Independent Submission                                         R. Browne
Request for Comments: 8592                                   A. Chilikin
Category: Informational                                            Intel
ISSN: 2070-1721                                               T. Mizrahi
                                       Huawei Network.IO Innovation Lab
                                                               May 2019


               Key Performance Indicator (KPI) Stamping
                 for the Network Service Header (NSH)

Abstract

  This document describes methods of carrying Key Performance
  Indicators (KPIs) using the Network Service Header (NSH).  These
  methods may be used, for example, to monitor latency and QoS marking
  to identify problems on some links or service functions.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8592.

Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.






Browne, et al.                Informational                     [Page 1]

RFC 8592                    KPI Timestamping                    May 2019


Table of Contents

  1. Introduction ....................................................2
  2. Terminology .....................................................3
     2.1. Requirements Language ......................................3
     2.2. Definition of Terms ........................................3
          2.2.1. Terms Defined in This Document ......................4
     2.3. Abbreviations ..............................................5
  3. NSH KPI Stamping: An Overview ...................................6
     3.1. Prerequisites ..............................................7
     3.2. Operation ..................................................9
          3.2.1. Flow Selection ......................................9
          3.2.2. SCP Interface ......................................10
     3.3. Performance Considerations ................................11
  4. NSH KPI-Stamping Encapsulation .................................12
     4.1. KPI-Stamping Extended Encapsulation .......................13
          4.1.1. NSH Timestamping Encapsulation (Extended Mode) .....15
          4.1.2. NSH QoS-Stamping Encapsulation (Extended Mode) .....17
     4.2. KPI-Stamping Encapsulation (Detection Mode) ...............20
  5. Hybrid Models ..................................................22
     5.1. Targeted VNF Stamping .....................................23
  6. Fragmentation Considerations ...................................23
  7. Security Considerations ........................................24
  8. IANA Considerations ............................................24
  9. References .....................................................25
     9.1. Normative References ......................................25
     9.2. Informative References ....................................25
  Acknowledgments ...................................................27
  Contributors ......................................................27
  Authors' Addresses ................................................27

1.  Introduction

  The Network Service Header (NSH), as defined by [RFC8300], specifies
  a method for steering traffic among an ordered set of Service
  Functions (SFs) using an extensible service header.  This allows for
  flexibility and programmability in the forwarding plane to invoke the
  appropriate SFs for specific flows.

  The NSH promises a compelling vista of operational flexibility.
  However, many service providers are concerned about service and
  configuration visibility.  This concern increases when considering
  that many service providers wish to run their networks seamlessly in
  "hybrid mode", whereby they wish to mix physical and virtual SFs and
  run services seamlessly between the two domains.






Browne, et al.                Informational                     [Page 2]

RFC 8592                    KPI Timestamping                    May 2019


  This document describes generic methods to monitor and debug Service
  Function Chains (SFCs) in terms of latency and QoS marking of the
  flows within an SFC.  These are referred to as "detection mode" and
  "extended mode" and are explained in Section 4.

  The methods described in this document are compliant with hybrid
  architectures in which Virtual Network Functions (VNFs) and Physical
  Network Functions (PNFs) are freely mixed in the SFC.  These methods
  also provide flexibility for monitoring the performance and
  configuration of an entire chain or parts thereof as desired.  These
  methods are extensible to monitoring other Key Performance Indicators
  (KPIs).  Please refer to [RFC7665] for an architectural context for
  this document.

  The methods described in this document are not Operations,
  Administration, and Maintenance (OAM) protocols such as [Y.1731].  As
  such, they do not define new OAM packet types or operations.  Rather,
  they monitor the SFC's performance and configuration for subscriber
  payloads and indicate subscriber QoE rather than out-of-band
  infrastructure metrics.  This document differs from [In-Situ-OAM] in
  the sense that it is specifically tied to NSH operations and is not
  generic in nature.

2.  Terminology

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Definition of Terms

  This section presents the main terms used in this document.  This
  document also makes use of the terms defined in [RFC7665] and
  [RFC8300].













Browne, et al.                Informational                     [Page 3]

RFC 8592                    KPI Timestamping                    May 2019


2.2.1.  Terms Defined in This Document

  First Stamping Node (FSN):  The first node along an SFC that stamps
     packets using KPI stamping.  The FSN matches each packet with a
     Stamping Controller (SC) flow based on (but not limited to) a
     stamping classification criterion such as transport 5-tuple
     coordinates.

  Last Stamping Node (LSN):  The last node along an SFC that stamps
     packets using KPI stamping.  From a forwarding point of view, the
     LSN removes the NSH and forwards the raw IP packet to the next
     hop.  From a control-plane point of view, the LSN reads all the
     metadata (MD) and exports it to a system performance statistics
     agent or repository.  The LSN should use the NSH Service Index
     (SI) to indicate if an SF was at the end of the chain.  The LSN
     may change the Service Path Identifier (SPI) to a preconfigured
     value so that the network underlay forwards the MD back directly
     to the KPI database (KPIDB) based on this value.

  Key Performance Indicator Database (KPIDB):  Denotes the external
     storage of MD for reporting, trend analysis, etc.

