Internet Engineering Task Force (IETF)                         K. Watsen
Request for Comments: 8572                               Watsen Networks
Category: Standards Track                                      I. Farrer
ISSN: 2070-1721                                      Deutsche Telekom AG
                                                         M. Abrahamsson
                                                              T-Systems
                                                             April 2019


                Secure Zero Touch Provisioning (SZTP)

Abstract

  This document presents a technique to securely provision a networking
  device when it is booting in a factory-default state.  Variations in
  the solution enable it to be used on both public and private
  networks.  The provisioning steps are able to update the boot image,
  commit an initial configuration, and execute arbitrary scripts to
  address auxiliary needs.  The updated device is subsequently able to
  establish secure connections with other systems.  For instance, a
  device may establish NETCONF (RFC 6241) and/or RESTCONF (RFC 8040)
  connections with deployment-specific network management systems.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8572.















Watsen, et al.               Standards Track                    [Page 1]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Watsen, et al.               Standards Track                    [Page 2]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   5
    1.1.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . .   5
    1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   6
    1.3.  Requirements Language . . . . . . . . . . . . . . . . . .   8
    1.4.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   8
  2.  Types of Conveyed Information . . . . . . . . . . . . . . . .   8
    2.1.  Redirect Information  . . . . . . . . . . . . . . . . . .   8
    2.2.  Onboarding Information  . . . . . . . . . . . . . . . . .   9
  3.  Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . .  10
    3.1.  Conveyed Information  . . . . . . . . . . . . . . . . . .  10
    3.2.  Owner Certificate . . . . . . . . . . . . . . . . . . . .  12
    3.3.  Ownership Voucher . . . . . . . . . . . . . . . . . . . .  13
    3.4.  Artifact Encryption . . . . . . . . . . . . . . . . . . .  13
    3.5.  Artifact Groupings  . . . . . . . . . . . . . . . . . . .  14
  4.  Sources of Bootstrapping Data . . . . . . . . . . . . . . . .  15
    4.1.  Removable Storage . . . . . . . . . . . . . . . . . . . .  15
    4.2.  DNS Server  . . . . . . . . . . . . . . . . . . . . . . .  16
    4.3.  DHCP Server . . . . . . . . . . . . . . . . . . . . . . .  20
    4.4.  Bootstrap Server  . . . . . . . . . . . . . . . . . . . .  21
  5.  Device Details  . . . . . . . . . . . . . . . . . . . . . . .  22
    5.1.  Initial State . . . . . . . . . . . . . . . . . . . . . .  22
    5.2.  Boot Sequence . . . . . . . . . . . . . . . . . . . . . .  24
    5.3.  Processing a Source of Bootstrapping Data . . . . . . . .  25
    5.4.  Validating Signed Data  . . . . . . . . . . . . . . . . .  27
    5.5.  Processing Redirect Information . . . . . . . . . . . . .  28
    5.6.  Processing Onboarding Information . . . . . . . . . . . .  28
  6.  The Conveyed Information Data Model . . . . . . . . . . . . .  32
    6.1.  Data Model Overview . . . . . . . . . . . . . . . . . . .  32
    6.2.  Example Usage . . . . . . . . . . . . . . . . . . . . . .  32
    6.3.  YANG Module . . . . . . . . . . . . . . . . . . . . . . .  34
  7.  The SZTP Bootstrap Server API . . . . . . . . . . . . . . . .  41
    7.1.  API Overview  . . . . . . . . . . . . . . . . . . . . . .  41
    7.2.  Example Usage . . . . . . . . . . . . . . . . . . . . . .  42
    7.3.  YANG Module . . . . . . . . . . . . . . . . . . . . . . .  45
  8.  DHCP Options  . . . . . . . . . . . . . . . . . . . . . . . .  56
    8.1.  DHCPv4 SZTP Redirect Option . . . . . . . . . . . . . . .  56
    8.2.  DHCPv6 SZTP Redirect Option . . . . . . . . . . . . . . .  58
    8.3.  Common Field Encoding . . . . . . . . . . . . . . . . . .  59
  9.  Security Considerations . . . . . . . . . . . . . . . . . . .  59
    9.1.  Clock Sensitivity . . . . . . . . . . . . . . . . . . . .  59
    9.2.  Use of IDevID Certificates  . . . . . . . . . . . . . . .  60
    9.3.  Immutable Storage for Trust Anchors . . . . . . . . . . .  60
    9.4.  Secure Storage for Long-Lived Private Keys  . . . . . . .  60
    9.5.  Blindly Authenticating a Bootstrap Server . . . . . . . .  60
    9.6.  Disclosing Information to Untrusted Servers . . . . . . .  60
    9.7.  Sequencing Sources of Bootstrapping Data  . . . . . . . .  61



Watsen, et al.               Standards Track                    [Page 3]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


    9.8.  Safety of Private Keys Used for Trust . . . . . . . . . .  62
    9.9.  Increased Reliance on Manufacturers . . . . . . . . . . .  62
    9.10. Concerns with Trusted Bootstrap Servers . . . . . . . . .  63
    9.11. Validity Period for Conveyed Information  . . . . . . . .  63
    9.12. Cascading Trust via Redirects . . . . . . . . . . . . . .  64
    9.13. Possible Reuse of Private Keys  . . . . . . . . . . . . .  65
    9.14. Non-issue with Encrypting Signed Artifacts  . . . . . . .  65
    9.15. The "ietf-sztp-conveyed-info" YANG Module . . . . . . . .  65
    9.16. The "ietf-sztp-bootstrap-server" YANG Module  . . . . . .  66
  10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  67
    10.1.  The IETF XML Registry  . . . . . . . . . . . . . . . . .  67
    10.2.  The YANG Module Names Registry . . . . . . . . . . . . .  67
    10.3.  The SMI Security for S/MIME CMS Content Type Registry  .  68
    10.4.  The BOOTP Vendor Extensions and DHCP Options Registry  .  68
    10.5.  The Dynamic Host Configuration Protocol for IPv6
           (DHCPv6) Registry  . . . . . . . . . . . . . . . . . . .  68
    10.6.  The Service Name and Transport Protocol Port Number
           Registry . . . . . . . . . . . . . . . . . . . . . . . .  69
    10.7.  The Underscored and Globally Scoped DNS Node Names
           Registry . . . . . . . . . . . . . . . . . . . . . . . .  69
  11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  69
    11.1.  Normative References . . . . . . . . . . . . . . . . . .  69
    11.2.  Informative References . . . . . . . . . . . . . . . . .  71
  Appendix A.  Example Device Data Model  . . . . . . . . . . . . .  74
    A.1.  Data Model Overview . . . . . . . . . . . . . . . . . . .  74
    A.2.  Example Usage . . . . . . . . . . . . . . . . . . . . . .  75
    A.3.  YANG Module . . . . . . . . . . . . . . . . . . . . . . .  75
  Appendix B.  Promoting a Connection from Untrusted to Trusted . .  79
  Appendix C.  Workflow Overview  . . . . . . . . . . . . . . . . .  80
    C.1.  Enrollment and Ordering Devices . . . . . . . . . . . . .  80
    C.2.  Owner Stages the Network for Bootstrap  . . . . . . . . .  83
    C.3.  Device Powers On  . . . . . . . . . . . . . . . . . . . .  85
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  87
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  87

















Watsen, et al.               Standards Track                    [Page 4]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


1.  Introduction

  A fundamental business requirement for any network operator is to
  reduce costs where possible.  For network operators, deploying
  devices to many locations can be a significant cost, as sending
  trained specialists to each site for installations is both cost
  prohibitive and does not scale.

  This document defines Secure Zero Touch Provisioning (SZTP), a
  bootstrapping strategy enabling devices to securely obtain
  bootstrapping data with no installer action beyond physical placement
  and connecting network and power cables.  As such, SZTP enables non-
  technical personnel to bring up devices in remote locations without
  the need for any operator input.

  The SZTP solution includes updating the boot image, committing an
  initial configuration, and executing arbitrary scripts to address
  auxiliary needs.  The updated device is subsequently able to
  establish secure connections with other systems.  For instance, a
  device may establish NETCONF [RFC6241] and/or RESTCONF [RFC8040]
  connections with deployment-specific network management systems.

  This document primarily regards physical devices, where the setting
  of the device's initial state (described in Section 5.1) occurs
  during the device's manufacturing process.  The SZTP solution may be
  extended to support virtual machines or other such logical
  constructs, but details for how this can be accomplished is left for
  future work.

1.1.  Use Cases

  o  Device connecting to a remotely administered network

        This use case involves scenarios, such as a remote branch
        office or convenience store, whereby a device connects as an
        access gateway to an ISP's network.  Assuming it is not
        possible to customize the ISP's network to provide any
        bootstrapping support, and with no other nearby device to
        leverage, the device has no recourse but to reach out to an
        Internet-based bootstrap server to bootstrap from.











Watsen, et al.               Standards Track                    [Page 5]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  o  Device connecting to a locally administered network

        This use case covers all other scenarios and differs only in
        that the device may additionally leverage nearby devices, which
        may direct it to use a local service to bootstrap from.  If no
        such information is available, or the device is unable to use
        the information provided, it can then reach out to the network
        just as it would for the remotely administered network use
        case.

  Conceptual workflows for how SZTP might be deployed are provided in
  Appendix C.

1.2.  Terminology

  This document uses the following terms (sorted alphabetically):

  Artifact:  The term "artifact" is used throughout this document to
      represent any of the three artifacts defined in Section 3
      (conveyed information, ownership voucher, and owner certificate).
      These artifacts collectively provide all the bootstrapping data a
      device may use.

  Bootstrapping Data:  The term "bootstrapping data" is used throughout
      this document to refer to the collection of data that a device
      may obtain during the bootstrapping process.  Specifically, it
      refers to the three artifacts defined in Section 3 (conveyed
      information, owner certificate, and ownership voucher).

  Bootstrap Server:  The term "bootstrap server" is used within this
      document to mean any RESTCONF server implementing the YANG module
      defined in Section 7.3.

  Conveyed Information:  The term "conveyed information" is used herein
      to refer to either redirect information or onboarding
      information.  Conveyed information is one of the three
      bootstrapping artifacts described in Section 3.

  Device:  The term "device" is used throughout this document to refer
      to a network element that needs to be bootstrapped.  See
      Section 5 for more information about devices.

  Manufacturer:  The term "manufacturer" is used herein to refer to the
      manufacturer of a device or a delegate of the manufacturer.







Watsen, et al.               Standards Track                    [Page 6]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Network Management System (NMS):  The acronym "NMS" is used
      throughout this document to refer to the deployment-specific
      management system that the bootstrapping process is responsible
      for introducing devices to.  From a device's perspective, when
      the bootstrapping process has completed, the NMS is a NETCONF or
      RESTCONF client.

  Onboarding Information:  The term "onboarding information" is used
      herein to refer to one of the two types of "conveyed information"
      defined in this document, the other being "redirect information".
      Onboarding information is formally defined by the "onboarding-
      information" container within the "conveyed-information" yang-
      data structure in Section 6.3.

  Onboarding Server:  The term "onboarding server" is used herein to
      refer to a bootstrap server that only returns onboarding
      information.

  Owner:  The term "owner" is used throughout this document to refer to
      the person or organization that purchased or otherwise owns a
      device.

  Owner Certificate:  The term "owner certificate" is used in this
      document to represent an X.509 certificate that binds an owner
      identity to a public key, which a device can use to validate a
      signature over the conveyed information artifact.  The owner
      certificate may be communicated along with its chain of
      intermediate certificates leading up to a known trust anchor.
      The owner certificate is one of the three bootstrapping artifacts
      described in Section 3.

  Ownership Voucher:  The term "ownership voucher" is used in this
      document to represent the voucher artifact defined in [RFC8366].
      The ownership voucher is used to assign a device to an owner.
      The ownership voucher is one of the three bootstrapping artifacts
      described in Section 3.

  Redirect Information:  The term "redirect information" is used herein
      to refer to one of the two types of "conveyed information"
      defined in this document, the other being "onboarding
      information".  Redirect information is formally defined by the
      "redirect-information" container within the "conveyed-
      information" yang-data structure in Section 6.3.








Watsen, et al.               Standards Track                    [Page 7]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Redirect Server:  The term "redirect server" is used to refer to a
      bootstrap server that only returns redirect information.  A
      redirect server is particularly useful when hosted by a
      manufacturer, as a well-known (e.g., Internet-based) resource to
      redirect devices to deployment-specific bootstrap servers.

  Signed Data:  The term "signed data" is used throughout to mean
      conveyed information that has been signed, specifically by a
      private key possessed by a device's owner.

  Unsigned Data:  The term "unsigned data" is used throughout to mean
      conveyed information that has not been signed.

1.3.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.4.  Tree Diagrams

  Tree diagrams used in this document follow the notation defined in
  [RFC8340].

2.  Types of Conveyed Information

  This document defines two types of conveyed information that devices
  can access during the bootstrapping process.  These conveyed
  information types are described in this section.  Examples are
  provided in Section 6.2.

2.1.  Redirect Information

  Redirect information redirects a device to another bootstrap server.
  Redirect information encodes a list of bootstrap servers, each
  specifying the bootstrap server's hostname (or IP address), an
  optional port, and an optional trust anchor certificate that the
  device can use to authenticate the bootstrap server with.











Watsen, et al.               Standards Track                    [Page 8]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Redirect information is YANG-modeled data formally defined by the
  "redirect-information" container in the YANG module presented in
  Section 6.3.  This container has the tree diagram shown below.

              +--:(redirect-information)
                 +-- redirect-information
                    +-- bootstrap-server* [address]
                       +-- address         inet:host
                       +-- port?           inet:port-number
                       +-- trust-anchor?   cms

  Redirect information may be trusted or untrusted.  The redirect
  information is trusted whenever it is obtained via a secure
  connection to a trusted bootstrap server or whenever it is signed by
  the device's owner.  In all other cases, the redirect information is
  untrusted.

  Trusted redirect information is useful for enabling a device to
  establish a secure connection to a specified bootstrap server, which
  is possible when the redirect information includes the bootstrap
  server's trust anchor certificate.

  Untrusted redirect information is useful for directing a device to a
  bootstrap server where signed data has been staged for it to obtain.
  Note that, when the redirect information is untrusted, devices
  discard any potentially included trust anchor certificates.

  How devices process redirect information is described in Section 5.5.

2.2.  Onboarding Information

  Onboarding information provides data necessary for a device to
  bootstrap itself and establish secure connections with other systems.
  As defined in this document, onboarding information can specify
  details about the boot image a device must be running, an initial
  configuration the device must commit, and scripts that the device
  must successfully execute.














Watsen, et al.               Standards Track                    [Page 9]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Onboarding information is YANG-modeled data formally defined by the
  "onboarding-information" container in the YANG module presented in
  Section 6.3.  This container has the tree diagram shown below.

           +--:(onboarding-information)
              +-- onboarding-information
                 +-- boot-image
                 |  +-- os-name?              string
                 |  +-- os-version?           string
                 |  +-- download-uri*         inet:uri
                 |  +-- image-verification* [hash-algorithm]
                 |     +-- hash-algorithm    identityref
                 |     +-- hash-value        yang:hex-string
                 +-- configuration-handling?      enumeration
                 +-- pre-configuration-script?    script
                 +-- configuration?               binary
                 +-- post-configuration-script?   script

  Onboarding information must be trusted for it to be of any use to a
  device.  There is no option for a device to process untrusted
  onboarding information.

  Onboarding information is trusted whenever it is obtained via a
  secure connection to a trusted bootstrap server or whenever it is
  signed by the device's owner.  In all other cases, the onboarding
  information is untrusted.

  How devices process onboarding information is described in
  Section 5.6.

3.  Artifacts

  This document defines three artifacts that can be made available to
  devices while they are bootstrapping.  Each source of bootstrapping
  data specifies how it provides the artifacts defined in this section
  (see Section 4).

3.1.  Conveyed Information

  The conveyed information artifact encodes the essential bootstrapping
  data for the device.  This artifact is used to encode the redirect
  information and onboarding information types discussed in Section 2.

  The conveyed information artifact is a Cryptographic Message Syntax
  (CMS) structure, as described in [RFC5652], encoded using ASN.1
  distinguished encoding rules (DER), as specified in ITU-T X.690
  [ITU.X690.2015].  The CMS structure MUST contain content conforming
  to the YANG module specified in Section 6.3.



Watsen, et al.               Standards Track                   [Page 10]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  The conveyed information CMS structure may encode signed or unsigned
  bootstrapping data.  When the bootstrapping data is signed, it may
  also be encrypted, but from a terminology perspective, it is still
  "signed data"; see Section 1.2.

  When the conveyed information artifact is unsigned and unencrypted,
  as it might be when communicated over trusted channels, the CMS
  structure's topmost content type MUST be one of the OIDs described in
  Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or
  id-ct-sztpConveyedInfoJSON) or the OID id-data
  (1.2.840.113549.1.7.1).  When the OID id-data is used, the encoding
  (JSON, XML, etc.) SHOULD be communicated externally.  In either case,
  the associated content is an octet string containing
  "conveyed-information" data in the expected encoding.

  When the conveyed information artifact is unsigned and encrypted, as
  it might be when communicated over trusted channels but, for some
  reason, the operator wants to ensure that only the device is able to
  see the contents, the CMS structure's topmost content type MUST be
  the OID id-envelopedData (1.2.840.113549.1.7.3).  Furthermore, the
  encryptedContentInfo's content type MUST be one of the OIDs described
  in Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or
  id-ct-sztpConveyedInfoJSON) or the OID id-data
  (1.2.840.113549.1.7.1).  When the OID id-data is used, the encoding
  (JSON, XML, etc.)  SHOULD be communicated externally.  In either
  case, the associated content is an octet string containing
  "conveyed-information" data in the expected encoding.

