Internet Engineering Task Force (IETF)                         Y. Zhuang
Request for Comments: 8542                                        D. Shi
Category: Standards Track                                         Huawei
ISSN: 2070-1721                                                    R. Gu
                                                           China Mobile
                                                     H. Ananthakrishnan
                                                                Netflix
                                                             March 2019


    A YANG Data Model for Fabric Topology in Data-Center Networks

Abstract

  This document defines a YANG data model for fabric topology in data-
  center networks and represents one possible view of the data-center
  fabric.  This document focuses on the data model only and does not
  endorse any kind of network design that could be based on the
  abovementioned model.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8542.

Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Zhuang, et al.               Standards Track                    [Page 1]

RFC 8542            Data Model for DC Fabric Topology         March 2019


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  Definitions and Acronyms  . . . . . . . . . . . . . . . . . .   3
    2.1.  Key Words . . . . . . . . . . . . . . . . . . . . . . . .   3
    2.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Model Overview  . . . . . . . . . . . . . . . . . . . . . . .   4
    3.1.  Topology Model Structure  . . . . . . . . . . . . . . . .   4
    3.2.  Fabric Topology Model . . . . . . . . . . . . . . . . . .   4
      3.2.1.  Fabric Topology . . . . . . . . . . . . . . . . . . .   5
      3.2.2.  Fabric Node Extension . . . . . . . . . . . . . . . .   6
      3.2.3.  Fabric Termination-Point Extension  . . . . . . . . .   7
  4.  Fabric YANG Modules . . . . . . . . . . . . . . . . . . . . .   8
  5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  22
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  23
    7.1.  Normative References  . . . . . . . . . . . . . . . . . .  23
    7.2.  Informative References  . . . . . . . . . . . . . . . . .  24
  Appendix A.  Non-NMDA-State Modules . . . . . . . . . . . . . . .  25
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  32
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  32

1.  Introduction

  A data-center (DC) network can be composed of single or multiple
  fabrics, which are also known as Points Of Delivery (PODs).  These
  fabrics may be heterogeneous due to implementation of different
  technologies when a DC network is upgraded or new techniques and
  features are rolled out.  For example, within a DC network, Fabric A
  may use Virtual eXtensible Local Area Network (VXLAN) while Fabric B
  may use VLAN.  Likewise, an existing fabric may use VXLAN while a new
  fabric (for example, a fabric introduced for DC upgrade and
  expansion) may implement a technique discussed in the NVO3 Working
  Group, such as Geneve [GENEVE].  The configuration and management of
  such DC networks with heterogeneous fabrics could result in
  considerable complexity.

  For a DC network, a fabric can be considered as an atomic structure
  for management purposes.  From this point of view, the management of
  the DC network can be decomposed into a set of tasks to manage each
  fabric separately, as well as the fabric interconnections.  The
  advantage of this method is to make the overall management tasks
  flexible and easy to extend in the future.

  As a basis for DC fabric management, this document defines a YANG
  data model [RFC6020] [RFC7950] for a possible view of the fabric-
  based data-center topology.  To do so, it augments the generic




Zhuang, et al.               Standards Track                    [Page 2]

RFC 8542            Data Model for DC Fabric Topology         March 2019


  network and network topology data models defined in [RFC8345] with
  information that is specific to data-center fabric networks.

  The model defines the generic configuration and operational state for
  a fabric-based network topology, which can subsequently be extended
  by vendors with vendor-specific information as needed.  The model can
  be used by a network controller to represent its view of the fabric
  topology that it controls and expose this view to network
  administrators or applications for DC network management.

  Within the context of topology architecture defined in [RFC8345],
  this model can also be treated as an application of the Interface to
  the Routing System (I2RS) network topology model [RFC8345] in the
  scenario of data-center network management.  It can also act as a
  service topology when mapping network elements at the fabric layer to
  elements of other topologies, such as L3 topologies as defined in
  [RFC8346].

  By using the fabric topology model defined in this document, people
  can treat a fabric as a holistic entity and focus on its
  characteristics (such as encapsulation type and gateway type) as well
  as its connections to other fabrics, while putting the underlay
  topology aside.  As such, clients can consume the topology
  information at the fabric level with no need to be aware of the
  entire set of links and nodes in the corresponding underlay networks.
  A fabric topology can be configured by a network administrator using
  the controller by adding physical devices and links into a fabric.
  Alternatively, fabric topology can be learned from the underlay
  network infrastructure.

2.  Definitions and Acronyms

2.1.  Key Words

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Terminology

  POD: a module of network, compute, storage, and application
  components that work together to deliver networking services.  It
  represents a repeatable design pattern.  Its components maximize the
  modularity, scalability, and manageability of data centers.

  Fabric: composed of several PODs to form a data-center network.



Zhuang, et al.               Standards Track                    [Page 3]

RFC 8542            Data Model for DC Fabric Topology         March 2019


3.  Model Overview

  This section provides an overview of the DC fabric topology model and
  its relationship with other topology models.