  KPI stamping:  The insertion of latency-related and/or QoS-related
     information into a packet using NSH MD.

  Flow ID:  A unique 16-bit identifier written into the header by the
     classifier.  This allows 65536 flows to be concurrently stamped on
     any given NSH service chain.

  QoS stamping:  The insertion of QoS-related information into a packet
     using NSH MD.

  Stamping Controller (SC):  The central logic that decides what
     packets to stamp and how to stamp them.  The SC instructs the
     classifier on how to build the parts of the NSH that are specific
     to KPI stamping.

  Stamping Control Plane (SCP):  The control plane between the FSN and
     the SC.












Browne, et al.                Informational                     [Page 4]

RFC 8592                    KPI Timestamping                    May 2019


2.3.  Abbreviations

  DEI         Drop Eligible Indicator

  DSCP        Differentiated Services Code Point

  FSN         First Stamping Node

  KPI         Key Performance Indicator

  KPIDB       Key Performance Indicator Database

  LSN         Last Stamping Node

  MD          Metadata

  NFV         Network Function Virtualization

  NSH         Network Service Header

  OAM         Operations, Administration, and Maintenance

  PCP         Priority Code Point

  PNF         Physical Network Function

  PNFN        Physical Network Function Node

  QoE         Quality of Experience

  QoS         Quality of Service

  RSP         Rendered Service Path

  SC          Stamping Controller

  SCL         Service Classifier

  SCP         Stamping Control Plane

  SF          Service Function

  SFC         Service Function Chain

  SI          Service Index

  SSI         Stamp Service Index




Browne, et al.                Informational                     [Page 5]

RFC 8592                    KPI Timestamping                    May 2019


  TS          Timestamp

  VLAN        Virtual Local Area Network

  VNF         Virtual Network Function

3.  NSH KPI Stamping: An Overview

  A typical KPI-stamping architecture is presented in Figure 1.

      Stamping
     Controller
        |                                                     KPIDB
        | SCP Interface                                        |
      ,---.             ,---.              ,---.              ,---.
     /     \           /     \            /     \            /     \
    (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  SFn  )
     \ FSN /           \     /            \     /            \ LSN /
      `---'             `---'              `---'              `---'

               Figure 1: Logical Roles in NSH KPI Stamping

  The SC will be part of the SFC control-plane architecture, but it is
  described separately in this document for clarity.

  The SC is responsible for initiating start/stop stamp requests to the
  SCL or FSN and also for distributing the NSH-stamping policy into the
  service chain via the SCP interface.

  The FSN will typically be part of the SCL but is called out as a
  separate logical entity for clarity.

  The FSN is responsible for marking NSH MD fields; this tells nodes in
  the service chain how to behave in terms of stamping at the SF
  ingress, the SF egress, or both, or ignoring the stamp NSH MD
  completely.

  The FSN also writes the Reference Time value, a (possibly inaccurate)
  estimate of the current time of day, into the header, allowing the
  "SPI:Flow ID" performance to be compared to previous samples for
  offline analysis.

  The FSN should return an error to the SC if not synchronized to the
  current time of day and forward the packet along the service chain
  unchanged.  The code and format of the error are specific to the
  protocol used between the FSN and SC; these considerations are out of
  scope.




Browne, et al.                Informational                     [Page 6]

RFC 8592                    KPI Timestamping                    May 2019


  SF1 and SF2 stamp the packets as dictated by the FSN and process the
  payload as per normal.

  Note 1: The exact location of the stamp creation may not be in the SF
          itself and may be applied by a hardware device -- for
          example, as discussed in Section 3.3.

  Note 2: Special cases exist where some of the SFs are NSH unaware.
          This is covered in Section 5.

  The LSN should strip the entire NSH and forward the raw packet to the
  IP next hop as per [RFC8300].  The LSN also exports NSH-stamping
  information to the KPIDB for offline analysis; the LSN may export the
  stamping information of either (1) all packets or (2) a subset based
  on packet sampling.

  In fully virtualized environments, the LSN is likely to be co-located
  with the SF that decrements the NSH SI to zero.  Corner cases exist
  where this is not the case; see Section 5.

3.1.  Prerequisites

  Timestamping has its own set of prerequisites; however, these
  prerequisites are not required for QoS stamping.  In order to
  guarantee MD accuracy, all servers hosting VNFs should be
  synchronized from a centralized stable clock.  As it is assumed that
  PNFs do not timestamp (as this would involve a software change and a
  probable impact on throughput performance), there is no need for them
  to synchronize.  There are two possible levels of synchronization:

  Level A: Low-accuracy time-of-day synchronization, based on NTP
           [RFC5905].

  Level B: High-accuracy synchronization (typically on the order of
           microseconds), based on [IEEE1588].

  Each SF SHOULD have Level A synchronization and MAY have Level B
  synchronization.

  Level A requires each platform (including the SC) to synchronize its
  system real-time clock to an NTP server.  This is used to mark the MD
  in the chain, using the Reference Time field in the NSH KPI stamp
  header (Section 4.1).  This timestamp is inserted into the NSH by the
  first SF in the chain.  NTP accuracy can vary by several milliseconds
  between locations.  This is not an issue, as the Reference Time is
  merely being used as a time-of-day reference inserted into the KPIDB
  for performance monitoring and MD retrieval.




