Internet Engineering Task Force (IETF)                          D. Kumar
Request for Comments: 8531                                         Cisco
Category: Standards Track                                          Q. Wu
ISSN: 2070-1721                                                  M. Wang
                                                                 Huawei
                                                             April 2019


                     Generic YANG Data Model for
Connection-Oriented Operations, Administration, and Maintenance (OAM)
                              Protocols

Abstract

  This document presents a base YANG data model for connection-oriented
  Operations, Administration, and Maintenance (OAM) protocols.  It
  provides a technology-independent abstraction of key OAM constructs
  for such protocols.  The model presented here can be extended to
  include technology-specific details.  This guarantees uniformity in
  the management of OAM protocols and provides support for nested OAM
  workflows (i.e., performing OAM functions at different levels through
  a unified interface).

  The YANG data model in this document conforms to the Network
  Management Datastore Architecture.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8531.












Kumar, et al.                Standards Track                    [Page 1]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Kumar, et al.                Standards Track                    [Page 2]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Conventions Used in This Document . . . . . . . . . . . . . .   5
    2.1.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   6
    2.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   7
    2.3.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   7
  3.  Architecture of Generic YANG Data Model for Connection-
      Oriented OAM  . . . . . . . . . . . . . . . . . . . . . . . .   7
  4.  Overview of the Connection-Oriented OAM YANG Data Model . . .   8
    4.1.  Maintenance Domain (MD) Configuration . . . . . . . . . .   9
    4.2.  Maintenance Association (MA) Configuration  . . . . . . .  10
    4.3.  Maintenance End Point (MEP) Configuration . . . . . . . .  11
    4.4.  RPC Definitions . . . . . . . . . . . . . . . . . . . . .  11
    4.5.  Notifications . . . . . . . . . . . . . . . . . . . . . .  14
    4.6.  Monitor Statistics  . . . . . . . . . . . . . . . . . . .  14
    4.7.  OAM Data Hierarchy  . . . . . . . . . . . . . . . . . . .  14
  5.  OAM YANG Module . . . . . . . . . . . . . . . . . . . . . . .  19
  6.  Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . .  42
    6.1.  MEP Address . . . . . . . . . . . . . . . . . . . . . . .  42
    6.2.  MEP ID for Base Mode  . . . . . . . . . . . . . . . . . .  42
    6.3.  Maintenance Association . . . . . . . . . . . . . . . . .  42
  7.  Connection-Oriented OAM YANG Data Model Applicability . . . .  43
    7.1.  Generic YANG Data Model Extension for TRILL OAM . . . . .  43
      7.1.1.  MD Configuration Extension  . . . . . . . . . . . . .  43
      7.1.2.  MA Configuration Extension  . . . . . . . . . . . . .  44
      7.1.3.  MEP Configuration Extension . . . . . . . . . . . . .  45
      7.1.4.  RPC Extension . . . . . . . . . . . . . . . . . . . .  46
    7.2.  Generic YANG Data Model Extension for MPLS-TP OAM . . . .  46
      7.2.1.  MD Configuration Extension  . . . . . . . . . . . . .  47
      7.2.2.  MA Configuration Extension  . . . . . . . . . . . . .  48
      7.2.3.  MEP Configuration Extension . . . . . . . . . . . . .  48
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .  49
  9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  50
  10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  50
    10.1.  Normative References . . . . . . . . . . . . . . . . . .  50
    10.2.  Informative References . . . . . . . . . . . . . . . . .  51
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  53
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  53
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  54











Kumar, et al.                Standards Track                    [Page 3]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


1.  Introduction

  Operations, Administration, and Maintenance (OAM) are important
  networking functions that allow operators to:

  1.  monitor network communications (i.e., reachability verification
      and Continuity Check)

  2.  troubleshoot failures (i.e., fault verification and localization)

  3.  monitor service-level agreements and performance (i.e.,
      performance management)

  An overview of OAM tools is presented in [RFC7276].  Over the years,
  many technologies have developed similar tools for fault and
  performance management.

  The different sets of OAM tools may support both connection-oriented
  technologies or connectionless technologies.  In connection-oriented
  technologies, a connection is established prior to the transmission
  of data.  After the connection is established, no additional control
  information such as signaling or operations and maintenance
  information is required to transmit the actual user data.  In
  connectionless technologies, data is typically sent between
  communicating endpoints without prior arrangement, but control
  information is required to identify the destination (e.g., [G.800]).
  The YANG data model for OAM protocols using connectionless
  communications is specified in [RFC8532] and [IEEE802.1Q].

  Connectivity Fault Management as specified in [IEEE802.1Q] is a well-
  established OAM standard that is widely adopted for Ethernet
  networks.  ITU-T [G.8013], MEF Forum (MEF) Service OAM [MEF-17], MPLS
  Transport Profile (MPLS-TP) [RFC6371], and Transparent
  Interconnection of Lots of Links (TRILL) [RFC7455] all define OAM
  mechanisms based on the manageability framework of Connectivity Fault
  Management (CFM) [IEEE802.1Q].

  Given the wide adoption of the underlying OAM concepts defined in CFM
  [IEEE802.1Q], it is a reasonable choice to develop the unified
  management framework for connection-oriented OAM based on those
  concepts.  In this document, we take the CFM [IEEE802.1Q] model and
  extend it to a technology-independent framework and define the
  corresponding YANG data model accordingly.  The YANG data model
  presented in this document is the base model for connection-oriented
  OAM protocols and supports generic continuity check, connectivity
  verification, and path discovery (traceroute).  The generic YANG data
  model for connection-oriented OAM is designed to be extensible to
  other connection-oriented technologies.  Technology-dependent nodes



Kumar, et al.                Standards Track                    [Page 4]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  and remote procedure call (RPC) commands are defined in technology-
  specific YANG data models, which use and extend the base model
  defined here.  As an example, Virtual eXtensible Local Area Network
  (VXLAN) uses the source UDP port number for flow entropy, while TRILL
  uses either (a) MAC addresses, (b) the VLAN tag or Fine-Grained
  Label, and/or (c) IP addresses for flow entropy in the hashing for
  multipath selection.  To capture this variation, corresponding YANG
  data models would define the applicable structures as augmentation to
  the generic base model presented here.  This accomplishes three
  goals: First, it keeps each YANG data model smaller and more
  manageable.  Second, it allows independent development of
  corresponding YANG data models.  Third, implementations can limit
  support to only the applicable set of YANG data models (e.g., TRILL
  RBridge may only need to implement the generic model and the TRILL
  YANG data model).