  When the conveyed information artifact is signed and unencrypted, as
  it might be when communicated over untrusted channels, the CMS
  structure's topmost content type MUST be the OID id-signedData
  (1.2.840.113549.1.7.2).  Furthermore, the inner eContentType MUST be
  one of the OIDs described in Section 10.3 (i.e.,
  id-ct-sztpConveyedInfoXML or id-ct-sztpConveyedInfoJSON) or the OID
  id-data (1.2.840.113549.1.7.1).  When the OID id-data is used, the
  encoding (JSON, XML, etc.)  SHOULD be communicated externally.  In
  either case, the associated content or eContent is an octet string
  containing "conveyed-information" data in the expected encoding.

  When the conveyed information artifact is signed and encrypted, as it
  might be when communicated over untrusted channels and privacy is
  important, the CMS structure's topmost content type MUST be the OID
  id-envelopedData (1.2.840.113549.1.7.3).  Furthermore, the
  encryptedContentInfo's content type MUST be the OID id-signedData
  (1.2.840.113549.1.7.2), whose eContentType MUST be one of the OIDs
  described in Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or
  id-ct-sztpConveyedInfoJSON), or the OID id-data
  (1.2.840.113549.1.7.1).  When the OID id-data is used, the encoding



Watsen, et al.               Standards Track                   [Page 11]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  (JSON, XML, etc.) SHOULD be communicated externally.  In either case,
  the associated content or eContent is an octet string containing
  "conveyed-information" data in the expected encoding.

3.2.  Owner Certificate

  The owner certificate artifact is an X.509 certificate [RFC5280] that
  is used to identify an "owner" (e.g., an organization).  The owner
  certificate can be signed by any certificate authority (CA).  The
  owner certificate MUST have no Key Usage specified, or the Key Usage
  MUST, at a minimum, set the "digitalSignature" bit.  The values for
  the owner certificate's "subject" and/or "subjectAltName" are not
  constrained by this document.

  The owner certificate is used by a device to verify the signature
  over the conveyed information artifact (Section 3.1) that the device
  should have also received, as described in Section 3.5.  In
  particular, the device verifies the signature using the public key in
  the owner certificate over the content contained within the conveyed
  information artifact.

  The owner certificate artifact is formally a CMS structure, as
  specified by [RFC5652], encoded using ASN.1 DER, as specified in
  ITU-T X.690 [ITU.X690.2015].

  The owner certificate CMS structure MUST contain the owner
  certificate itself, as well as all intermediate certificates leading
  to the "pinned-domain-cert" certificate specified in the ownership
  voucher.  The owner certificate artifact MAY optionally include the
  "pinned-domain-cert" as well.

  In order to support devices deployed on private networks, the owner
  certificate CMS structure MAY also contain suitably fresh, as
  determined by local policy, revocation objects (e.g., Certificate
  Revocation Lists (CRLs) [RFC5280] and OCSP Responses [RFC6960]).
  Having these revocation objects stapled to the owner certificate may
  obviate the need for the device to have to download them dynamically
  using the CRL distribution point or an Online Certificate Status
  Protocol (OCSP) responder specified in the associated certificates.

  When unencrypted, the topmost content type of the owner certificate
  artifact's CMS structure MUST be the OID id-signedData
  (1.2.840.113549.1.7.2).  The inner SignedData structure is the
  degenerate form, whereby there are no signers, that is commonly used
  to disseminate certificates and revocation objects.

  When encrypted, the topmost content type of the owner certificate
  artifact's CMS structure MUST be the OID id-envelopedData



Watsen, et al.               Standards Track                   [Page 12]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  (1.2.840.113549.1.7.3), and the encryptedContentInfo's content type
  MUST be the OID id-signedData (1.2.840.113549.1.7.2), whereby the
  inner SignedData structure is the degenerate form that has no signers
  commonly used to disseminate certificates and revocation objects.

3.3.  Ownership Voucher

  The ownership voucher artifact is used to securely identify a
  device's owner, as it is known to the manufacturer.  The ownership
  voucher is signed by the device's manufacturer.

  The ownership voucher is used to verify the owner certificate
  (Section 3.2) that the device should have also received, as described
  in Section 3.5.  In particular, the device verifies that the owner
  certificate has a chain of trust leading to the trusted certificate
  included in the ownership voucher ("pinned-domain-cert").  Note that
  this relationship holds even when the owner certificate is a self-
  signed certificate and hence also the pinned-domain-cert.

  When unencrypted, the ownership voucher artifact is as defined in
  [RFC8366].  As described, it is a CMS structure whose topmost content
  type MUST be the OID id-signedData (1.2.840.113549.1.7.2), whose
  eContentType MUST be OID id-ct-animaJSONVoucher
  (1.2.840.113549.1.9.16.1), or the OID id-data (1.2.840.113549.1.7.1).
  When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
  be communicated externally.  In either case, the associated content
  is an octet string containing ietf-voucher data in the expected
  encoding.

  When encrypted, the topmost content type of the ownership voucher
  artifact's CMS structure MUST be the OID id-envelopedData
  (1.2.840.113549.1.7.3), and the encryptedContentInfo's content type
  MUST be the OID id-signedData (1.2.840.113549.1.7.2), whose
  eContentType MUST be OID id-ct-animaJSONVoucher
  (1.2.840.113549.1.9.16.1), or the OID id-data (1.2.840.113549.1.7.1).
  When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
  be communicated externally.  In either case, the associated content
  is an octet string containing ietf-voucher data in the expected
  encoding.

3.4.  Artifact Encryption

  Each of the three artifacts MAY be individually encrypted.
  Encryption may be important in some environments where the content is
  considered sensitive.

  Each of the three artifacts are encrypted in the same way, by the
  unencrypted form being encapsulated inside a CMS EnvelopedData type.



Watsen, et al.               Standards Track                   [Page 13]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  As a consequence, both the conveyed information and ownership voucher
  artifacts are signed and then encrypted; they are never encrypted and
  then signed.

  This sequencing has the following advantages: shrouding the signer's
  certificate and ensuring that the owner knows the content being
  signed.  This sequencing further enables the owner to inspect an
  unencrypted voucher obtained from a manufacturer and then encrypt the
  voucher later themselves, perhaps while also stapling in current
  revocation objects, when ready to place the artifact in an unsafe
  location.

  When encrypted, the CMS MUST be encrypted using a secure device
  identity certificate for the device.  This certificate MAY be the
  same as the TLS-level client certificate the device uses when
  connecting to bootstrap servers.  The owner must possess the device's
  identity certificate at the time of encrypting the data.  How the
  owner comes to posses the device's identity certificate for this
  purpose is outside the scope of this document.

3.5.  Artifact Groupings

  The previous sections discussed the bootstrapping artifacts, but only
  certain groupings of these artifacts make sense to return in the
  various bootstrapping situations described in this document.  These
  groupings are:

     Unsigned Data:  This artifact grouping is useful for cases when
        transport-level security can be used to convey trust (e.g.,
        HTTPS) or when the conveyed information can be processed in a
        provisional manner (i.e., unsigned redirect information).

     Signed Data, without revocations:  This artifact grouping is
        useful when signed data is needed (i.e., because the data is
        obtained from an untrusted source and it cannot be processed
        provisionally) and revocations either are not needed or can be
        obtained dynamically.

     Signed Data, with revocations:  This artifact grouping is useful
        when signed data is needed (i.e., because the data is obtained
        from an untrusted source and it cannot be processed
        provisionally) and when revocations are needed but the
        revocations cannot be obtained dynamically.

  The presence of each artifact and any distinguishing characteristics
  are identified for each artifact grouping in the table below ("yes"
  and "no" indicate whether or not the artifact is present in the
  artifact grouping):



Watsen, et al.               Standards Track                   [Page 14]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  +---------------------+---------------+--------------+--------------+
  | Artifact            | Conveyed      | Ownership    | Owner        |
  | Grouping            | Information   | Voucher      | Certificate  |
  +=====================+===============+==============+==============+
  | Unsigned Data       | Yes, no sig   | No           | No           |
  +---------------------+---------------+--------------+--------------+
  | Signed Data,        | Yes, with sig | Yes, without | Yes, without |
  | without revocations |               | revocations  | revocations  |
  +---------------------+---------------+--------------+--------------+
  | Signed Data,        | Yes, with sig | Yes, with    | Yes, with    |
  | with revocations    |               | revocations  | revocations  |
  +---------------------+---------------+--------------+--------------+

4.  Sources of Bootstrapping Data

  This section defines some sources for bootstrapping data that a
  device can access.  The list of sources defined here is not meant to
  be exhaustive.  It is left to future documents to define additional
  sources for obtaining bootstrapping data.

  For each source of bootstrapping data defined in this section,
  details are given for how the three artifacts listed in Section 3 are
  provided.

4.1.  Removable Storage

  A directly attached removable storage device (e.g., a USB flash
  drive) MAY be used as a source of SZTP bootstrapping data.

  Use of a removable storage device is compelling, as it does not
  require any external infrastructure to work.  It is notable that the
  raw boot image file can also be located on the removable storage
  device, enabling a removable storage device to be a fully self-
  standing bootstrapping solution.

  To use a removable storage device as a source of bootstrapping data,
  a device need only detect if the removable storage device is plugged
  in and mount its filesystem.

  A removable storage device is an untrusted source of bootstrapping
  data.  This means that the information stored on the removable
  storage device either MUST be signed or MUST be information that can
  be processed provisionally (e.g., unsigned redirect information).

  From an artifact perspective, since a removable storage device
  presents itself as a filesystem, the bootstrapping artifacts need to
  be presented as files.  The three artifacts defined in Section 3 are
  mapped to files below.



Watsen, et al.               Standards Track                   [Page 15]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Artifact to File Mapping:

     Conveyed Information:  Mapped to a file containing the binary
        artifact described in Section 3.1 (e.g., conveyed-
        information.cms).

     Owner Certificate:  Mapped to a file containing the binary
        artifact described in Section 3.2 (e.g., owner-
        certificate.cms).

     Ownership Voucher:  Mapped to a file containing the binary
        artifact described in Section 3.3 (e.g., ownership-voucher.cms
        or ownership-voucher.vcj).

  The format of the removable storage device's filesystem and the
  naming of the files are outside the scope of this document.  However,
  in order to facilitate interoperability, it is RECOMMENDED that
  devices support open and/or standards-based filesystems.  It is also
  RECOMMENDED that devices assume a file naming convention that enables
  more than one instance of bootstrapping data (i.e., for different
  devices) to exist on a removable storage device.  The file naming
  convention SHOULD additionally be unique to the manufacturer, in
  order to enable bootstrapping data from multiple manufacturers to
  exist on a removable storage device.

4.2.  DNS Server

  A DNS server MAY be used as a source of SZTP bootstrapping data.

  Using a DNS server may be a compelling option for deployments having
  existing DNS infrastructure, as it enables a touchless bootstrapping
  option that does not entail utilizing an Internet-based resource
  hosted by a third party.

  DNS is an untrusted source of bootstrapping data.  Even if DNSSEC
  [RFC6698] is used to authenticate the various DNS resource records
  (e.g., A, AAAA, CERT, TXT, and TLSA), the device cannot be sure that
  the domain returned to it, e.g., from a DHCP server, belongs to its
  rightful owner.  This means that the information stored in the DNS
  records either MUST be signed (per this document, not DNSSEC) or MUST
  be information that can be processed provisionally (e.g., unsigned
  redirect information).









Watsen, et al.               Standards Track                   [Page 16]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


4.2.1.  DNS Queries

  Devices claiming to support DNS as a source of bootstrapping data
  MUST first query for device-specific DNS records and then, only if
  doing so does not result in a successful bootstrap, MUST query for
  device-independent DNS records.

  For each of the device-specific and device-independent queries,
  devices MUST first query using multicast DNS [RFC6762] and then, only
  if doing so does not result in a successful bootstrap, MUST query
  again using unicast DNS [RFC1035] [RFC7766].  This assumes the
  address of a DNS server is known, such as it may be using techniques
  similar to those described in Section 11 of [RFC6763].

  When querying for device-specific DNS records, devices MUST query for
  TXT records [RFC1035] under "<serial-number>._sztp", where <serial-
  number> is the device's serial number (the same value as in the
  device's secure device identity certificate), and "_sztp" is the
  globally scoped DNS attribute registered per this document (see
  Section 10.7).

  Example device-specific DNS record queries:

     TXT in <serial-number>._sztp.local.  (multicast)
     TXT in <serial-number>._sztp.<domain>.  (unicast)

  When querying for device-independent DNS records, devices MUST query
  for SRV records [RFC2782] under "_sztp._tcp", where "_sztp" is the
  service name registered per this document (see Section 10.6), and
  "_tcp" is the globally scoped DNS attribute registered per [RFC8552].

  Note that a device-independent response is only able to encode
  unsigned data anyway, since signed data necessitates the use of a
  device-specific ownership voucher.  Use of SRV records maximumly
  leverages existing DNS standards.  A response containing multiple SRV
  records is comparable to an unsigned redirect information's list of
  bootstrap servers.

  Example device-independent DNS record queries:

     SRV in _sztp._tcp.local.  (multicast)
     SRV in _sztp._tcp.<domain>.  (unicast)









Watsen, et al.               Standards Track                   [Page 17]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


4.2.2.  DNS Response for Device-Specific Queries

  For device-specific queries, the three bootstrapping artifacts
  defined in Section 3 are encoded into the TXT records using key/value
  pairs, similar to the technique described in Section 6.3 of
  [RFC6763].

  Artifact to TXT Record Mapping:

     Conveyed Information:  Mapped to a TXT record having the key "ci"
        and the value being the binary artifact described in
        Section 3.1.

     Owner Certificate:  Mapped to a TXT record having the key "oc" and
        the value being the binary artifact described in Section 3.2.

     Ownership Voucher:  Mapped to a TXT record having the key "ov" and
        the value being the binary artifact described in Section 3.3.

  Devices MUST ignore any other keys that may be returned.

  Note that, despite the name, TXT records can and SHOULD (per
  Section 6.5 of [RFC6763]) encode binary data.

  Following is an example of a device-specific response, as it might be
  presented by a user agent, containing signed data.  This example
  assumes that the device's serial number is "<serial-number>", the
  domain is "example.com", and "<binary data>" represents the binary
  artifact:

    <serial-number>._sztp.example.com. 3600 IN TXT "ci=<binary data>"
    <serial-number>._sztp.example.com. 3600 IN TXT "oc=<binary data>"
    <serial-number>._sztp.example.com. 3600 IN TXT "ov=<binary data>"

  Note that, in the case that "ci" encodes unsigned data, the "oc" and
  "ov" keys would not be present in the response.

4.2.3.  DNS Response for Device-Independent Queries

  For device-independent queries, the three bootstrapping artifacts
  defined in Section 3 are encoded into the SVR records as follows.

  Artifact to SRV Record Mapping:

     Conveyed Information:  This artifact is not supported directly.
        Instead, the essence of unsigned redirect information is mapped
        to SVR records per [RFC2782].




Watsen, et al.               Standards Track                   [Page 18]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


     Owner Certificate:  Not supported.  Device-independent responses
        never encode signed data; hence, there is no need for an owner
        certificate artifact.

     Ownership Voucher:  Not supported.  Device-independent responses
        never encode signed data; hence, there is no need for an
        ownership voucher artifact.

  Following is an example of a device-independent response, as it might
  be presented by a user agent, containing (effectively) unsigned
  redirect information to four bootstrap servers.  This example assumes
  that the domain is "example.com" and that there are four bootstrap
  servers "sztp[1-4]":

     _sztp._tcp.example.com. 1800 IN SRV 0 0 443 sztp1.example.com.
     _sztp._tcp.example.com. 1800 IN SRV 1 0 443 sztp2.example.com.
     _sztp._tcp.example.com. 1800 IN SRV 2 0 443 sztp3.example.com.
     _sztp._tcp.example.com. 1800 IN SRV 2 0 443 sztp4.example.com.

  Note that, in this example, "sztp3" and "sztp4" have equal priority
  and hence effectively represent a clustered pair of bootstrap
  servers.  While "sztp1" and "sztp2" only have a single SRV record
  each, it may be that the record points to a load balancer fronting a
  cluster of bootstrap servers.

  While this document does not use DNS-SD [RFC6763], per Section 12.2
  of that RFC, Multicast DNS (mDNS) responses SHOULD also include all
  address records (type "A" and "AAAA") named in the SRV rdata.

4.2.4.  Size of Signed Data

  The signed data artifacts are large by DNS conventions.  In the
  smallest-footprint scenario, they are each a few kilobytes in size.
  However, onboarding information can easily be several kilobytes in
  size and has the potential to be many kilobytes in size.

  All resource records, including TXT records, have an upper size limit
  of 65535 bytes, since "RDLENGTH" is a 16-bit field (Section 3.2.1 of
  [RFC1035]).  If it is ever desired to encode onboarding information
  that exceeds this limit, the DNS records returned should instead
  encode redirect information, to direct the device to a bootstrap
  server from which the onboarding information can be obtained.

  Given the expected size of the TXT records, it is unlikely that
  signed data will fit into a UDP-based DNS packet, even with the
  Extension Mechanisms for DNS (EDNS(0)) extensions [RFC6891] enabled.
  Depending on content, signed data may also not fit into a multicast
  DNS packet, which bounds the size to 9000 bytes, per Section 17 of



Watsen, et al.               Standards Track                   [Page 19]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  [RFC6762].  Thus, it is expected that DNS Transport over TCP
  [RFC7766] will be required in order to return signed data.

4.3.  DHCP Server

  A DHCP server MAY be used as a source of SZTP bootstrapping data.

  Using a DHCP server may be a compelling option for deployments having
  existing DHCP infrastructure, as it enables a touchless bootstrapping
  option that does not entail utilizing an Internet-based resource
  hosted by a third party.

  A DHCP server is an untrusted source of bootstrapping data.  Thus,
  the information stored on the DHCP server either MUST be signed or
  MUST be information that can be processed provisionally (e.g.,
  unsigned redirect information).