3.1.  Topology Model Structure

  The relationship of the DC fabric topology model and other topology
  models is shown in Figure 1.

            +------------------------+
            |      network model     |
            +------------------------+
                         |
                         |
            +------------V-----------+
            | network topology model |
            +------------------------+
                         |
       +-----------+-----+------+-------------+
       |           |            |             |
   +---V----+  +---V----+   +---V----+   +----V---+
   |   L1   |  |   L2   |   |   L3   |   | Fabric |
   |topology|  |topology|   |topology|   |topology|
   |  model |  |  model |   |  model |   |  model |
   +--------+  +--------+   +--------+   +--------+

               Figure 1: The Network Data Model Structure

  From the perspective of resource management and service provisioning
  for a data-center network, the fabric topology model augments the
  basic network topology model with definitions and features specific
  to a DC fabric, to provide common configuration and operations for
  heterogeneous fabrics.

3.2.  Fabric Topology Model

  The fabric topology model module is designed to be generic and can be
  applied to data-center fabrics built with different technologies,
  such as VLAN and VXLAN.  The main purpose of this module is to
  configure and manage fabrics and their connections.  It provides a
  fabric-based topology view for data-center applications.









Zhuang, et al.               Standards Track                    [Page 4]

RFC 8542            Data Model for DC Fabric Topology         March 2019


3.2.1.  Fabric Topology

  In the fabric topology module, a fabric is modeled as a node of a
  network; as such, the fabric-based data-center network consists of a
  set of fabric nodes and their connections.  The following depicts a
  snippet of the definitions to show the main structure of the model.
  The notation syntax follows [RFC8340].

      module: ietf-dc-fabric-topology
      augment /nw:networks/nw:network/nw:network-types:
         +--rw fabric-network!
      augment /nw:networks/nw:network/nw:node:
         +--rw fabric-attributes
            +--rw fabric-id?   fabric-id
            +--rw name?        string
            +--rw type?        fabrictype:underlay-network-type
            +--rw description?    string
            +--rw options
            +--...
      augment /nw:networks/nw:network/nw:node/nt:termination-point:
         +--ro fport-attributes
            +--ro name?          string
            +--ro role?          fabric-port-role
            +--ro type?          fabric-port-type

  The fabric topology module augments the generic ietf-network and
  ietf-network-topology modules as follows:

  o  A new topology type, "ietf-dc-fabric-topology", is defined and
     added under the "network-types" container of the ietf-network
     module.

  o  Fabric is defined as a node under the network/node container.  A
     new container, "fabric-attributes", is defined to carry attributes
     for a fabric such as gateway mode, fabric types, involved device
     nodes, and links.

  o  Termination points (in the network topology module) are augmented
     with fabric port attributes defined in a container.  The
     "termination-point" here is used to represent a fabric "port" that
     provides connections to other nodes, such as an internal device,
     another fabric externally, or end hosts.

  Details of the fabric node and the fabric termination point extension
  will be explained in the following sections.






Zhuang, et al.               Standards Track                    [Page 5]

RFC 8542            Data Model for DC Fabric Topology         March 2019


3.2.2.  Fabric Node Extension

  As an atomic network (that is, a set of nodes and links that composes
  a POD and also supports a single overlay/underlay instance), a fabric
  itself is composed of a set of network elements, i.e., devices and
  related links.  The configuration of a fabric is contained under the
  "fabric-attributes" container depicted as follows.  The notation
  syntax follows [RFC8340].

      +--rw fabric-attributes
         +--rw fabric-id?      fabrictypes:fabric-id
         +--rw name?           string
         +--rw type?           fabrictype:underlay-network-type
         +--rw vni-capacity
         |  +--rw min?   int32
         |  +--rw max?   int32
         +--rw description?    string
         +--rw options
         |  +--rw gateway-mode?           enumeration
         |  +--rw traffic-behavior?       enumeration
         |  +--rw capability-supported* fabrictype:service-capabilities
         +--rw device-nodes* [device-ref]
         |  +--rw device-ref    fabrictype:node-ref
         |  +--rw role*?         fabrictype:device-role
         +--rw device-links* [link-ref]
         |  +--rw link-ref    fabrictype:link-ref
         +--rw device-ports* [port-ref]
            +--rw port-ref     fabrictype:tp-ref
            +--rw port-type?   fabrictypes:port-type
            +--rw bandwidth?   fabrictypes:bandwidth


  In the module, additional data objects for fabric nodes are
  introduced by augmenting the "node" list of the network module.  New
  objects include fabric name, type of the fabric, and descriptions of
  the fabric, as well as a set of options defined in an "options"
  container.  The "options" container includes the gateway-mode type
  (centralized or distributed) and traffic behavior (whether an Access
  Control List (ACL) is needed for the traffic).  Also, it includes a
  list of device nodes and related links as "supporting-node" to form a
  fabric network.  These device nodes and links are represented as
  leaf-refs of existing nodes and links in the underlay topology.  For
  the device node, the "role" object is defined to represent the role
  of a device within the fabric, such as "SPINE" or "LEAF", which
  should work together with the gateway-mode.