  The YANG data model presented in this document is generated at the
  management layer.  Encapsulations and state machines may differ
  according to each OAM protocol.  A user who wishes to issue a
  Continuity Check command or a Loopback or initiate a performance
  monitoring session can do so in the same manner, regardless of the
  underlying protocol or technology or specific vendor implementation.

  As an example, consider a scenario where connectivity from device A
  loopback to device B fails.  Between device A and B there are IEEE
  802.1 bridges a, b, and c.  Let's assume a, b, and c are using CFM
  [IEEE802.1Q].  A user, upon detecting the loopback failure, may
  decide to drill down to the lower level at different segments of the
  path and issue the corresponding fault verification (Loopback
  Message) and fault isolation (Looktrace Message) tools, using the
  same API.  This ability to drill down to a lower layer of the
  protocol stack at a specific segment within a path for fault
  localization and troubleshooting is referred to as "nested OAM
  workflow".  It is a useful concept that leads to efficient network
  troubleshooting and maintenance workflows.  The connection-oriented
  OAM YANG data model presented in this document facilitates that
  without needing changes to the underlying protocols.

  The YANG data model in this document conforms to the Network
  Management Datastore Architecture defined in [RFC8342].

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.



Kumar, et al.                Standards Track                    [Page 5]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  Many of the terms used in this document (including those set out in
  Sections Section 2.1 and Section 2.2) are specific to the world of
  OAM.  This document does not attempt to explain the terms but does
  assume that the reader is familiar with the concepts.  For a good
  overview, read [IEEE802.1Q].  For an example of how these OAM terms
  appear in IETF work, see [RFC6371].

2.1.  Abbreviations

  CCM   - Continuity Check Message [IEEE802.1Q]

  ECMP  - Equal-Cost Multipath

  LBM   - Loopback Message [IEEE802.1Q]

  LTM   - Linktrace Message [IEEE802.1Q]

  MP    - Maintenance Point [IEEE802.1Q]

  MEP   - Maintenance End Point [RFC7174] (also known as Maintenance
        association End Point [IEEE802.1Q] and MEG End Point [RFC6371])

  MIP   - Maintenance Intermediate Point [RFC7174] (also known as
        Maintenance domain Intermediate Point [IEEE802.1Q] and MEG
        Intermediate Point [RFC6371])

  MA    - Maintenance Association [IEEE802.1Q] [RFC7174]

  MD    - Maintenance Domain [IEEE802.1Q]

  MEG   - Maintenance Entity Group [RFC6371]

  MTV   - Multi-destination Tree Verification Message

  OAM   - Operations, Administration, and Maintenance [RFC6291]

  TRILL - Transparent Interconnection of Lots of Links [RFC6325]

  CFM   - Connectivity Fault Management [RFC7174] [IEEE802.1Q]

  RPC   - Remote Procedure Call

  CC    - Continuity Check [RFC7276]

  CV    - Connectivity Verification [RFC7276]






Kumar, et al.                Standards Track                    [Page 6]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


2.2.  Terminology

  Continuity Checks  - Continuity Checks are used to verify that a
     destination is reachable and therefore also are referred to as
     "reachability verification".

  Connectivity Verification  - Connectivity Verification is used to
     verify that a destination is connected.  It is also referred to as
     "path verification" and used to verify not only that the two MPs
     are connected, but also that they are connected through the
     expected path, allowing detection of unexpected topology changes.

  Proactive OAM  - Proactive OAM refers to OAM actions that are carried
     out continuously to permit proactive reporting of fault.  A
     proactive OAM method requires persistent configuration.

  On-demand OAM  - On-demand OAM refers to OAM actions that are
     initiated via manual intervention for a limited time to carry out
     diagnostics.  An on-demand OAM method requires only transient
     configuration.

2.3.  Tree Diagrams

  Tree diagrams used in this document follow the notation defined in
  [RFC8340].

3.  Architecture of Generic YANG Data Model for Connection-Oriented OAM

  In this document, we define a generic YANG data model for connection-
  oriented OAM protocols.  The YANG data model defined here is generic
  in a sense that other technologies can extend it for technology-
  specific needs.  The generic YANG data model for connection-oriented
  OAM acts as the root for other OAM YANG data models.  This allows
  users to traverse between different OAM protocols with ease through a
  uniform API set.  This also enables a nested OAM workflow.  Figure 1
  depicts the relationship of different OAM YANG data models to the
  Generic YANG Data Model for connection-oriented OAM.  The Generic
  YANG data model for connection-oriented OAM provides a framework
  where technology-specific YANG data models can inherit constructs
  from the base YANG data models without needing to redefine them
  within the sub-technology.










Kumar, et al.                Standards Track                    [Page 7]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


                           +-----------+
                           |Connection-|
                           | Oriented  |
                           |  generic  |
                           | OAM YANG  |
                           +-+-+-+-+-+-+
                                |
                                |
                                |
        +------------------------------------------+
        |                       |                  |
    +-+-+-+-+-+          +-+-+-+-+-+          +-+-+-+-+-+
    | TRILL   |          | MPLS-TP |     . . .|  foo    |
    |OAM YANG |          |OAM YANG |          |OAM YANG |
    +-+-+-+-+-+          +-+-+-+-+-+          +-+-+-+-+-+
          |                    |                  |
          |                    |              +-+-+-+-+-+
          |                    |         . . .|  foo    |
          |                    |              |sub tech |
          |                    |              +-+-+-+-+-+
          |                    |                  |
          |                    |                  |
   +-------------------------------------------------------+
   |                      Uniform API                      |
   +-------------------------------------------------------+

  Figure 1: Relationship of OAM YANG Data Model to Generic (Base) YANG
                               Data Model

4.  Overview of the Connection-Oriented OAM YANG Data Model

  In this document, we adopt the concepts of the CFM [IEEE802.1Q] model
  and structure such that it can be adapted to different connection-
  oriented OAM protocols.