Browne, et al.                Informational                     [Page 7]

RFC 8592                    KPI Timestamping                    May 2019


  Level B synchronization requires each platform to be synchronized to
  a Primary Reference Clock (PRC) using the Precision Time Protocol
  (PTP) [IEEE1588].  A platform MAY also use Synchronous Ethernet
  [G.8261] [G.8262] [G.8264], allowing more accurate frequency
  synchronization.

  If an SF is not synchronized at the moment of timestamping, it should
  indicate its synchronization status in the NSH.  This is described in
  more detail in Section 4.

  By synchronizing the network in this way, the timestamping operation
  is independent of the current RSP.  Indeed, the timestamp MD can
  indicate where a chain has been moved due to a resource starvation
  event as indicated in Figure 2, between VNF3 and VNF4 at time B.

    Delay
     |                                  v
     |                           v
     |                                  x
     |                           x             x = Reference Time A
     |                    xv                   v = Reference Time B
     |             xv
     |      xv
     |______|______|______|______|______|_____
        VNF1    VNF2   VNF3   VNF4   VNF5

              Figure 2: Flow Performance in a Service Chain

  For QoS stamping, it is desired that the SCL or FSN be synchronized
  in order to provide a Reference Time for offline analysis, but this
  is not a hard requirement (they may be in holdover or free-run state,
  for example).  Other SFs in the service chain do not need to be
  synchronized for QoS-stamping operations, as described below.

  QoS stamping can be used to check the consistency of configuration
  across the entire chain or parts thereof.  By adding all potential
  Layer 2 and Layer 3 QoS fields into a QoS sum at the SF ingress or
  egress, this allows quick identification of QoS mismatches across
  multiple Layer 2 / Layer 3 fields, which otherwise is a manual,
  expert-led consuming process.











Browne, et al.                Informational                     [Page 8]

RFC 8592                    KPI Timestamping                    May 2019


  |
  |
  |                                  xy
  |                           xy           x = ingress QoS sum
  |                    xv                  v = egress QoS sum
  |             xv                         y = egress QoS sum mismatch
  |      xv
  |______|______|______|______|______|_____
        SF1    SF2    SF3    SF4    SF5

            Figure 3: Flow QoS Consistency in a Service Chain

  Referring to Figure 3, x, v, and y are notional sum values of the QoS
  marking configuration of the flow within a given chain.  As the
  encapsulation of the flow can change from hop to hop in terms of VLAN
  header(s), MPLS labels, or DSCP(s), these values are used to compare
  the consistency of configuration from, for example, payload DSCP
  through overlay and underlay QoS settings in VLAN IEEE 802.1Q bits,
  MPLS bits, and infrastructure DSCPs.

  Figure 3 indicates that, at SF4 in the chain, the egress QoS marking
  is inconsistent.  That is, the ingress QoS settings do not match the
  egress.  The method described here will indicate which QoS field(s)
  is inconsistent and whether this is ingress (where the underlay has
  incorrectly marked and queued the packet) or egress (where the SF has
  incorrectly marked and queued the packet.

  Note that the SC must be aware of cases when an SF re-marks QoS
  fields deliberately and thus does not flag an issue for desired
  behavior.

3.2.  Operation

  KPI-stamping detection mode uses MD Type 2 as defined in [RFC8300].
  This involves the SFC classifier stamping the flow at the chain
  ingress and no subsequent stamps being applied; rather, each upstream
  SF can compare its local condition with the ingress value and take
  appropriate action.  Therefore, detection mode is very efficient in
  terms of header size that does not grow after the classification.
  This is further explained in Section 4.2.

3.2.1.  Flow Selection

  The SC should maintain a list of flows within each service chain to
  be monitored.  This flow table should be in the format "SPI:Flow ID".
  The SC should map these pairs to unique values presented as Flow IDs
  per service chain within the NSH TLV specified in this document (see
  Section 4).  The SC should instruct the FSN to initiate timestamping



Browne, et al.                Informational                     [Page 9]

RFC 8592                    KPI Timestamping                    May 2019


  on flow table match.  The SC may also tell the classifier the
  duration of the timestamping operation, by either the number of
  packets in the flow or a certain time duration.

  In this way, the system can monitor the performance of all en-route
  traffic, an individual subscriber in a chain, or just a specific
  application or QoS class that is used in the network.

  The SC should write the list of monitored flows into the KPIDB for
  correlation of performance and configuration data.  Thus, when the
  KPIDB receives data from the LSN, it understands to which flow the
  data pertains.

  The association of a source IP address with a subscriber identity is
  outside the scope of this document and will vary by network
  application.  For example, the method of association of a source IP
  address with an International Mobile Subscriber Identity (IMSI) will
  be different from how a Customer Premises Equipment (CPE) entity with
  a Network Address Translation (NAT) function may be chained in an
  enterprise NFV application.