  However, unlike other sources of bootstrapping data described in this
  document, the DHCP protocol (especially DHCP for IPv4) is very
  limited in the amount of data that can be conveyed, to the extent
  that signed data cannot be communicated.  This means that only
  unsigned redirect information can be conveyed via DHCP.

  Since the redirect information is unsigned, it SHOULD NOT include the
  optional trust anchor certificate, as it takes up space in the DHCP
  message, and the device would have to discard it anyway.  For this
  reason, the DHCP options defined in Section 8 do not enable the trust
  anchor certificate to be encoded.

  From an artifact perspective, the three artifacts defined in
  Section 3 are mapped to the DHCP fields specified in Section 8 as
  follows.

  Artifact to DHCP Option Fields Mapping:

     Conveyed Information:  This artifact is not supported directly.
        Instead, the essence of unsigned redirect information is mapped
        to the DHCP options described in Section 8.

     Owner Certificate:  Not supported.  There is not enough space in
        the DHCP packet to hold an owner certificate artifact.

     Ownership Voucher:  Not supported.  There is not enough space in
        the DHCP packet to hold an ownership voucher artifact.







Watsen, et al.               Standards Track                   [Page 20]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


4.4.  Bootstrap Server

  A bootstrap server MAY be used as a source of SZTP bootstrapping
  data.  A bootstrap server is defined as a RESTCONF [RFC8040] server
  implementing the YANG module provided in Section 7.

  Using a bootstrap server as a source of bootstrapping data is a
  compelling option as it MAY use transport-level security, obviating
  the need for signed data, which may be easier to deploy in some
  situations.

  Unlike any other source of bootstrapping data described in this
  document, a bootstrap server is not only a source of data, but it can
  also receive data from devices using the YANG-defined "report-
  progress" RPC defined in the YANG module provided in Section 7.3.
  The "report-progress" RPC enables visibility into the bootstrapping
  process (e.g., warnings and errors) and provides potentially useful
  information upon completion (e.g., the device's Secure Shell (SSH)
  host keys and/or TLS trust anchor certificates).

  A bootstrap server may be a trusted or an untrusted source of
  bootstrapping data, depending on if the device learned about the
  bootstrap server's trust anchor from a trusted source.  When a
  bootstrap server is trusted, the conveyed information returned from
  it MAY be signed.  When the bootstrap server is untrusted, the
  conveyed information either MUST be signed or MUST be information
  that can be processed provisionally (e.g., unsigned redirect
  information).

  From an artifact perspective, since a bootstrap server presents data
  conforming to a YANG data model, the bootstrapping artifacts need to
  be mapped to YANG nodes.  The three artifacts defined in Section 3
  are mapped to "output" nodes of the "get-bootstrapping-data" RPC
  defined in Section 7.3.

  Artifact to Bootstrap Server Mapping:

     Conveyed Information:  Mapped to the "conveyed-information" leaf
        in the output of the "get-bootstrapping-data" RPC.

     Owner Certificate:  Mapped to the "owner-certificate" leaf in the
        output of the "get-bootstrapping-data" RPC.

     Ownership Voucher:  Mapped to the "ownership-voucher" leaf in the
        output of the "get-bootstrapping-data" RPC.

  SZTP bootstrap servers have only two endpoints: one for the
  "get-bootstrapping-data" RPC and one for the "report-progress" RPC.



Watsen, et al.               Standards Track                   [Page 21]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  These RPCs use the authenticated RESTCONF username to isolate the
  execution of the RPC from other devices.

5.  Device Details

  Devices supporting the bootstrapping strategy described in this
  document MUST have the pre-configured state and bootstrapping logic
  described in the following sections.

5.1.  Initial State

     +-------------------------------------------------------------+
     |                          <device>                           |
     |                                                             |
     | +---------------------------------------------------------+ |
     | |                   <read/write storage>                  | |
     | |                                                         | |
     | | 1.  flag to enable SZTP bootstrapping set to "true"     | |
     | +---------------------------------------------------------+ |
     |                                                             |
     | +---------------------------------------------------------+ |
     | |                   <read-only storage>                   | |
     | |                                                         | |
     | | 2.  TLS client cert & related intermediate certificates | |
     | | 3.  list of trusted well-known bootstrap servers        | |
     | | 4.  list of trust anchor certs for bootstrap servers    | |
     | | 5.  list of trust anchor certs for ownership vouchers   | |
     | +---------------------------------------------------------+ |
     |                                                             |
     |   +-----------------------------------------------------+   |
     |   |                 <secure storage>                    |   |
     |   |                                                     |   |
     |   |  6.  private key for TLS client certificate         |   |
     |   |  7.  private key for decrypting SZTP artifacts      |   |
     |   +-----------------------------------------------------+   |
     |                                                             |
     +-------------------------------------------------------------+

  Each numbered item below corresponds to a numbered item in the
  diagram above.

  1.  Devices MUST have a configurable variable that is used to enable/
      disable SZTP bootstrapping.  This variable MUST be enabled by
      default in order for SZTP bootstrapping to run when the device
      first powers on.  Because it is a goal that the configuration
      installed by the bootstrapping process disables SZTP
      bootstrapping, and because the configuration may be merged into
      the existing configuration, using a configuration node that



Watsen, et al.               Standards Track                   [Page 22]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      relies on presence is NOT RECOMMENDED, as it cannot be removed by
      the merging process.

  2.  Devices that support loading bootstrapping data from bootstrap
      servers (see Section 4.4) SHOULD possess a TLS-level client
      certificate and any intermediate certificates leading to the
      certificate's well-known trust anchor.  The well-known trust
      anchor certificate may be an intermediate certificate or a self-
      signed root certificate.  To support devices not having a client
      certificate, devices MAY, alternatively or in addition to,
      identify and authenticate themselves to the bootstrap server
      using an HTTP authentication scheme, as allowed by Section 2.5 of
      [RFC8040]; however, this document does not define a mechanism for
      operator input enabling, for example, the entering of a password.

  3.  Devices that support loading bootstrapping data from well-known
      bootstrap servers MUST possess a list of the well-known bootstrap
      servers.  Consistent with redirect information (Section 2.1),
      each bootstrap server can be identified by its hostname or IP
      address and an optional port.

  4.  Devices that support loading bootstrapping data from well-known
      bootstrap servers MUST also possess a list of trust anchor
      certificates that can be used to authenticate the well-known
      bootstrap servers.  For each trust anchor certificate, if it is
      not itself a self-signed root certificate, the device SHOULD also
      possess the chain of intermediate certificates leading up to and
      including the self-signed root certificate.

  5.  Devices that support loading signed data (see Section 1.2) MUST
      possess the trust anchor certificates for validating ownership
      vouchers.  For each trust anchor certificate, if it is not itself
      a self-signed root certificate, the device SHOULD also possess
      the chain of intermediate certificates leading up to and
      including the self-signed root certificate.

  6.  Devices that support using a TLS-level client certificate to
      identify and authenticate themselves to a bootstrap server MUST
      possess the private key that corresponds to the public key
      encoded in the TLS-level client certificate.  This private key
      SHOULD be securely stored, ideally in a cryptographic processor,
      such as a trusted platform module (TPM) chip.

  7.  Devices that support decrypting SZTP artifacts MUST posses the
      private key that corresponds to the public key encoded in the
      secure device identity certificate used when encrypting the
      artifacts.  This private key SHOULD be securely stored, ideally
      in a cryptographic processor, such as a trusted platform module



Watsen, et al.               Standards Track                   [Page 23]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      (TPM) chip.  This private key MAY be the same as the one
      associated to the TLS-level client certificate used when
      connecting to bootstrap servers.

  A YANG module representing this data is provided in Appendix A.

5.2.  Boot Sequence

  A device claiming to support the bootstrapping strategy defined in
  this document MUST support the boot sequence described in this
  section.

       Power On
           |
           v                           No
   1.  SZTP bootstrapping configured ------> Boot normally
           |
           | Yes
           v
   2.  For each supported source of bootstrapping data,
       try to load bootstrapping data from the source
           |
           |
           v                               Yes
   3.  Able to bootstrap from any source? -----> Run with new config
           |
           | No
           v
   4.  Loop back to Step 1


   Note: At any time, the device MAY be configured via an alternate
         provisioning mechanism (e.g., command-line interface (CLI)).

  Each numbered item below corresponds to a numbered item in the
  diagram above.

  1.  When the device powers on, it first checks to see if SZTP
      bootstrapping is configured, as is expected to be the case for
      the device's pre-configured initial state.  If SZTP bootstrapping
      is not configured, then the device boots normally.

  2.  The device iterates over its list of sources for bootstrapping
      data (Section 4).  Details for how to process a source of
      bootstrapping data are provided in Section 5.3.






Watsen, et al.               Standards Track                   [Page 24]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  3.  If the device is able to bootstrap itself from any of the sources
      of bootstrapping data, it runs with the new bootstrapped
      configuration.

  4.  Otherwise, the device MUST loop back through the list of
      bootstrapping sources again.

  This document does not limit the simultaneous use of alternate
  provisioning mechanisms.  Such mechanisms may include, for instance,
  a CLI, a web-based user interface, or even another bootstrapping
  protocol.  Regardless of how it is configured, the configuration
  SHOULD unset the flag enabling SZTP bootstrapping as discussed in
  Section 5.1.

5.3.  Processing a Source of Bootstrapping Data

  This section describes a recursive algorithm that devices can use to,
  ultimately, obtain onboarding information.  The algorithm is
  recursive because sources of bootstrapping data may return redirect
  information, which causes the algorithm to run again, for the newly
  discovered sources of bootstrapping data.  An expression that
  captures all possible successful sequences of bootstrapping data is:
  zero or more redirect information responses, followed by one
  onboarding information response.

  An important aspect of the algorithm is knowing when data needs to be
  signed or not.  The following figure provides a summary of options:

                                   Untrusted Source  Trusted Source
      Kind of Bootstrapping Data     Can Provide?     Can Provide?

      Unsigned Redirect Info     :       Yes+             Yes
      Signed Redirect Info       :       Yes              Yes*
      Unsigned Onboarding Info   :        No              Yes
      Signed Onboarding Info     :       Yes              Yes*

      The '+' above denotes that the source redirected to MUST
      return signed data or more unsigned redirect information.

      The '*' above denotes that, while possible, it is generally
      unnecessary for a trusted source to return signed data.

  The recursive algorithm uses a conceptual globally scoped variable
  called "trust-state".  The trust-state variable is initialized to
  FALSE.  The ultimate goal of this algorithm is for the device to
  process onboarding information (Section 2.2) while the trust-state
  variable is TRUE.




Watsen, et al.               Standards Track                   [Page 25]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  If the source of bootstrapping data (Section 4) is a bootstrap server
  (Section 4.4), and the device is able to authenticate the bootstrap
  server using X.509 certificate path validation ([RFC6125], Section 6)
  to one of the device's pre-configured trust anchors, or to a trust
  anchor that it learned from a previous step, then the device MUST set
  trust-state to TRUE.

  When establishing a connection to a bootstrap server, whether trusted
  or untrusted, the device MUST identify and authenticate itself to the
  bootstrap server using a TLS-level client certificate and/or an HTTP
  authentication scheme, per Section 2.5 of [RFC8040].  If both
  authentication mechanisms are used, they MUST both identify the same
  serial number.

  When sending a client certificate, the device MUST also send all of
  the intermediate certificates leading up to, and optionally
  including, the client certificate's well-known trust anchor
  certificate.

  For any source of bootstrapping data (e.g., Section 4), if any
  artifact obtained is encrypted, the device MUST first decrypt it
  using the private key associated with the device certificate used to
  encrypt the artifact.

  If the conveyed information artifact is signed, and the device is
  able to validate the signed data using the algorithm described in
  Section 5.4, then the device MUST set trust-state to TRUE; otherwise,
  if the device is unable to validate the signed data, the device MUST
  set trust-state to FALSE.  Note that this is worded to cover the
  special case when signed data is returned even from a trusted source
  of bootstrapping data.

  If the conveyed information artifact contains redirect information,
  the device MUST, within limits of how many recursive loops the device
  allows, process the redirect information as described in Section 5.5.
  Implementations MUST limit the maximum number of recursive redirects
  allowed; the maximum number of recursive redirects allowed SHOULD be
  no more than ten.  This is the recursion step; it will cause the
  device to reenter this algorithm, but this time the data source will
  definitely be a bootstrap server, as redirect information is only
  able to redirect devices to bootstrap servers.

  If the conveyed information artifact contains onboarding information,
  and trust-state is FALSE, the device MUST exit the recursive
  algorithm (as this is not allowed; see the figure above), returning
  to the bootstrapping sequence described in Section 5.2.  Otherwise,
  the device MUST attempt to process the onboarding information as
  described in Section 5.6.  Whether the processing of the onboarding



Watsen, et al.               Standards Track                   [Page 26]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  information succeeds or fails, the device MUST exit the recursive
  algorithm, returning to the bootstrapping sequence described in
  Section 5.2; the only difference is how it responds to the "Able to
  bootstrap from any source?" conditional described in the figure in
  that section.

5.4.  Validating Signed Data

  Whenever a device is presented signed data, it MUST validate the
  signed data as described in this section.  This includes the case
  where the signed data is provided by a trusted source.

  Whenever there is signed data, the device MUST also be provided an
  ownership voucher and an owner certificate.  How all the needed
  artifacts are provided for each source of bootstrapping data is
  described in Section 4.

  In order to validate signed data, the device MUST first authenticate
  the ownership voucher by validating its signature to one of its pre-
  configured trust anchors (see Section 5.1), which may entail using
  additional intermediate certificates attached to the ownership
  voucher.  If the device has an accurate clock, it MUST verify that
  the ownership voucher was created in the past (i.e., "created-on" <
  now), and if the "expires-on" leaf is present, the device MUST verify
  that the ownership voucher has not yet expired (i.e., now < "expires-
  on").  The device MUST verify that the ownership voucher's
  "assertion" value is acceptable (e.g., some devices may only accept
  the assertion value "verified").  The device MUST verify that the
  ownership voucher specifies the device's serial number in the
  "serial-number" leaf.  If the "idevid-issuer" leaf is present, the
  device MUST verify that the value is set correctly.  If the
  authentication of the ownership voucher is successful, the device
  extracts the "pinned-domain-cert" node, an X.509 certificate, that is
  needed to verify the owner certificate in the next step.

  The device MUST next authenticate the owner certificate by performing
  X.509 certificate path verification to the trusted certificate
  extracted from the ownership voucher's "pinned-domain-cert" node.
  This verification may entail using additional intermediate
  certificates attached to the owner certificate artifact.  If the
  ownership voucher's "domain-cert-revocation-checks" node's value is
  set to "true", the device MUST verify the revocation status of the
  certificate chain used to sign the owner certificate, and if a
  suitably fresh revocation status is unattainable or if it is
  determined that a certificate has been revoked, the device MUST NOT
  validate the owner certificate.





Watsen, et al.               Standards Track                   [Page 27]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Finally, the device MUST verify that the conveyed information
  artifact was signed by the validated owner certificate.

  If any of these steps fail, the device MUST invalidate the signed
  data and not perform any subsequent steps.

5.5.  Processing Redirect Information

  In order to process redirect information (Section 2.1), the device
  MUST follow the steps presented in this section.

  Processing redirect information is straightforward; the device
  sequentially steps through the list of provided bootstrap servers
  until it can find one it can bootstrap from.

  If a hostname is provided, and the hostname's DNS resolution is to
  more than one IP address, the device MUST attempt to connect to all
  of the DNS resolved addresses at least once, before moving on to the
  next bootstrap server.  If the device is able to obtain bootstrapping
  data from any of the DNS resolved addresses, it MUST immediately
  process that data, without attempting to connect to any of the other
  DNS resolved addresses.

  If the redirect information is trusted (e.g., trust-state is TRUE),
  and the bootstrap server entry contains a trust anchor certificate,
  then the device MUST authenticate the specified bootstrap server's
  TLS server certificate using X.509 certificate path validation
  ([RFC6125], Section 6) to the specified trust anchor.  If the
  bootstrap server entry does not contain a trust anchor certificate
  device, the device MUST establish a provisional connection to the
  bootstrap server (i.e., by blindly accepting its server certificate)
  and set trust-state to FALSE.

  If the redirect information is untrusted (e.g., trust-state is
  FALSE), the device MUST discard any trust anchors provided by the
  redirect information and establish a provisional connection to the
  bootstrap server (i.e., by blindly accepting its TLS server
  certificate).

5.6.  Processing Onboarding Information

  In order to process onboarding information (Section 2.2), the device
  MUST follow the steps presented in this section.

  When processing onboarding information, the device MUST first process
  the boot image information (if any), then execute the pre-
  configuration script (if any), then commit the initial configuration




Watsen, et al.               Standards Track                   [Page 28]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  (if any), and then execute the post-configuration script (if any), in
  that order.

  When the onboarding information is obtained from a trusted bootstrap
  server, the device MUST send the "bootstrap-initiated" progress
  report and send a terminating "boot-image-installed-rebooting",
  "bootstrap-complete", or error-specific progress report.  If the
  "reporting-level" node of the bootstrap server's "get-bootstrapping-
  data" RPC-reply is the value "verbose", the device MUST additionally
  send all appropriate non-terminating progress reports (e.g.,
  initiated, warning, complete, etc.).  Regardless of the reporting
  level requested by the bootstrap server, the device MAY send progress
  reports beyond those required by the reporting level.

  When the onboarding information is obtained from an untrusted
  bootstrap server, the device MUST NOT send any progress reports to
  the bootstrap server, even though the onboarding information was,
  necessarily, signed and authenticated.  Please be aware that
  bootstrap servers are recommended to promote untrusted connections to
  trusted connections, in the last paragraph of Section 9.6, so as to,
  in part, be able to collect progress reports from devices.

