . . . . . . .  23
      13.4.1.  Sub-TLVs for TLV Type 6  . . . . . . . . . . . . . .  23
      13.4.2.  Interface and Label Stack Address Types  . . . . . .  25
    13.5.  DS Flags . . . . . . . . . . . . . . . . . . . . . . . .  25
  14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  25
    14.1.  Normative References . . . . . . . . . . . . . . . . . .  25
    14.2.  Informative References . . . . . . . . . . . . . . . . .  26
  Appendix A.  LAG with Intermediate L2 Switch Issues . . . . . . .  27
    A.1.  Equal Numbers of LAG Members  . . . . . . . . . . . . . .  27
    A.2.  Deviating Numbers of LAG Members  . . . . . . . . . . . .  27
    A.3.  LAG Only on Right . . . . . . . . . . . . . . . . . . . .  27
    A.4.  LAG Only on Left  . . . . . . . . . . . . . . . . . . . .  28
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  28
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  29

1.  Introduction

1.1.  Background

  The MPLS Label Switched Path (LSP) Ping and Traceroute mechanisms
  [RFC8029] are powerful tools designed to diagnose all available
  Layer 3 (L3) paths of LSPs, including diagnostic coverage of L3
  Equal-Cost Multipath (ECMP).  In many MPLS networks, Link Aggregation
  Groups (LAGs), as defined in [IEEE802.1AX], provide Layer 2 (L2) ECMP
  and are often used for various reasons.  MPLS LSP Ping and Traceroute
  tools were not designed to discover and exercise specific paths of L2
  ECMP.  This produces a limitation for the following scenario when an
  LSP traverses a LAG:

  o  Label switching over some member links of the LAG is successful,
     but fails over other member links of the LAG.

  o  MPLS echo request for the LSP over the LAG is load-balanced on one
     of the member links that is label switching successfully.

  With the above scenario, MPLS LSP Ping and Traceroute will not be
  able to detect the label-switching failure of the problematic member
  link(s) of the LAG.  In other words, lack of L2 ECMP diagnostic
  coverage can produce an outcome where MPLS LSP Ping and Traceroute
  can be blind to label-switching failures over a problematic LAG
  interface.  It is, thus, desirable to extend the MPLS LSP Ping and
  Traceroute to have deterministic diagnostic coverage of LAG
  interfaces.





Akiya, et al.                Standards Track                    [Page 3]

RFC 8611                    LSP Ping for LAG                   June 2019


  The work toward a solution to this problem was motivated by issues
  encountered in live networks.

1.2.  Terminology

  The following acronyms/terms are used in this document:

  o  MPLS - Multiprotocol Label Switching.

  o  LSP - Label Switched Path.

  o  LSR - Label Switching Router.

  o  ECMP - Equal-Cost Multipath.

  o  LAG - Link Aggregation Group.

  o  Initiator LSR - The LSR that sends the MPLS echo request message.

  o  Responder LSR - The LSR that receives the MPLS echo request
     message and sends the MPLS echo reply message.

1.3.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Overview of Solution

  This document defines a new TLV to discover the capabilities of a
  responder LSR and extensions for use with the MPLS LSP Ping and
  Traceroute mechanisms to describe Multipath Information for
  individual LAG member links, thus allowing MPLS LSP Ping and
  Traceroute to discover and exercise specific paths of L2 ECMP over
  LAG interfaces.  The reader is expected to be familiar with the
  Downstream Detailed Mapping TLV (DDMAP) described in Section 3.4 of
  [RFC8029].

  The solution consists of the MPLS echo request containing a DDMAP TLV
  and the new LSR Capability TLV to indicate that separate load-
  balancing information for each L2 next hop over LAG is desired in the
  MPLS echo reply.  The responder LSR places the same LSR Capability
  TLV in the MPLS echo reply to provide acknowledgement back to the
  initiator LSR.  It also adds, for each downstream LAG member, load-
  balancing information (i.e., multipath information and interface



Akiya, et al.                Standards Track                    [Page 4]

RFC 8611                    LSP Ping for LAG                   June 2019


  index).  This mechanism is applicable to all types of LSPs that can
  traverse LAG interfaces.  Many LAGs are built from peer-to-peer
  links, with router X and router X+1 having direct connectivity and
  the same number of LAG members.  It is possible to build LAGs
  asymmetrically by using Ethernet switches between two routers.
  Appendix A lists some use cases for which the mechanisms defined in
  this document may not be applicable.  Note that the mechanisms
  described in this document do not impose any changes to scenarios
  where an LSP is pinned down to a particular LAG member (i.e., the LAG
  is not treated as one logical interface by the LSP).

  The following figure and description provide an example of an LDP
  network.

    <----- LDP Network ----->

            +-------+
            |       |
    A-------B=======C-------E
            |               |
            +-------D-------+

    ---- Non-LAG
    ==== LAG comprising of two member links

                      Figure 1: Example LDP Network

  When node A is initiating LSP Traceroute to node E, node B will
  return to node A load-balancing information for the following
  entries:

  1.  Downstream C over Non-LAG (upper path).

  2.  First Downstream C over LAG (middle path).

  3.  Second Downstream C over LAG (middle path).

  4.  Downstream D over Non-LAG (lower path).

  This document defines:

  o  in Section 3, a mechanism to discover capabilities of responder
     LSRs;

  o  in Section 4, a mechanism to discover L2 ECMP information;

  o  in Section 5, a mechanism to validate L2 ECMP traversal;




Akiya, et al.                Standards Track                    [Page 5]

RFC 8611                    LSP Ping for LAG                   June 2019


  o  in Section 6, the LSR Capability TLV;

  o  in Section 7, the LAG Description Indicator flag;

  o  in Section 8, the Local Interface Index Sub-TLV;

  o  in Section 9, the Remote Interface Index Sub-TLV; and

  o  in Section 10, the Detailed Interface and Label Stack TLV.