  At the top of the model is the Maintenance Domain.  Each Maintenance
  Domain is associated with a Maintenance Name and a Domain Level.

  Under each Maintenance Domain, there is one or more Maintenance
  Associations (MAs).  In TRILL, the MA can correspond to a Fine-
  Grained Label.

  Under each MA, there can be two or more MEPs (Maintenance End
  Points).  MEPs are addressed by their respective technology-specific
  address identifiers.  The YANG data model presented here provides
  flexibility to accommodate different addressing schemes.





Kumar, et al.                Standards Track                    [Page 8]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  Commands are presented in the management protocol, which is
  orthogonal to the Maintenance Domain.  These are RPC commands, in
  YANG terms.  They provide uniform APIs for Continuity Check,
  connectivity verification, path discovery (traceroute), and their
  equivalents, as well as other OAM commands.

  The OAM entities in the generic YANG data model defined here will be
  either explicitly or implicitly configured using any of the OAM
  tools.  The OAM tools used here are limited to the OAM toolset
  specified in Section 5.1 of [RFC7276].  In order to facilitate a
  zero-touch experience, this document defines a default mode of OAM.
  The default mode of OAM is referred to as the "Base Mode" and
  specifies default values for each of the model's parameters, such as
  Maintenance Domain Level, Name of the Maintenance Association,
  Addresses of MEPs, and so on.  The default values of these depend on
  the technology.  Base Mode for TRILL is defined in [RFC7455].  Base
  Mode for other technologies and future extensions developed in IETF
  will be defined in their corresponding documents.

  It is important to note that no specific enhancements are needed in
  the YANG data model to support Base Mode.  Implementations that
  comply with this document use, by default, the data nodes of the
  applicable technology.  Data nodes of the Base Mode are read-only
  nodes.

4.1.  Maintenance Domain (MD) Configuration

  The container "domains" is the top-level container within the
  "gen-oam" module.  Within the container "domains", a separate list is
  maintained per MD.  The MD list uses the key "md-name-string" for
  indexing.  The "md-name-string" is a leaf and derived from type
  string.  Additional name formats as defined in [IEEE802.1Q], or other
  standards, can be included by association of the "md-name-format"
  with an identity-ref.  The "md-name-format" indicates the format of
  the augmented "md-name".  The "md-name" is presented as choice/case
  construct.  Thus, it is easily augmentable by derivative work.















Kumar, et al.                Standards Track                    [Page 9]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


      module: ietf-connection-oriented-oam
      +--rw domains
         +--rw domain* [technology md-name-string]
            +--rw technology        identityref
            +--rw md-name-string    md-name-string
            +--rw md-name-format?   identityref
            +--rw (md-name)?
            |  +--:(md-name-null)
            |     +--rw md-name-null? empty
            +--rw md-level?           md-level

            Snippet of Data Hierarchy Related to OAM Domains

4.2.  Maintenance Association (MA) Configuration

  Within a given Maintenance Domain, there can be one or more
  Maintenance Associations (MAs).  MAs are represented as a list and
  indexed by the "ma-name-string".  Similar to "md-name" defined
  previously, additional name formats can be added by augmenting the
  name-format "identity-ref" and adding applicable case statements to
  "ma-name".

     module: ietf-connection-oriented-oam
      +--rw domains
         +--rw domain* [technology md-name-string]
            .
            .
            +--rw mas
               +--rw ma* [ma-name-string]
                  +--rw ma-name-string          ma-name-string
                  +--rw ma-name-format?         identityref
                  +--rw (ma-name)?
                  |  +--:(ma-name-null)
                  |     +--rw ma-name-null?     empty

   Snippet of Data Hierarchy Related to Maintenance Associations (MAs)















Kumar, et al.                Standards Track                   [Page 10]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


4.3.  Maintenance End Point (MEP) Configuration

  Within a given Maintenance Association (MA), there can be one or more
  Maintenance End Points (MEPs).  MEPs are represented as a list within
  the data hierarchy and indexed by the key "mep-name".

     module: ietf-connection-oriented-oam
      +--rw domains
         +--rw domain* [technology md-name-string]
            +--rw technology                  identityref
            .
            .
            +--rw mas
               +--rw ma* [ma-name-string]
                  .
                  .
                  +--rw mep* [mep-name]
                  |  +--rw mep-name         mep-name
                  |  +--rw (mep-id)?
                  |  |  +--:(mep-id-int)
                  |  |     +--rw mep-id-int?      int32
                  |  +--rw mep-id-format?   identityref
                  |  +--rw (mep-address)?
                  |  |  +--:(mac-address)
                  |  |  |  +--rw mac-address?     yang:mac-address
                  |  |  +--:(ip-address)
                  |  |     +--rw ip-address?      inet:ip-address
                    .          .
                    .          .
                    .          .

    Snippet of Data Hierarchy Related to Maintenance End Point (MEP)

4.4.  RPC Definitions

  The RPC model facilitates issuing commands to a "server" (in this
  case, to the device that need to execute the OAM command) and
  obtaining a response.  The RPC model defined here abstracts OAM-
  specific commands in a technology-independent manner.

  There are several RPC commands defined for the purpose of OAM.  In
  this section, we present a snippet of the Continuity Check command
  for illustration purposes.  Please refer to Section 4.5 for the
  complete data hierarchy and Section 5 for the YANG module.







