Internet Engineering Task Force (IETF)                    R. Gandhi, Ed.
Request for Comments: 8537                           Cisco Systems, Inc.
Updates: 4090, 7551                                              H. Shah
Category: Standards Track                                          Ciena
ISSN: 2070-1721                                             J. Whittaker
                                                                Verizon
                                                          February 2019


   Updates to the Fast Reroute Procedures for Co-routed Associated
              Bidirectional Label Switched Paths (LSPs)

Abstract

  Resource Reservation Protocol (RSVP) association signaling can be
  used to bind two unidirectional Label Switched Paths (LSPs) into an
  associated bidirectional LSP.  When an associated bidirectional LSP
  is co-routed, the reverse LSP follows the same path as its forward
  LSP.  This document updates the fast reroute procedures defined in
  RFC 4090 to support both single-sided and double-sided provisioned
  associated bidirectional LSPs.  This document also updates the
  procedure for associating two reverse LSPs defined in RFC 7551 to
  support co-routed bidirectional LSPs.  The fast reroute procedures
  can ensure that, for the co-routed LSPs, traffic flows on co-routed
  paths in the forward and reverse directions after a failure event.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8537.












Gandhi, et al.               Standards Track                    [Page 1]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Assumptions and Considerations .............................4
  2. Conventions Used in This Document ...............................4
     2.1. Key Word Definitions .......................................4
     2.2. Terminology ................................................4
          2.2.1. Forward Unidirectional LSPs .........................5
          2.2.2. Reverse Co-routed Unidirectional LSPs ...............5
  3. Problem Statement ...............................................5
     3.1. Fast Reroute Bypass Tunnel Assignment ......................6
     3.2. Node Protection Bypass Tunnels .............................6
     3.3. Bidirectional LSP Association at Midpoints .................7
  4. Signaling Procedure .............................................8
     4.1. Associated Bidirectional LSP Fast Reroute ..................8
          4.1.1. Restoring Co-routing with Node Protection
                 Bypass Tunnels ......................................9
          4.1.2. Unidirectional Link Failures .......................10
          4.1.3. Revertive Behavior after Fast Reroute ..............10
          4.1.4. Bypass Tunnel Provisioning .........................10
          4.1.5. One-to-One Bypass Tunnel ...........................11
     4.2. Bidirectional LSP Association at Midpoints ................11
  5. Compatibility ..................................................11
  6. Security Considerations ........................................12
  7. IANA Considerations ............................................12
  8. References .....................................................12
     8.1. Normative References ......................................12
     8.2. Informative References ....................................13
  Appendix A.  Extended Association ID ..............................14
  Acknowledgments ...................................................16
  Authors' Addresses ................................................16





Gandhi, et al.               Standards Track                    [Page 2]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


1.  Introduction

  The Resource Reservation Protocol (RSVP) (Extended) ASSOCIATION
  Object is specified in [RFC6780] and can be used generically to
  associate Multiprotocol Label Switching (MPLS) and Generalized MPLS
  (GMPLS) Traffic Engineering (TE) Label Switched Paths (LSPs).
  [RFC7551] defines mechanisms for binding two point-to-point (P2P)
  unidirectional LSPs [RFC3209] into an associated bidirectional LSP.
  There are two models described in [RFC7551] for provisioning an
  associated bidirectional LSP: single-sided and double-sided.  In both
  models, the reverse LSP of the bidirectional LSP may or may not be
  co-routed and follow the same path as its forward LSP.

  In some packet transport networks, there are requirements where the
  reverse LSP of a bidirectional LSP needs to follow the same path as
  its forward LSP [RFC6373].  The MPLS Transport Profile (MPLS-TP)
  [RFC6370] architecture facilitates the co-routed bidirectional LSP by
  using GMPLS extensions [RFC3473] to achieve congruent paths.
  However, RSVP association signaling allows enabling co-routed
  bidirectional LSPs without having to deploy GMPLS extensions in the
  existing networks.  The association signaling also allows taking
  advantage of the existing TE and fast reroute mechanisms in the
  network.