Zhuang, et al.               Standards Track                    [Page 6]

RFC 8542            Data Model for DC Fabric Topology         March 2019


3.2.3.  Fabric Termination-Point Extension

  Since a fabric can be considered as a node, "termination-points" can
  represent fabric "ports" that connect to other fabrics and end hosts,
  as well as devices inside the fabric.

  As such, the set of "termination-points" of a fabric indicate all of
  its connections, including its internal connections, interconnections
  with other fabrics, and connections to end hosts.

  The structure of fabric ports is as follows.  The notation syntax
  follows [RFC8340].

      augment /nw:networks/nw:network/nw:node/nt:termination-point:
          +--ro fport-attributes
             +--ro name?          string
             +--ro role?          fabric-port-role
             +--ro type?          fabric-port-type
             +--ro device-port?   tp-ref
             +--ro (tunnel-option)?

  This structure augments the termination points (in the network
  topology module) with fabric port attributes defined in a container.

  New nodes are defined for fabric ports, including fabric name, role
  of the port within the fabric (internal port, external port to
  outside network, access port to end hosts), and port type (L2
  interface, L3 interface).  By defining the device port as a tp-ref, a
  fabric port can be mapped to a device node in the underlay network.

  Additionally, a new container for tunnel-options is introduced to
  present the tunnel configuration on a port.

  The termination point information is learned from the underlay
  networks, not configured by the fabric topology layer.
















Zhuang, et al.               Standards Track                    [Page 7]

RFC 8542            Data Model for DC Fabric Topology         March 2019


4.  Fabric YANG Modules

  This module imports typedefs from [RFC8345], and it references
  [RFC7348] and [RFC8344].

<CODE BEGINS> file "[email protected]"
module ietf-dc-fabric-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-dc-fabric-types";
 prefix fabrictypes;

 import ietf-network {
   prefix nw;
   reference
     "RFC 8345: A YANG Data Model for Network Topologies";
 }

 organization
   "IETF I2RS (Interface to the Routing System) Working Group";
 contact
   "WG Web:    <https://datatracker.ietf.org/wg/i2rs/>
    WG List:   <mailto:[email protected]>

    Editor:    Yan Zhuang
               <mailto:[email protected]>

    Editor:    Danian Shi
               <mailto:[email protected]>";
 description
   "This module contains a collection of YANG definitions for
    fabric.

    Copyright (c) 2019 IETF Trust and the persons identified
    as authors of the code.  All rights reserved.

    Redistribution and use in source and binary forms, with
    or without modification, is permitted pursuant to, and
    subject to the license terms contained in, the Simplified
    BSD License set forth in Section 4.c of the IETF Trust's
    Legal Provisions Relating to IETF Documents
    (https://trustee.ietf.org/license-info).

    This version of this YANG module is part of RFC 8542;
    see the RFC itself for full legal notices.";

 revision 2019-02-25 {
   description
     "Initial revision.";



Zhuang, et al.               Standards Track                    [Page 8]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   reference
     "RFC 8542: A YANG Data Model for Fabric Topology
      in Data-Center Networks";
 }

 identity fabric-type {
   description
     "Base type for fabric networks";
 }

 identity vxlan-fabric {
   base fabric-type;
   description
     "VXLAN fabric";
 }

 identity vlan-fabric {
   base fabric-type;
   description
     "VLAN fabric";
 }

 identity trill-fabric {
   base fabric-type;
   description
     "TRILL fabric";
 }

 identity port-type {
   description
     "Base type for fabric port";
 }

 identity eth {
   base port-type;
   description
     "Ethernet";
 }

 identity serial {
   base port-type;
   description
     "Serial";
 }

 identity bandwidth {
   description
     "Base for bandwidth";



Zhuang, et al.               Standards Track                    [Page 9]

RFC 8542            Data Model for DC Fabric Topology         March 2019


 }

 identity bw-1M {
   base bandwidth;
   description
     "1M";
 }

 identity bw-10M {
   base bandwidth;
   description
     "10Mbps";
 }

 identity bw-100M {
   base bandwidth;
   description
     "100Mbps";
 }

 identity bw-1G {
   base bandwidth;
   description
     "1Gbps";
 }

 identity bw-10G {
   base bandwidth;
   description
     "10Gbps";
 }

 identity bw-25G {
   base bandwidth;
   description
     "25Gbps";
 }

 identity bw-40G {
   base bandwidth;
   description
     "40Gbps";
 }

 identity bw-100G {
   base bandwidth;
   description
     "100Gbps";



Zhuang, et al.               Standards Track                   [Page 10]