3.  LSR Capability Discovery

  The MPLS Ping operates by an initiator LSR sending an MPLS echo
  request message and receiving back a corresponding MPLS echo reply
  message from a responder LSR.  The MPLS Traceroute operates in a
  similar way except the initiator LSR potentially sends multiple MPLS
  echo request messages with incrementing TTL values.

  There have been many extensions to the MPLS Ping and Traceroute
  mechanisms over the years.  Thus, it is often useful, and sometimes
  necessary, for the initiator LSR to deterministically disambiguate
  the differences between:

  o  The responder LSR sent the MPLS echo reply message with contents C
     because it has feature X, Y, and Z implemented.

  o  The responder LSR sent the MPLS echo reply message with contents C
     because it has a subset of features X, Y, and Z (i.e., not all of
     them) implemented.

  o  The responder LSR sent the MPLS echo reply message with contents C
     because it does not have features X, Y, or Z implemented.

  To allow the initiator LSR to disambiguate the above differences,
  this document defines the LSR Capability TLV (described in
  Section 6).  When the initiator LSR wishes to discover the
  capabilities of the responder LSR, the initiator LSR includes the LSR
  Capability TLV in the MPLS echo request message.  When the responder
  LSR receives an MPLS echo request message with the LSR Capability TLV
  included, if it knows the LSR Capability TLV, then it MUST include
  the LSR Capability TLV in the MPLS echo reply message with the LSR
  Capability TLV describing the features and extensions supported by
  the local LSR.  Otherwise, an MPLS echo reply must be sent back to
  the initiator LSR with the return code set to "One or more of the
  TLVs was not understood", according to the rules defined in Section 3
  of [RFC8029].  Then, the initiator LSR can send another MPLS echo
  request without including the LSR Capability TLV.




Akiya, et al.                Standards Track                    [Page 6]

RFC 8611                    LSP Ping for LAG                   June 2019


  It is RECOMMENDED that implementations supporting the LAG multipath
  extensions defined in this document include the LSR Capability TLV in
  MPLS echo request messages.

3.1.  Initiator LSR Procedures

  If an initiator LSR does not know what capabilities a responder LSR
  can support, it can send an MPLS echo request message and carry the
  LSR Capability TLV to the responder to discover the capabilities that
  the responder LSR can support.

3.2.  Responder LSR Procedures

  When a responder LSR receives an MPLS echo request message that
  carries the LSR Capability TLV, the following procedures are used:

  If the responder knows how to process the LSR Capability TLV, the
  following procedures are used:

  o  The responder LSR MUST include the LSR Capability TLV in the MPLS
     echo reply message.

  o  If the responder LSR understands the LAG Description Indicator
     flag:

     *  Set the Downstream LAG Info Accommodation flag if the responder
        LSR is capable of describing the outgoing LAG member links
        separately; otherwise, clear the Downstream LAG Info
        Accommodation flag.

     *  Set the Upstream LAG Info Accommodation flag if the responder
        LSR is capable of describing the incoming LAG member links
        separately; otherwise, clear the Upstream LAG Info
        Accommodation flag.

4.  Mechanism to Discover L2 ECMP

4.1.  Initiator LSR Procedures

  Through LSR Capability Discovery as defined in Section 3, the
  initiator LSR can understand whether the responder LSR can describe
  incoming/outgoing LAG member links separately in the DDMAP TLV.

  Once the initiator LSR knows that a responder can support this
  mechanism, then it sends an MPLS echo request carrying a DDMAP TLV
  with the LAG Description Indicator flag (G) set to the responder LSR.
  The LAG Description Indicator flag (G) indicates that separate load-




Akiya, et al.                Standards Track                    [Page 7]

RFC 8611                    LSP Ping for LAG                   June 2019


  balancing information for each L2 next hop over a LAG is desired in
  the MPLS echo reply.  The new LAG Description Indicator flag is
  described in Section 7.

4.2.  Responder LSR Procedures

  When a responder LSR receives an MPLS echo request message with the
  LAG Description Indicator flag set in the DDMAP TLV, if the responder
  LSR understands the LAG Description Indicator flag and is capable of
  describing outgoing LAG member links separately, the following
  procedures are used, regardless of whether or not the outgoing
  interfaces include LAG interfaces:

  o  For each downstream interface that is a LAG interface:

     *  The responder LSR MUST include a DDMAP TLV when sending the
        MPLS echo reply.  There is a single DDMAP TLV for the LAG
        interface, with member links described using sub-TLVs.

     *  The responder LSR MUST set the LAG Description Indicator flag
        in the DS Flags field of the DDMAP TLV.

     *  In the DDMAP TLV, the Local Interface Index Sub-TLV, Remote
        Interface Index Sub-TLV, and Multipath Data Sub-TLV are used to
        describe each LAG member link.  All other fields of the DDMAP
        TLV are used to describe the LAG interface.

     *  For each LAG member link of the LAG interface:

        +  The responder LSR MUST add a Local Interface Index Sub-TLV
           (described in Section 8) with the LAG Member Link Indicator
           flag set in the Interface Index Flags field.  It describes
           the interface index of this outgoing LAG member link (the
           local interface index is assigned by the local LSR).

        +  The responder LSR MAY add a Remote Interface Index Sub-TLV
           (described in Section 9) with the LAG Member Link Indicator
           flag set in the Interface Index Flags field.  It describes
           the interface index of the incoming LAG member link on the
           downstream LSR (this interface index is assigned by the
           downstream LSR).  How the local LSR obtains the interface
           index of the LAG member link on the downstream LSR is
           outside the scope of this document.