Kumar, et al.                Standards Track                   [Page 11]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  module: ietf-connection-oriented-oam
      +--rw domains
            +--rw domain* [technology md-name-string]
            +--rw technology        identityref
      .
      .
  rpcs:
    +---x continuity-check {continuity-check}?
    |  +---w input
    |  |  +---w technology?             identityref
    |  |  +---w md-name-string -> /domains/domain/md-name-string
    |  |  +---w md-level?      -> /domains/domain/md-level
    |  |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string
    |  |  +---w cos-id?                 uint8
    |  |  +---w ttl?                    uint8
    |  |  +---w sub-type?               identityref
    |  |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
    |  |  +---w destination-mep
    |  |  |  +---w (mep-address)?
    |  |  |  |  +--:(mac-address)
    |  |  |  |  |  +---w mac-address?     yang:mac-address
    |  |  |  |  +--:(ip-address)
    |  |  |  |     +---w ip-address?      inet:ip-address
    |  |  |  +---w (mep-id)?
    |  |  |  |  +--:(mep-id-int)
    |  |  |  |     +---w mep-id-int?      int32
    |  |  |  +---w mep-id-format?   identityref
    |  |  +---w count?                  uint32
    |  |  +---w cc-transmit-interval?   time-interval
    |  |  +---w packet-size?            uint32
    |  +--ro output
    |     +--ro (monitor-stats)?
    |        +--:(monitor-null)
    |           +--ro monitor-null?   empty
    +---x continuity-verification {connectivity-verification}?
    |  +---w input
    |  |  +---w md-name-string -> /domains/domain/md-name-string
    |  |  +---w md-level?      -> /domains/domain/md-level
    |  |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string
    |  |  +---w cos-id?            uint8
    |  |  +---w ttl?               uint8
    |  |  +---w sub-type?          identityref
    |  |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
    |  |  +---w destination-mep
    |  |  |  +---w (mep-address)?
    |  |  |  |  +--:(mac-address)
    |  |  |  |  |  +---w mac-address?     yang:mac-address
    |  |  |  |  +--:(ip-address)



Kumar, et al.                Standards Track                   [Page 12]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


    |  |  |  |     +---w ip-address?      inet:ip-address
    |  |  |  +---w (mep-id)?
    |  |  |  |  +--:(mep-id-int)
    |  |  |  |     +---w mep-id-int?      int32
    |  |  |  +---w mep-id-format?   identityref
    |  |  +---w count?             uint32
    |  |  +---w interval?          time-interval
    |  |  +---w packet-size?       uint32
    |  +--ro output
    |     +--ro (monitor-stats)?
    |        +--:(monitor-null)
    |           +--ro monitor-null?   empty
    +---x traceroute {traceroute}?
       +---w input
       |  +---w md-name-string -> /domains/domain/md-name-string
       |  +---w md-level?      -> /domains/domain/md-level
       |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string
       |  +---w cos-id?             uint8
       |  +---w ttl?                uint8
       |  +---w command-sub-type?   identityref
       |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
       |  +---w destination-mep
       |  |  +---w (mep-address)?
       |  |  |  +--:(mac-address)
       |  |  |  |  +---w mac-address?     yang:mac-address
       |  |  |  +--:(ip-address)
       |  |  |     +---w ip-address?      inet:ip-address
       |  |  +---w (mep-id)?
       |  |  |  +--:(mep-id-int)
       |  |  |     +---w mep-id-int?      int32
       |  |  +---w mep-id-format?   identityref
       |  +---w count?              uint32
       |  +---w interval?           time-interval
       +--ro output
          +--ro response* [response-index]
             +--ro response-index     uint8
             +--ro ttl?               uint8
             +--ro destination-mep
             |  +--ro (mep-address)?
             |  |  +--:(mac-address)
             |  |  |  +--ro mac-address?     yang:mac-address
             |  |  +--:(ip-address)
             |  |     +--ro ip-address?      inet:ip-address
             |  +--ro (mep-id)?
             |  |  +--:(mep-id-int)
             |  |     +--ro mep-id-int?      int32
             |  +--ro mep-id-format?   identityref
             +--ro mip {mip}?



Kumar, et al.                Standards Track                   [Page 13]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


             |  +--ro interface?     if:interface-ref
             |  +--ro (mip-address)?
             |     +--:(mac-address)
             |     |  +--ro mac-address?   yang:mac-address
             |     +--:(ip-address)
             |        +--ro ip-address?    inet:ip-address
             +--ro (monitor-stats)?
                +--:(monitor-null)
                   +--ro monitor-null?      empty

     Snippet of Data Hierarchy Related to RPC Call Continuity-Check

4.5.  Notifications

  Notification is sent upon detecting a defect condition and upon
  clearing a defect with a Maintenance Domain Name, MA Name, defect-
  type (the currently active defects), generating-mepid, and defect-
  message to indicate more details.

4.6.  Monitor Statistics

  Grouping for monitoring statistics is to be used by technology-
  specific YANG modules that augment the generic YANG data model to
  provide statistics due to proactive OAM-like Continuity Check
  Messages -- for example, CCM transmit, CCM receive, CCM error, etc.

4.7.  OAM Data Hierarchy

  The complete data hierarchy related to the connection-oriented OAM
  YANG data model is presented below.

module: ietf-connection-oriented-oam
    +--rw domains
       +--rw domain* [technology md-name-string]
          +--rw technology        identityref
          +--rw md-name-string    md-name-string
          +--rw md-name-format?   identityref
          +--rw (md-name)?
          |  +--:(md-name-null)
          |     +--rw md-name-null?     empty
          +--rw md-level?         md-level
          +--rw mas
             +--rw ma* [ma-name-string]
                +--rw ma-name-string    ma-name-string
                +--rw ma-name-format?   identityref
                +--rw (ma-name)?
                |  +--:(ma-name-null)
                |     +--rw ma-name-null?     empty



Kumar, et al.                Standards Track                   [Page 14]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