  [RFC4090] defines fast reroute extensions for RSVP-TE LSPs, which are
  also applicable to the associated bidirectional LSPs.  [RFC8271]
  defines fast reroute procedures for GMPLS signaled bidirectional LSPs
  such as coordinating bypass tunnel assignments in the forward and
  reverse directions of the LSP.  The mechanisms defined in [RFC8271]
  are also useful for the fast reroute of associated bidirectional
  LSPs.

  This document updates the fast reroute procedures defined in
  [RFC4090] to support both single-sided and double-sided provisioned
  associated bidirectional LSPs.  This document also updates the
  procedure for associating two reverse LSPs defined in [RFC7551] to
  support co-routed bidirectional LSPs.  The fast reroute procedures
  can ensure that for the co-routed LSPs, traffic flows on co-routed
  paths in the forward and reverse directions after fast reroute.












Gandhi, et al.               Standards Track                    [Page 3]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


1.1.  Assumptions and Considerations

  The following assumptions and considerations apply to this document:

  o  The fast reroute procedure for the unidirectional LSPs is defined
     in [RFC4090] and is not modified by this document.

  o  The fast reroute procedure when using unidirectional bypass
     tunnels is defined in [RFC4090] and is not modified by this
     document.

  o  This document assumes that the fast reroute bypass tunnels used
     for protected associated bidirectional LSPs are also associated
     bidirectional.

  o  This document assumes that the fast reroute bypass tunnels used
     for protected co-routed associated bidirectional LSPs are also co-
     routed associated bidirectional.

  o  The fast reroute procedure to coordinate the bypass tunnel
     assignment defined in this document may be used for protected
     associated bidirectional LSPs that are not co-routed but requires
     that the downstream Point of Local Repair (PLR) and Merge Point
     (MP) pair of the forward LSP matches the upstream MP and PLR pair
     of the reverse LSP.

  o  Unless otherwise specified in this document, the fast reroute
     procedures defined in [RFC4090] are used for associated
     bidirectional LSPs.

2.  Conventions Used in This Document

2.1.  Key Word Definitions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Terminology

  The reader is assumed to be familiar with the terminology defined in
  [RFC2205], [RFC3209], [RFC4090], [RFC7551], and [RFC8271].







Gandhi, et al.               Standards Track                    [Page 4]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


2.2.1.  Forward Unidirectional LSPs

  Two reverse unidirectional P2P LSPs are set up in opposite directions
  between a pair of source and destination nodes to form an associated
  bidirectional LSP.  In the case of single-sided provisioned LSP, the
  originating LSP with a REVERSE_LSP Object [RFC7551] is identified as
  a forward unidirectional LSP.  In the case of double-sided
  provisioned LSP, the LSP originating from the higher node address (as
  source) and terminating on the lower node address (as destination) is
  identified as a forward unidirectional LSP.

2.2.2.  Reverse Co-routed Unidirectional LSPs

  Two reverse unidirectional P2P LSPs are set up in opposite directions
  between a pair of source and destination nodes to form an associated
  bidirectional LSP.  A reverse unidirectional LSP originates on the
  same node where the forward unidirectional LSP terminates, and it
  terminates on the same node where the forward unidirectional LSP
  originates.  A reverse co-routed unidirectional LSP traverses along
  the same path as the forward-direction unidirectional LSP in the
  opposite direction.

3.  Problem Statement

  As specified in [RFC7551], in the single-sided provisioning case, the
  RSVP-TE tunnel is configured only on one endpoint node of the
  bidirectional LSP.  An LSP for this tunnel is initiated by the
  originating endpoint with the (Extended) ASSOCIATION Object
  containing Association Type set to "Single-Sided Associated
  Bidirectional LSP" and the REVERSE_LSP Object inserted in the RSVP
  Path message.  The remote endpoint then creates the corresponding
  reverse TE tunnel and signals the reverse LSP in response using the
  information from the REVERSE_LSP Object and other objects present in
  the received RSVP Path message.  As specified in [RFC7551], in the
  double-sided provisioning case, the RSVP-TE tunnel is configured on
  both endpoint nodes of the bidirectional LSP.  Both forward and
  reverse LSPs are initiated independently by the two endpoints with
  the (Extended) ASSOCIATION Object containing Association Type set to
  "Double-Sided Associated Bidirectional LSP".  With both single-sided
  and double-sided provisioned bidirectional LSPs, the reverse LSP may
  or may not be congruent (i.e., co-routed) and follow the same path as
  its forward LSP.