        +  The responder LSR MUST add a Multipath Data Sub-TLV for this
           LAG member link, if the received DDMAP TLV requested
           multipath information.




Akiya, et al.                Standards Track                    [Page 8]

RFC 8611                    LSP Ping for LAG                   June 2019


  Based on the procedures described above, every LAG member link will
  have a Local Interface Index Sub-TLV and a Multipath Data Sub-TLV
  entry in the DDMAP TLV.  The order of the sub-TLVs in the DDMAP TLV
  for a LAG member link MUST be Local Interface Index Sub-TLV
  immediately followed by Multipath Data Sub-TLV, except as follows.  A
  LAG member link MAY also have a corresponding Remote Interface Index
  Sub-TLV.  When a Local Interface Index Sub-TLV, a Remote Interface
  Index Sub-TLV, and a Multipath Data Sub-TLV are placed in the DDMAP
  TLV to describe a LAG member link, they MUST be placed in the order
  of Local Interface Index Sub-TLV, Remote Interface Index Sub-TLV, and
  Multipath Data Sub-TLV.  The blocks of Local Interface Index, Remote
  Interface Index (optional), and Multipath Data Sub-TLVs for each
  member link MUST appear adjacent to each other and be in order of
  increasing local interface index.

  A responder LSR possessing a LAG interface with two member links
  would send the following DDMAP for this LAG interface:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~  DDMAP fields describing LAG interface (DS Flags with G set)  ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Local Interface Index Sub-TLV of LAG member link #1           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Remote Interface Index Sub-TLV of LAG member link #1          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Multipath Data Sub-TLV LAG member link #1                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Local Interface Index Sub-TLV of LAG member link #2           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Remote Interface Index Sub-TLV of LAG member link #2          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Multipath Data Sub-TLV LAG member link #2                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Label Stack Sub-TLV                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 2: Example of DDMAP in MPLS Echo Reply

  When none of the received multipath information maps to a particular
  LAG member link, then the responder LSR MUST still place the Local
  Interface Index Sub-TLV and the Multipath Data Sub-TLV for that LAG
  member link in the DDMAP TLV.  The value of the Multipath Length
  field of the Multipath Data Sub-TLV is set to zero.






Akiya, et al.                Standards Track                    [Page 9]

RFC 8611                    LSP Ping for LAG                   June 2019


4.3.  Additional Initiator LSR Procedures

  The procedures in Section 4.2 allow an initiator LSR to:

  o  Identify whether or not the responder LSR can describe outgoing
     LAG member links separately, by looking at the LSR Capability TLV.

  o  Utilize the value of the LAG Description Indicator flag in DS
     Flags to identify whether each received DDMAP TLV describes a LAG
     interface or a non-LAG interface.

  o  Obtain multipath information that is expected to traverse the
     specific LAG member link described by the corresponding interface
     index.

  When an initiator LSR receives a DDMAP containing LAG member
  information from a downstream LSR with TTL=n, then the subsequent
  DDMAP sent by the initiator LSR to the downstream LSR with TTL=n+1
  through a particular LAG member link MUST be updated according to the
  following procedures:

  o  The Local Interface Index Sub-TLVs MUST be removed in the sending
     DDMAP.

  o  If the Remote Interface Index Sub-TLVs were present and the
     initiator LSR is traversing over a specific LAG member link, then
     the Remote Interface Index Sub-TLV corresponding to the LAG member
     link being traversed SHOULD be included in the sending DDMAP.  All
     other Remote Interface Index Sub-TLVs MUST be removed from the
     sending DDMAP.

  o  The Multipath Data Sub-TLVs MUST be updated to include just one
     Multipath Data Sub-TLV.  The initiator LSR MAY just keep the
     Multipath Data Sub-TLV corresponding to the LAG member link being
     traversed or combine the Multipath Data Sub-TLVs for all LAG
     member links into a single Multipath Data Sub-TLV when diagnosing
     further downstream LSRs.

  o  All other fields of the DDMAP are to comply with procedures
     described in [RFC8029].











Akiya, et al.                Standards Track                   [Page 10]

RFC 8611                    LSP Ping for LAG                   June 2019


  Figure 3 is an example that shows how to use the DDMAP TLV to send a
  notification about which member link (link #1 in the example) will be
  chosen to send the MPLS echo request message to the next downstream
  LSR:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~  DDMAP fields describing LAG interface (DS Flags with G set)  ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |[OPTIONAL] Remote Interface Index Sub-TLV of LAG member link #1|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Multipath Data Sub-TLV LAG member link #1         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Label Stack Sub-TLV                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: Example of DDMAP in MPLS Echo Request

5.  Mechanism to Validate L2 ECMP Traversal

  Section 4 defines the responder LSR procedures to construct a DDMAP
  for a downstream LAG.  The Remote Interface Index Sub-TLV that
  describes the incoming LAG member links of the downstream LSR is
  optional, because this information from the downstream LSR is often
  not available on the responder LSR.  In such case, the traversal of
  LAG member links can be validated with procedures described in
  Section 5.1.  If LSRs can provide the Remote Interface Index Sub-
  TLVs, then the validation procedures described in Section 5.2 can be
  used.

5.1.  Incoming LAG Member Links Verification

  Without downstream LSRs returning Remote Interface Index Sub-TLVs in
  the DDMAP, validation of the LAG member link traversal requires that
  the initiator LSR traverses all available LAG member links and takes
  the results through additional logic.  This section provides the
  mechanism for the initiator LSR to obtain additional information from
  the downstream LSRs and describes the additional logic in the
  initiator LSR to validate the L2 ECMP traversal.