3.2.2.  SCP Interface

  An SCP interface is required between the SC and the FSN or
  classifier.  This interface is used to:

  o  Query the SFC classifier for a list of active chains and flows.

  o  Communicate which chains and flows to stamp.  This can be a
     specific "SPI:Flow ID" combination or can include wildcards for
     monitoring subscribers across multiple chains or multiple flows
     within one chain.

  o  Instruct how the stamp should be applied (ingress, egress, both
     ingress and egress, or specific).

  o  Indicate when to stop stamping (after either a certain number of
     packets or a certain time duration).

  Typically, SCP timestamps flows for a certain duration for trend
  analysis but only stamps one packet of each QoS class in a chain
  periodically (perhaps once per day or after a network change).
  Therefore, timestamping is generally applied to a much larger set of
  packets than QoS stamping.

  The exact specification of SCP is left for further study.





Browne, et al.                Informational                    [Page 10]

RFC 8592                    KPI Timestamping                    May 2019


3.3.  Performance Considerations

  This document does not mandate a specific stamping implementation
  method; thus, NSH KPI stamping can be performed by either hardware
  mechanisms or software.

  If software-based stamping is used, applying and operating on the
  stamps themselves incur an additional small delay in the service
  chain.  However, it can be assumed that these additional delays are
  all relative for the flow in question.  This is only pertinent for
  timestamping mode, and not for QoS-stamping mode.  Thus, whilst the
  absolute timestamps may not be fully accurate for normal
  non-timestamped traffic, they can be assumed to be relative.

  It is assumed that the methods described in this document would only
  operate on a small percentage of user flows.

  The service provider may choose a flexible policy in the SC to
  timestamp a selection of a user plane every minute -- for example, to
  highlight any performance issues.  Alternatively, the LSN may
  selectively export a subset of the KPI stamps it receives, based on a
  predefined sampling method.  Of course, the SC can stress-test an
  individual flow or chain should a deeper analysis be required.  We
  can expect that this type of deep analysis will have an impact on the
  performance of the chain itself whilst under investigation.  This
  impact will be dependent on vendor implementations and is outside the
  scope of this document.

  For QoS stamping, the methods described here are even less intrusive,
  as typically packets are only QoS stamped periodically (perhaps once
  per day) to check service chain configuration per QoS class.




















Browne, et al.                Informational                    [Page 11]

RFC 8592                    KPI Timestamping                    May 2019


4.  NSH KPI-Stamping Encapsulation

  KPI stamping uses NSH MD Type 0x2 for detection of anomalies and
  extended mode for root-cause analysis of KPI violations.  These are
  further explained in this section.

  The generic NSH MD Type 2 TLV for KPI stamping is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Service Path Identifier              | Service Index |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Metadata Class         |      Type     |U|    Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Variable Length KPI Metadata header and TLV(s)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 4: Generic NSH KPI Encapsulation

  Relevant fields in the header that the FSN must implement are as
  follows:

  o  The O bit must not be set.

  o  The MD type must be set to 0x2.

  o  The Metadata Class must be set to a value from the experimental
     range 0xfff6 to 0xfffe according to an agreement by all parties to
     the experiment.

  o  Unassigned bits: All fields marked "U" are unassigned and
     available for future use [RFC8300].

  o  The Type field may have one of the following values; the content
     of the Variable Length KPI Metadata header and TLV(s) field
     depends on the Type value:

     *  Type = 0x01 (Det): Detection

     *  Type = 0x02 (TS): Timestamp Extended

     *  Type = 0x03 (QoS): QoS stamp Extended

  The Type field determines the type of KPI-stamping format.  The
  supported formats are presented in the following subsections.



Browne, et al.                Informational                    [Page 12]

RFC 8592                    KPI Timestamping                    May 2019


4.1.  KPI-Stamping Extended Encapsulation

  The generic NSH MD Type 2 KPI-stamping header (extended mode) is
  shown in Figure 5.  This is the format for performance monitoring of
  service chain issues with respect to QoS configuration and latency.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Service Path Identifier              | Service Index |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Metadata Class        |     Type      |U|    Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Variable Length KPI Configuration Header            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Variable Length KPI Value (LSN)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   \                                                               \
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Variable Length KPI Value (FSN)              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 5: Generic KPI Encapsulation (Extended Mode)

  As mentioned above, two types are defined under the experimental MD
  class to indicate the extended KPI MD: a timestamp type and a
  QoS-stamp type.

  The KPI Encapsulation Configuration Header format is shown below.

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |K|K|T|K|K|K|K|K|   Stamping SI |           Flow ID             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Reference Time                         |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 6: KPI Encapsulation Configuration Header











Browne, et al.                Informational                    [Page 13]

RFC 8592                    KPI Timestamping                    May 2019


  The bits marked "K" are reserved for specific KPI type use and are
  described in the subsections below.

  The T bit should be set if Reference Time follows the KPI
  Encapsulation Configuration Header.

  The SSI (Stamping SI) contains the SI used for KPI stamping and is
  described in the subsections below.

  The Flow ID is a unique 16-bit identifier written into the header by
  the classifier.  This allows 65536 flows to be concurrently stamped
  on any given NSH service chain (SPI).  Flow IDs are not written by
  subsequent SFs in the chain.  The FSN may export monitored Flow IDs
  to the KPIDB for correlation.