  Both single-sided and double-sided associated bidirectional LSPs
  require solutions to the following issues for fast reroute to ensure
  co-routing after a failure event.





Gandhi, et al.               Standards Track                    [Page 5]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


3.1.  Fast Reroute Bypass Tunnel Assignment

  In order to ensure that the traffic flows on a co-routed path after a
  link or node failure on the protected co-routed LSP path, the
  midpoint PLR nodes need to assign matching bidirectional bypass
  tunnels for fast reroute.  Such bypass assignment requires
  coordination between the PLR nodes in both the forward and reverse
  directions when more than one bypass tunnel is present on a PLR node.

                     <-- Bypass N -->
                 +-----+         +-----+
                 |  H  +---------+  I  |
                 +--+--+         +--+--+
                    |               |
                    |               |
         LSP1 -->   |   LSP1 -->    |   LSP1 -->       LSP1 -->
  +-----+        +--+--+         +--+--+        +-----+        +-----+
  |  A  +--------+  B  +----X----+  C  +--------+  D  +--------+  E  |
  +-----+        +--+--+         +--+--+        +-----+        +-----+
         <-- LSP2   |    <-- LSP2   |   <-- LSP2       <-- LSP2
                    |               |
                    |               |
                 +--+--+         +--+--+
                 |  F  +---------+  G  |
                 +-----+         +-----+
                     <-- Bypass S -->

             Figure 1: Multiple Bidirectional Bypass Tunnels

  As shown in Figure 1, there are two bypass tunnels available: bypass
  tunnel N (on path B-H-I-C) and bypass tunnel S (on path B-F-G-C).
  The midpoint PLR nodes B and C need to coordinate bypass tunnel
  assignment to ensure that traffic in both directions flows through
  either bypass tunnel N or bypass tunnel S after the link B-C failure.

3.2.  Node Protection Bypass Tunnels

  When using a node protection bypass tunnel with a protected
  associated bidirectional LSP, after a link failure, the forward and
  reverse LSP traffic can flow on different node protection bypass
  tunnels in the upstream and downstream directions.










Gandhi, et al.               Standards Track                    [Page 6]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


             <-- Bypass N -->
  +-----+                        +-----+
  |  H  +------------------------+  I  |
  +--+--+                        +--+--+
     |      <-- Rerouted-LSP2       |
     |                              |
     |                              |
     |   LSP1 -->       LSP1 -->    |   LSP1 -->       LSP1 -->
  +--+--+        +-----+         +--+--+        +-----+        +-----+
  |  A  +--------+  B  +----X----+  C  +--------+  D  +--------+  E  |
  +-----+        +--+--+         +-----+        +--+--+        +-----+
         <-- LSP2   |    <-- LSP2       <-- LSP2   |   <-- LSP2
                    |                              |
                    |                              |
                    |       Rerouted-LSP1 -->      |
                 +--+--+                        +--+--+
                 |  F  +------------------------+  G  |
                 +-----+                        +-----+
                            <-- Bypass S -->

                Figure 2: Node Protection Bypass Tunnels

  As shown in Figure 2, after the link B-C failure, the downstream PLR
  node B reroutes the protected forward LSP1 traffic over bypass tunnel
  S (on path B-F-G-D) to reach downstream MP node D, whereas the
  upstream PLR node C reroutes the protected reverse LSP2 traffic over
  bypass tunnel N (on path C-I-H-A) to reach the upstream MP node A.
  As a result, the traffic in the forward and reverse directions flows
  on different bypass tunnels, which can cause the co-routed associated
  bidirectional LSP to be no longer co-routed.  However, unlike GMPLS
  LSPs, the asymmetry of paths in the forward and reverse directions
  does not result in RSVP soft-state timeout with the associated
  bidirectional LSPs.