5.1.1.  Initiator LSR Procedures

  An MPLS echo request carrying a DDMAP TLV with the Interface and
  Label Stack Object Request flag and LAG Description Indicator flag
  set is sent to indicate the request for Detailed Interface and Label
  Stack TLV with additional LAG member link information (i.e.,
  interface index) in the MPLS echo reply.



Akiya, et al.                Standards Track                   [Page 11]

RFC 8611                    LSP Ping for LAG                   June 2019


5.1.2.  Responder LSR Procedures

  When it receives an echo request with the LAG Description Indicator
  flag set, a responder LSR that understands that flag and is capable
  of describing the incoming LAG member link SHOULD use the following
  procedures, regardless of whether or not the incoming interface was a
  LAG interface:

  o  When the I flag (Interface and Label Stack Object Request flag) of
     the DDMAP TLV in the received MPLS echo request is set:

     *  The responder LSR MUST add the Detailed Interface and Label
        Stack TLV (described in Section 10) in the MPLS echo reply.

     *  If the incoming interface is a LAG, the responder LSR MUST add
        the Incoming Interface Index Sub-TLV (described in
        Section 10.1.2) in the Detailed Interface and Label Stack TLV.
        The LAG Member Link Indicator flag MUST be set in the Interface
        Index Flags field, and the Interface Index field set to the LAG
        member link that received the MPLS echo request.

  These procedures allow the initiator LSR to utilize the Incoming
  Interface Index Sub-TLV in the Detailed Interface and the Label Stack
  TLV to derive, if the incoming interface is a LAG, the identity of
  the incoming LAG member.

5.1.3.  Additional Initiator LSR Procedures

  Along with procedures described in Section 4, the procedures
  described in this section will allow an initiator LSR to know:

  o  The expected load-balance information of every LAG member link, at
     LSR with TTL=n.

  o  With specific entropy, the expected interface index of the
     outgoing LAG member link at TTL=n.

  o  With specific entropy, the interface index of the incoming LAG
     member link at TTL=n+1.

  Depending on the LAG traffic division algorithm, the messages may or
  may not traverse different member links.  The expectation is that
  there's a relationship between the interface index of the outgoing
  LAG member link at TTL=n and the interface index of the incoming LAG
  member link at TTL=n+1 for all entropies examined.  In other words,
  the messages with a set of entropies that load-balances to outgoing
  LAG member link X at TTL=n should all reach the next hop on the same
  incoming LAG member link Y at TTL=n+1.



Akiya, et al.                Standards Track                   [Page 12]

RFC 8611                    LSP Ping for LAG                   June 2019


  With additional logic, the initiator LSR can perform the following
  checks in a scenario where it (a) knows that there is a LAG that has
  two LAG members, between TTL=n and TTL=n+1, and (b) has the multipath
  information to traverse the two LAG member links.

  The initiator LSR sends two MPLS echo request messages to traverse
  the two LAG member links at TTL=n+1:

  o  Success case:

     *  One MPLS echo request message reaches TTL=n+1 on LAG member
        link 1.

     *  The other MPLS echo request message reaches TTL=n+1 on LAG
        member link 2.

     The two MPLS echo request messages sent by the initiator LSR reach
     the immediate downstream LSR from two different LAG member links.

  o  Error case:

     *  One MPLS echo request message reaches TTL=n+1 on LAG member
        link 1.

     *  The other MPLS echo request message also reaches TTL=n+1 on LAG
        member link 1.

     *  One or both MPLS echo request messages cannot reach the
        immediate downstream LSR on whichever link.

     One or two MPLS echo request messages sent by the initiator LSR
     cannot reach the immediate downstream LSR, or the two MPLS echo
     request messages reach at the immediate downstream LSR from the
     same LAG member link.

  Note that the procedures defined above will provide a deterministic
  result for LAG interfaces that are back-to-back connected between
  LSRs (i.e., no L2 switch in between).  If there is an L2 switch
  between the LSR at TTL=n and the LSR at TTL=n+1, there is no
  guarantee that every incoming interface at TTL=n+1 can be traversed,
  even when traversing every outgoing LAG member link at TTL=n.  Issues
  resulting from LAG with an L2 switch in between are further described
  in Appendix A.  LAG provisioning models in operator networks should
  be considered when analyzing the output of LSP Traceroute that is
  exercising L2 ECMPs.






Akiya, et al.                Standards Track                   [Page 13]

RFC 8611                    LSP Ping for LAG                   June 2019


5.2.  Individual End-to-End Path Verification

  When the Remote Interface Index Sub-TLVs are available from an LSR
  with TTL=n, then the validation of LAG member link traversal can be
  performed by the downstream LSR of TTL=n+1.  The initiator LSR
  follows the procedures described in Section 4.3.

  The DDMAP validation procedures for the downstream responder LSR are
  then updated to include the comparison of the incoming LAG member
  link to the interface index described in the Remote Interface Index
  Sub-TLV in the DDMAP TLV.  Failure of this comparison results in the
  return code being set to "Downstream Mapping Mismatch (5)".

6.  LSR Capability TLV

  This document defines a new TLV that is referred to as the LSR
  Capability TLV.  It MAY be included in the MPLS echo request message
  and the MPLS echo reply message.  An MPLS echo request message and an
  MPLS echo reply message MUST NOT include more than one LSR Capability
  TLV.  The presence of an LSR Capability TLV in an MPLS echo request
  message is a request that a responder LSR includes an LSR Capability
  TLV in the MPLS echo reply message, with the LSR Capability TLV
  describing features and extensions that the responder LSR supports.