RFC 8542            Data Model for DC Fabric Topology         March 2019


 }

 identity bw-400G {
   base bandwidth;
   description
     "400Gbps";
 }

 identity device-role {
   description
     "Base for the device role in a fabric.";
 }

 identity spine {
   base device-role;
   description
     "This is a spine node in a fabric.";
 }

 identity leaf {
   base device-role;
   description
     "This is a leaf node in a fabric.";
 }

 identity border {
   base device-role;
   description
     "This is a border node to connect to other
      fabric/network.";
 }

 identity fabric-port-role {
   description
     "Base for the port's role in a fabric.";
 }

 identity internal {
   base fabric-port-role;
   description
     "The port is used for devices to access each
      other within a fabric.";
 }

 identity external {
   base fabric-port-role;
   description
     "The port is used for a fabric to connect to



Zhuang, et al.               Standards Track                   [Page 11]

RFC 8542            Data Model for DC Fabric Topology         March 2019


      outside network.";
 }

 identity access {
   base fabric-port-role;
   description
     "The port is used for an endpoint to connect
      to a fabric.";
 }

 identity service-capability {
   description
     "Base for the service of the fabric ";
 }

 identity ip-mapping {
   base service-capability;
   description
     "NAT.";
 }

 identity acl-redirect {
   base service-capability;
   description
     "ACL redirect, which can provide a Service Function Chain (SFC).";
 }

 identity dynamic-route-exchange {
   base service-capability;
   description
     "Dynamic route exchange.";
 }

 /*
  * Typedefs
  */

 typedef fabric-id {
   type nw:node-id;
   description
     "An identifier for a fabric in a topology.
      This identifier can be generated when composing a fabric.
      The composition of a fabric can be achieved by defining an
      RPC, which is left for vendor specific implementation
      and not provided in this model.";
 }

 typedef service-capabilities {



Zhuang, et al.               Standards Track                   [Page 12]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   type identityref {
     base service-capability;
   }
   description
     "Service capability of the fabric";
 }

 typedef port-type {
   type identityref {
     base port-type;
   }
   description
     "Port type: ethernet or serial or others.";
 }

 typedef bandwidth {
   type identityref {
     base bandwidth;
   }
   description
     "Bandwidth of the port.";
 }

 typedef node-ref {
   type instance-identifier;
   description
     "A reference to a node in topology";
 }

 typedef tp-ref {
   type instance-identifier;
   description
     "A reference to a termination point in topology";
 }

 typedef link-ref {
   type instance-identifier;
   description
     "A reference to a link in topology";
 }

 typedef underlay-network-type {
   type identityref {
     base fabric-type;
   }
   description
     "The type of physical network that implements
      this fabric.  Examples are VLAN and TRILL.";



Zhuang, et al.               Standards Track                   [Page 13]

RFC 8542            Data Model for DC Fabric Topology         March 2019


 }

 typedef device-role {
   type identityref {
     base device-role;
   }
   description
     "Role of the device node.";
 }

 typedef fabric-port-role {
   type identityref {
     base fabric-port-role;
   }
   description
     "Role of the port in a fabric.";
 }

 typedef fabric-port-type {
   type enumeration {
     enum layer2interface {
       description
         "L2 interface";
     }
     enum layer3interface {
       description
         "L3 interface";
     }
     enum layer2Tunnel {
       description
         "L2 tunnel";
     }
     enum layer3Tunnel {
       description
         "L3 tunnel";
     }
   }
   description
     "Fabric port type";
 }

 grouping fabric-port {
   description
     "Attributes of a fabric port.";
   leaf name {
     type string;
     description
       "Name of the port.";



Zhuang, et al.               Standards Track                   [Page 14]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   }
   leaf role {
     type fabric-port-role;
     description
       "Role of the port in a fabric.";
   }
   leaf type {
     type fabric-port-type;
     description
       "Type of the port";
   }
   leaf device-port {
     type tp-ref;
     description
       "The device port it mapped to.";
   }
   choice tunnel-option {
     description
       "Tunnel options to connect two fabrics.
        It could be L2 Tunnel or L3 Tunnel.";
   }
 }
}

<CODE ENDS>

  <CODE BEGINS> file "[email protected]"
  module ietf-dc-fabric-topology {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology";
    prefix fabric;

    import ietf-network {
      prefix nw;
      reference
        "RFC 8345: A YANG Data Model for Network Topologies";
    }
    import ietf-network-topology {
      prefix nt;
      reference
        "RFC 8345: A YANG Data Model for Network Topologies";
    }
    import ietf-dc-fabric-types {
      prefix fabrictypes;
      reference
        "RFC 8542: A YANG Data Model for Fabric Topology in
         Data-Center Networks";
    }



Zhuang, et al.               Standards Track                   [Page 15]

RFC 8542            Data Model for DC Fabric Topology         March 2019


    organization
      "IETF I2RS (Interface to the Routing System) Working Group";
    contact
      "WG Web:    <https://datatracker.ietf.org/wg/i2rs/>
       WG List:   <mailto:[email protected]>

       Editor:    Yan Zhuang
                  <mailto:[email protected]>

       Editor:    Danian Shi
                  <mailto:[email protected]>";
    description
      "This module contains a collection of YANG definitions for
       fabric.