  If the device encounters an error at any step, it MUST stop
  processing the onboarding information and return to the bootstrapping
  sequence described in Section 5.2.  In the context of a recursive
  algorithm, the device MUST return to the enclosing loop, not back to
  the very beginning.  Some state MAY be retained from the
  bootstrapping process (e.g., updated boot image, logs, remnants from
  a script, etc.).  However, the retained state MUST NOT be active in
  any way (e.g., no new configuration or running of software) and MUST
  NOT hinder the ability for the device to continue the bootstrapping
  sequence (i.e., process onboarding information from another bootstrap
  server).

  At this point, the specific ordered sequence of actions the device
  MUST perform is described.

  If the onboarding information is obtained from a trusted bootstrap
  server, the device MUST send a "bootstrap-initiated" progress report.
  It is an error if the device does not receive back the "204 No
  Content" HTTP status line.  If an error occurs, the device MUST try
  to send a "bootstrap-error" progress report before exiting.

  The device MUST parse the provided onboarding information document,
  to extract values used in subsequent steps.  Whether using a stream-
  based parser or not, if there is an error when parsing the onboarding





Watsen, et al.               Standards Track                   [Page 29]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  information, and the device is connected to a trusted bootstrap
  server, the device MUST try to send a "parsing-error" progress report
  before exiting.

  If boot image criteria are specified, the device MUST first determine
  if the boot image it is running satisfies the specified boot image
  criteria.  If the device is already running the specified boot image,
  then it skips the remainder of this step.  If the device is not
  running the specified boot image, then it MUST download, verify, and
  install, in that order, the specified boot image, and then reboot.
  If connected to a trusted bootstrap server, the device MAY try to
  send a "boot-image-mismatch" progress report.  To download the boot
  image, the device MUST only use the URIs supplied by the onboarding
  information.  To verify the boot image, the device MUST use either
  one of the verification fingerprints supplied by the onboarding
  information or a cryptographic signature embedded into the boot image
  itself using a mechanism not described by this document.  Before
  rebooting, if connected to a trusted bootstrap server, the device
  MUST try to send a "boot-image-installed-rebooting" progress report.
  Upon rebooting, the bootstrapping process runs again, which will
  eventually come to this step again, but then the device will be
  running the specified boot image and thus will move to processing the
  next step.  If an error occurs at any step while the device is
  connected to a trusted bootstrap server (i.e., before the reboot),
  the device MUST try to send a "boot-image-error" progress report
  before exiting.

  If a pre-configuration script has been specified, the device MUST
  execute the script, capture any output emitted from the script, and
  check if the script had any warnings or errors.  If an error occurs
  while the device is connected to a trusted bootstrap server, the
  device MUST try to send a "pre-script-error" progress report before
  exiting.

  If an initial configuration has been specified, the device MUST
  atomically commit the provided initial configuration, using the
  approach specified by the "configuration-handling" leaf.  If an error
  occurs while the device is connected to a trusted bootstrap server,
  the device MUST try to send a "config-error" progress report before
  exiting.

  If a post-configuration script has been specified, the device MUST
  execute the script, capture any output emitted from the script, and
  check if the script had any warnings or errors.  If an error occurs
  while the device is connected to a trusted bootstrap server, the
  device MUST try to send a "post-script-error" progress report before
  exiting.




Watsen, et al.               Standards Track                   [Page 30]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  If the onboarding information was obtained from a trusted bootstrap
  server, and the result of the bootstrapping process did not disable
  the "flag to enable SZTP bootstrapping" described in Section 5.1, the
  device SHOULD send an "bootstrap-warning" progress report.

  If the onboarding information was obtained from a trusted bootstrap
  server, the device MUST send a "bootstrap-complete" progress report.
  It is an error if the device does not receive back the "204 No
  Content" HTTP status line.  If an error occurs, the device MUST try
  to send a "bootstrap-error" progress report before exiting.

  At this point, the device has completely processed the bootstrapping
  data.

  The device is now running its initial configuration.  Notably, if
  NETCONF Call Home or RESTCONF Call Home [RFC8071] is configured, the
  device initiates trying to establish the call home connections at
  this time.

  Implementation Notes:

     Implementations may vary in how to ensure no unwanted state is
     retained when an error occurs.

     If the implementation chooses to undo previous steps, the
     following guidelines apply:

     *  When an error occurs, the device must rollback the current step
        and any previous steps.

     *  Most steps are atomic.  For example, the processing of a
        configuration is atomic (as specified above), and the
        processing of scripts is atomic (as specified in the "ietf-
        sztp-conveyed-info" YANG module).

     *  In case the error occurs after the initial configuration was
        committed, the device must restore the configuration to the
        configuration that existed prior to the configuration being
        committed.

     *  In case the error occurs after a script had executed
        successfully, it may be helpful for the implementation to
        define scripts as being able to take a conceptual input
        parameter indicating that the script should remove its
        previously set state.






Watsen, et al.               Standards Track                   [Page 31]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


6.  The Conveyed Information Data Model

  This section defines a YANG 1.1 [RFC7950] module that is used to
  define the data model for the conveyed information artifact described
  in Section 3.1.  This data model uses the "yang-data" extension
  statement defined in [RFC8040].  Examples illustrating this data
  model are provided in Section 6.2.

6.1.  Data Model Overview

  The following tree diagram provides an overview of the data model for
  the conveyed information artifact.

        module: ietf-sztp-conveyed-info

          yang-data conveyed-information:
            +-- (information-type)
               +--:(redirect-information)
               |  +-- redirect-information
               |     +-- bootstrap-server* [address]
               |        +-- address         inet:host
               |        +-- port?           inet:port-number
               |        +-- trust-anchor?   cms
               +--:(onboarding-information)
                  +-- onboarding-information
                     +-- boot-image
                     |  +-- os-name?              string
                     |  +-- os-version?           string
                     |  +-- download-uri*         inet:uri
                     |  +-- image-verification* [hash-algorithm]
                     |     +-- hash-algorithm    identityref
                     |     +-- hash-value        yang:hex-string
                     +-- configuration-handling?      enumeration
                     +-- pre-configuration-script?    script
                     +-- configuration?               binary
                     +-- post-configuration-script?   script

6.2.  Example Usage

  The following example illustrates how redirect information
  (Section 2.1) can be encoded using JSON [RFC8259].

  {
    "ietf-sztp-conveyed-info:redirect-information" : {
      "bootstrap-server" : [
        {
          "address" : "sztp1.example.com",
          "port" : 8443,



Watsen, et al.               Standards Track                   [Page 32]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


          "trust-anchor" : "base64encodedvalue=="
        },
        {
          "address" : "sztp2.example.com",
          "port" : 8443,
          "trust-anchor" : "base64encodedvalue=="
        },
        {
          "address" : "sztp3.example.com",
          "port" : 8443,
          "trust-anchor" : "base64encodedvalue=="
        }
      ]
    }
  }

  The following example illustrates how onboarding information
  (Section 2.2) can be encoded using JSON [RFC8259].

  [Note: '\' line wrapping for formatting only]

  {
    "ietf-sztp-conveyed-info:onboarding-information" : {
      "boot-image" : {
        "os-name" : "VendorOS",
        "os-version" : "17.2R1.6",
        "download-uri" : [ "https://example.com/path/to/image/file" ],
        "image-verification" : [
          {
            "hash-algorithm" : "ietf-sztp-conveyed-info:sha-256",
            "hash-value" : "ba:ec:cf:a5:67:82:b4:10:77:c6:67:a6:22:ab:\
  7d:50:04:a7:8b:8f:0e:db:02:8b:f4:75:55:fb:c1:13:b2:33"
          }
        ]
      },
      "configuration-handling" : "merge",
      "pre-configuration-script" : "base64encodedvalue==",
      "configuration" : "base64encodedvalue==",
      "post-configuration-script" : "base64encodedvalue=="
    }
  }










Watsen, et al.               Standards Track                   [Page 33]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


6.3.  YANG Module

  The conveyed information data model is defined by the YANG module
  presented in this section.

  This module uses data types defined in [RFC5280], [RFC5652],
  [RFC6234], and [RFC6991]; an extension statement from [RFC8040]; and
  an encoding defined in [ITU.X690.2015].

 <CODE BEGINS> file "[email protected]"
 module ietf-sztp-conveyed-info {
   yang-version 1.1;
   namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-conveyed-info";
   prefix sztp-info;

   import ietf-yang-types {
     prefix yang;
     reference
       "RFC 6991: Common YANG Data Types";
   }
   import ietf-inet-types {
     prefix inet;
     reference
       "RFC 6991: Common YANG Data Types";
   }
   import ietf-restconf {
     prefix rc;
     reference
       "RFC 8040: RESTCONF Protocol";
   }

   organization
     "IETF NETCONF (Network Configuration) Working Group";
   contact
     "WG Web:   <https://datatracker.ietf.org/wg/netconf/>
      WG List:  <mailto:[email protected]>
      Author:   Kent Watsen <mailto:[email protected]>";
   description
     "This module defines the data model for the conveyed
      information artifact defined in RFC 8572 ('Secure Zero Touch
      Provisioning (SZTP)').

      The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
      'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
      'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
      are to be interpreted as described in BCP 14 (RFC 2119)
      (RFC 8174) when, and only when, they appear in all
      capitals, as shown here.



Watsen, et al.               Standards Track                   [Page 34]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      Copyright (c) 2019 IETF Trust and the persons identified as
      authors of the code.  All rights reserved.

      Redistribution and use in source and binary forms, with or
      without modification, is permitted pursuant to, and subject
      to the license terms contained in, the Simplified BSD License
      set forth in Section 4.c of the IETF Trust's Legal Provisions
      Relating to IETF Documents
      (https://trustee.ietf.org/license-info).

      This version of this YANG module is part of RFC 8572; see the
      RFC itself for full legal notices.";

   revision 2019-04-30 {
     description
       "Initial version";
     reference
       "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
   }

   // identities

   identity hash-algorithm {
     description
       "A base identity for hash algorithm verification.";
   }

   identity sha-256 {
     base hash-algorithm;
     description
       "The SHA-256 algorithm.";
     reference
       "RFC 6234: US Secure Hash Algorithms";
   }

   // typedefs

   typedef cms {
     type binary;
     description
       "A ContentInfo structure, as specified in RFC 5652,
        encoded using ASN.1 distinguished encoding rules (DER),
        as specified in ITU-T X.690.";
     reference
       "RFC 5652:
          Cryptographic Message Syntax (CMS)





Watsen, et al.               Standards Track                   [Page 35]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


        ITU-T X.690:
          Information technology - ASN.1 encoding rules:
          Specification of Basic Encoding Rules (BER),
          Canonical Encoding Rules (CER) and Distinguished
          Encoding Rules (DER)";
   }

   // yang-data
   rc:yang-data conveyed-information {
     choice information-type {
       mandatory true;
       description
         "This choice statement ensures the response contains
          redirect-information or onboarding-information.";
       container redirect-information {
         description
           "Redirect information is described in Section 2.1 of
            RFC 8572.  Its purpose is to redirect a device to
            another bootstrap server.";
         reference
           "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
         list bootstrap-server {
           key "address";
           min-elements 1;
           description
             "A bootstrap server entry.";
           leaf address {
             type inet:host;
             mandatory true;
             description
               "The IP address or hostname of the bootstrap server the
                device should redirect to.";
           }
           leaf port {
             type inet:port-number;
             default "443";
             description
               "The port number the bootstrap server listens on.  If no
                port is specified, the IANA-assigned port for 'https'
                (443) is used.";
           }
           leaf trust-anchor {
             type cms;
             description
               "A CMS structure that MUST contain the chain of
                X.509 certificates needed to authenticate the TLS
                certificate presented by this bootstrap server.




Watsen, et al.               Standards Track                   [Page 36]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


                The CMS MUST only contain a single chain of
                certificates.  The bootstrap server MUST only
                authenticate to last intermediate CA certificate
                listed in the chain.

                In all cases, the chain MUST include a self-signed
                root certificate.  In the case where the root
                certificate is itself the issuer of the bootstrap
                server's TLS certificate, only one certificate
                is present.

                If needed by the device, this CMS structure MAY
                also contain suitably fresh revocation objects
                with which the device can verify the revocation
                status of the certificates.

                This CMS encodes the degenerate form of the SignedData
                structure that is commonly used to disseminate X.509
                certificates and revocation objects (RFC 5280).";
             reference
               "RFC 5280:
                  Internet X.509 Public Key Infrastructure Certificate
                  and Certificate Revocation List (CRL) Profile";
           }
         }
       }
       container onboarding-information {
         description
           "Onboarding information is described in Section 2.2 of
            RFC 8572.  Its purpose is to provide the device everything
            it needs to bootstrap itself.";
         reference
           "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
         container boot-image {
           description
             "Specifies criteria for the boot image the device MUST
              be running, as well as information enabling the device
              to install the required boot image.";
           leaf os-name {
             type string;
             description
               "The name of the operating system software the device
                MUST be running in order to not require a software
                image upgrade (e.g., VendorOS).";
           }
           leaf os-version {
             type string;




Watsen, et al.               Standards Track                   [Page 37]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


             description
               "The version of the operating system software the
                device MUST be running in order to not require a
                software image upgrade (e.g., 17.3R2.1).";
           }
           leaf-list download-uri {
             type inet:uri;
             ordered-by user;
             description
               "An ordered list of URIs to where the same boot image
                file may be obtained.  How the URI schemes (http, ftp,
                etc.) a device supports are known is vendor specific.
                If a secure scheme (e.g., https) is provided, a device
                MAY establish an untrusted connection to the remote
                server, by blindly accepting the server's end-entity
                certificate, to obtain the boot image.";
           }
           list image-verification {
             must '../download-uri' {
               description
                 "Download URIs must be provided if an image is to
                  be verified.";
             }
             key "hash-algorithm";
             description
               "A list of hash values that a device can use to verify
                boot image files with.";
             leaf hash-algorithm {
               type identityref {
                 base hash-algorithm;
               }
               description
                 "Identifies the hash algorithm used.";
             }
             leaf hash-value {
               type yang:hex-string;
               mandatory true;
               description
                 "The hex-encoded value of the specified hash
                  algorithm over the contents of the boot image
                  file.";
             }
           }
         }
         leaf configuration-handling {
           type enumeration {
             enum merge {




Watsen, et al.               Standards Track                   [Page 38]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


               description
                 "Merge configuration into the running datastore.";
             }
             enum replace {
               description
                 "Replace the existing running datastore with the
                  passed configuration.";
             }
           }
           must '../configuration';
           description
             "This enumeration indicates how the server should process
              the provided configuration.";
         }
         leaf pre-configuration-script {
           type script;
           description
             "A script that, when present, is executed before the
              configuration has been processed.";
         }
         leaf configuration {
           type binary;
           must '../configuration-handling';
           description
             "Any configuration known to the device.  The use of
              the 'binary' type enables content (e.g., XML) to be
              embedded into a JSON document.  The exact encoding
              of the content, as with the scripts, is vendor
              specific.";
         }
         leaf post-configuration-script {
           type script;
           description
             "A script that, when present, is executed after the
              configuration has been processed.";
         }
       }
     }
   }

   typedef script {
     type binary;
     description
       "A device-specific script that enables the execution of
        commands to perform actions not possible thru configuration
        alone.





Watsen, et al.               Standards Track                   [Page 39]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


        No attempt is made to standardize the contents, running
        context, or programming language of the script, other than
        that it can indicate if any warnings or errors occurred and
        can emit output.  The contents of the script are considered
        specific to the vendor, product line, and/or model of the
        device.

        If the script execution indicates that a warning occurred,
        then the device MUST assume that the script had a soft error
        that the script believes will not affect manageability.

        If the script execution indicates that an error occurred,
        the device MUST assume the script had a hard error that the
        script believes will affect manageability.  In this case,
        the script is required to gracefully exit, removing any
        state that might hinder the device's ability to continue
        the bootstrapping sequence (e.g., process onboarding
        information obtained from another bootstrap server).";
   }
 }
 <CODE ENDS>






























Watsen, et al.               Standards Track                   [Page 40]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


7.  The SZTP Bootstrap Server API

  This section defines the API for bootstrap servers.  The API is
  defined as that produced by a RESTCONF [RFC8040] server that supports
  the YANG 1.1 [RFC7950] module defined in this section.

7.1.  API Overview

  The following tree diagram provides an overview for the bootstrap
  server RESTCONF API.

  module: ietf-sztp-bootstrap-server

    rpcs:
      +---x get-bootstrapping-data
      |  +---w input
      |  |  +---w signed-data-preferred?   empty
      |  |  +---w hw-model?                string
      |  |  +---w os-name?                 string
      |  |  +---w os-version?              string
      |  |  +---w nonce?                   binary
      |  +--ro output
      |     +--ro reporting-level?    enumeration {onboarding-server}?
      |     +--ro conveyed-information    cms
      |     +--ro owner-certificate?      cms
      |     +--ro ownership-voucher?      cms
      +---x report-progress {onboarding-server}?
         +---w input
            +---w progress-type         enumeration
            +---w message?              string
            +---w ssh-host-keys
            |  +---w ssh-host-key* []
            |     +---w algorithm    string
            |     +---w key-data     binary
            +---w trust-anchor-certs
               +---w trust-anchor-cert*   cms















Watsen, et al.               Standards Track                   [Page 41]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


7.2.  Example Usage

  This section presents three examples illustrating the bootstrap
  server's API.  Two examples are provided for the "get-bootstrapping-
  data" RPC (one to an untrusted bootstrap server and the other to a
  trusted bootstrap server), and one example is provided for the
  "report-progress" RPC.

  The following example illustrates a device using the API to fetch its
  bootstrapping data from an untrusted bootstrap server.  In this
  example, the device sends the "signed-data-preferred" input parameter
  and receives signed data in the response.