3.3.  Bidirectional LSP Association at Midpoints

  In packet transport networks, a restoration LSP is signaled after a
  link failure on the protected LSP path, and the protected LSP may or
  may not be torn down [RFC8131].  In this case, multiple forward and
  reverse LSPs of a co-routed associated bidirectional LSP may be
  present at midpoint nodes with identical (Extended) ASSOCIATION
  Objects.  This creates an ambiguity at midpoint nodes to identify the
  correct associated LSP pair for fast reroute bypass assignment (e.g.,
  during the recovery phase of the RSVP graceful restart procedure).







Gandhi, et al.               Standards Track                    [Page 7]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


         LSP3 -->                       LSP3 -->       LSP3 -->
         LSP1 -->       LSP1 -->        LSP1 -->       LSP1 -->
  +-----+        +-----+         +-----+        +-----+        +-----+
  |  A  +--------+  B  +----X----+  C  +--------+  D  +--------+  E  |
  +-----+        +--+--+         +--+--+        +-----+        +-----+
         <-- LSP2   |    <-- LSP2   |   <-- LSP2       <-- LSP2
         <-- LSP4   |               |   <-- LSP4       <-- LSP4
                    |               |
                    |   LSP3 -->    |
                 +--+--+         +--+--+
                 |  F  +---------+  G  |
                 +-----+         +-----+
                     <-- Bypass S -->
                         <-- LSP4

           Figure 3: Restoration LSP Setup after Link Failure

  As shown in Figure 3, the protected LSPs (LSP1 and LSP2) are an
  associated LSP pair; similarly, the restoration LSPs (LSP3 and LSP4)
  are an associated LSP pair.  Both pairs belong to the same associated
  bidirectional LSP and carry identical (Extended) ASSOCIATION Objects.
  In this example, the midpoint node D may mistakenly associate LSP1
  with the reverse LSP4 instead of the reverse LSP2 due to the matching
  (Extended) ASSOCIATION Objects.  This may cause the co-routed
  associated bidirectional LSP to be no longer co-routed after fast
  reroute.  Since the bypass assignment needs to be coordinated between
  the forward and reverse LSPs, this can also lead to undesired bypass
  tunnel assignments.

4.  Signaling Procedure

4.1.  Associated Bidirectional LSP Fast Reroute

  For both single-sided and double-sided associated bidirectional LSPs,
  the fast reroute procedure specified in [RFC4090] is used.  In
  addition, the mechanisms defined in [RFC8271] are used as follows:

  o  The BYPASS_ASSIGNMENT IPv4 subobject (value 38) and IPv6 subobject
     (value 39) defined in [RFC8271] are used to coordinate bypass
     tunnel assignment between the PLR nodes in both the forward and
     reverse directions (see Figure 1).  The BYPASS_ASSIGNMENT and
     Node-ID address [RFC4561] subobjects MUST be added by the
     downstream PLR node in the RECORD_ROUTE Object (RRO) of the RSVP
     Path message of the forward LSP to indicate the local bypass
     tunnel assignment using the procedure defined in [RFC8271].  The
     upstream node uses the bypass assignment information (namely,
     bypass tunnel source address, destination address, and Tunnel ID)
     in the received RSVP Path message of the protected forward LSP to



Gandhi, et al.               Standards Track                    [Page 8]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


     find the associated bypass tunnel in the reverse direction.  The
     upstream PLR node MUST NOT add the BYPASS_ASSIGNMENT subobject in
     the RRO of the RSVP Path message of the reverse LSP.

  o  The downstream PLR node initiates the bypass tunnel assignment for
     the forward LSP.  The upstream PLR (forward-direction LSP MP) node
     reflects the associated bypass tunnel assignment for the reverse-
     direction LSP.  The upstream PLR node MUST NOT initiate the bypass
     tunnel assignment.

  o  If the indicated forward bypass tunnel or the associated reverse
     bypass tunnel is not found, the upstream PLR SHOULD send a Notify
     message [RFC3473] with Error Code "FRR Bypass Assignment Error"
     (value 44) and Sub-code "Bypass Tunnel Not Found" (value 1)
     [RFC8271] to the downstream PLR.

  o  If the bypass tunnel cannot be used as described in Section 4.5.3
     of [RFC8271], the upstream PLR SHOULD send a Notify message
     [RFC3473] with Error Code "FRR Bypass Assignment Error" (value 44)
     and Sub-code "Bypass Assignment Cannot Be Used" (value 0)
     [RFC8271] to the downstream PLR.

  o  After a link or node failure, the PLR nodes in both forward and
     reverse directions trigger fast reroute independently using the
     procedures defined in [RFC4090] and send the forward and protected
     reverse LSP modified RSVP Path messages and traffic over the
     bypass tunnel.  The RSVP Resv signaling of the protected forward
     and reverse LSPs follows the same procedure as defined in
     [RFC4090] and is not modified by this document.