       Copyright (c) 2019 IETF Trust and the persons identified
       as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with
       or without modification, is permitted pursuant to, and
       subject to the license terms contained in, the Simplified
       BSD License set forth in Section 4.c of the IETF Trust's
       Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 8542;
       see the RFC itself for full legal notices.";

    revision 2019-02-25 {
      description
        "Initial revision.";
      reference
        "RFC 8542: A YANG Data Model for Fabric Topology
         in Data-Center Networks";
    }

    //grouping statements

    grouping fabric-network-type {
      description
        "Identify the topology type to be fabric.";
      container fabric-network {
        presence "indicates fabric Network";
        description
          "The presence of the container node indicates
           fabric topology";
      }
    }



Zhuang, et al.               Standards Track                   [Page 16]

RFC 8542            Data Model for DC Fabric Topology         March 2019


    grouping fabric-options {
      description
        "Options for a fabric";
      leaf gateway-mode {
        type enumeration {
          enum centralized {
            description
              "The Fabric uses centralized
               gateway, in which gateway is deployed on SPINE
               node.";
          }
          enum distributed {
            description
              "The Fabric uses distributed
               gateway, in which gateway is deployed on LEAF
               node.";
          }
        }
        default "distributed";
        description
          "Gateway mode of the fabric";
      }
      leaf traffic-behavior {
        type enumeration {
          enum normal {
            description
              "Normal means no policy is needed
               for all traffic";
          }
          enum policy-driven {
            description
              "Policy driven means policy is
               needed for the traffic; otherwise, the traffic
               will be discarded.";
          }
        }
        default "normal";
        description
          "Traffic behavior of the fabric";
      }
      leaf-list capability-supported {
        type fabrictypes:service-capabilities;
        description
          "It provides a list of supported services of the
           fabric.  The service-capabilities is defined as
           identity-ref.  Users can define more services
           by defining new identities.";
      }



Zhuang, et al.               Standards Track                   [Page 17]

RFC 8542            Data Model for DC Fabric Topology         March 2019


    }

    grouping device-attributes {
      description
        "device attributes";
      leaf device-ref {
        type fabrictypes:node-ref;
        description
          "The device that the fabric includes that refers
           to a node in another topology.";
      }
      leaf-list role {
        type fabrictypes:device-role;
        default "fabrictypes:leaf";
        description
          "It is a list of device roles to represent the roles
           that a device plays within a POD, such as SPINE,
           LEAF, Border, or Border-Leaf.
           The device role is defined as identity-ref.  If more
           than 2 stages are used for a POD, users can
           define new identities for the device role.";
      }
    }

    grouping link-attributes {
      description
        "Link attributes";
      leaf link-ref {
        type fabrictypes:link-ref;
        description
          "The link that the fabric includes that refers to
           a link in another topology.";
      }
    }

    grouping port-attributes {
      description
        "Port attributes";
      leaf port-ref {
        type fabrictypes:tp-ref;
        description
          "The port that the fabric includes that refers to
           a termination-point in another topology.";
      }
      leaf port-type {
        type fabrictypes:port-type;
        description
          "Port type is defined as identity-ref.  The current



Zhuang, et al.               Standards Track                   [Page 18]

RFC 8542            Data Model for DC Fabric Topology         March 2019


           types include ethernet or serial.  If more types
           are needed, developers can define new identities.";
      }
      leaf bandwidth {
        type fabrictypes:bandwidth;
        description
          "Bandwidth of the port.  It is defined as identity-ref.
           If more speeds are introduced, developers can define
           new identities for them.  Current speeds include 1M, 10M,
           100M, 1G, 10G, 25G, 40G, 100G, and 400G.";
      }
    }

    grouping fabric-attributes {
      description
        "Attributes of a fabric";
      leaf fabric-id {
        type fabrictypes:fabric-id;
        description
          "An identifier for a fabric in a topology.
           This identifier can be generated when composing a fabric.
           The composition of a fabric can be achieved by defining an
           RPC, which is left for vendor-specific implementation and
           not provided in this model.";
      }
      leaf name {
        type string;
        description
          "Name of the fabric";
      }
      leaf type {
        type fabrictypes:underlay-network-type;
        description
          "The type of physical network that implements this
           fabric.  Examples are VLAN and TRILL.";
      }
      container vni-capacity {
        description
          "The range of the VXLAN Network Identifier
           (VNI) defined in RFC 7348 that the POD uses.";
        leaf min {
          type int32;
          description
            "The lower-limit VNI.";
        }
        leaf max {
          type int32;
          description



Zhuang, et al.               Standards Track                   [Page 19]