  The format of the LSR Capability TLV is as below:

  LSR Capability TLV Type is 4.  Length is 4.  The LSR Capability TLV
  has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      LSR Capability Flags                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 4: LSR Capability TLV

  Where:

     The Type field is 2 octets in length, and the value is 4.

     The Length field is 2 octets in length, and the value is 4.







Akiya, et al.                Standards Track                   [Page 14]

RFC 8611                    LSP Ping for LAG                   June 2019


     The LSR Capability Flags field is 4 octets in length; this
     document defines the following flags:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Reserved (Must Be Zero)                   |U|D|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     This document defines two flags.  The unallocated flags MUST be
     set to zero when sending and ignored on receipt.  Both the U and
     the D flag MUST be cleared in the MPLS echo request message when
     sending and ignored on receipt.  Zero, one, or both of the flags
     (U and D) MAY be set in the MPLS echo reply message.

     Flag  Name and Meaning
     ----  ----------------

        U  Upstream LAG Info Accommodation

           An LSR sets this flag when the LSR is capable of describing
           a LAG member link in the Incoming Interface Index Sub-TLV
           in the Detailed Interface and Label Stack TLV.

        D  Downstream LAG Info Accommodation

           An LSR sets this flag when the LSR is capable of describing
           LAG member links in the Local Interface Index Sub-TLV and
           the Multipath Data Sub-TLV in the Downstream Detailed
           Mapping TLV.

7.  LAG Description Indicator Flag: G

  This document defines a new flag, the G flag (LAG Description
  Indicator), in the DS Flags field of the DDMAP TLV.

  The G flag in the MPLS echo request message indicates the request for
  detailed LAG information from the responder LSR.  In the MPLS echo
  reply message, the G flag MUST be set if the DDMAP TLV describes a
  LAG interface.  It MUST be cleared otherwise.











Akiya, et al.                Standards Track                   [Page 15]

RFC 8611                    LSP Ping for LAG                   June 2019


  The G flag is defined as below:

     The Bit Number is 3.

      0 1 2 3 4 5 6 7
     +-+-+-+-+-+-+-+-+
     | MBZ |G|E|L|I|N|
     +-+-+-+-+-+-+-+-+

  Flag  Name and Meaning
  ----  ----------------

     G  LAG Description Indicator

        When this flag is set in the MPLS echo request, the responder
        LSR is requested to respond with detailed LAG information.
        When this flag is set in the MPLS echo reply, the corresponding
        DDMAP TLV describes a LAG interface.

8.  Local Interface Index Sub-TLV

  The Local Interface Index Sub-TLV describes the interface index
  assigned by the local LSR to an egress interface.  One or more Local
  Interface Index sub-TLVs MAY appear in a DDMAP TLV.

  The format of the Local Interface Index Sub-TLV is below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Local Interface Index                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 5: Local Interface Index Sub-TLV

  Where:

  o  The Type field is 2 octets in length, and the value is 4.

  o  The Length field is 2 octets in length, and the value is 4.

  o  The Local Interface Index field is 4 octets in length; it is an
     interface index assigned by a local LSR to an egress interface.
     It's normally an unsigned integer and in network byte order.





Akiya, et al.                Standards Track                   [Page 16]

RFC 8611                    LSP Ping for LAG                   June 2019


9.  Remote Interface Index Sub-TLV

  The Remote Interface Index Sub-TLV is an optional TLV; it describes
  the interface index assigned by a downstream LSR to an ingress
  interface.  One or more Remote Interface Index sub-TLVs MAY appear in
  a DDMAP TLV.

  The format of the Remote Interface Index Sub-TLV is below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Remote Interface Index                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 6: Remote Interface Index Sub-TLV

  Where:

  o  The Type field is 2 octets in length, and the value is 5.

  o  The Length field is 2 octets in length, and the value is 4.

  o  The Remote Interface Index field is 4 octets in length; it is an
     interface index assigned by a downstream LSR to an ingress
     interface.  It's normally an unsigned integer and in network byte
     order.

10.  Detailed Interface and Label Stack TLV

  The Detailed Interface and Label Stack TLV MAY be included in an MPLS
  echo reply message to report the interface on which the MPLS echo
  request message was received and the label stack that was on the
  packet when it was received.  A responder LSR MUST NOT insert more
  than one instance of this TLV into the MPLS echo reply message.  This
  TLV allows the initiator LSR to obtain the exact interface and label
  stack information as it appears at the responder LSR.

  Detailed Interface and Label Stack TLV Type is 6.  Length is K + Sub-
  TLV Length (sum of Sub-TLVs).  K is the sum of all fields of this TLV
  prior to the list of Sub-TLVs, but the length of K depends on the
  Address Type.  Details of this information is described below.  The
  Detailed Interface and Label Stack TLV has the following format:






Akiya, et al.                Standards Track                   [Page 17]

RFC 8611                    LSP Ping for LAG                   June 2019


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Address Type  |             Reserved (Must Be Zero)           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   IP Address (4 or 16 octets)                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Interface (4 or 16 octets)                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                      List of Sub-TLVs                         .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 7: Detailed Interface and Label Stack TLV

  The Detailed Interface and Label Stack TLV format is derived from the
  Interface and Label Stack TLV format (from [RFC8029]).  Two changes
  are introduced.  The first is that the label stack is converted into
  a sub-TLV.  The second is that a new sub-TLV is added to describe an
  interface index.  The other fields of the Detailed Interface and
  Label Stack TLV have the same use and meaning as in [RFC8029].  A
  summary of these fields is as below:

     Address Type

        The Address Type indicates if the interface is numbered or
        unnumbered.  It also determines the length of the IP Address
        and Interface fields.  The resulting total length of the
        initial part of the TLV is listed as "K Octets".  The Address
        Type is set to one of the following values:

           Type #        Address Type           K Octets
           ------        ------------           --------
                1        IPv4 Numbered                16
                2        IPv4 Unnumbered              16
                3        IPv6 Numbered                40
                4        IPv6 Unnumbered              28

     IP Address and Interface

        IPv4 addresses and interface indices are encoded in 4 octets;
        IPv6 addresses are encoded in 16 octets.