  REQUEST

  [Note: '\' line wrapping for formatting only]

  POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
  ng-data HTTP/1.1
  HOST: example.com
  Content-Type: application/yang.data+xml

  <input
    xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
    <signed-data-preferred/>
  </input>

  RESPONSE

  HTTP/1.1 200 OK
  Date: Sat, 31 Oct 2015 17:02:40 GMT
  Server: example-server
  Content-Type: application/yang.data+xml

  <output
    xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
    <conveyed-information>base64encodedvalue==</conveyed-information>
    <owner-certificate>base64encodedvalue==</owner-certificate>
    <ownership-voucher>base64encodedvalue==</ownership-voucher>
  </output>











Watsen, et al.               Standards Track                   [Page 42]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  The following example illustrates a device using the API to fetch its
  bootstrapping data from a trusted bootstrap server.  In this example,
  the device sends additional input parameters to the bootstrap server,
  which it may use when formulating its response to the device.

  REQUEST

  [Note: '\' line wrapping for formatting only]

  POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
  ng-data HTTP/1.1
  HOST: example.com
  Content-Type: application/yang.data+xml

  <input
    xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
    <hw-model>model-x</hw-model>
    <os-name>vendor-os</os-name>
    <os-version>17.3R2.1</os-version>
    <nonce>extralongbase64encodedvalue=</nonce>
  </input>

  RESPONSE

  HTTP/1.1 200 OK
  Date: Sat, 31 Oct 2015 17:02:40 GMT
  Server: example-server
  Content-Type: application/yang.data+xml

  <output
    xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
    <reporting-level>verbose</reporting-level>
    <conveyed-information>base64encodedvalue==</conveyed-information>
  </output>

















Watsen, et al.               Standards Track                   [Page 43]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  The following example illustrates a device using the API to post a
  progress report to a bootstrap server.  Illustrated below is the
  "bootstrap-complete" message, but the device may send other progress
  reports to the server while bootstrapping.  In this example, the
  device is sending both its SSH host keys and a TLS server
  certificate, which the bootstrap server may, for example, pass to an
  NMS, as discussed in Appendix C.3.

  REQUEST

  [Note: '\' line wrapping for formatting only]

  POST /restconf/operations/ietf-sztp-bootstrap-server:report-progress\
   HTTP/1.1
  HOST: example.com
  Content-Type: application/yang.data+xml

  <input
    xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
    <progress-type>bootstrap-complete</progress-type>
    <message>example message</message>
    <ssh-host-keys>
      <ssh-host-key>
        <algorithm>ssh-rsa</algorithm>
        <key-data>base64encodedvalue==</key-data>
      </ssh-host-key>
      <ssh-host-key>
        <algorithm>rsa-sha2-256</algorithm>
        <key-data>base64encodedvalue==</key-data>
      </ssh-host-key>
    </ssh-host-keys>
    <trust-anchor-certs>
      <trust-anchor-cert>base64encodedvalue==</trust-anchor-cert>
    </trust-anchor-certs>
  </input>

  RESPONSE

  HTTP/1.1 204 No Content
  Date: Sat, 31 Oct 2015 17:02:40 GMT
  Server: example-server










Watsen, et al.               Standards Track                   [Page 44]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


7.3.  YANG Module

  The bootstrap server's device-facing API is normatively defined by
  the YANG module defined in this section.

  This module uses data types defined in [RFC4253], [RFC5652],
  [RFC5280], and [RFC8366]; uses an encoding defined in
  [ITU.X690.2015]; and makes a reference to [RFC4250], [RFC6187], and
  [Std-802.1AR].

  <CODE BEGINS> file "[email protected]"
  module ietf-sztp-bootstrap-server {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server";
    prefix sztp-svr;

    organization
      "IETF NETCONF (Network Configuration) Working Group";
    contact
      "WG Web:   <https://datatracker.ietf.org/wg/netconf/>
       WG List:  <mailto:[email protected]>
       Author:   Kent Watsen <mailto:[email protected]>";
    description
      "This module defines an interface for bootstrap servers, as
       defined by RFC 8572 ('Secure Zero Touch Provisioning (SZTP)').

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
       are to be interpreted as described in BCP 14 (RFC 2119)
       (RFC 8174) when, and only when, they appear in all
       capitals, as shown here.

       Copyright (c) 2019 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 8572; see the
       RFC itself for full legal notices.";

    revision 2019-04-30 {
      description



Watsen, et al.               Standards Track                   [Page 45]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


        "Initial version";
      reference
        "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
    }

    // features

    feature redirect-server {
      description
        "The server supports being a 'redirect server'.";
    }

    feature onboarding-server {
      description
        "The server supports being an 'onboarding server'.";
    }

    // typedefs

    typedef cms {
      type binary;
      description
        "A CMS structure, as specified in RFC 5652, encoded using
         ASN.1 distinguished encoding rules (DER), as specified in
         ITU-T X.690.";
      reference
        "RFC 5652:
           Cryptographic Message Syntax (CMS)
         ITU-T X.690:
           Information technology - ASN.1 encoding rules:
           Specification of Basic Encoding Rules (BER),
           Canonical Encoding Rules (CER) and Distinguished
           Encoding Rules (DER)";
    }

    // RPCs

    rpc get-bootstrapping-data {
      description
        "This RPC enables a device, as identified by the RESTCONF
         username, to obtain bootstrapping data that has been made
         available for it.";
      input {
        leaf signed-data-preferred {
          type empty;
          description
            "This optional input parameter enables a device to
             communicate to the bootstrap server that it prefers



Watsen, et al.               Standards Track                   [Page 46]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


             to receive signed data.  Devices SHOULD always send
             this parameter when the bootstrap server is untrusted.
             Upon receiving this input parameter, the bootstrap
             server MUST return either signed data or unsigned
             redirect information; the bootstrap server MUST NOT
             return unsigned onboarding information.";
        }
        leaf hw-model {
          type string;
          description
            "This optional input parameter enables a device to
             communicate to the bootstrap server its vendor-specific
             hardware model number.  This parameter may be needed,
             for instance, when a device's IDevID certificate does
             not include the 'hardwareModelName' value in its
             subjectAltName field, as is allowed by 802.1AR.";
          reference
            "IEEE 802.1AR: IEEE Standard for Local and
               metropolitan area networks - Secure
               Device Identity";
        }
        leaf os-name {
          type string;
          description
            "This optional input parameter enables a device to
             communicate to the bootstrap server the name of its
             operating system.  This parameter may be useful if
             the device, as identified by its serial number, can
             run more than one type of operating system (e.g.,
             on a white-box system.";
        }
        leaf os-version {
          type string;
          description
            "This optional input parameter enables a device to
             communicate to the bootstrap server the version of its
             operating system.  This parameter may be used by a
             bootstrap server to return an operating-system-specific
             response to the device, thus negating the need for a
             potentially expensive boot image update.";
        }
        leaf nonce {
          type binary {
            length "16..32";
          }
          description
            "This optional input parameter enables a device to
             communicate to the bootstrap server a nonce value.



Watsen, et al.               Standards Track                   [Page 47]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


             This may be especially useful for devices lacking
             an accurate clock, as then the bootstrap server
             can dynamically obtain from the manufacturer a
             voucher with the nonce value in it, as described
             in RFC 8366.";
          reference
            "RFC 8366:
               A Voucher Artifact for Bootstrapping Protocols";
        }
      }
      output {
        leaf reporting-level {
          if-feature "onboarding-server";
          type enumeration {
            enum minimal {
              description
                "Send just the progress reports required by RFC 8572.";
              reference
                "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
            }
            enum verbose {
              description
                "Send additional progress reports that might help
                 troubleshooting an SZTP bootstrapping issue.";
            }
          }
          default "minimal";
          description
            "Specifies the reporting level for progress reports the
             bootstrap server would like to receive when processing
             onboarding information.  Progress reports are not sent
             when processing redirect information or when the
             bootstrap server is untrusted (e.g., device sent the
             '<signed-data-preferred>' input parameter).";
        }
        leaf conveyed-information {
          type cms;
          mandatory true;
          description
            "An SZTP conveyed information artifact, as described in
             Section 3.1 of RFC 8572.";
          reference
            "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
        }
        leaf owner-certificate {
          type cms;
          must '../ownership-voucher' {
            description



Watsen, et al.               Standards Track                   [Page 48]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


              "An ownership voucher must be present whenever an owner
               certificate is presented.";
          }
          description
            "An owner certificate artifact, as described in Section
             3.2 of RFC 8572.  This leaf is optional because it is
             only needed when the conveyed information artifact is
             signed.";
          reference
            "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
        }
        leaf ownership-voucher {
          type cms;
          must '../owner-certificate' {
            description
              "An owner certificate must be present whenever an
               ownership voucher is presented.";
          }
          description
            "An ownership voucher artifact, as described by Section
             3.3 of RFC 8572.  This leaf is optional because it is
             only needed when the conveyed information artifact is
             signed.";
          reference
            "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
        }
      }
    }

    rpc report-progress {
      if-feature "onboarding-server";
      description
        "This RPC enables a device, as identified by the RESTCONF
         username, to report its bootstrapping progress to the
         bootstrap server.  This RPC is expected to be used when
         the device obtains onboarding-information from a trusted
         bootstrap server.";
      input {
        leaf progress-type {
          type enumeration {
            enum bootstrap-initiated {
              description
                "Indicates that the device just used the
                 'get-bootstrapping-data' RPC.  The 'message' node
                 below MAY contain any additional information that
                 the manufacturer thinks might be useful.";
            }
            enum parsing-initiated {



Watsen, et al.               Standards Track                   [Page 49]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


              description
                "Indicates that the device is about to start parsing
                 the onboarding information.  This progress type is
                 only for when parsing is implemented as a distinct
                 step.";
            }
            enum parsing-warning {
              description
                "Indicates that the device had a non-fatal error when
                 parsing the response from the bootstrap server.  The
                 'message' node below SHOULD indicate the specific
                 warning that occurred.";
            }
            enum parsing-error {
              description
                "Indicates that the device encountered a fatal error
                 when parsing the response from the bootstrap server.
                 For instance, this could be due to malformed encoding,
                 the device expecting signed data when only unsigned
                 data is provided, the ownership voucher not listing
                 the device's serial number, or because the signature
                 didn't match.  The 'message' node below SHOULD
                 indicate the specific error.  This progress type
                 also indicates that the device has abandoned trying
                 to bootstrap off this bootstrap server.";
            }
            enum parsing-complete {
              description
                "Indicates that the device successfully completed
                 parsing the onboarding information.  This progress
                 type is only for when parsing is implemented as a
                 distinct step.";
            }
            enum boot-image-initiated {
              description
                "Indicates that the device is about to start
                 processing the boot image information.";
            }
            enum boot-image-warning {
              description
                "Indicates that the device encountered a non-fatal
                 error condition when trying to install a boot image.
                 A possible reason might include a need to reformat a
                 partition causing loss of data.  The 'message' node
                 below SHOULD indicate any warning messages that were
                 generated.";
            }
            enum boot-image-error {



Watsen, et al.               Standards Track                   [Page 50]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


              description
                "Indicates that the device encountered an error when
                 trying to install a boot image, which could be for
                 reasons such as a file server being unreachable,
                 file not found, signature mismatch, etc.  The
                 'message' node SHOULD indicate the specific error
                 that occurred.  This progress type also indicates
                 that the device has abandoned trying to bootstrap
                 off this bootstrap server.";
            }
            enum boot-image-mismatch {
              description
                "Indicates that the device has determined that
                 it is not running the correct boot image.  This
                 message SHOULD precipitate trying to download
                 a boot image.";
            }
            enum boot-image-installed-rebooting {
              description
                "Indicates that the device successfully installed
                 a new boot image and is about to reboot.  After
                 sending this progress type, the device is not
                 expected to access the bootstrap server again
                 for this bootstrapping attempt.";
            }
            enum boot-image-complete {
              description
                "Indicates that the device believes that it is
                 running the correct boot image.";
            }
            enum pre-script-initiated {
              description
                "Indicates that the device is about to execute the
                 'pre-configuration-script'.";
            }
            enum pre-script-warning {
              description
                "Indicates that the device obtained a warning from the
                 'pre-configuration-script' when it was executed.  The
                 'message' node below SHOULD capture any output the
                 script produces.";
            }
            enum pre-script-error {
              description
                "Indicates that the device obtained an error from the
                 'pre-configuration-script' when it was executed.  The
                 'message' node below SHOULD capture any output the
                 script produces.  This progress type also indicates



Watsen, et al.               Standards Track                   [Page 51]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


                 that the device has abandoned trying to bootstrap
                 off this bootstrap server.";
            }
            enum pre-script-complete {
              description
                "Indicates that the device successfully executed the
                 'pre-configuration-script'.";
            }
            enum config-initiated {
              description
                "Indicates that the device is about to commit the
                 initial configuration.";
            }
            enum config-warning {
              description
                "Indicates that the device obtained warning messages
                 when it committed the initial configuration.  The
                 'message' node below SHOULD indicate any warning
                 messages that were generated.";
            }
            enum config-error {
              description
                "Indicates that the device obtained error messages
                 when it committed the initial configuration.  The
                 'message' node below SHOULD indicate the error
                 messages that were generated.  This progress type
                 also indicates that the device has abandoned trying
                 to bootstrap off this bootstrap server.";
            }
            enum config-complete {
              description
                "Indicates that the device successfully committed
                 the initial configuration.";
            }
            enum post-script-initiated {
              description
                "Indicates that the device is about to execute the
                 'post-configuration-script'.";
            }
            enum post-script-warning {
              description
                "Indicates that the device obtained a warning from the
                 'post-configuration-script' when it was executed.  The
                 'message' node below SHOULD capture any output the
                 script produces.";
            }
            enum post-script-error {
              description



Watsen, et al.               Standards Track                   [Page 52]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


                "Indicates that the device obtained an error from the
                 'post-configuration-script' when it was executed.  The
                 'message' node below SHOULD capture any output the
                 script produces.  This progress type also indicates
                 that the device has abandoned trying to bootstrap
                 off this bootstrap server.";
            }
            enum post-script-complete {
              description
                "Indicates that the device successfully executed the
                 'post-configuration-script'.";
            }
            enum bootstrap-warning {
              description
                "Indicates that a warning condition occurred for which
                 no other 'progress-type' enumeration is deemed
                 suitable.  The 'message' node below SHOULD describe
                 the warning.";
            }
            enum bootstrap-error {
              description
                "Indicates that an error condition occurred for which
                 no other 'progress-type' enumeration is deemed
                 suitable.  The 'message' node below SHOULD describe
                 the error.  This progress type also indicates that
                 the device has abandoned trying to bootstrap off
                 this bootstrap server.";
            }
            enum bootstrap-complete {
              description
                "Indicates that the device successfully processed
                 all 'onboarding-information' provided and that it
                 is ready to be managed.  The 'message' node below
                 MAY contain any additional information that the
                 manufacturer thinks might be useful.  After sending
                 this progress type, the device is not expected to
                 access the bootstrap server again.";
            }
            enum informational {
              description
                "Indicates any additional information not captured
                 by any of the other progress types.  For instance,
                 a message indicating that the device is about to
                 reboot after having installed a boot image could
                 be provided.  The 'message' node below SHOULD
                 contain information that the manufacturer thinks
                 might be useful.";
            }



Watsen, et al.               Standards Track                   [Page 53]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


          }
          mandatory true;
          description
            "The type of progress report provided.";
        }
        leaf message {
          type string;
          description
            "An optional arbitrary value.";
        }
        container ssh-host-keys {
          when "../progress-type = 'bootstrap-complete'" {
            description
              "SSH host keys are only sent when the progress type
               is 'bootstrap-complete'.";
          }
          description
            "A list of SSH host keys an NMS may use to authenticate
             subsequent SSH-based connections to this device (e.g.,
             netconf-ssh, netconf-ch-ssh).";
          list ssh-host-key {
            description
              "An SSH host key an NMS may use to authenticate
               subsequent SSH-based connections to this device
               (e.g., netconf-ssh and netconf-ch-ssh).";
            reference
              "RFC 4253: The Secure Shell (SSH) Transport Layer
                         Protocol";
            leaf algorithm {
              type string;
              mandatory true;
              description
                "The public key algorithm name for this SSH key.

                 Valid values are listed in the 'Public Key Algorithm
                 Names' subregistry of the 'Secure Shell (SSH) Protocol
                 Parameters' registry maintained by IANA.";
              reference
                "RFC 4250: The Secure Shell (SSH) Protocol Assigned
                           Numbers
                 IANA URL: <https://www.iana.org/assignments/ssh-para\\
                           meters>
                           ('\\' added for formatting reasons)";
            }
            leaf key-data {
              type binary;
              mandatory true;
              description



Watsen, et al.               Standards Track                   [Page 54]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


                "The binary public key data for this SSH key, as
                 specified by RFC 4253, Section 6.6; that is:

                   string    certificate or public key format
                             identifier
                   byte[n]   key/certificate data.";
              reference
                "RFC 4253: The Secure Shell (SSH) Transport Layer
                           Protocol";
            }
          }
        }
        container trust-anchor-certs {
          when "../progress-type = 'bootstrap-complete'" {
            description
              "Trust anchors are only sent when the progress type
               is 'bootstrap-complete'.";
          }
          description
            "A list of trust anchor certificates an NMS may use to
             authenticate subsequent certificate-based connections
             to this device (e.g., restconf-tls, netconf-tls, or
             even netconf-ssh with X.509 support from RFC 6187).
             In practice, trust anchors for IDevID certificates do
             not need to be conveyed using this mechanism.";
          reference
            "RFC 6187: X.509v3 Certificates for Secure Shell
                       Authentication";
          leaf-list trust-anchor-cert {
            type cms;
            description
              "A CMS structure whose topmost content type MUST be the
               signed-data content type, as described by Section 5 of
               RFC 5652.