4.1.1.  Restoring Co-routing with Node Protection Bypass Tunnels

  After fast reroute, the downstream MP node assumes the role of
  upstream PLR and reroutes the reverse LSP RSVP Path messages and
  traffic over the bypass tunnel on which the forward LSP RSVP Path
  messages and traffic are received.  This procedure is defined as
  "restoring co-routing" in [RFC8271].  This procedure is used to
  ensure that both forward and reverse LSP signaling and traffic flow
  on the same bidirectional bypass tunnel after fast reroute.

  As shown in Figure 2, when using a node protection bypass tunnel with
  protected co-routed LSPs, asymmetry of paths can occur in the forward
  and reverse directions after a link failure [RFC8271].  In order to
  restore co-routing, the downstream MP node D (acting as an upstream
  PLR) MUST trigger the procedure to restore co-routing and reroute the
  protected reverse LSP2 RSVP Path messages and traffic over the bypass
  tunnel S (on path D-G-F-B) to the upstream MP node B upon receiving
  the protected forward LSP modified RSVP Path messages and traffic



Gandhi, et al.               Standards Track                    [Page 9]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


  over the bypass tunnel S (on path D-G-F-B) from node B.  The upstream
  PLR node C stops receiving the RSVP Path messages and traffic for the
  reverse LSP2 from node D (resulting in RSVP soft-state timeout), and
  it stops sending the RSVP Path messages for the reverse LSP2 over the
  bypass tunnel N (on path C-I-H-A) to node A.

4.1.2.  Unidirectional Link Failures

  The unidirectional link failures can cause co-routed associated
  bidirectional LSPs to be no longer co-routed after fast reroute with
  both link protection and node protection bypass tunnels.  However,
  the unidirectional link failures in the upstream and/or downstream
  directions do not result in RSVP soft-state timeout with the
  associated bidirectional LSPs as upstream and downstream PLRs trigger
  fast reroute independently.  The asymmetry of forward and reverse LSP
  paths due to the unidirectional link failure in the downstream
  direction can be corrected by using the procedure to restore co-
  routing specified in Section 4.1.1.

4.1.3.  Revertive Behavior after Fast Reroute

  When the revertive behavior is desired for a protected LSP after the
  link is restored, the procedure defined in Section 6.5.2 of [RFC4090]
  is followed.

  o  The downstream PLR node starts sending the RSVP Path messages and
     traffic flow of the protected forward LSP over the restored link
     and stops sending them over the bypass tunnel [RFC4090].

  o  The upstream PLR node (when the protected LSP is present) also
     starts sending the RSVP Path messages and traffic flow of the
     protected reverse LSPs over the restored link and stops sending
     them over the bypass tunnel [RFC4090].

  o  For node protection bypass tunnels (see Figure 2), after restoring
     co-routing, the upstream PLR node D SHOULD start sending RSVP Path
     messages and traffic for the reverse LSP over the original link
     (C-D) when it receives the unmodified RSVP Path messages and
     traffic for the protected forward LSP over it and stops sending
     them over the bypass tunnel S (on path D-G-F-B).

4.1.4.  Bypass Tunnel Provisioning

  Fast reroute bidirectional bypass tunnels can be single-sided or
  double-sided associated tunnels.  For both single-sided and double-
  sided associated bypass tunnels, the fast reroute assignment policies
  need to be configured on the downstream PLR nodes of the protected




Gandhi, et al.               Standards Track                   [Page 10]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


  LSPs that initiate the bypass tunnel assignments.  For single-sided
  associated bypass tunnels, these nodes are the originating endpoints
  of their signaling.