RFC 8542            Data Model for DC Fabric Topology         March 2019


            "The upper-limit VNI.";
        }
      }
      leaf description {
        type string;
        description
          "Description of the fabric";
      }
      container options {
        description
          "Options of the fabric";
        uses fabric-options;
      }
      list device-nodes {
        key "device-ref";
        description
          "Device nodes that are included in a fabric.";
        uses device-attributes;
      }
      list device-links {
        key "link-ref";
        description
          "Links that are included within a fabric.";
        uses link-attributes;
      }
      list device-ports {
        key "port-ref";
        description
          "Ports that are included in the fabric.";
        uses port-attributes;
      }
    }

    // augment statements

    augment "/nw:networks/nw:network/nw:network-types" {
      description
        "Introduce a new network type for fabric-based topology";
      uses fabric-network-type;
    }

    augment "/nw:networks/nw:network/nw:node" {
      when '/nw:networks/nw:network/nw:network-types/'
         + 'fabric:fabric-network' {
        description
          "Augmentation parameters apply only for networks
           with fabric topology";
      }



Zhuang, et al.               Standards Track                   [Page 20]

RFC 8542            Data Model for DC Fabric Topology         March 2019


      description
        "Augmentation for fabric nodes created by
         fabric topology.";
      container fabric-attributes {
        description
          "Attributes for a fabric network";
        uses fabric-attributes;
      }
    }

    augment "/nw:networks/nw:network/nw:node/nt:termination-point" {
      when '/nw:networks/nw:network/nw:network-types/'
         + 'fabric:fabric-network' {
        description
          "Augmentation parameters apply only for networks
           with fabric topology";
      }
      description
        "Augmentation for port on fabric.";
      container fport-attributes {
        config false;
        description
          "Attributes for fabric ports";
        uses fabrictypes:fabric-port;
      }
    }
  }
  <CODE ENDS>

5.  IANA Considerations

  This document registers the following namespace URIs in the "IETF XML
  Registry" [RFC3688]:

  URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-types
  Registrant Contact: The IESG.
  XML: N/A; the requested URI is an XML namespace.

  URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology
  Registrant Contact: The IESG.
  XML: N/A; the requested URI is an XML namespace.

  URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state
  Registrant Contact: The IESG.
  XML: N/A; the requested URI is an XML namespace.






Zhuang, et al.               Standards Track                   [Page 21]

RFC 8542            Data Model for DC Fabric Topology         March 2019


  This document registers the following YANG modules in the "YANG
  Module Names" registry [RFC6020]:

  Name: ietf-dc-fabric-types
  Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-types
  Prefix: fabrictypes
  Reference: RFC 8542

  Name: ietf-dc-fabric-topology
  Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology
  Prefix: fabric
  Reference: RFC 8542

  Name: ietf-dc-fabric-topology-state
  Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state
  Prefix: sfabric
  Reference: RFC 8542

6.  Security Considerations

  The YANG module defined in this document is designed to be accessed
  via network management protocols such as NETCONF [RFC6241] or
  RESTCONF [RFC8040].  The lowest NETCONF layer is the secure transport
  layer, and the mandatory-to-implement secure transport is Secure
  Shell (SSH) [RFC6242].  The lowest RESTCONF layer is HTTPS, and the
  mandatory-to-implement secure transport is TLS [RFC8446].

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in this YANG module that are
  writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  The subtrees and data nodes and their
  sensitivity/vulnerability in the ietf-dc-fabric-topology module are
  as follows:

  fabric-attributes: A malicious client could attempt to sabotage the
  configuration of important fabric attributes, such as device nodes or
  type.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or



Zhuang, et al.               Standards Track                   [Page 22]

RFC 8542            Data Model for DC Fabric Topology         March 2019


  notification) to these data nodes.  The subtrees and data nodes and
  their sensitivity/vulnerability in the ietf-dc-fabric-topology module
  are as follows:

  fport-attributes: A malicious client could attempt to read the
  connections of fabrics without permission, such as device-port and
  name.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.





Zhuang, et al.               Standards Track                   [Page 23]

RFC 8542            Data Model for DC Fabric Topology         March 2019


  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8345]  Clemm, A., Medved, J., Varga, R., Bahadur, N.,
             Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
             Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
             2018, <https://www.rfc-editor.org/info/rfc8345>.

  [RFC8346]  Clemm, A., Medved, J., Varga, R., Liu, X.,
             Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
             for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
             March 2018, <https://www.rfc-editor.org/info/rfc8346>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

7.2.  Informative References

  [GENEVE]   Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
             Network Virtualization Encapsulation", Work in Progress,
             draft-ietf-nvo3-geneve-12, March 2019.

  [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
             L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
             eXtensible Local Area Network (VXLAN): A Framework for
             Overlaying Virtualized Layer 2 Networks over Layer 3
             Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
             <https://www.rfc-editor.org/info/rfc7348>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8344]  Bjorklund, M., "A YANG Data Model for IP Management",
             RFC 8344, DOI 10.17487/RFC8344, March 2018,
             <https://www.rfc-editor.org/info/rfc8344>.