                +--rw (connectivity-context)?
                |  +--:(context-null)
                |     +--rw context-null?     empty
                +--rw cos-id?           uint8
                +--rw cc-enable?        boolean
                +--rw mep* [mep-name]
                |  +--rw mep-name         mep-name
                |  +--rw (mep-id)?
                |  |  +--:(mep-id-int)
                |  |     +--rw mep-id-int?      int32
                |  +--rw mep-id-format?   identityref
                |  +--rw (mep-address)?
                |  |  +--:(mac-address)
                |  |  |  +--rw mac-address?     yang:mac-address
                |  |  +--:(ip-address)
                |  |     +--rw ip-address?      inet:ip-address
                |  +--rw cos-id?          uint8
                |  +--rw cc-enable?       boolean
                |  +--rw session* [session-cookie]
                |     +--rw session-cookie             uint32
                |     +--rw destination-mep
                |     |  +--rw (mep-id)?
                |     |  |  +--:(mep-id-int)
                |     |  |     +--rw mep-id-int?      int32
                |     |  +--rw mep-id-format?   identityref
                |     +--rw destination-mep-address
                |     |  +--rw (mep-address)?
                |     |     +--:(mac-address)
                |     |     |  +--rw mac-address?   yang:mac-address
                |     |     +--:(ip-address)
                |     |        +--rw ip-address?    inet:ip-address
                |     +--rw cos-id?                    uint8
                +--rw mip* [name] {mip}?
                   +--rw name           string
                   +--rw interface?     if:interface-ref
                   +--rw (mip-address)?
                      +--:(mac-address)
                      |  +--rw mac-address?   yang:mac-address
                      +--:(ip-address)
                         +--rw ip-address?    inet:ip-address

  rpcs:
    +---x continuity-check {continuity-check}?
    |  +---w input
    |  |  +---w technology?             identityref
    |  |  +---w md-name-string -> /domains/domain/md-name-string
    |  |  +---w md-level?      -> /domains/domain/md-level
    |  |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string



Kumar, et al.                Standards Track                   [Page 15]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


    |  |  +---w cos-id?                 uint8
    |  |  +---w ttl?                    uint8
    |  |  +---w sub-type?               identityref
    |  |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
    |  |  +---w destination-mep
    |  |  |  +---w (mep-address)?
    |  |  |  |  +--:(mac-address)
    |  |  |  |  |  +---w mac-address?     yang:mac-address
    |  |  |  |  +--:(ip-address)
    |  |  |  |     +---w ip-address?      inet:ip-address
    |  |  |  +---w (mep-id)?
    |  |  |  |  +--:(mep-id-int)
    |  |  |  |     +---w mep-id-int?      int32
    |  |  |  +---w mep-id-format?   identityref
    |  |  +---w count?                  uint32
    |  |  +---w cc-transmit-interval?   time-interval
    |  |  +---w packet-size?            uint32
    |  +--ro output
    |     +--ro (monitor-stats)?
    |        +--:(monitor-null)
    |           +--ro monitor-null?   empty
    +---x continuity-verification {connectivity-verification}?
    |  +---w input
    |  |  +---w md-name-string -> /domains/domain/md-name-string
    |  |  +---w md-level?      -> /domains/domain/md-level
    |  |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string
    |  |  +---w cos-id?            uint8
    |  |  +---w ttl?               uint8
    |  |  +---w sub-type?          identityref
    |  |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
    |  |  +---w destination-mep
    |  |  |  +---w (mep-address)?
    |  |  |  |  +--:(mac-address)
    |  |  |  |  |  +---w mac-address?     yang:mac-address
    |  |  |  |  +--:(ip-address)
    |  |  |  |     +---w ip-address?      inet:ip-address
    |  |  |  +---w (mep-id)?
    |  |  |  |  +--:(mep-id-int)
    |  |  |  |     +---w mep-id-int?      int32
    |  |  |  +---w mep-id-format?   identityref
    |  |  +---w count?             uint32
    |  |  +---w interval?          time-interval
    |  |  +---w packet-size?       uint32
    |  +--ro output
    |     +--ro (monitor-stats)?
    |        +--:(monitor-null)
    |           +--ro monitor-null?   empty
    +---x traceroute {traceroute}?



Kumar, et al.                Standards Track                   [Page 16]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


       +---w input
       |  +---w md-name-string -> /domains/domain/md-name-string
       |  +---w md-level?      -> /domains/domain/md-level
       |  +---w ma-name-string -> /domains/domain/mas/ma/ma-name-string
       |  +---w cos-id?             uint8
       |  +---w ttl?                uint8
       |  +---w command-sub-type?   identityref
       |  +---w source-mep?    -> /domains/domain/mas/ma/mep/mep-name
       |  +---w destination-mep
       |  |  +---w (mep-address)?
       |  |  |  +--:(mac-address)
       |  |  |  |  +---w mac-address?     yang:mac-address
       |  |  |  +--:(ip-address)
       |  |  |     +---w ip-address?      inet:ip-address
       |  |  +---w (mep-id)?
       |  |  |  +--:(mep-id-int)
       |  |  |     +---w mep-id-int?      int32
       |  |  +---w mep-id-format?   identityref
       |  +---w count?              uint32
       |  +---w interval?           time-interval
       +--ro output
          +--ro response* [response-index]
             +--ro response-index     uint8
             +--ro ttl?               uint8
             +--ro destination-mep
             |  +--ro (mep-address)?
             |  |  +--:(mac-address)
             |  |  |  +--ro mac-address?     yang:mac-address
             |  |  +--:(ip-address)
             |  |     +--ro ip-address?      inet:ip-address
             |  +--ro (mep-id)?
             |  |  +--:(mep-id-int)
             |  |     +--ro mep-id-int?      int32
             |  +--ro mep-id-format?   identityref
             +--ro mip {mip}?
             |  +--ro interface?     if:interface-ref
             |  +--ro (mip-address)?
             |     +--:(mac-address)
             |     |  +--ro mac-address?   yang:mac-address
             |     +--:(ip-address)
             |        +--ro ip-address?    inet:ip-address
             +--ro (monitor-stats)?
                +--:(monitor-null)
                   +--ro monitor-null?      empty