4.1.5.  One-to-One Bypass Tunnel

  The fast reroute signaling procedure defined in this document can be
  used for both facility backup described in Section 3.2 of [RFC4090]
  and one-to-one backup described in Section 3.1 of [RFC4090].  As
  described in Section 4.5.2 of [RFC8271], in the one-to-one backup
  method, if the associated bidirectional bypass tunnel is already in
  use at the upstream PLR, it SHOULD send a Notify message [RFC3473]
  with Error Code "FRR Bypass Assignment Error" (value 44) and Sub-code
  "One-to-One Bypass Already in Use" (value 2) to the downstream PLR.

4.2.  Bidirectional LSP Association at Midpoints

  In order to associate the LSPs unambiguously at a midpoint node (see
  Figure 3), the endpoint node MUST signal the Extended ASSOCIATION
  Object and add a unique Extended Association ID for each associated
  forward and reverse LSP pair forming the bidirectional LSP.  An
  endpoint node MAY set the Extended Association ID to the value
  formatted according to the structure shown in Appendix A.

  o  For single-sided provisioned bidirectional LSPs [RFC7551], the
     originating endpoint signals the Extended ASSOCIATION Object with
     a unique Extended Association ID.  The remote endpoint copies the
     contents of the received Extended ASSOCIATION Object including the
     Extended Association ID in the RSVP Path message of the reverse
     LSP's Extended ASSOCIATION Object.

  o  For double-sided provisioned bidirectional LSPs [RFC7551], both
     endpoints need to ensure that the bidirectional LSP has a unique
     Extended ASSOCIATION Object for each forward and reverse LSP pair
     by selecting appropriate unique Extended Association IDs signaled
     by them.  A controller can be used to provision a unique Extended
     Association ID on both endpoints.  The procedure for selecting
     unique Extended Association IDs is outside the scope of this
     document.

5.  Compatibility

  This document updates the procedures for fast reroute for associated
  bidirectional LSPs defined in [RFC4090] and the procedures for
  associating bidirectional LSPs defined in [RFC7551].  The procedures
  use the signaling messages defined in [RFC8271]; no new signaling
  messages are defined in this document.  The procedures ensure that
  for the co-routed LSPs, traffic flows on co-routed paths in the



Gandhi, et al.               Standards Track                   [Page 11]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


  forward and reverse directions after fast reroute.  Operators wishing
  to use this function SHOULD ensure that it is supported on all the
  nodes on the LSP path.  The nodes not supporting this function can
  cause the traffic to flow on asymmetric paths in the forward and
  reverse directions of the associated bidirectional LSPs after fast
  reroute.

6.  Security Considerations

  This document updates the signaling mechanisms defined in [RFC4090]
  and [RFC7551].  It does not introduce any additional security
  considerations other than those already covered in [RFC4090],
  [RFC7551], [RFC8271], and the MPLS/GMPLS security framework
  [RFC5920].

7.  IANA Considerations

  This document has no IANA actions.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2205]  Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
             Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
             Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
             September 1997, <https://www.rfc-editor.org/info/rfc2205>.

  [RFC4090]  Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
             Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
             DOI 10.17487/RFC4090, May 2005,
             <https://www.rfc-editor.org/info/rfc4090>.

  [RFC4561]  Vasseur, J., Ed., Ali, Z., and S. Sivabalan, "Definition
             of a Record Route Object (RRO) Node-Id Sub-Object",
             RFC 4561, DOI 10.17487/RFC4561, June 2006,
             <https://www.rfc-editor.org/info/rfc4561>.

  [RFC6780]  Berger, L., Le Faucheur, F., and A. Narayanan, "RSVP
             ASSOCIATION Object Extensions", RFC 6780,
             DOI 10.17487/RFC6780, October 2012,
             <https://www.rfc-editor.org/info/rfc6780>.




Gandhi, et al.               Standards Track                   [Page 12]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


  [RFC7551]  Zhang, F., Ed., Jing, R., and R. Gandhi, Ed., "RSVP-TE
             Extensions for Associated Bidirectional Label Switched
             Paths (LSPs)", RFC 7551, DOI 10.17487/RFC7551, May 2015,
             <https://www.rfc-editor.org/info/rfc7551>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8271]  Taillon, M., Saad, T., Ed., Gandhi, R., Ed., Ali, Z., and
             M. Bhatia, "Updates to the Resource Reservation Protocol
             for Fast Reroute of Traffic Engineering GMPLS Label
             Switched Paths (LSPs)", RFC 8271, DOI 10.17487/RFC8271,
             October 2017, <https://www.rfc-editor.org/info/rfc8271>.