Zhuang, et al.               Standards Track                   [Page 24]

RFC 8542            Data Model for DC Fabric Topology         March 2019


Appendix A.  Non-NMDA-State Modules

  The YANG module, ietf-dc-fabric-topology, defined in this document
  augments two modules, ietf-network and ietf-network-topology, that
  are designed to be used in conjunction with implementations that
  support the Network Management Datastore Architecture (NMDA) defined
  in [RFC8342].  In order to allow implementations to use the model
  even in cases when NMDA is not supported, a set of companion modules
  have been defined that represent a state model of networks and
  network topologies: ietf-network-state and ietf-network-topology-
  state, respectively.

  In order to be able to use the model for fabric topologies defined in
  this document in conjunction with non-NMDA-compliant implementations,
  a corresponding companion module needs to be introduced as well.
  This companion module, ietf-dc-fabric-topology-state, mirrors ietf-
  dc-fabric-topology.  However, the ietf-dc-fabric-topology-state
  module augments ietf-network-state (instead of ietf-network and ietf-
  network-topology), and all of its data nodes are non-configurable.

  Like ietf-network-state and ietf-network-topology-state, ietf-dc-
  fabric-topology-state SHOULD NOT be supported by implementations that
  support NMDA.  It is for this reason that the module is defined in
  the Appendix.

  The definition of the module follows.  As the structure of the module
  mirrors that of its underlying module, the YANG tree is not depicted
  separately.

<CODE BEGINS> file "[email protected]"
module ietf-dc-fabric-topology-state {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state";
 prefix sfabric;

 import ietf-network-state {
   prefix nws;
   reference
     "RFC 8345: A Data Model for Network Topologies";
 }
 import ietf-dc-fabric-types {
   prefix fabrictypes;
   reference
     "RFC 8542: A YANG Data Model for Fabric Topology in
      Data-Center Networks";
 }

 organization



Zhuang, et al.               Standards Track                   [Page 25]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   "IETF I2RS (Interface to the Routing System) Working Group";
 contact
   "WG Web:    <https://datatracker.ietf.org/wg/i2rs/>
    WG List:   <mailto:[email protected]>

    Editor:    Yan Zhuang
               <mailto:[email protected]>

    Editor:    Danian Shi
               <mailto:[email protected]>";
 description
   "This module contains a collection of YANG definitions for
    fabric state, representing topology that either is learned
    or results from applying topology that has been
    configured per the ietf-dc-fabric-topology model, mirroring
    the corresponding data nodes in this model.

    This model mirrors the configuration tree of ietf-dc-fabric
    -topology but contains only read-only state data.  The model
    is not needed when the implementation infrastructure supports
    the Network Management Datastore Architecture (NMDA).

    Copyright (c) 2019 IETF Trust and the persons identified as
    authors of the code.  All rights reserved.

    Redistribution and use in source and binary forms, with or
    without modification, is permitted pursuant to, and subject
    to the license terms contained in, the Simplified BSD
    License set forth in Section 4.c of the IETF Trust's Legal
    Provisions Relating to IETF Documents
    (https://trustee.ietf.org/license-info).

    This version of this YANG module is part of RFC 8542;
    see the RFC itself for full legal notices.";

 revision 2019-02-25 {
   description
     "Initial revision.";
   reference
     "RFC 8542: A YANG Data Model for Fabric Topology in
      Data-Center Networks";
 }

 //grouping statements

 grouping fabric-network-type {
   description
     "Identify the topology type to be fabric.";



Zhuang, et al.               Standards Track                   [Page 26]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   container fabric-network {
     presence "indicates fabric Network";
     description
       "The presence of the container node indicates
        fabric topology";
   }
 }

 grouping fabric-options {
   description
     "Options for a fabric";
   leaf gateway-mode {
     type enumeration {
       enum centralized {
         description
           "The fabric uses centralized
            gateway, in which gateway is deployed on SPINE
            node.";
       }
       enum distributed {
         description
           "The fabric uses distributed
            gateway, in which gateway is deployed on LEAF
            node.";
       }
     }
     default "distributed";
     description
       "Gateway mode of the fabric";
   }
   leaf traffic-behavior {
     type enumeration {
       enum normal {
         description
           "Normal means no policy is needed
            for all traffic";
       }
       enum policy-driven {
         description
           "Policy driven means policy is
            needed for the traffic; otherwise, the traffic
            will be discarded.";
       }
     }
     default "normal";
     description
       "Traffic behavior of the fabric";
   }



Zhuang, et al.               Standards Track                   [Page 27]