Kumar, et al.                Standards Track                   [Page 17]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  notifications:
    +---n defect-condition-notification
    |  +--ro technology?         identityref
    |  +--ro md-name-string -> /domains/domain/md-name-string
    |  +--ro ma-name-string -> /domains/domain/mas/ma/ma-name-string
    |  +--ro mep-name?      -> /domains/domain/mas/ma/mep/mep-name
    |  +--ro defect-type?        identityref
    |  +--ro generating-mepid
    |  |  +--ro (mep-id)?
    |  |  |  +--:(mep-id-int)
    |  |  |     +--ro mep-id-int?      int32
    |  |  +--ro mep-id-format?   identityref
    |  +--ro (defect)?
    |     +--:(defect-null)
    |     |  +--ro defect-null?        empty
    |     +--:(defect-code)
    |        +--ro defect-code?        int32
    +---n defect-cleared-notification
       +--ro technology?         identityref
       +--ro md-name-string -> /domains/domain/md-name-string
       +--ro ma-name-string -> /domains/domain/mas/ma/ma-name-string
       +--ro mep-name?      -> /domains/domain/mas/ma/mep/mep-name
       +--ro defect-type?        identityref
       +--ro generating-mepid
       |  +--ro (mep-id)?
       |  |  +--:(mep-id-int)
       |  |     +--ro mep-id-int?      int32
       |  +--ro mep-id-format?   identityref
       +--ro (defect)?
          +--:(defect-null)
          |  +--ro defect-null?        empty
          +--:(defect-code)
             +--ro defect-code?        int32

                          Data Hierarchy of OAM
















Kumar, et al.                Standards Track                   [Page 18]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


5.  OAM YANG Module

  This module imports typedefs from [RFC6991] and [RFC8343], and it
  references [RFC6371], [RFC6905], and [RFC7276].

  <CODE BEGINS> file "[email protected]"

module ietf-connection-oriented-oam {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-connection-oriented-oam";
 prefix co-oam;

 import ietf-yang-types {
   prefix yang;
 }
 import ietf-inet-types {
   prefix inet;
 }
 import ietf-interfaces {
   prefix if;
 }

 organization
   "IETF LIME Working Group";
 contact
   "WG Web:    http://datatracker.ietf.org/wg/lime
    WG List:   <mailto:[email protected]>
    Editor:    Deepak Kumar <[email protected]>
    Editor:    Qin Wu <[email protected]>
    Editor:    Michael Wang <[email protected]>";
 description
   "This YANG module defines the generic configuration,
    statistics and RPC for connection-oriented OAM
    to be used within IETF in a protocol-independent manner.
    Functional-level abstraction is independent
    with YANG modeling. It is assumed that each protocol
    maps corresponding abstracts to its native format.
    Each protocol may extend the YANG data model defined
    here to include protocol-specific extensions

    Copyright (c) 2019 IETF Trust and the persons identified as
    authors of the code.  All rights reserved.

    Redistribution and use in source and binary forms, with or
    without modification, is permitted pursuant to, and subject
    to the license terms contained in, the Simplified BSD License
    set forth in Section 4.c of the IETF Trust's Legal Provisions
    Relating to IETF Documents



Kumar, et al.                Standards Track                   [Page 19]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


    (http://trustee.ietf.org/license-info).

    This version of this YANG module is part of RFC 8531; see
    the RFC itself for full legal notices.";

 revision 2019-04-16 {
   description
     "Initial revision.";
   reference
     "RFC 8531: Generic YANG Data Model for Connection-
      Oriented Operations, Administration, and Maintenance (OAM)
      Protocols";
 }

 feature connectivity-verification {
   description
     "This feature indicates that the server supports
      executing a connectivity verification OAM command and
      returning a response.  Servers that do not advertise
      this feature will not support executing a
      connectivity verification command or RPC model for a
      connectivity verification command.";
 }

 feature continuity-check {
   description
     "This feature indicates that the server supports
      executing a Continuity Check OAM command and
      returning a response.  Servers that do not advertise
      this feature will not support executing a
      Continuity Check command or RPC model for a
      Continuity Check command.";
 }

 feature traceroute {
   description
     "This feature indicates that the server supports
      executing a traceroute OAM command and
      returning a response.  Servers that do not advertise
      this feature will not support executing a
      traceroute command or RPC model for a
      traceroute command.";
 }

 feature mip {
   description
     "This feature indicates that the Maintenance
      Intermediate Point (MIP) needs to be explicitly configured";



Kumar, et al.                Standards Track                   [Page 20]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


 }

 identity technology-types {
   description
     "This is the base identity of technology types that are
      TRILL, MPLS-TP, etc.";
 }

 identity command-sub-type {
   description
     "Defines different RPC command subtypes,
      e.g., TRILL OAM as specified in RFC 6905; this is
      optional for most cases.";
   reference
     "RFC 6905: Requirements for OAM in Transparent
      Interconnection of Lots of Links (TRILL)";
 }

 identity on-demand {
   base command-sub-type;
   description
     "On-demand activation indicates that the tool is activated
      manually to detect a specific anomaly.
      An on-demand OAM method requires only transient configuration.";
   reference
     "RFC 7276: An Overview of Operations, Administration, and
      Maintenance (OAM) Tools";
 }

 identity proactive {
   base command-sub-type;
   description
     "Proactive activation indicates that the tool is activated on a
      continual basis, where messages are sent periodically, and errors
      are detected when a certain number of expected messages are not
      received.  A proactive OAM method requires persistent
      configuration.";
   reference
     "RFC 7276: An Overview of Operations, Administration, and
      Maintenance (OAM) Tools";
 }

 identity name-format {
   description
     "This defines the name format, CFM (IEEE 802.1Q) defines varying
      styles of names.  It is expected that name format is an identity
      reference to be extended with new types.";
 }



Kumar, et al.                Standards Track                   [Page 21]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


 identity name-format-null {
   base name-format;
   description
     "Defines name format as null.";
 }

 identity identifier-format {
   description
     "Identifier-format identity can be augmented to define other
      format identifiers used in MEP-ID, etc.";
 }

 identity identifier-format-integer {
   base identifier-format;
   description
     "Defines identifier-format to be integer.";
 }

 identity defect-types {
   description
     "Defines different defect types, e.g.,
      Remote Defect Indication (RDI), loss of continuity.";
 }

 identity rdi {
   base defect-types;
   description
     "The RDI indicates the
      aggregate health of the remote Maintenance End Points (MEPs).";
 }

 identity remote-mep-defect {
   base defect-types;
   description
     "Indicates that one or more of the remote MEPs are
      reporting a failure.";
 }

 identity loss-of-continuity {
   base defect-types;
   description
     "Indicates that there are no proactive Continuity Check (CC)
      OAM packets from the source MEP (and in the case of
      Connectivity Verification, this includes the requirement to have
      the expected unique, technology-dependent source MEP identifier)
      received within the interval.";
   reference
     "RFC 6371: Operations, Administration, and Maintenance