8.2.  Informative References

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <https://www.rfc-editor.org/info/rfc3209>.

  [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Resource ReserVation Protocol-
             Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
             DOI 10.17487/RFC3473, January 2003,
             <https://www.rfc-editor.org/info/rfc3473>.

  [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
             <https://www.rfc-editor.org/info/rfc5920>.

  [RFC6370]  Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
             Profile (MPLS-TP) Identifiers", RFC 6370,
             DOI 10.17487/RFC6370, September 2011,
             <https://www.rfc-editor.org/info/rfc6370>.

  [RFC6373]  Andersson, L., Ed., Berger, L., Ed., Fang, L., Ed., Bitar,
             N., Ed., and E. Gray, Ed., "MPLS Transport Profile (MPLS-
             TP) Control Plane Framework", RFC 6373,
             DOI 10.17487/RFC6373, September 2011,
             <https://www.rfc-editor.org/info/rfc6373>.

  [RFC8131]  Zhang, X., Zheng, H., Ed., Gandhi, R., Ed., Ali, Z., and
             P. Brzozowski, "RSVP-TE Signaling Procedure for End-to-End
             GMPLS Restoration and Resource Sharing", RFC 8131,
             DOI 10.17487/RFC8131, March 2017,
             <https://www.rfc-editor.org/info/rfc8131>.



Gandhi, et al.               Standards Track                   [Page 13]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


Appendix A.  Extended Association ID

  The Extended Association ID in the Extended ASSOCIATION Object
  [RFC6780] can be set to the value formatted according to the
  structure shown in the following example to uniquely identify
  associated forward and reverse LSP pairs of an associated
  bidirectional LSP.

  An example of the IPv4 Extended Association ID format is shown below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    IPv4 LSP Source Address                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Reserved            |            LSP ID             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    :                                                               :
    :                      Variable Length ID                       :
    :                                                               :
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 4: IPv4 Extended Association ID Format Example

  IPv4 LSP Source Address

     IPv4 source address of the forward LSP [RFC3209].

  LSP ID

     16-bit LSP ID of the forward LSP [RFC3209].

  Variable Length ID

     Variable length Extended Association ID [RFC6780] inserted by the
     endpoint node of the associated bidirectional LSP [RFC7551].















Gandhi, et al.               Standards Track                   [Page 14]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


  An example of the IPv6 Extended Association ID format is shown below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    +                                                               +
    |                    IPv6 LSP Source Address                    |
    +                                                               +
    |                          (16 bytes)                           |
    +                                                               +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Reserved            |            LSP ID             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    :                                                               :
    :                      Variable Length ID                       :
    :                                                               :
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 5: IPv6 Extended Association ID Format Example

  LSP Source Address

     IPv6 source address of the forward LSP [RFC3209].

  LSP ID

     16-bit LSP ID of the forward LSP [RFC3209].

  Variable Length ID

     Variable length Extended Association ID [RFC6780] inserted by the
     endpoint node of the associated bidirectional LSP [RFC7551].

  In both IPv4 and IPv6 examples, the Reserved flags MUST be set to 0
  on transmission.














Gandhi, et al.               Standards Track                   [Page 15]

RFC 8537        Associated Bidirectional LSP Fast Reroute  February 2019


Acknowledgments

  A special thanks to the authors of [RFC8271]; this document uses the
  signaling mechanisms defined in that document.  The authors would
  also like to thank Vishnu Pavan Beeram, Daniele Ceccarelli, Deborah
  Brungard, Adam Roach, and Benjamin Kaduk for reviewing this document
  and providing valuable comments.

Authors' Addresses

  Rakesh Gandhi (editor)
  Cisco Systems, Inc.
  Canada

  Email: [email protected]


  Himanshu Shah
  Ciena

  Email: [email protected]


  Jeremy Whittaker
  Verizon

  Email: [email protected]
























Gandhi, et al.               Standards Track                   [Page 16]