RFC 8542            Data Model for DC Fabric Topology         March 2019


   leaf-list capability-supported {
     type fabrictypes:service-capabilities;
     description
       "It provides a list of supported services of the
        fabric.  The service-capabilities is defined as
        identity-ref.  Users can define more services
        by defining new identities.";
   }
 }

 grouping device-attributes {
   description
     "device attributes";
   leaf device-ref {
     type fabrictypes:node-ref;
     description
       "The device that the fabric includes that refers
        to a node in another topology.";
   }
   leaf-list role {
     type fabrictypes:device-role;
     default "fabrictypes:leaf";
     description
       "It is a list of device roles to represent the roles
        that a device plays within a POD, such as SPINE,
        LEAF, Border, or Border-Leaf.
        The device role is defined as identity-ref.  If more
        than 2 stages are used for a POD, users can
        define new identities for the device role.";
   }
 }

 grouping link-attributes {
   description
     "Link attributes";
   leaf link-ref {
     type fabrictypes:link-ref;
     description
       "The link that the fabric includes that refers to
        a link in another topology.";
   }
 }

 grouping port-attributes {
   description
     "Port attributes";
   leaf port-ref {
     type fabrictypes:tp-ref;



Zhuang, et al.               Standards Track                   [Page 28]

RFC 8542            Data Model for DC Fabric Topology         March 2019


     description
       "The port that the fabric includes that refers to
        a termination-point in another topology.";
   }
   leaf port-type {
     type fabrictypes:port-type;
     description
       "Port type is defined as identity-ref.  The current
        types include ethernet or serial.  If more types
        are needed, developers can define new identities.";
   }
   leaf bandwidth {
     type fabrictypes:bandwidth;
     description
       "Bandwidth of the port.  It is defined as
        identity-ref.  If more speeds are introduced,
        developers can define new identities for them.  Current
        speeds include 1M, 10M, 100M, 1G, 10G,
        25G, 40G, 100G, and 400G.";
   }
 }

 grouping fabric-attributes {
   description
     "Attributes of a fabric";
   leaf fabric-id {
     type fabrictypes:fabric-id;
     description
       "Fabric ID";
   }
   leaf name {
     type string;
     description
       "Name of the fabric";
   }
   leaf type {
     type fabrictypes:underlay-network-type;
     description
       "The type of physical network that implements this
        fabric.  Examples are VLAN and TRILL.";
   }
   container vni-capacity {
     description
       "The range of the VXLAN Network
        Identifier (VNI) defined in RFC 7348 that the POD uses.";
     leaf min {
       type int32;
       description



Zhuang, et al.               Standards Track                   [Page 29]

RFC 8542            Data Model for DC Fabric Topology         March 2019


         "The lower-limit VNI.";
     }
     leaf max {
       type int32;
       description
         "The upper-limit VNI.";
     }
   }

   leaf description {
     type string;
     description
       "Description of the fabric";
   }
   container options {
     description
       "Options of the fabric";
     uses fabric-options;
   }
   list device-nodes {
     key "device-ref";
     description
       "Device nodes that are included in a fabric.";
     uses device-attributes;
   }
   list device-links {
     key "link-ref";
     description
       "Links that are included within a fabric.";
     uses link-attributes;
   }
   list device-ports {
     key "port-ref";
     description
       "Ports that are included in the fabric.";
     uses port-attributes;
   }
 }

 // augment statements

 augment "/nws:networks/nws:network/nws:network-types" {
   description
     "Introduce a new network type for fabric-based logical
      topology";
   uses fabric-network-type;
 }




Zhuang, et al.               Standards Track                   [Page 30]

RFC 8542            Data Model for DC Fabric Topology         March 2019


 augment "/nws:networks/nws:network/nws:node" {
   when '/nws:networks/nws:network/nws:network-types'
      + '/sfabric:fabric-network' {
     description
       "Augmentation parameters apply only for
        networks with fabric topology.";
   }
   description
     "Augmentation for fabric nodes.";
   container fabric-attributes-state {
     description
       "Attributes for a fabric network";
     uses fabric-attributes;
   }
 }
}
<CODE ENDS>


































Zhuang, et al.               Standards Track                   [Page 31]

RFC 8542            Data Model for DC Fabric Topology         March 2019


Acknowledgements

  We wish to acknowledge the helpful contributions, comments, and
  suggestions that were received from Alexander Clemm, Donald E.
  Eastlake 3rd, Xufeng Liu, Susan Hares, Wei Song, Luis M. Contreras,
  and Benoit Claise.

Authors' Addresses

  Yan Zhuang
  Huawei
  101 Software Avenue, Yuhua District
  Nanjing, Jiangsu  210012
  China

  Email: [email protected]


  Danian Shi
  Huawei
  101 Software Avenue, Yuhua District
  Nanjing, Jiangsu  210012
  China

  Email: [email protected]


  Rong Gu
  China Mobile
  32 Xuanwumen West Ave, Xicheng District
  Beijing, Beijing  100053
  China

  Email: [email protected]


  Hariharan Ananthakrishnan
  Netflix

  Email: [email protected]











Zhuang, et al.               Standards Track                   [Page 32]