        If the interface upon which the echo request message was
        received is numbered, then the Address Type MUST be set to IPv4



Akiya, et al.                Standards Track                   [Page 18]

RFC 8611                    LSP Ping for LAG                   June 2019


        Numbered or IPv6 Numbered, the IP Address MUST be set to either
        the LSR's Router ID or the interface address, and the Interface
        MUST be set to the interface address.

        If the interface is unnumbered, the Address Type MUST be either
        IPv4 Unnumbered or IPv6 Unnumbered, the IP Address MUST be the
        LSR's Router ID, and the Interface MUST be set to the index
        assigned to the interface.

        Note: Usage of IPv6 Unnumbered has the same issue as [RFC8029],
        which is described in Section 3.4.2 of [RFC7439].  A solution
        should be considered and applied to both [RFC8029] and this
        document.

10.1.  Sub-TLVs

  This section defines the sub-TLVs that MAY be included as part of the
  Detailed Interface and Label Stack TLV.  Two sub-TLVs are defined:

          Sub-Type    Sub-TLV Name
          ---------   ------------
            1         Incoming Label Stack
            2         Incoming Interface Index

10.1.1.  Incoming Label Stack Sub-TLV

  The Incoming Label Stack Sub-TLV contains the label stack as received
  by an LSR.  If any TTL values have been changed by this LSR, they
  SHOULD be restored.

  Incoming Label Stack Sub-TLV Type is 1.  Length is variable, and its
  format is as below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Label                 | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Label                 | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 8: Incoming Label Stack Sub-TLV



Akiya, et al.                Standards Track                   [Page 19]

RFC 8611                    LSP Ping for LAG                   June 2019


10.1.2.  Incoming Interface Index Sub-TLV

  The Incoming Interface Index Sub-TLV MAY be included in a Detailed
  Interface and Label Stack TLV.  The Incoming Interface Index Sub-TLV
  describes the index assigned by a local LSR to the interface that
  received the MPLS echo request message.

  Incoming Interface Index Sub-TLV Type is 2.  Length is 8, and its
  format is as below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             Type              |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Interface Index Flags      |       Reserved (Must Be Zero) |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Incoming Interface Index                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 9: Incoming Interface Index Sub-TLV

  Interface Index Flags

     The Interface Index Flags field is a bit vector with following
     format.

     0                   1
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved (Must Be Zero)   |M|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     One flag is defined: M.  The remaining flags MUST be set to zero
     when sending and ignored on receipt.

    Flag  Name and Meaning
    ----  ----------------

       M  LAG Member Link Indicator

          When this flag is set, the interface index described in this
          sub-TLV is a member of a LAG.

  Incoming Interface Index

     An Index assigned by the LSR to this interface.  It's normally an
     unsigned integer and in network byte order.



Akiya, et al.                Standards Track                   [Page 20]

RFC 8611                    LSP Ping for LAG                   June 2019


11.  Rate-Limiting on Echo Request/Reply Messages

  An LSP may be over several LAGs.  Each LAG may have many member
  links.  To exercise all the links, many echo request/reply messages
  will be sent in a short period.  It's possible that those messages
  may traverse a common path as a burst.  Under some circumstances,
  this might cause congestion at the common path.  To avoid potential
  congestion, it is RECOMMENDED that implementations randomly delay the
  echo request and reply messages at the initiator LSRs and responder
  LSRs.  Rate-limiting of ping traffic is further specified in
  Section 5 of [RFC8029] and Section 4.1 of [RFC6425], which apply to
  this document as well.

12.  Security Considerations

  This document extends the LSP Traceroute mechanism [RFC8029] to
  discover and exercise L2 ECMP paths to determine problematic member
  link(s) of a LAG.  These on-demand diagnostic mechanisms are used by
  an operator within an MPLS control domain.

  [RFC8029] reviews the possible attacks and approaches to mitigate
  possible threats when using these mechanisms.

  To prevent leakage of vital information to untrusted users, a
  responder LSR MUST only accept MPLS echo request messages from
  designated trusted sources via filtering the source IP address field
  of received MPLS echo request messages.  As noted in [RFC8029],
  spoofing attacks only have a small window of opportunity.  If an
  intermediate node hijacks these messages (i.e., causes non-delivery),
  the use of these mechanisms will determine the data plane is not
  working as it should.  Hijacking of a responder node such that it
  provides a legitimate reply would involve compromising the node
  itself and the MPLS control domain.  [RFC5920] provides additional
  MPLS network-wide operation recommendations to avoid attacks.  Please
  note that source IP address filtering provides only a weak form of
  access control and is not, in general, a reliable security mechanism.
  Nonetheless, it is required here in the absence of any more robust
  mechanisms that might be used.













Akiya, et al.                Standards Track                   [Page 21]

RFC 8611                    LSP Ping for LAG                   June 2019


13.  IANA Considerations

13.1.  LSR Capability TLV

  IANA has assigned value 4 (from the range 0-16383) for the LSR
  Capability TLV from the "TLVs" registry under the "Multiprotocol
  Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
  registry [IANA-MPLS-LSP-PING].