               The CMS MUST contain the chain of X.509 certificates
               needed to authenticate the certificate presented by
               the device.

               The CMS MUST contain only a single chain of
               certificates.  The last certificate in the chain
               MUST be the issuer for the device's end-entity
               certificate.

               In all cases, the chain MUST include a self-signed
               root certificate.  In the case where the root
               certificate is itself the issuer of the device's
               end-entity certificate, only one certificate is



Watsen, et al.               Standards Track                   [Page 55]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


               present.

               This CMS encodes the degenerate form of the SignedData
               structure that is commonly used to disseminate X.509
               certificates and revocation objects (RFC 5280).";
            reference
              "RFC 5280: Internet X.509 Public Key Infrastructure
                         Certificate and Certificate Revocation List
                         (CRL) Profile
               RFC 5652: Cryptographic Message Syntax (CMS)";
          }
        }
      }
    }
  }
  <CODE ENDS>

8.  DHCP Options

  This section defines two DHCP options: one for DHCPv4 and one for
  DHCPv6.  These two options are semantically the same, though
  syntactically different.

8.1.  DHCPv4 SZTP Redirect Option

  The DHCPv4 SZTP Redirect Option is used to provision the client with
  one or more URIs for bootstrap servers that can be contacted to
  attempt further configuration.

            0                             1
            0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
           +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
           |   option-code (143)   |     option-length     |
           +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
           .                                               .
           .    bootstrap-server-list (variable length)    .
           .                                               .
           +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

           * option-code: OPTION_V4_SZTP_REDIRECT (143)
           * option-length: The option length in octets.
           * bootstrap-server-list: A list of servers for the
              client to attempt contacting, in order to obtain
              further bootstrapping data, in the format shown
              in Section 8.3.

                     DHCPv4 SZTP Redirect Option




Watsen, et al.               Standards Track                   [Page 56]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  DHCPv4 Client Behavior

  Clients MAY request the OPTION_V4_SZTP_REDIRECT option by including
  its option code in the Parameter Request List (55) in DHCP request
  messages.

  On receipt of a DHCPv4 Reply message that contains the
  OPTION_V4_SZTP_REDIRECT option, the client processes the response
  according to Section 5.5, with the understanding that the "address"
  and "port" values are encoded in the URIs.

  Any invalid URI entries received in the uri-data field are ignored by
  the client.  If the received OPTION_V4_SZTP_REDIRECT option does not
  contain at least one valid URI entry in the uri-data field, then the
  client MUST discard the option.

  As the list of URIs may exceed the maximum allowed length of a single
  DHCPv4 option (255 octets), the client MUST implement the decoding
  agent behavior described in [RFC3396], to correctly process a URI
  list split across a number of received OPTION_V4_SZTP_REDIRECT option
  instances.

  DHCPv4 Server Behavior

  The DHCPv4 server MAY include a single instance of the
  OPTION_V4_SZTP_REDIRECT option in DHCP messages it sends.  Servers
  MUST NOT send more than one instance of the OPTION_V4_SZTP_REDIRECT
  option.

  The server's DHCP message MUST contain only a single instance of the
  OPTION_V4_SZTP_REDIRECT's 'bootstrap-server-list' field.  However,
  the list of URIs in this field may exceed the maximum allowed length
  of a single DHCPv4 option (per [RFC3396]).

  If the length of 'bootstrap-server-list' is small enough to fit into
  a single instance of OPTION_V4_SZTP_REDIRECT, the server MUST NOT
  send more than one instance of this option.

  If the length of the 'bootstrap-server-list' field is too large to
  fit into a single option, then OPTION_V4_SZTP_REDIRECT MUST be split
  into multiple instances of the option according to the process
  described in [RFC3396].









Watsen, et al.               Standards Track                   [Page 57]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


8.2.  DHCPv6 SZTP Redirect Option

  The DHCPv6 SZTP Redirect Option is used to provision the client with
  one or more URIs for bootstrap servers that can be contacted to
  attempt further configuration.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       option-code (136)       |          option-length        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .           bootstrap-server-list (variable length)             .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    * option-code: OPTION_V6_SZTP_REDIRECT (136)
    * option-length: The option length in octets.
    * bootstrap-server-list: A list of servers for the client to
      attempt contacting, in order to obtain further bootstrapping
      data, in the format shown in Section 8.3.

                     DHCPv6 SZTP Redirect Option

  DHCPv6 Client Behavior

  Clients MAY request OPTION_V6_SZTP_REDIRECT using the process defined
  in [RFC8415], Sections 18.2.1, 18.2.2, 18.2.4, 18.2.5, 18.2.6, and
  21.7.  As a convenience to the reader, we mention here that the
  client includes requested option codes in the Option Request option.

  On receipt of a DHCPv6 Reply message that contains the
  OPTION_V6_SZTP_REDIRECT option, the client processes the response
  according to Section 5.5, with the understanding that the "address"
  and "port" values are encoded in the URIs.

  Any invalid URI entries received in the uri-data field are ignored by
  the client.  If the received OPTION_V6_SZTP_REDIRECT option does not
  contain at least one valid URI entry in the uri-data field, then the
  client MUST discard the option.

  DHCPv6 Server Behavior

  Section 18.3 of [RFC8415] governs server operation in regard to
  option assignment.  As a convenience to the reader, we mention here
  that the server will send a particular option code only if configured
  with specific values for that option code and if the client requested
  it.





Watsen, et al.               Standards Track                   [Page 58]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  The OPTION_V6_SZTP_REDIRECT option is a singleton.  Servers MUST NOT
  send more than one instance of this option.

8.3.  Common Field Encoding

  Both of the DHCPv4 and DHCPv6 options defined in this section encode
  a list of bootstrap server URIs.  The "URI" structure is a DHCP
  option that can contain multiple URIs (see [RFC7227], Section 5.7).
  Each URI entry in the bootstrap-server-list is structured as follows:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+
   |       uri-length              |          URI                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...-+-+-+-+-+-+-+

   * uri-length: 2 octets long; specifies the length of the URI data.
   * URI: URI of the SZTP bootstrap server.

  The URI of the SZTP bootstrap server MUST use the "https" URI scheme
  defined in Section 2.7.2 of [RFC7230], and it MUST be in form
  "https://<ip-address-or-hostname>[:<port>]".

9.  Security Considerations

9.1.  Clock Sensitivity

  The solution in this document relies on TLS certificates, owner
  certificates, and ownership vouchers, all of which require an
  accurate clock in order to be processed correctly (e.g., to test
  validity dates and revocation status).  Implementations SHOULD ensure
  devices have an accurate clock when shipped from manufacturing
  facilities and take steps to prevent clock tampering.

  If it is not possible to ensure clock accuracy, it is RECOMMENDED
  that implementations disable the aspects of the solution having clock
  sensitivity.  In particular, such implementations should assume that
  TLS certificates, ownership vouchers, and owner certificates never
  expire and are not revocable.  From an ownership voucher perspective,
  manufacturers SHOULD issue a single ownership voucher for the
  lifetime of such devices.

  Implementations SHOULD NOT rely on NTP for time, as NTP is not a
  secure protocol at this time.  Note that there is an IETF document
  that focuses on securing NTP [NTS-NTP].








Watsen, et al.               Standards Track                   [Page 59]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


9.2.  Use of IDevID Certificates

  IDevID certificates, as defined in [Std-802.1AR], are RECOMMENDED,
  both for the TLS-level client certificate used by devices when
  connecting to a bootstrap server, as well as for the device identity
  certificate used by owners when encrypting the SZTP bootstrapping
  data artifacts.

9.3.  Immutable Storage for Trust Anchors

  Devices MUST ensure that all their trust anchor certificates,
  including those for connecting to bootstrap servers and verifying
  ownership vouchers, are protected from external modification.

  It may be necessary to update these certificates over time (e.g., the
  manufacturer wants to delegate trust to a new CA).  It is therefore
  expected that devices MAY update these trust anchors when needed
  through a verifiable process, such as a software upgrade using signed
  software images.

9.4.  Secure Storage for Long-Lived Private Keys

  Manufacturer-generated device identifiers may have very long
  lifetimes.  For instance, [Std-802.1AR] recommends using the
  "notAfter" value 99991231235959Z in IDevID certificates.  Given the
  long-lived nature of these private keys, it is paramount that they
  are stored so as to resist discovery, such as in a secure
  cryptographic processor (e.g., a trusted platform module (TPM) chip).

9.5.  Blindly Authenticating a Bootstrap Server

  This document allows a device to blindly authenticate a bootstrap
  server's TLS certificate.  It does so to allow for cases where the
  redirect information may be obtained in an unsecured manner, which is
  desirable to support in some cases.

  To compensate for this, this document requires that devices, when
  connected to an untrusted bootstrap server, assert that data
  downloaded from the server is signed.

9.6.  Disclosing Information to Untrusted Servers

  This document allows devices to establish connections to untrusted
  bootstrap servers.  However, since the bootstrap server is untrusted,
  it may be under the control of an adversary; therefore, devices
  SHOULD be cautious about the data they send to the bootstrap server
  in such cases.




Watsen, et al.               Standards Track                   [Page 60]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Devices send different data to bootstrap servers at each of the
  protocol layers: TCP, TLS, HTTP, and RESTCONF.

  At the TCP protocol layer, devices may relay their IP address,
  subject to network translations.  Disclosure of this information is
  not considered a security risk.

  At the TLS protocol layer, devices may use a client certificate to
  identify and authenticate themselves to untrusted bootstrap servers.
  At a minimum, the client certificate must disclose the device's
  serial number and may disclose additional information such as the
  device's manufacturer, hardware model, public key, etc.  Knowledge of
  this information may provide an adversary with details needed to
  launch an attack.  It is RECOMMENDED that secrecy of the network
  constituency not be relied on for security.

  At the HTTP protocol layer, devices may use an HTTP authentication
  scheme to identify and authenticate themselves to untrusted bootstrap
  servers.  At a minimum, the authentication scheme must disclose the
  device's serial number and, concerningly, may, depending on the
  authentication mechanism used, reveal a secret that is only supposed
  to be known to the device (e.g., a password).  Devices SHOULD NOT use
  an HTTP authentication scheme (e.g., HTTP Basic) with an untrusted
  bootstrap server that reveals a secret that is only supposed to be
  known to the device.

  At the RESTCONF protocol layer, devices use the "get-bootstrapping-
  data" RPC, but not the "report-progress" RPC, when connected to an
  untrusted bootstrap server.  The "get-bootstrapping-data" RPC allows
  additional input parameters to be passed to the bootstrap server
  (e.g., "os-name", "os-version", and "hw-model").  It is RECOMMENDED
  that devices only pass the "signed-data-preferred" input parameter to
  an untrusted bootstrap server.  While it is okay for a bootstrap
  server to immediately return signed onboarding information, it is
  RECOMMENDED that bootstrap servers instead promote the untrusted
  connection to a trusted connection, as described in Appendix B, thus
  enabling the device to use the "report-progress" RPC while processing
  the onboarding information.

9.7.  Sequencing Sources of Bootstrapping Data

  For devices supporting more than one source for bootstrapping data,
  no particular sequencing order has to be observed for security
  reasons, as the solution for each source is considered equally
  secure.  However, from a privacy perspective, it is RECOMMENDED that
  devices access local sources before accessing remote sources.





Watsen, et al.               Standards Track                   [Page 61]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


9.8.  Safety of Private Keys Used for Trust

  The solution presented in this document enables bootstrapping data to
  be trusted in two ways: through either transport-level security or
  the signing of artifacts.

  When transport-level security (i.e., a trusted bootstrap server) is
  used, the private key for the end-entity certificate must be online
  in order to establish the TLS connection.

  When artifacts are signed, the signing key is required to be online
  only when the bootstrap server is returning a dynamically generated
  signed-data response.  For instance, a bootstrap server, upon
  receiving the "signed-data-preferred" input parameter to the
  "get-bootstrapping-data" RPC, may dynamically generate a response
  that is signed.

  Bootstrap server administrators are RECOMMENDED to follow best
  practices to protect the private key used for any online operation.
  For instance, use of a hardware security module (HSM) is RECOMMENDED.
  If an HSM is not used, frequent private key refreshes are
  RECOMMENDED, assuming all bootstrapping devices have an accurate
  clock (see Section 9.1).

  For best security, it is RECOMMENDED that owners only provide
  bootstrapping data that has been signed (using a protected private
  key) and encrypted (using the device's public key from its secure
  device identity certificate).

9.9.  Increased Reliance on Manufacturers

  The SZTP bootstrapping protocol presented in this document shifts
  some control of initial configuration away from the rightful owner of
  the device and towards the manufacturer and its delegates.

  The manufacturer maintains the list of well-known bootstrap servers
  its devices will trust.  By design, if no bootstrapping data is found
  via other methods first, the device will try to reach out to the
  well-known bootstrap servers.  There is no mechanism to prevent this
  from occurring other than by using an external firewall to block such
  connections.  Concerns related to trusted bootstrap servers are
  discussed in Section 9.10.

  Similarly, the manufacturer maintains the list of voucher-signing
  authorities its devices will trust.  The voucher-signing authorities
  issue the vouchers that enable a device to trust an owner's domain





Watsen, et al.               Standards Track                   [Page 62]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  certificate.  It is vital that manufacturers ensure the integrity of
  these voucher-signing authorities, so as to avoid incorrect
  assignments.

  Operators should be aware that this system assumes that they trust
  all the pre-configured bootstrap servers and voucher-signing
  authorities designated by the manufacturers.  While operators may use
  points in the network to block access to the well-known bootstrap
  servers, operators cannot prevent voucher-signing authorities from
  generating vouchers for their devices.

9.10.  Concerns with Trusted Bootstrap Servers

  Trusted bootstrap servers, whether well-known or discovered, have the
  potential to cause problems, such as the following.

  o  A trusted bootstrap server that has been compromised may be
     modified to return unsigned data of any sort.  For instance, a
     bootstrap server that is only supposed to return redirect
     information might be modified to return onboarding information.
     Similarly, a bootstrap server that is only supposed to return
     signed data may be modified to return unsigned data.  In both
     cases, the device will accept the response, unaware that it wasn't
     supposed to be any different.  It is RECOMMENDED that maintainers
     of trusted bootstrap servers ensure that their systems are not
     easily compromised and, in case of compromise, have mechanisms in
     place to detect and remediate the compromise as expediently as
     possible.

  o  A trusted bootstrap server hosting data that is either unsigned or
     signed but not encrypted may disclose information to unwanted
     parties (e.g., an administrator of the bootstrap server).  This is
     a privacy issue only, but it could reveal information that might
     be used in a subsequent attack.  Disclosure of redirect
     information has limited exposure (it is just a list of bootstrap
     servers), whereas disclosure of onboarding information could be
     highly revealing (e.g., network topology, firewall policies,
     etc.).  It is RECOMMENDED that operators encrypt the bootstrapping
     data when its contents are considered sensitive, even to the point
     of hiding it from the administrators of the bootstrap server,
     which may be maintained by a third party.

9.11.  Validity Period for Conveyed Information

  The conveyed information artifact does not specify a validity period.
  For instance, neither redirect information nor onboarding information
  enable "not-before" or "not-after" values to be specified, and
  neither artifact alone can be revoked.



Watsen, et al.               Standards Track                   [Page 63]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  For unsigned data provided by an untrusted source of bootstrapping
  data, it is not meaningful to discuss its validity period when the
  information itself has no authenticity and may have come from
  anywhere.

  For unsigned data provided by a trusted source of bootstrapping data
  (i.e., a bootstrap server), the availability of the data is the only
  measure of it being current.  Since the untrusted data comes from a
  trusted source, its current availability is meaningful, and since
  bootstrap servers use TLS, the contents of the exchange cannot be
  modified or replayed.

  For signed data, whether provided by an untrusted or trusted source
  of bootstrapping data, the validity is constrained by the validity of
  both the ownership voucher and owner certificate used to authenticate
  it.

  The ownership voucher's validity is primarily constrained by the
  ownership voucher's "created-on" and "expires-on" nodes.  While
  [RFC8366] recommends short-lived vouchers (see Section 6.1), the
  "expires-on" node may be set to any point in the future or omitted
  altogether to indicate that the voucher never expires.  The ownership
  voucher's validity is secondarily constrained by the manufacturer's
  PKI used to sign the voucher; whilst an ownership voucher cannot be
  revoked directly, the PKI used to sign it may be.

  The owner certificate's validity is primarily constrained by the
  X.509's validity field, the "notBefore" and "notAfter" values, as
  specified by the certificate authority that signed it.  The owner
  certificate's validity is secondarily constrained by the validity of
  the PKI used to sign the voucher.  Owner certificates may be revoked
  directly.

  For owners that wish to have maximum flexibility in their ability to
  specify and constrain the validity of signed data, it is RECOMMENDED
  that a unique owner certificate be created for each signed artifact.
  Not only does this enable a validity period to be specified, for each
  artifact, but it also enables the validity of each artifact to be
  revoked.

9.12.  Cascading Trust via Redirects

  Redirect information (Section 2.1), by design, instructs a
  bootstrapping device to initiate an HTTPS connection to the specified
  bootstrap servers.

  When the redirect information is trusted, the redirect information
  can encode a trust anchor certificate used by the device to



Watsen, et al.               Standards Track                   [Page 64]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  authenticate the TLS end-entity certificate presented by each
  bootstrap server.

  As a result, any compromise in an interaction providing redirect
  information may result in compromise of all subsequent interactions.

9.13.  Possible Reuse of Private Keys

  This document describes two uses for secure device identity
  certificates.

  The primary use is for when the device authenticates itself to a
  bootstrap server, using its private key for TLS-level client-
  certificate-based authentication.

  A secondary use is for when the device needs to decrypt provided
  bootstrapping artifacts, using its private key to decrypt the data
  or, more precisely, per Section 6 of [RFC5652], decrypt a symmetric
  key used to decrypt the data.