  Reference Time is the wall clock of the FSN and may be used for
  historical comparison of SC performance.  If the FSN is not Level A
  synchronized (see Section 3.1), it should inform the SC over the SCP
  interface.  The Reference Time is represented in 64-bit NTP format
  [RFC5905], as presented in Figure 7:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Seconds                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Fraction                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 7: NTP 64-Bit Timestamp Format (RFC 5905)





















Browne, et al.                Informational                    [Page 14]

RFC 8592                    KPI Timestamping                    May 2019


4.1.1.  NSH Timestamping Encapsulation (Extended Mode)

  The NSH timestamping extended encapsulation is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|C|U|U|U|U|U|U|   Length  |U|U|U|U|Type=2 |   NextProto   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Service Path ID                      | Service Index |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Metadata Class         |  Type=TS(2) |U|     Len     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |I|E|T|U|U|U|SSI|  Stamping SI  |           Flow ID             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |              Reference Time (T bit is set)                    |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |I|E|U|U|U| SYN |  Stamping SI  |         Unassigned            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |            Ingress Timestamp (I bit is set) (LSN)             |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Egress Timestamp (E bit is set) (LSN)             |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |I|E|U|U|U| SYN |  Stamping SI  |          Unassigned           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |                 Ingress Timestamp (I bit is set) (FSN)        |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Egress Timestamp (E bit is set) (FSN)         |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 8: NSH Timestamp Encapsulation (Extended Mode)

  The FSN KPI stamp MD starts with the Stamping Configuration Header.
  This header contains the I, E, and T bits, and the SSI.

  The I bit should be set if the Ingress stamp is requested.

  The E bit should be set if the Egress stamp is requested.





Browne, et al.                Informational                    [Page 15]

RFC 8592                    KPI Timestamping                    May 2019


  The SSI field must be set to one of the following values:

  o  0x0: KPI stamp mode.  No SI is specified in the Stamping SI field.

  o  0x1: KPI stamp hybrid mode is selected.  The Stamping SI field
     contains the LSN SI.  This is used when PNFs or NSH-unaware SFs
     are used at the tail of the chain.  If SSI=0x1, then the value in
     the Type field informs the chain regarding which SF should act as
     the LSN.

  o  0x2: KPI stamp Specific mode is selected.  The Stamping SI field
     contains the targeted SI.  In this case, the Stamping SI field
     indicates which SF is to be stamped.  Both Ingress stamps and
     Egress stamps are performed when the SI=SSI in the chain.  For
     timestamping mode, the FSN will also apply the Reference Time and
     Ingress Timestamp.  This will indicate the delay along the entire
     service chain to the targeted SF.  This method may also be used as
     a light implementation to monitor end-to-end service chain
     performance whereby the targeted SF is the LSN.  This is not
     applicable to QoS-stamping mode.

  Each stamping node adds stamp MD that consists of the Stamping
  Reporting Header and timestamps.

  The E bit should be set if the Egress stamp is reported.

  The I bit should be set if the Ingress stamp is reported.

  With respect to timestamping mode, the SYN bits are an indication of
  the synchronization status of the node performing the timestamp and
  must be set to one of the following values:

  o  In synch: 0x00

  o  In holdover: 0x01

  o  In free run: 0x02

  o  Out of synch: 0x03

  If the platform hosting the SF is out of synch or in free run, no
  timestamp is applied by the node, and the packet is processed
  normally.








Browne, et al.                Informational                    [Page 16]

RFC 8592                    KPI Timestamping                    May 2019


  If the FSN is out of synch or in free run, the timestamp request is
  rejected and is not propagated through the chain.  In such an event,
  the FSN should inform the SC over the SCP interface.  Similarly, if
  the KPIDB receives timestamps that are out of order (i.e., a
  timestamp of an "N+1" SF is prior to the timestamp of an "N" SF), it
  should notify the SC of this condition over the SCP interface.

  The outer SI value is copied into the stamp MD as the Stamping SI to
  help cater to hybrid chains that are a mix of VNFs and PNFs or
  through NSH-unaware SFs.  Thus, if a flow transits through a PNF or
  an NSH-unaware node, the delta in the inner SI between timestamps
  will indicate this.

  The Ingress Timestamp and Egress Timestamp are represented in 64-bit
  NTP format.  The corresponding bits (I and E) are reported in the
  Stamping Reporting Header of the node's MD.

4.1.2.  NSH QoS-Stamping Encapsulation (Extended Mode)

  Packets have a variable QoS stack.  For example, the same payload IP
  can have a very different stack in the access part of the network
  than the core.  This is most apparent in mobile networks where, for
  example, in an access circuit we would have an infrastructure IP
  header (DSCP) composed of two layers -- one based on transport and
  the other based on IPsec -- in addition to multiple MPLS and VLAN
  tags.  The same packet, as it leaves the Packet Data Network (PDN)
  Gateway Gi egress interface, may be very much simplified in terms of
  overhead and related QoS fields.