    Type    TLV Name                                    Reference
    -----   --------                                    ---------
      4     LSR Capability                              RFC 8611

13.1.1.  LSR Capability Flags

  IANA has created a new "LSR Capability Flags" registry.  The initial
  contents are as follows:

    Value   Meaning                                     Reference
    -----   -------                                     ---------
      31    D: Downstream LAG Info Accommodation        RFC 8611
      30    U: Upstream LAG Info Accommodation          RFC 8611
    0-29    Unassigned

  Assignments of LSR Capability Flags are via Standards Action
  [RFC8126].

13.2.  Local Interface Index Sub-TLV

  IANA has assigned value 4 (from the range 0-16383) for the Local
  Interface Index Sub-TLV from the "Sub-TLVs for TLV Type 20"
  subregistry of the "TLVs" registry in the "Multiprotocol Label
  Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
  registry [IANA-MPLS-LSP-PING].

    Sub-Type   Sub-TLV Name                             Reference
    --------   ------------                             ---------
       4       Local Interface Index                    RFC 8611

13.2.1.  Interface Index Flags

  IANA has created a new "Interface Index Flags" registry.  The initial
  contents are as follows:

   Bit Number Name                                      Reference
   ---------- --------------------------------          ---------
        15    M: LAG Member Link Indicator              RFC 8611
      0-14    Unassigned



Akiya, et al.                Standards Track                   [Page 22]

RFC 8611                    LSP Ping for LAG                   June 2019


  Assignments of Interface Index Flags are via Standards Action
  [RFC8126].

  Note that this registry is used by the Interface Index Flags field of
  the following sub-TLVs:

  o  The Local Interface Index Sub-TLV, which may be present in the
     Downstream Detailed Mapping TLV.

  o  The Remote Interface Index Sub-TLV, which may be present in the
     Downstream Detailed Mapping TLV.

  o  The Incoming Interface Index Sub-TLV, which may be present in the
     Detailed Interface and Label Stack TLV.

13.3.  Remote Interface Index Sub-TLV

  IANA has assigned value 5 (from the range 0-16383) for the Remote
  Interface Index Sub-TLV from the "Sub-TLVs for TLV Type 20"
  subregistry of the "TLVs" registry in the "Multiprotocol Label
  Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
  registry [IANA-MPLS-LSP-PING].

    Sub-Type   Sub-TLV Name                             Reference
    --------   ------------                             ---------
      5        Remote Interface Index                   RFC 8611

13.4.  Detailed Interface and Label Stack TLV

  IANA has assigned value 6 (from the range 0-16383) for the Detailed
  Interface and Label Stack TLV from the "TLVs" registry in the
  "Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs)
  Ping Parameters" registry [IANA-MPLS-LSP-PING].

    Type    TLV Name                                    Reference
    -----   --------                                    ---------
      6     Detailed Interface and Label Stack          RFC 8611

13.4.1.  Sub-TLVs for TLV Type 6

  RFC 8029 changed the registration procedures for TLV and sub-TLV
  registries for LSP Ping.

  IANA has created a new "Sub-TLVs for TLV Type 6" subregistry under
  the "TLVs" registry of the "Multiprotocol Label Switching (MPLS)
  Label Switched Paths (LSPs) Ping Parameters" registry
  [IANA-MPLS-LSP-PING].




Akiya, et al.                Standards Track                   [Page 23]

RFC 8611                    LSP Ping for LAG                   June 2019


  This registry conforms with RFC 8029.

  The registration procedures for this sub-TLV registry are:

  Range        Registration Procedure   Note
  -----        ----------------------   -----
  0-16383      Standards Action         This range is for mandatory
                                        TLVs or for optional TLVs that
                                        require an error message if
                                        not recognized.
  16384-31743  RFC Required             This range is for mandatory
                                        TLVs or for optional TLVs that
                                        require an error message if
                                        not recognized.
  31744-32767  Private Use              Not to be assigned
  32768-49161  Standards Action         This range is for optional TLVs
                                        that can be silently dropped if
                                        not recognized.
  49162-64511  RFC Required             This range is for optional TLVs
                                        that can be silently dropped if
                                        not recognized.
  64512-65535  Private Use              Not to be assigned

  The initial allocations for this registry are:

  Sub-Type     Sub-TLV Name             Reference Comment
  --------     ------------             --------- -------
  0            Reserved                 RFC 8611
  1            Incoming Label Stack     RFC 8611
  2            Incoming Interface Index RFC 8611
  3-31743      Unassigned
  31744-32767                           RFC 8611  Reserved for
                                                  Private Use
  32768-64511  Unassigned
  64512-65535                           RFC 8611  Reserved for
                                                  Private Use

  Note: IETF does not prescribe how the Private Use sub-TLVs are
  handled; however, if a packet containing a sub-TLV from a Private Use
  ranges is received by an LSR that does not recognize the sub-TLV, an
  error message MAY be returned if the sub-TLV is from the range
  31744-32767, and the packet SHOULD be silently dropped if it is from
  the range 64511-65535.








Akiya, et al.                Standards Track                   [Page 24]

RFC 8611                    LSP Ping for LAG                   June 2019


13.4.2.  Interface and Label Stack Address Types

  The Detailed Interface and Label Stack TLV shares the Interface and
  Label Stack Address Types with the Interface and Label Stack TLV.  To
  reflect this, IANA has updated the name of the registry from
  "Interface and Label Stack Address Types" to "Interface and Label
  Stack and Detailed Interface and Label Stack Address Types".

13.5.  DS Flags

  IANA has assigned a new bit number from the "DS Flags" subregistry of
  the "Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs)
  Ping Parameters" registry [IANA-MPLS-LSP-PING].