  Section 3.4 of this document allows for the possibility that the same
  secure device identity certificate is utilized for both uses, as
  [Std-802.1AR] states that a DevID certificate MAY have the
  "keyEncipherment" KeyUsage bit, in addition to the "digitalSignature"
  KeyUsage bit, set.

  While it is understood that it is generally frowned upon to reuse
  private keys, this document views such reuse acceptable as there are
  not any known ways to cause a signature made in one context to be
  (mis)interpreted as valid in the other context.

9.14.  Non-issue with Encrypting Signed Artifacts

  This document specifies the encryption of signed objects, as opposed
  to the signing of encrypted objects, as might be expected given well-
  publicized oracle attacks (e.g., the padding oracle attack).

  This document does not view such attacks as feasible in the context
  of the solution because the decrypted text never leaves the device.

9.15.  The "ietf-sztp-conveyed-info" YANG Module

  The "ietf-sztp-conveyed-info" module defined in this document defines
  a data structure that is always wrapped by a CMS structure.  When
  accessed by a secure mechanism (e.g., protected by TLS), then the CMS
  structure may be unsigned.  However, when accessed by an insecure
  mechanism (e.g., a removable storage device), the CMS structure must
  be signed, in order for the device to trust it.



Watsen, et al.               Standards Track                   [Page 65]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  Implementations should be aware that signed bootstrapping data only
  protects the data from modification and that the content is still
  visible to others.  This doesn't affect security so much as privacy.
  That the contents may be read by unintended parties when accessed by
  insecure mechanisms is considered next.

  The "ietf-sztp-conveyed-info" module defines a top-level "choice"
  statement that declares the content is either redirect-information or
  onboarding-information.  Each of these two cases are now considered.

  When the content of the CMS structure is redirect-information, an
  observer can learn about the bootstrap servers the device is being
  directed to, their IP addresses or hostnames, ports, and trust anchor
  certificates.  Knowledge of this information could provide an
  observer some insight into a network's inner structure.

  When the content of the CMS structure is onboarding-information, an
  observer could learn considerable information about how the device is
  to be provisioned.  This information includes the operating system
  version, initial configuration, and script contents.  This
  information should be considered sensitive, and precautions should be
  taken to protect it (e.g., encrypt the artifact using the device's
  public key).

9.16.  The "ietf-sztp-bootstrap-server" YANG Module

  The "ietf-sztp-bootstrap-server" module defined in this document
  specifies an API for a RESTCONF [RFC8040].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The NETCONF Access Control Model (NACM) [RFC8341] provides the means
  to restrict access for particular users to a pre-configured subset of
  all available protocol operations and content.

  This module presents no data nodes (only RPCs).  There is no need to
  discuss the sensitivity of data nodes.

  This module defines two RPC operations that may be considered
  sensitive in some network environments.  These are the operations and
  their sensitivity/vulnerability:

  get-bootstrapping-data:  This RPC is used by devices to obtain their
      bootstrapping data.  By design, each device, as identified by its
      authentication credentials (e.g., client certificate), can only
      obtain its own data.  NACM is not needed to further constrain
      access to this RPC.




Watsen, et al.               Standards Track                   [Page 66]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  report-progress:  This RPC is used by devices to report their
      bootstrapping progress.  By design, each device, as identified by
      its authentication credentials (e.g., client certificate), can
      only report data for itself.  NACM is not needed to further
      constrain access to this RPC.

10.  IANA Considerations

10.1.  The IETF XML Registry

  IANA has registered two URIs in the "ns" subregistry of the "IETF XML
  Registry" [RFC3688] maintained at <https://www.iana.org/assignments/
  xml-registry>.  The following registrations have been made per the
  format in [RFC3688]:

     URI: urn:ietf:params:xml:ns:yang:ietf-sztp-conveyed-info
     Registrant Contact: The NETCONF WG of the IETF.
     XML: N/A, the requested URI is an XML namespace.

     URI: urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server
     Registrant Contact: The NETCONF WG of the IETF.
     XML: N/A, the requested URI is an XML namespace.

10.2.  The YANG Module Names Registry

  IANA has registered two YANG modules in the "YANG Module Names"
  registry [RFC6020] maintained at <https://www.iana.org/assignments/
  yang-parameters>.  The following registrations have been made per the
  format in [RFC6020]:

     name:      ietf-sztp-conveyed-info
     namespace: urn:ietf:params:xml:ns:yang:ietf-sztp-conveyed-info
     prefix:    sztp-info
     reference: RFC 8572

     name:      ietf-sztp-bootstrap-server
     namespace: urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server
     prefix:    sztp-svr
     reference: RFC 8572












Watsen, et al.               Standards Track                   [Page 67]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


10.3.  The SMI Security for S/MIME CMS Content Type Registry

  IANA has registered two subordinate object identifiers in the "SMI
  Security for S/MIME CMS Content Type (1.2.840.113549.1.9.16.1)"
  registry maintained at <https://www.iana.org/assignments/
  smi-numbers>.  The following registrations have been made per the
  format in Section 3.4 of [RFC7107]:

     Decimal   Description                  References
     -------   --------------------------   ----------
     42        id-ct-sztpConveyedInfoXML    RFC 8572
     43        id-ct-sztpConveyedInfoJSON   RFC 8572

  id-ct-sztpConveyedInfoXML indicates that the "conveyed-information"
  is encoded using XML.  id-ct-sztpConveyedInfoJSON indicates that the
  "conveyed-information" is encoded using JSON.

10.4.  The BOOTP Vendor Extensions and DHCP Options Registry

  IANA has registered one DHCP code point in the "BOOTP Vendor
  Extensions and DHCP Options" registry maintained at
  <https://www.iana.org/assignments/bootp-dhcp-parameters>:

     Tag:         143
     Name:        OPTION_V4_SZTP_REDIRECT
     Data Length: N
     Meaning:     This option provides a list of URIs
                  for SZTP bootstrap servers
     Reference:   RFC 8572

10.5.  The Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
      Registry

  IANA has registered one DHCP code point in the "Option Codes"
  subregistry of the "Dynamic Host Configuration Protocol for IPv6
  (DHCPv6)" registry maintained at <https://www.iana.org/assignments/
  dhcpv6-parameters>:

     Value:            136
     Description:      OPTION_V6_SZTP_REDIRECT
     Client ORO:       Yes
     Singleton Option: Yes
     Reference:        RFC 8572








Watsen, et al.               Standards Track                   [Page 68]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


10.6.  The Service Name and Transport Protocol Port Number Registry

  IANA has registered one service name in the "Service Name and
  Transport Protocol Port Number Registry" [RFC6335] maintained at
  <https://www.iana.org/assignments/service-names-port-numbers>.  The
  following registration has been made per the format in Section 8.1.1
  of [RFC6335]:

    Service Name:            sztp
    Transport Protocol(s):   TCP
    Assignee:                IESG <[email protected]>
    Contact:                 IETF Chair <[email protected]>
    Description:             This service name is used to construct the
                             SRV service label "_sztp" for discovering
                             SZTP bootstrap servers.
    Reference:               RFC 8572
    Port Number:             N/A
    Service Code:            N/A
    Known Unauthorized Uses: N/A
    Assignment Notes:        This protocol uses HTTPS as a substrate.

10.7.  The Underscored and Globally Scoped DNS Node Names Registry

  IANA has registered one service name in the "Underscored and Globally
  Scoped DNS Node Names" subregistry [RFC8552] of the "Domain Name
  System (DNS) Parameters" registry maintained at
  <https://www.iana.org/assignments/dns-parameters>.  The following
  registration has been made per the format in Section 3 of [RFC8552]:

     RR Type:            TXT
     _NODE NAME:         _sztp
     Reference:          RFC 8572

11.  References

11.1.  Normative References

  [ITU.X690.2015]
             International Telecommunication Union, "Information
             Technology - ASN.1 encoding rules: Specification of Basic
             Encoding Rules (BER), Canonical Encoding Rules (CER) and
             Distinguished Encoding Rules (DER)", ITU-T Recommendation
             X.690, ISO/IEC 8825-1, August 2015,
             <https://www.itu.int/rec/T-REC-X.690/>.

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
             November 1987, <https://www.rfc-editor.org/info/rfc1035>.



Watsen, et al.               Standards Track                   [Page 69]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2782]  Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
             specifying the location of services (DNS SRV)", RFC 2782,
             DOI 10.17487/RFC2782, February 2000,
             <https://www.rfc-editor.org/info/rfc2782>.

  [RFC3396]  Lemon, T. and S. Cheshire, "Encoding Long Options in the
             Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
             DOI 10.17487/RFC3396, November 2002,
             <https://www.rfc-editor.org/info/rfc3396>.

  [RFC4253]  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
             January 2006, <https://www.rfc-editor.org/info/rfc4253>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
             RFC 5652, DOI 10.17487/RFC5652, September 2009,
             <https://www.rfc-editor.org/info/rfc5652>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
             Verification of Domain-Based Application Service Identity
             within Internet Public Key Infrastructure Using X.509
             (PKIX) Certificates in the Context of Transport Layer
             Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
             2011, <https://www.rfc-editor.org/info/rfc6125>.

  [RFC6762]  Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
             DOI 10.17487/RFC6762, February 2013,
             <https://www.rfc-editor.org/info/rfc6762>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.



Watsen, et al.               Standards Track                   [Page 70]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  [RFC7227]  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
             S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
             BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
             <https://www.rfc-editor.org/info/rfc7227>.

  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8366]  Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
             "A Voucher Artifact for Bootstrapping Protocols",
             RFC 8366, DOI 10.17487/RFC8366, May 2018,
             <https://www.rfc-editor.org/info/rfc8366>.

  [RFC8415]  Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
             Richardson, M., Jiang, S., Lemon, T., and T. Winters,
             "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
             RFC 8415, DOI 10.17487/RFC8415, November 2018,
             <https://www.rfc-editor.org/info/rfc8415>.

  [RFC8552]  Crocker, D., "Scoped Interpretation of DNS Resource
             Records through "Underscored" Naming of Attribute Leaves",
             BCP 222, RFC 8552, DOI 10.17487/RFC8552, March 2019,
             <https://www.rfc-editor.org/info/rfc8552>.

  [Std-802.1AR]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Secure Device Identity", IEEE 802.1AR.

11.2.  Informative References

  [NTS-NTP]  Franke, D., Sibold, D., Teichel, K., Dansarie, M., and
             R. Sundblad, "Network Time Security for the Network Time
             Protocol", Work in Progress, draft-ietf-ntp-using-nts-for-
             ntp-18, April 2019.



Watsen, et al.               Standards Track                   [Page 71]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC4250]  Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Protocol Assigned Numbers", RFC 4250,
             DOI 10.17487/RFC4250, January 2006,
             <https://www.rfc-editor.org/info/rfc4250>.

  [RFC6187]  Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
             Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
             March 2011, <https://www.rfc-editor.org/info/rfc6187>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <https://www.rfc-editor.org/info/rfc6234>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and
             S. Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165,
             RFC 6335, DOI 10.17487/RFC6335, August 2011,
             <https://www.rfc-editor.org/info/rfc6335>.

  [RFC6698]  Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
             of Named Entities (DANE) Transport Layer Security (TLS)
             Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
             2012, <https://www.rfc-editor.org/info/rfc6698>.

  [RFC6763]  Cheshire, S. and M. Krochmal, "DNS-Based Service
             Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
             <https://www.rfc-editor.org/info/rfc6763>.

  [RFC6891]  Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
             for DNS (EDNS(0))", STD 75, RFC 6891,
             DOI 10.17487/RFC6891, April 2013,
             <https://www.rfc-editor.org/info/rfc6891>.








Watsen, et al.               Standards Track                   [Page 72]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  [RFC6960]  Santesson, S., Myers, M., Ankney, R., Malpani, A.,
             Galperin, S., and C. Adams, "X.509 Internet Public Key
             Infrastructure Online Certificate Status Protocol - OCSP",
             RFC 6960, DOI 10.17487/RFC6960, June 2013,
             <https://www.rfc-editor.org/info/rfc6960>.

  [RFC7107]  Housley, R., "Object Identifier Registry for the S/MIME
             Mail Security Working Group", RFC 7107,
             DOI 10.17487/RFC7107, January 2014,
             <https://www.rfc-editor.org/info/rfc7107>.

  [RFC7766]  Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
             D. Wessels, "DNS Transport over TCP - Implementation
             Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
             <https://www.rfc-editor.org/info/rfc7766>.

  [RFC8071]  Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
             RFC 8071, DOI 10.17487/RFC8071, February 2017,
             <https://www.rfc-editor.org/info/rfc8071>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [YANG-CRYPTO-TYPES]
             Watsen, K. and H. Wang, "Common YANG Data Types for
             Cryptography", Work in Progress, draft-ietf-netconf-
             crypto-types-05, March 2019.

  [YANG-TRUST-ANCHORS]
             Watsen, K., "YANG Data Model for Global Trust Anchors",
             Work in Progress, draft-ietf-netconf-trust-anchors-03,
             March 2019.




Watsen, et al.               Standards Track                   [Page 73]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


Appendix A.  Example Device Data Model

  This section defines a non-normative data model that enables the
  configuration of SZTP bootstrapping and the discovery of what
  parameters are used by a device's bootstrapping logic.

A.1.  Data Model Overview

  The following tree diagram provides an overview for the SZTP device
  data model.

   module: example-device-data-model
     +--rw sztp
        +--rw enabled?                          boolean
        +--ro idevid-certificate?               ct:end-entity-cert-cms
        |       {bootstrap-servers}?
        +--ro bootstrap-servers {bootstrap-servers}?
        |  +--ro bootstrap-server* [address]
        |     +--ro address    inet:host
        |     +--ro port?      inet:port-number
        +--ro bootstrap-server-trust-anchors {bootstrap-servers}?
        |  +--ro reference*   ta:pinned-certificates-ref
        +--ro voucher-trust-anchors {signed-data}?
           +--ro reference*   ta:pinned-certificates-ref

  In the above diagram, notice that there is only one configurable
  node: "enabled".  The expectation is that this node would be set to
  "true" in the device's factory default configuration and that it
  would be either set to "false" or deleted when the SZTP bootstrapping
  is longer needed.





















Watsen, et al.               Standards Track                   [Page 74]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


A.2.  Example Usage

  Following is an instance example for this data model.

  <sztp xmlns="https://example.com/sztp-device-data-model">
    <enabled>true</enabled>
    <idevid-certificate>base64encodedvalue==</idevid-certificate>
    <bootstrap-servers>
      <bootstrap-server>
        <address>sztp1.example.com</address>
        <port>8443</port>
      </bootstrap-server>
      <bootstrap-server>
        <address>sztp2.example.com</address>
        <port>8443</port>
      </bootstrap-server>
      <bootstrap-server>
        <address>sztp3.example.com</address>
        <port>8443</port>
      </bootstrap-server>
    </bootstrap-servers>
    <bootstrap-server-trust-anchors>
      <reference>manufacturers-root-ca-certs</reference>
    </bootstrap-server-trust-anchors>
    <voucher-trust-anchors>
      <reference>manufacturers-root-ca-certs</reference>
    </voucher-trust-anchors>
  </sztp>

A.3.  YANG Module

  The device model is defined by the YANG module defined in this
  section.

  This module references [Std-802.1AR] and uses data types defined in
  [RFC6991], [YANG-CRYPTO-TYPES], and [YANG-TRUST-ANCHORS].

  module example-device-data-model {
    yang-version 1.1;
    namespace "https://example.com/sztp-device-data-model";
    prefix sztp-ddm;

    import ietf-inet-types {
      prefix inet;
      reference "RFC 6991: Common YANG Data Types";
    }

    import ietf-crypto-types {



Watsen, et al.               Standards Track                   [Page 75]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      prefix ct;
      revision-date 2019-03-09;
      description
       "ietf-crypto-types is defined in
        draft-ietf-netconf-crypto-types";
      reference
       "draft-ietf-netconf-crypto-types-05:
          Common YANG Data Types for Cryptography";
    }

    import ietf-trust-anchors {
      prefix ta;
      revision-date 2019-03-09;
      description
       "ietf-trust-anchors is defined in
        draft-ietf-netconf-trust-anchors.";
      reference
       "draft-ietf-netconf-trust-anchors-03:
          YANG Data Model for Global Trust Anchors";
    }

    organization
      "Example Corporation";

    contact
      "Author: Bootstrap Admin <mailto:[email protected]>";

    description
      "This module defines a data model to enable SZTP
       bootstrapping and discover what parameters are used.
       This module assumes the use of an IDevID certificate,
       as opposed to any other client certificate, or the
       use of an HTTP-based client authentication scheme.";

    revision 2019-04-30 {
      description
        "Initial version";
      reference
        "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
    }

    // features

    feature bootstrap-servers {
      description
        "The device supports bootstrapping off bootstrap servers.";
    }




Watsen, et al.               Standards Track                   [Page 76]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


    feature signed-data {
      description
        "The device supports bootstrapping off signed data.";
    }

    // protocol accessible nodes

    container sztp {
      description
        "Top-level container for the SZTP data model.";
      leaf enabled {
        type boolean;
        default false;
        description
          "The 'enabled' leaf controls if SZTP bootstrapping is
           enabled or disabled.  The default is 'false' so that, when
           not enabled, which is most of the time, no configuration
           is needed.";
      }
      leaf idevid-certificate {
        if-feature bootstrap-servers;
        type ct:end-entity-cert-cms;
        config false;
        description
          "This CMS structure contains the IEEE 802.1AR
           IDevID certificate itself and all intermediate
           certificates leading up to, and optionally including,
           the manufacturer's well-known trust anchor certificate
           for IDevID certificates.  The well-known trust anchor
           does not have to be a self-signed certificate.";
        reference
          "IEEE 802.1AR:
             IEEE Standard for Local and metropolitan area
             networks - Secure Device Identity";
      }
      container bootstrap-servers {
        if-feature bootstrap-servers;
        config false;
        description
          "List of bootstrap servers this device will attempt
           to reach out to when bootstrapping.";
        list bootstrap-server {
          key "address";
          description
            "A bootstrap server entry.";
          leaf address {
            type inet:host;
            mandatory true;



Watsen, et al.               Standards Track                   [Page 77]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


            description
              "The IP address or hostname of the bootstrap server the
               device should redirect to.";
          }
          leaf port {
            type inet:port-number;
            default "443";
            description
              "The port number the bootstrap server listens on.  If no
               port is specified, the IANA-assigned port for 'https'
               (443) is used.";
          }
        }
      }
      container bootstrap-server-trust-anchors {
        if-feature bootstrap-servers;
        config false;
        description "Container for a list of trust anchor references.";
        leaf-list reference {
          type ta:pinned-certificates-ref;
          description
            "A reference to a list of pinned certificate authority (CA)
             certificates that the device uses to validate bootstrap
             servers with.";
        }
      }
      container voucher-trust-anchors {
        if-feature signed-data;
        config false;
        description "Container for a list of trust anchor references.";
        leaf-list reference {
          type ta:pinned-certificates-ref;
          description
            "A reference to a list of pinned certificate authority (CA)
             certificates that the device uses to validate ownership
             vouchers with.";
        }
      }
    }
  }











Watsen, et al.               Standards Track                   [Page 78]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


Appendix B.  Promoting a Connection from Untrusted to Trusted

  The following diagram illustrates a sequence of bootstrapping
  activities that promote an untrusted connection to a bootstrap server
  to a trusted connection to the same bootstrap server.  This enables a
  device to limit the amount of information it might disclose to an
  adversary hosting an untrusted bootstrap server.