Kumar, et al.                Standards Track                   [Page 22]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


      Framework for MPLS-Based Transport Networks";
 }

 identity cv-defect {
   base defect-types;
   description
     "This function should support monitoring between the MEPs
      and, in addition, between a MEP and MIP.  When performing
      Connectivity Verification, the Continuity Check and
      Connectivity Verification (CC-V) messages need to include
      unique identification of the MEG that is being monitored and
      the MEP that originated the message.";
   reference
     "RFC 6371: Operations, Administration, and Maintenance
      Framework for MPLS-Based Transport Networks";
 }

 identity invalid-oam-defect {
   base defect-types;
   description
     "Indicates that one or more invalid OAM messages have been
      received and that 3.5 times that OAM message transmission
      interval has not yet expired.";
 }

 identity cross-connect-defect {
   base defect-types;
   description
     "Indicates that one or more cross-connect defect
      (for example, a service ID does not match the VLAN)
      messages have been received and that 3.5 times that OAM message
      transmission interval has not yet expired.";
 }

 typedef mep-name {
   type string;
   description
     "Generic administrative name for a MEP.";
 }

 typedef time-interval {
   type decimal64 {
     fraction-digits 2;
   }
   units "milliseconds";
   description
     "Time interval between packets in milliseconds.
      Time interval should not be less than 0.



Kumar, et al.                Standards Track                   [Page 23]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


      0 means no packets are sent.";
 }

 typedef md-name-string {
   type string;
   description
     "Generic administrative name for Maintenance Domain (MD).";
 }

 typedef ma-name-string {
   type string;
   description
     "Generic administrative name for a
      Maintenance Association (MA).";
 }

 typedef oam-counter32 {
   type yang:zero-based-counter32;
   description
     "Define 32-bit counter for OAM.";
 }

 typedef md-level {
   type uint32 {
     range "0..255";
   }
   description
     "Maintenance Domain Level.  The level may be restricted in
      certain protocols (e.g., protocol in layer 0 to layer 7).";
 }

 grouping maintenance-domain-reference {
   description
     "This grouping uniquely identifies a Maintenance Domain.";
   leaf maintenance-domain {
     type leafref {
       path "/co-oam:domains/co-oam:domain/co-oam:md-name-string";
     }
     description
       "A reference to a specific Maintenance Domain.";
   }
 }

 grouping maintenance-association-reference {
   description
     "This grouping uniquely identifies a
      Maintenance Association.  It consists
      of a maintenance-domain-reference and



Kumar, et al.                Standards Track                   [Page 24]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


      a maintenance-association leafref.";
   uses maintenance-domain-reference;
   leaf maintenance-association {
     type leafref {
       path "/co-oam:domains/co-oam:domain[co-oam:md-name-string "
          + "= current()/../maintenance-domain]/co-oam:mas"
          + "/co-oam:ma/co-oam:ma-name-string";
     }
     description
       "A reference to a specific Maintenance Association.";
   }
 }

 grouping maintenance-association-end-point-reference {
   description
     "This grouping uniquely identifies
      a Maintenance Association.  It consists
      of a maintenance-association-reference and
      a maintenance-association-end-point leafref.";
   uses maintenance-association-reference;
   leaf maintenance-association-end-point {
     type leafref {
       path "/co-oam:domains/co-oam:domain[co-oam:md-name-string "
          + "= current()/../maintenance-domain]/co-oam:mas"
          + "/co-oam:ma[co-oam:ma-name-string = "
          + "current()/../maintenance-association]"
          + "/co-oam:mep/co-oam:mep-name";
     }
     description
       "A reference to a specific Maintenance
        association End Point.";
   }
 }

 grouping time-to-live {
   leaf ttl {
     type uint8;
     description
       "Time to Live.";
   }
   description
     "Time to Live grouping.";
 }

 grouping defect-message {
   choice defect {
     case defect-null {
       description



Kumar, et al.                Standards Track                   [Page 25]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


         "This is a placeholder when no defect status is needed.";
       leaf defect-null {
         type empty;
         description
           "There is no defect to be defined; it will be defined in
            a technology-specific model.";
       }
     }
     case defect-code {
       description
         "This is a placeholder to display defect code.";
       leaf defect-code {
         type int32;
         description
           "Defect code is integer value specific to a technology.";
       }
     }
     description
       "Defect Message choices.";
   }
   description
     "Defect Message.";
 }

 grouping mep-address {
   choice mep-address {
     default "ip-address";
     case mac-address {
       leaf mac-address {
         type yang:mac-address;
         description
           "MAC Address.";
       }
       description
         "MAC Address based MEP Addressing.";
     }
     case ip-address {
       leaf ip-address {
         type inet:ip-address;
         description
           "IP Address.";
       }
       description
         "IP Address based MEP Addressing.";
     }
     description
       "MEP Addressing.";
   }



Kumar, et al.                Standards Track                   [Page 26]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


   description
     "Grouping for MEP Address";
 }

 grouping mip-address {
   choice mip-address {
     default "ip-address";
     case mac-address {
       leaf mac-address {
         type yang:mac-address;
         description
           "MAC Address of Maintenance Intermediate Point";
       }
       description
         "MAC Address based MIP Addressing.";
     }
     case ip-address {
       leaf ip-address {
         type inet:ip-address;
         description
           "IP Address.";
       }
       description
         "IP Address based MIP Addressing.";
     }
     description
       "MIP Addressing.";
   }
   description
     "MIP Address.";
 }

 grouping maintenance-domain-id {
   description
     "Grouping containing leaves sufficient to identify
      a Maintenance Domain.";
   leaf technology {
     type identityref {
       base technology-types;
     }
     mandatory true;
     description
       "Defines the technology.";
   }
   leaf md-name-string {
     type md-name-string;
     mandatory true;
     description