  Because of this variability, we need to build extra meaning into the
  QoS headers.  They are not, for example, all PTP timestamps of a
  fixed length, as in the case of timestamping; rather, they are of
  variable lengths and types.  Also, they can be changed on the
  underlay at any time without the knowledge of the SFC system.
  Therefore, each SF must be able to ascertain and record its ingress
  and egress QoS configuration on the fly.















Browne, et al.                Informational                    [Page 17]

RFC 8592                    KPI Timestamping                    May 2019


  The suggested QoS Type (QT) and lengths are listed below.

   QoS Type  Value    Length    Comment
   ----------------------------------------------------------
   IVLAN     0x01     4 Bits    Ingress VLAN (PCP + DEI)

   EVLAN     0x02     4 Bits    Egress VLAN

   IQINQ     0x03     8 Bits    Ingress QinQ (2x (PCP + DEI))

   EQINQ     0x04     8 Bits    Egress QinQ

   IMPLS     0x05     3 Bits    Ingress Label

   EMPLS     0x06     3 Bits    Egress Label

   IMPLS     0x07     6 Bits    Two Ingress Labels (2x EXP)

   EMPLS     0x08     6 Bits    Two Egress Labels

   IDSCP     0x09     8 Bits    Ingress DSCP

   EDSCP     0x0A     8 Bits    Egress DSCP

  For stacked headers such as MPLS and 802.1ad, we extract the relevant
  QoS data from the header and insert it into one QoS value in order to
  be more efficient in terms of packet size.  Thus, for MPLS, we
  represent both experimental bits (EXP) fields in one QoS value, and
  both 802.1p priority and drop precedence in one QoS value, as
  indicated above.

  For stack types not listed here (for example, three or more MPLS
  tags), the SF would insert IMPLS/EMPLS several times, with each layer
  in the stack indicating EXP QoS for that layer.

















Browne, et al.                Informational                    [Page 18]

RFC 8592                    KPI Timestamping                    May 2019


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|C|U|U|U|U|U|U|   Length  |U|U|U|U|Type=2 | NextProto=0x0 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Service Path ID                      | Service Index |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Metadata Class        |   Type=QoS(3) |U|     Len     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|U|T|U|U|U|SSI|  Stamping SI  |           Flow ID             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |              Reference Time (T bit is set)                    |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|U|U|U|U|U|U|U|  Stamping SI  |         Unassigned            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |   QT  |    QoS Value  |U|U|U|E|  QT   | QoS Value     |U|U|U|E|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   .                                                               .
   .                                                               .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|U|U|U|U|U|U|U|  Stamping SI  |          Unassigned           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |   QT  |   QoS Value   |U|U|U|E|  QT   | QoS Value     |U|U|U|E|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 9: NSH QoS Configuration Encapsulation (Extended Mode)

  The encapsulation in Figure 9 is very similar to the encapsulation
  detailed in Section 4.1.1, with the following exceptions:

  o  I and E bits are not required, as we wish to examine the full QoS
     stack at the ingress and egress at every SF.

  o  SYN status bits are not required.

  o  The QT and QoS values are as outlined in the list above.

  o  The E bit at the tail of each QoS context field indicates if this
     is the last egress QoS stamp for a given SF.  This should coincide
     with SI=0 at the LSN, whereby the packet is truncated, the NSH MD
     is sent to the KPIDB, and the subscriber's raw IP packet is
     forwarded to the underlay next hop.








Browne, et al.                Informational                    [Page 19]

RFC 8592                    KPI Timestamping                    May 2019


  Note: It is possible to compress the frame structure to better
  utilize the header, but this would come at the expense of crossing
  byte boundaries.  For ease of implementation, and so that
  QoS stamping is applied on an extremely small subset of user-plane
  traffic, we believe that the above structure is a pragmatic
  compromise between header efficiency and ease of implementation.

4.2.  KPI-Stamping Encapsulation (Detection Mode)

  The format of the NSH MD Type 2 KPI-stamping TLV (detection mode) is
  shown in Figure 10.

  This TLV is used for KPI anomaly detection.  Upon detecting a problem
  or an anomaly, it will be possible to enable the use of KPI-stamping
  extended encapsulations, which will provide more detailed analysis.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|Type=2 | Next Protocol |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Service Path Identifier              | Service Index |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Metadata Class         | Type=Det(1)   |U|    Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   KPI Type    |      Stamping SI      |          Flow ID      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Threshold KPI Value                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Ingress KPI stamp                       |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 10: Generic NSH KPI Encapsulation (Detection Mode)

  The following fields are defined in the KPIDB MD:

  o  KPI Type: This field determines the type of KPI stamp that is
     included in this MD.  If a receiver along the path does not
     understand the KPI type, it will pass the packet on transparently
     and will not drop it.  The supported values of KPI Type are:

     *  0x0: Timestamp

     *  0x1: QoS stamp






Browne, et al.                Informational                    [Page 20]

RFC 8592                    KPI Timestamping                    May 2019


  o  Threshold KPI Value: In the first header, the SFC classifier may
     program a KPI threshold value.  This is a value that, when
     exceeded, requires the SF to insert the current SI value into the
     SI field.  The KPI type is the type of KPI stamp inserted into the
     header as per Figure 10.

  o  Stamping SI: This is the Service Identifier of the SF when the
     above threshold value is exceeded.