  Note: the "DS Flags" subregistry was created by [RFC8029].

   Bit number Name                                        Reference
   ---------- ----------------------------------------    ---------
        3     G: LAG Description Indicator                RFC 8611

14.  References

14.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8029]  Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
             Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
             Switched (MPLS) Data-Plane Failures", RFC 8029,
             DOI 10.17487/RFC8029, March 2017,
             <https://www.rfc-editor.org/info/rfc8029>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.








Akiya, et al.                Standards Track                   [Page 25]

RFC 8611                    LSP Ping for LAG                   June 2019


14.2.  Informative References

  [IANA-MPLS-LSP-PING]
             IANA, "Multiprotocol Label Switching (MPLS) Label Switched
             Paths (LSPs) Ping Parameters",
             <https://www.iana.org/assignments/
             mpls-lsp-ping-parameters/>.

  [IEEE802.1AX]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Link Aggregation", IEEE Std. 802.1AX.

  [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
             <https://www.rfc-editor.org/info/rfc5920>.

  [RFC6425]  Saxena, S., Ed., Swallow, G., Ali, Z., Farrel, A.,
             Yasukawa, S., and T. Nadeau, "Detecting Data-Plane
             Failures in Point-to-Multipoint MPLS - Extensions to LSP
             Ping", RFC 6425, DOI 10.17487/RFC6425, November 2011,
             <https://www.rfc-editor.org/info/rfc6425>.

  [RFC7439]  George, W., Ed. and C. Pignataro, Ed., "Gap Analysis for
             Operating IPv6-Only MPLS Networks", RFC 7439,
             DOI 10.17487/RFC7439, January 2015,
             <https://www.rfc-editor.org/info/rfc7439>.

























Akiya, et al.                Standards Track                   [Page 26]

RFC 8611                    LSP Ping for LAG                   June 2019


Appendix A.  LAG with Intermediate L2 Switch Issues

  Several flavors of provisioning models that use a "LAG with L2
  switch" and the corresponding MPLS data-plane ECMP traversal
  validation issues are described in this appendix.

A.1.  Equal Numbers of LAG Members

  R1 ==== S1 ==== R2

  The issue with this LAG provisioning model is that packets traversing
  a LAG member from Router 1 (R1) to intermediate L2 switch (S1) can
  get load-balanced by S1 towards Router 2 (R2).  Therefore, MPLS echo
  request messages traversing a specific LAG member from R1 to S1 can
  actually reach R2 via any of the LAG members, and the sender of the
  MPLS echo request messages has no knowledge of this nor any way to
  control this traversal.  In the worst case, MPLS echo request
  messages with specific entropies will exercise every LAG member link
  from R1 to S1 and can all reach R2 via the same LAG member link.
  Thus, it is impossible for the MPLS echo request sender to verify
  that packets intended to traverse a specific LAG member link from R1
  to S1 did actually traverse that LAG member link and to
  deterministically exercise "receive" processing of every LAG member
  link on R2.  (Note: As far as we can tell, there's not a better
  option than "try a bunch of entropy labels and see what responses you
  can get back", and that's the same remedy in all the described
  topologies.)

A.2.  Deviating Numbers of LAG Members

             ____
  R1 ==== S1 ==== R2

  There are deviating numbers of LAG members on the two sides of the L2
  switch.  The issue with this LAG provisioning model is the same as
  with the previous model: the sender of MPLS echo request messages has
  no knowledge of the L2 load-balancing algorithm nor entropy values to
  control the traversal.

A.3.  LAG Only on Right

  R1 ---- S1 ==== R2

  The issue with this LAG provisioning model is that there is no way
  for an MPLS echo request sender to deterministically exercise both
  LAG member links from S1 to R2.  And without such, "receive"
  processing of R2 on each LAG member cannot be verified.




Akiya, et al.                Standards Track                   [Page 27]

RFC 8611                    LSP Ping for LAG                   June 2019


A.4.  LAG Only on Left

  R1 ==== S1 ---- R2

  The MPLS echo request sender has knowledge of how to traverse both
  LAG members from R1 to S1.  However, both types of packets will
  terminate on the non-LAG interface at R2.  It becomes impossible for
  the MPLS echo request sender to know that MPLS echo request messages
  intended to traverse a specific LAG member from R1 to S1 did indeed
  traverse that LAG member.

Acknowledgements

  The authors would like to thank Nagendra Kumar and Sam Aldrin for
  providing useful comments and suggestions.  The authors would like to
  thank Loa Andersson for performing a detailed review and providing a
  number of comments.

  The authors also would like to extend sincere thanks to the MPLS RT
  review members who took the time to review and provide comments.  The
  members are Eric Osborne, Mach Chen, and Yimin Shen.  The suggestion
  by Mach Chen to generalize and create the LSR Capability TLV was
  tremendously helpful for this document and likely for future
  documents extending the MPLS LSP Ping and Traceroute mechanisms.  The
  suggestion by Yimin Shen to create two separate validation procedures
  had a big impact on the contents of this document.

























Akiya, et al.                Standards Track                   [Page 28]

RFC 8611                    LSP Ping for LAG                   June 2019


Authors' Addresses

  Nobo Akiya
  Big Switch Networks

  Email: [email protected]


  George Swallow
  Southend Technical Center

  Email: [email protected]


  Stephane Litkowski
  Orange

  Email: [email protected]


  Bruno Decraene
  Orange

  Email: [email protected]


  John E. Drake
  Juniper Networks

  Email: [email protected]


  Mach(Guoyi) Chen
  Huawei

  Email: [email protected]















Akiya, et al.                Standards Track                   [Page 29]