                                                        +-----------+
                                                        |Deployment-|
                                                        | Specific  |
  +------+                                              | Bootstrap |
  |Device|                                              |  Server   |
  +------+                                              +-----------+
     |                                                        |
     | 1.  "HTTPS" Request ("signed-data-preferred", nonce)   |
     |------------------------------------------------------->|
     | 2.  "HTTPS" Response (signed redirect information)     |
     |<-------------------------------------------------------|
     |                                                        |
     |                                                        |
     | 3.  HTTPS Request (os-name=xyz, os-version=123, etc.)  |
     |------------------------------------------------------->|
     | 4.  HTTPS Response (unsigned onboarding information    |
     |<-------------------------------------------------------|
     |                                                        |

  The interactions in the above diagram are described below.

  1.  The device initiates an untrusted connection to a bootstrap
      server, as is indicated by putting "HTTPS" in double quotes
      above.  It is still an HTTPS connection, but the device is unable
      to authenticate the bootstrap server's TLS certificate.  Because
      the device is unable to trust the bootstrap server, it sends the
      "signed-data-preferred" input parameter, and optionally also the
      "nonce" input parameter, in the "get-bootstrapping-data" RPC.
      The "signed-data-preferred" parameter informs the bootstrap
      server that the device does not trust it and may be holding back
      some additional input parameters from the server (e.g., other
      input parameters, progress reports, etc.).  The "nonce" input
      parameter enables the bootstrap server to dynamically obtain an
      ownership voucher from a Manufacturer Authorized Signing
      Authority (MASA), which may be important for devices that do not
      have a reliable clock.







Watsen, et al.               Standards Track                   [Page 79]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


  2.  The bootstrap server, seeing the "signed-data-preferred" input
      parameter, knows that it can send either unsigned redirect
      information or signed data of any type.  But, in this case, the
      bootstrap server has the ability to sign data and chooses to
      respond with signed redirect information, not signed onboarding
      information as might be expected, securely redirecting the device
      back to it again.  Not displayed but, if the "nonce" input
      parameter was passed, the bootstrap server could dynamically
      connect to a MASA and download a voucher having the nonce value
      in it.  Details regarding a protocol enabling this integration is
      outside the scope of this document.

  3.  Upon validating the signed redirect information, the device
      establishes a secure connection to the bootstrap server.
      Unbeknownst to the device, it is the same bootstrap server it was
      connected to previously, but because the device is able to
      authenticate the bootstrap server this time, it sends its normal
      "get-bootstrapping-data" request (i.e., with additional input
      parameters) as well as its progress reports (not depicted).

  4.  This time, because the "signed-data-preferred" parameter was not
      passed, having access to all of the device's input parameters,
      the bootstrap server returns, in this example, unsigned
      onboarding information to the device.  Note also that, because
      the bootstrap server is now trusted, the device will send
      progress reports to the server.

Appendix C.  Workflow Overview

  The solution presented in this document is conceptualized to be
  composed of the non-normative workflows described in this section.
  Implementation details are expected to vary.  Each diagram is
  followed by a detailed description of the steps presented in the
  diagram, with further explanation on how implementations may vary.

C.1.  Enrollment and Ordering Devices

  The following diagram illustrates key interactions that may occur
  from when a prospective owner enrolls in a manufacturer's SZTP
  program to when the manufacturer ships devices for an order placed by
  the prospective owner.










Watsen, et al.               Standards Track                   [Page 80]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


                                 +-----------+
  +------------+                 |Prospective|                    +---+
  |Manufacturer|                 |   Owner   |                    |NMS|
  +------------+                 +-----------+                    +---+
        |                              |                            |
        |                              |                            |
        |  1. initiate enrollment      |                            |
        #<-----------------------------|                            |
        #                              |                            |
        #                              |                            |
        #     IDevID trust anchor      |                            |
        #----------------------------->#  set IDevID trust anchor   |
        #                              #--------------------------->|
        #                              |                            |
        #     bootstrap server         |                            |
        #     account credentials      |                            |
        #----------------------------->#  set credentials           |
        |                              #--------------------------->|
        |                              |                            |
        |                              |                            |
        |  2. set owner certificate trust anchor                    |
        |<----------------------------------------------------------|
        |                              |                            |
        |                              |                            |
        |  3. place device order       |                            |
        |<-----------------------------#  model devices             |
        |                              #--------------------------->|
        |                              |                            |
        |  4. ship devices and send    |                            |
        |     device identifiers and   |                            |
        |     ownership vouchers       |                            |
        |----------------------------->#  set device identifiers    |
        |                              #  and ownership vouchers    |
        |                              #--------------------------->|
        |                              |                            |

  Each numbered item below corresponds to a numbered item in the
  diagram above.

  1.  A prospective owner of a manufacturer's devices initiates an
      enrollment process with the manufacturer.  This process includes
      the following:

      *  Regardless of how the prospective owner intends to bootstrap
         their devices, they will always obtain from the manufacturer
         the trust anchor certificate for the IDevID certificates.
         This certificate is installed on the prospective owner's NMS




Watsen, et al.               Standards Track                   [Page 81]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


         so that the NMS can authenticate the IDevID certificates when
         they are presented to subsequent steps.

      *  If the manufacturer hosts an Internet-based bootstrap server
         (e.g., a redirect server) such as described in Section 4.4,
         then credentials necessary to configure the bootstrap server
         would be provided to the prospective owner.  If the bootstrap
         server is configurable through an API (outside the scope of
         this document), then the credentials might be installed on the
         prospective owner's NMS so that the NMS can subsequently
         configure the manufacturer-hosted bootstrap server directly.

  2.  If the manufacturer's devices are able to validate signed data
      (Section 5.4), and assuming that the prospective owner's NMS is
      able to prepare and sign the bootstrapping data itself, the
      prospective owner's NMS might set a trust anchor certificate onto
      the manufacturer's bootstrap server, using the credentials
      provided in the previous step.  This certificate is the trust
      anchor certificate that the prospective owner would like the
      manufacturer to place into the ownership vouchers it generates,
      thereby enabling devices to trust the owner's owner certificate.
      How this trust anchor certificate is used to enable devices to
      validate signed bootstrapping data is described in Section 5.4.

  3.  Some time later, the prospective owner places an order with the
      manufacturer, perhaps with a special flag checked for SZTP
      handling.  At this time, or perhaps before placing the order, the
      owner may model the devices in their NMS, creating virtual
      objects for the devices with no real-world device associations.
      For instance, the model can be used to simulate the device's
      location in the network and the configuration it should have when
      fully operational.

  4.  When the manufacturer fulfills the order, shipping the devices to
      their intended locations, they may notify the owner of the
      devices' serial numbers and shipping destinations, which the
      owner may use to stage the network for when the devices power on.
      Additionally, the manufacturer may send one or more ownership
      vouchers, cryptographically assigning ownership of those devices
      to the owner.  The owner may set this information on their NMS,
      perhaps binding specific modeled devices to the serial numbers
      and ownership vouchers.









Watsen, et al.               Standards Track                   [Page 82]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


C.2.  Owner Stages the Network for Bootstrap

  The following diagram illustrates how an owner might stage the
  network for bootstrapping devices.

            +-----------+ +-------------+
            |Deployment-| |Manufacturer-| +------+ +------+
            | Specific  | |   Hosted    | | Local| | Local| +---------+
      +---+ | Bootstrap | |  Bootstrap  | |  DNS | | DHCP | |Removable|
      |NMS| |  Server   | |   Server    | |Server| |Server| | Storage |
      +---+ +-----------+ +-------------+ +------+ +------+ +---------+
        |        |             |            |        |         |
1.      |        |             |            |        |         |
activate|        |             |            |        |         |
modeled |        |             |            |        |         |
device  |        |             |            |        |         |
------->|        |             |            |        |         |
        | 2. (optional)        |            |        |         |
        |    configure         |            |        |         |
        |    bootstrap         |            |        |         |
        |    server            |            |        |         |
        |------->|             |            |        |         |
        |        |             |            |        |         |
        | 3. (optional) configure           |        |         |
        |    bootstrap server  |            |        |         |
        |--------------------->|            |        |         |
        |        |             |            |        |         |
        |        |             |            |        |         |
        | 4. (optional) configure DNS server|        |         |
        |---------------------------------->|        |         |
        |        |             |            |        |         |
        |        |             |            |        |         |
        | 5. (optional) configure DHCP server        |         |
        |------------------------------------------->|         |
        |        |             |            |        |         |
        |        |             |            |        |         |
        | 6. (optional) store bootstrapping artifacts on media |
        |----------------------------------------------------->|
        |        |             |            |        |         |
        |        |             |            |        |         |

  Each numbered item below corresponds to a numbered item in the
  diagram above.

  1.  Having previously modeled the devices, including setting their
      fully operational configurations and associating device serial
      numbers and (optionally) ownership vouchers, the owner might
      "activate" one or more modeled devices.  That is, the owner tells



Watsen, et al.               Standards Track                   [Page 83]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      the NMS to perform the steps necessary to prepare for when the
      real-world devices power up and initiate the bootstrapping
      process.  Note that, in some deployments, this step might be
      combined with the last step from the previous workflow.  Here, it
      is depicted that an NMS performs the steps, but they may be
      performed manually or through some other mechanism.

  2.  If it is desired to use a deployment-specific bootstrap server,
      it must be configured to provide the bootstrapping data for the
      specific devices.  Configuring the bootstrap server may occur via
      a programmatic API not defined by this document.  Illustrated
      here as an external component, the bootstrap server may be
      implemented as an internal component of the NMS itself.

  3.  If it is desired to use a manufacturer-hosted bootstrap server,
      it must be configured to provide the bootstrapping data for the
      specific devices.  The configuration must be either redirect or
      onboarding information.  That is, the manufacturer-hosted
      bootstrap server will either redirect the device to another
      bootstrap server or provide the device with the onboarding
      information itself.  The types of bootstrapping data the
      manufacturer-hosted bootstrap server supports may vary by
      implementation; some implementations may support only redirect
      information or only onboarding information, while others may
      support both redirect and onboarding information.  Configuring
      the bootstrap server may occur via a programmatic API not defined
      by this document.

  4.  If it is desired to use a DNS server to supply bootstrapping
      data, a DNS server needs to be configured.  If multicast DNS is
      desired, then the DNS server must reside on the local network;
      otherwise, the DNS server may reside on a remote network.  Please
      see Section 4.2 for more information about how to configure DNS
      servers.  Configuring the DNS server may occur via a programmatic
      API not defined by this document.

  5.  If it is desired to use a DHCP server to supply bootstrapping
      data, a DHCP server needs to be configured.  The DHCP server may
      be accessed directly or via a DHCP relay.  Please see Section 4.3
      for more information about how to configure DHCP servers.
      Configuring the DHCP server may occur via a programmatic API not
      defined by this document.

  6.  If it is desired to use a removable storage device (e.g., a USB
      flash drive) to supply bootstrapping data, the data would need to
      be placed onto it.  Please see Section 4.1 for more information
      about how to configure a removable storage device.




Watsen, et al.               Standards Track                   [Page 84]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


C.3.  Device Powers On

  The following diagram illustrates the sequence of activities that
  occur when a device powers on.

                                                   +-----------+
                                    +-----------+  |Deployment-|
                                    | Source of |  | Specific  |
 +------+                           | Bootstrap |  | Bootstrap |  +---+
 |Device|                           |   Data    |  |  Server   |  |NMS|
 +------+                           +-----------+  +-----------+  +---+
    |                                     |              |          |
    |                                     |              |          |
    | 1. if SZTP bootstrap service        |              |          |
    |    is not enabled, then exit.       |              |          |
    |                                     |              |          |
    | 2. for each source supported, check |              |          |
    |    for bootstrapping data.          |              |          |
    |------------------------------------>|              |          |
    |                                     |              |          |
    | 3. if onboarding information is     |              |          |
    |    found, initialize self and, only |              |          |
    |    if source is a trusted bootstrap |              |          |
    |    server, send progress reports.   |              |          |
    |------------------------------------>#              |          |
    |                                     # webhook      |          |
    |                                     #------------------------>|
    |                                                    |          |
    | 4. else, if redirect information is found, for     |          |
    |    each bootstrap server specified, check for data.|          |
    |-+------------------------------------------------->|          |
    | |                                                  |          |
    | | if more redirect information is found, recurse   |          |
    | | (not depicted); else, if onboarding information  |          |
    | | is found, initialize self and post progress      |          |
    | | reports.                                         |          |
    | +------------------------------------------------->#          |
    |                                                    # webhook  |
    |                                                    #--------->|
    |
    | 5. retry sources and/or wait for manual provisioning.
    |

  The interactions in the above diagram are described below.

  1.  Upon power being applied, the device checks to see if SZTP
      bootstrapping is configured, such as must be the case when
      running its "factory default" configuration.  If SZTP



Watsen, et al.               Standards Track                   [Page 85]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      bootstrapping is not configured, then the bootstrapping logic
      exits and none of the following interactions occur.

  2.  For each source of bootstrapping data the device supports,
      preferably in order of closeness to the device (e.g., removable
      storage before Internet-based servers), the device checks to see
      if there is any bootstrapping data for it there.

  3.  If onboarding information is found, the device initializes itself
      accordingly (e.g., installing a boot image and committing an
      initial configuration).  If the source is a bootstrap server, and
      the bootstrap server can be trusted (i.e., TLS-level
      authentication), the device also sends progress reports to the
      bootstrap server.

      *  The contents of the initial configuration should configure an
         administrator account on the device (e.g., username, SSH
         public key, etc.), should configure the device to either
         listen for NETCONF or RESTCONF connections or initiate call
         home connections [RFC8071], and should disable the SZTP
         bootstrapping service (e.g., the "enabled" leaf in data model
         presented in Appendix A).

      *  If the bootstrap server supports forwarding device progress
         reports to external systems (e.g., via a webhook), a
         "bootstrap-complete" progress report (Section 7.3) informs the
         external system to know when it can, for instance, initiate a
         connection to the device.  To support this scenario further,
         the "bootstrap-complete" progress report may also relay the
         device's SSH host keys and/or TLS certificates, which the
         external system can use to authenticate subsequent connections
         to the device.

      If the device successfully completes the bootstrapping process,
      it exits the bootstrapping logic without considering any
      additional sources of bootstrapping data.

  4.  Otherwise, if redirect information is found, the device iterates
      through the list of specified bootstrap servers, checking to see
      if the bootstrap server has bootstrapping data for the device.
      If the bootstrap server returns more redirect information, then
      the device processes it recursively.  Otherwise, if the bootstrap
      server returns onboarding information, the device processes it
      following the description provided in (3) above.

  5.  After having tried all supported sources of bootstrapping data,
      the device may retry again all the sources and/or provide
      manageability interfaces for manual configuration (e.g., CLI,



Watsen, et al.               Standards Track                   [Page 86]

RFC 8572          Secure Zero Touch Provisioning (SZTP)       April 2019


      HTTP, NETCONF, etc.).  If manual configuration is allowed, and
      such configuration is provided, the configuration should also
      disable the SZTP bootstrapping service, as the need for
      bootstrapping would no longer be present.

Acknowledgements

  The authors would like to thank the following for lively discussions
  on list and in the halls (ordered by last name): Michael Behringer,
  Martin Bjorklund, Dean Bogdanovic, Joe Clarke, Dave Crocker, Toerless
  Eckert, Stephen Farrell, Stephen Hanna, Wes Hardaker, David
  Harrington, Benjamin Kaduk, Radek Krejci, Suresh Krishnan, Mirja
  Kuehlewind, David Mandelberg, Alexey Melnikov, Russ Mundy, Reinaldo
  Penno, Randy Presuhn, Max Pritikin, Michael Richardson, Adam Roach,
  Juergen Schoenwaelder, and Phil Shafer.

  Special thanks goes to Steve Hanna, Russ Mundy, and Wes Hardaker for
  brainstorming the original solution during the IETF 87 meeting in
  Berlin.

Authors' Addresses

  Kent Watsen
  Watsen Networks

  Email: [email protected]


  Ian Farrer
  Deutsche Telekom AG

  Email: [email protected]


  Mikael Abrahamsson
  T-Systems

  Email: [email protected]













Watsen, et al.               Standards Track                   [Page 87]