  o  Flow ID: The Flow ID is inserted into the header by the SFC
     classifier in order to correlate flow data in the KPIDB for
     offline analysis.

  o  Ingress KPI stamp: The last 8 octets are reserved for the
     KPI stamp.  This is the KPI value at the chain ingress at the SFC
     classifier.  Depending on the KPI type, the KPI stamp includes
     either a timestamp or a QoS stamp.  If the KPI type is Timestamp,
     then the Ingress KPI stamp field contains a timestamp in 64-bit
     NTP timestamp format.  If the KPI type is QoS stamp, then the
     format of the 64-bit Ingress KPI stamp is as follows.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   QT  |    QoS Value  |              Unassigned               |
   +-+-+-+-+-+-+-+-+-+-+-+-+                                       +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 11: QoS-Stamp Format (Detection Mode)

  As an example operation, let's say we are using KPI type 0x01
  (Timestamp).  When an SF (say SFn) receives the packet, it can
  compare the current local timestamp (it first checks that it is
  synchronized to the network's PRC) with the chain Ingress Timestamp
  to calculate the latency in the chain.  If this value exceeds the
  timestamp threshold, it then inserts its SI and returns the NSH to
  the KPIDB.  This effectively tells the system that at SFn the packet
  violated the KPI threshold.  Please refer to Figure 8 for the
  timestamp format.

  When this occurs, the SFC control-plane system would then invoke the
  KPI extended mode, which uses a more sophisticated (and intrusive)
  method to isolate the root cause of the KPI violation, as described
  below.






Browne, et al.                Informational                    [Page 21]

RFC 8592                    KPI Timestamping                    May 2019


  Note: Whilst detection mode is a valuable tool for latency actions,
  the authors feel that building the logic into the KPI system for QoS
  configuration is not justified.  As QoS stamping is done infrequently
  and on a tiny percentage of the user plane, it is more practical to
  use extended mode only for service chain QoS verification.

5.  Hybrid Models

  A hybrid chain may be defined as a chain whereby there is a mix of
  NSH-aware and NSH-unaware SFs.

  Figure 12 shows an example of a hybrid chain with a PNF in the
  middle.

     Stamping
    Controller
        |                                                      KPIDB
        | SCP Interface                                        |
      ,---.             ,---.              ,---.              ,---.
     /     \           /     \            /     \            /     \
    (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  SFn  )
     \ FSN /           \     /            \ PNF1/            \ LSN /
      `---'             `---'              `---'              `---'

               Figure 12: Hybrid Chain with PNF in Middle

  In this example, the FSN begins its operation and sets the SI to 3.
  SF1 decrements the SI to 2 and passes the packet to an SFC proxy
  (not shown).

  The SFC proxy strips the NSH and passes the packet to the PNF.  On
  receipt back from the PNF, the proxy decrements the SI and passes the
  packet to the LSN with SI=1.

  After the LSN processes the traffic, it knows from the SI value that
  it is the last node in the chain, and it exports the entire NSH and
  all MD to the KPIDB.  The payload is forwarded to the next hop on the
  underlay minus the NSH.  The stamping information packet may be given
  a new SPI to act as a homing tag to transport the stamp data back to
  the KPIDB.











Browne, et al.                Informational                    [Page 22]

RFC 8592                    KPI Timestamping                    May 2019


  Figure 13 shows an example of a hybrid chain with a PNF at the end.

    Stamping
   Controller
       |                                                      KPIDB
       | SCP Interface                                        |
     ,---.             ,---.              ,---.              ,---.
    /     \           /     \            /     \            /     \
   (  SCL  )-------->(  SF1  )--------->(  SF2  )--------->(  PNFN )
    \ FSN /           \     /            \ LSN /            \     /
     `---'             `---'              `---'              `---'

                 Figure 13: Hybrid Chain with PNF at End

  In this example, the FSN begins its operation and sets the SI to 3.
  The SSI field is set to 0x1, and the type is set to 1.  Thus, when
  SF2 receives the packet with SI=1, it understands that it is expected
  to take on the role of the LSN, as it is the last NSH-aware node in
  the chain.

5.1.  Targeted VNF Stamping

  For the majority of flows within the service chain, stamps (Ingress
  stamps, Egress stamps, or both) will be carried out at each hop until
  the SI decrements to zero and the NSH and stamp MD are exported to
  the KPIDB.  However, the need to just test a particular VNF may exist
  (perhaps after a scale-out operation, software upgrade, or underlay
  change, for example).  In this case, the FSN should mark the NSH as
  follows:

  o  The SSI field is set to 0x2.

  o  Type is set to the expected SI at the SF in question.

  o  When the outer SI is equal to the SSI, stamps are applied at the
     SF ingress and egress, and the NSH and MD are exported to the
     KPIDB.

6.  Fragmentation Considerations

  The methods described in this document do not support fragmentation.
  The SC should return an error should a stamping request from an
  external system exceed MTU limits and require fragmentation.

  Depending on the length of the payload and the type of KPI stamp and
  chain length, this will vary for each packet.





Browne, et al.                Informational                    [Page 23]

RFC 8592                    KPI Timestamping                    May 2019


  In most service provider architectures, we would expect SI << 10,
  which may include some PNFs in the chain that do not add overhead.
  Thus, for typical Internet Mix (IMIX) packet sizes [RFC6985], we
  expect to be able to perform timestamping on the vast majority of
  flows without fragmentation.  Thus, the classifier can apply a simple
  rule that only allows KPI stamping on packet sizes less than 1200
  bytes, for example.

7.  Security Considerations

  The security considerations for the NSH in general are discussed in
  [RFC8300].

  In-band timestamping, as defined in this document, can be used as a
  means for network reconnaissance.  By passively eavesdropping on
  timestamped traffic, an attacker can gather information about network
  delays and performance bottlenecks.

  The NSH timestamp is intended to be used by various applications to
  monitor network performance and to detect anomalies.  Thus, a
  man-in-the-middle attacker can maliciously modify timestamps in order
  to attack applications that use the timestamp values.  For example,
  an attacker could manipulate the SFC classifier operation, such that
  it forwards traffic through "better-behaved" chains.  Furthermore, if
  timestamping is performed on a fraction of the traffic, an attacker
  can selectively induce synthetic delay only to timestamped packets
  and can systematically trigger measurement errors.

  Similarly, if an attacker can modify QoS stamps, erroneous values may
  be imported into the KPIDB, resulting in further misconfiguration and
  subscriber QoE impairment.

  An attacker that gains access to the SCP can enable timestamping and
  QoS stamping for all subscriber flows, thereby causing performance
  bottlenecks, fragmentation, or outages.

  As discussed in previous sections, NSH timestamping relies on an
  underlying time synchronization protocol.  Thus, by attacking the
  time protocol, an attacker can potentially compromise the integrity
  of the NSH timestamp.  A detailed discussion about the threats
  against time protocols and how to mitigate them is presented in
  [RFC7384].

8.  IANA Considerations

  This document has no IANA actions.





Browne, et al.                Informational                    [Page 24]

RFC 8592                    KPI Timestamping                    May 2019


9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8300]  Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
             "Network Service Header (NSH)", RFC 8300,
             DOI 10.17487/RFC8300, January 2018,
             <https://www.rfc-editor.org/info/rfc8300>.

9.2.  Informative References

  [IEEE1588]
             IEEE, "IEEE Standard for a Precision Clock Synchronization
             Protocol for Networked Measurement and Control Systems",
             IEEE Standard 1588,
             <https://standards.ieee.org/standard/1588-2008.html>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC7384]  Mizrahi, T., "Security Requirements of Time Protocols in
             Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
             October 2014, <https://www.rfc-editor.org/info/rfc7384>.

  [RFC6985]  Morton, A., "IMIX Genome: Specification of Variable Packet
             Sizes for Additional Testing", RFC 6985,
             DOI 10.17487/RFC6985, July 2013,
             <https://www.rfc-editor.org/info/rfc6985>.






Browne, et al.                Informational                    [Page 25]

RFC 8592                    KPI Timestamping                    May 2019


  [Y.1731]   ITU-T Recommendation G.8013/Y.1731, "Operations,
             administration and maintenance (OAM) functions and
             mechanisms for Ethernet-based networks", August 2015,
             <https://www.itu.int/rec/T-REC-G.8013/en>.

  [G.8261]   ITU-T Recommendation G.8261/Y.1361, "Timing and
             synchronization aspects in packet networks", August 2013,
             <https://www.itu.int/rec/T-REC-G.8261>.

  [G.8262]   ITU-T Recommendation G.8262/Y.1362, "Timing
             characteristics of a synchronous Ethernet equipment slave
             clock", November 2018,
             <https://www.itu.int/rec/T-REC-G.8262>.

  [G.8264]   ITU-T Recommendation G.8264/Y.1364, "Distribution of
             timing information through packet networks", August 2017,
             <https://www.itu.int/rec/T-REC-G.8264>.

  [In-Situ-OAM]
             Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
             Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
             P., Chang, R., Bernier, D., and J. Lemon, "Data Fields for
             In-situ OAM", Work in Progress,
             draft-ietf-ippm-ioam-data-05, March 2019.



























Browne, et al.                Informational                    [Page 26]

RFC 8592                    KPI Timestamping                    May 2019


Acknowledgments

  The authors gratefully acknowledge Mohamed Boucadair, Martin
  Vigoureux, and Adrian Farrel for their thorough reviews and helpful
  comments.

Contributors

  This document originated as draft-browne-sfc-nsh-timestamp-00; the
  following people were coauthors of that draft.  We would like to
  thank them and recognize them for their contributions.

  Yoram Moses
  Technion
  Email: [email protected]

  Brendan Ryan
  Intel Corporation
  Email: [email protected]

Authors' Addresses

  Rory Browne
  Intel
  Dromore House
  Shannon
  Co. Clare
  Ireland

  Email: [email protected]


  Andrey Chilikin
  Intel
  Dromore House
  Shannon
  Co. Clare
  Ireland

  Email: [email protected]


  Tal Mizrahi
  Huawei Network.IO Innovation Lab
  Israel

  Email: [email protected]




Browne, et al.                Informational                    [Page 27]