Kumar, et al.                Standards Track                   [Page 27]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


       "Defines the generic administrative Maintenance Domain name.";
   }
 }

 grouping md-name {
   leaf md-name-format {
     type identityref {
       base name-format;
     }
     description
       "Maintenance Domain Name format.";
   }
   choice md-name {
     case md-name-null {
       leaf md-name-null {
         when "derived-from-or-self(../md-name-format,"
            + "'name-format-null')" {
           description
             "MD name format is equal to null format.";
         }
         type empty;
         description
           "MD name null.";
       }
     }
     description
       "MD name.";
   }
   description
     "MD name.";
 }

 grouping ma-identifier {
   description
     "Grouping containing leaves sufficient to identify an MA.";
   leaf ma-name-string {
     type ma-name-string;
     description
       "MA name string.";
   }
 }

 grouping ma-name {
   description
     "MA name.";
   leaf ma-name-format {
     type identityref {
       base name-format;



Kumar, et al.                Standards Track                   [Page 28]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


     }
     description
       "MA name format.";
   }
   choice ma-name {
     case ma-name-null {
       leaf ma-name-null {
         when "derived-from-or-self(../ma-name-format,"
            + "'name-format-null')" {
           description
             "MA.";
         }
         type empty;
         description
           "Empty";
       }
     }
     description
       "MA name.";
   }
 }

 grouping mep-id {
   choice mep-id {
     default "mep-id-int";
     case mep-id-int {
       leaf mep-id-int {
         type int32;
         description
           "MEP ID
            in integer format.";
       }
     }
     description
       "MEP ID.";
   }
   leaf mep-id-format {
     type identityref {
       base identifier-format;
     }
     description
       "MEP ID format.";
   }
   description
     "MEP ID.";
 }

 grouping mep {



Kumar, et al.                Standards Track                   [Page 29]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


   description
     "Defines elements within the MEP.";
   leaf mep-name {
     type mep-name;
     mandatory true;
     description
       "Generic administrative name of the
        MEP.";
   }
   uses mep-id;
   uses mep-address;
 }

 grouping monitor-stats {
   description
     "Grouping for monitoring statistics; this will be augmented
      by others who use this component.";
   choice monitor-stats {
     default "monitor-null";
     case monitor-null {
       description
         "This is a placeholder when
          no monitoring statistics are needed.";
       leaf monitor-null {
         type empty;
         description
           "There are no monitoring statistics to be defined.";
       }
     }
     description
       "Define the monitor stats.";
   }
 }

 grouping connectivity-context {
   description
     "Grouping defining the connectivity context for an MA,
      for example, an LSP for MPLS-TP.  This will be
      augmented by each protocol that uses this component.";
   choice connectivity-context {
     default "context-null";
     case context-null {
       description
         "This is a placeholder when no context is needed.";
       leaf context-null {
         type empty;
         description
           "There is no context to be defined.";



Kumar, et al.                Standards Track                   [Page 30]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


       }
     }
     description
       "Connectivity context.";
   }
 }

 grouping cos {
   description
     "Grouping for Priority used in transmitted packets,
      for example, in the CoS field in MPLS-TP.";
   leaf cos-id {
     type uint8;
     description
       "Class of Service (CoS) ID; this value is used to indicate
        Class of Service information .";
   }
 }

 grouping mip-grouping {
   uses mip-address;
   description
     "Grouping for MIP
      configuration.";
 }

 container domains {
   description
     "Contains configuration related data.  Within the
      container, there is a list of fault domains.  Each
      domain has a list of MAs.";
   list domain {
     key "technology md-name-string";
     description
       "Define a list of Domains within the
        ietf-connection-oriented-oam module.";
     uses maintenance-domain-id;
     uses md-name;
     leaf md-level {
       type md-level;
       description
         "Define the MD level.";
     }
     container mas {
       description
         "Contains configuration-related data.  Within the
          container, there is a list of MAs.  Each MA has a
          list of MEPs.";



Kumar, et al.                Standards Track                   [Page 31]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


       list ma {
         key "ma-name-string";
         uses ma-identifier;
         uses ma-name;
         uses connectivity-context;
         uses cos {
           description
             "Default class of service for this MA;
              it may be overridden for particular MEPs,
              sessions, or operations.";
         }
         leaf cc-enable {
           type boolean;
           description
             "Indicate whether the CC is enabled.";
         }
         list mep {
           key "mep-name";
           description
             "Contain a list of MEPs.";
           uses mep;
           uses cos;
           leaf cc-enable {
             type boolean;
             description
               "Indicate whether the CC is enabled.";
           }
           list session {
             key "session-cookie";
             description
               "Monitoring session to/from a particular remote MEP.
                Depending on the protocol, this could represent
                CC messages received from a single remote MEP (if the
                protocol uses multicast CCs) or a target to which
                unicast echo request CCs are sent and from which
                responses are received (if the protocol uses a
                unicast request/response mechanism).";
             leaf session-cookie {
               type uint32;
               description
                 "Cookie to identify different sessions, when there
                  are multiple remote MEPs or multiple sessions to
                  the same remote MEP.";
             }
             container destination-mep {
               uses mep-id;
               description
                 "Destination MEP.";



Kumar, et al.                Standards Track                   [Page 32]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


             }
             container destination-mep-address {
               uses mep-address;
               description
                 "Destination MEP Address.";
             }
             uses cos;
           }
         }
         list mip {
           if-feature "mip";
           key "name";
           leaf name {
             type string;
             description
               "Identifier of Maintenance Intermediate Point";
           }
           leaf interface {
             type if:interface-ref;
             description
               "Interface.";
           }
           uses mip-grouping;
           description
             "List for MIP.";
         }
         description
           "Maintenance Association list.";
       }
     }
   }
 }

 notification defect-condition-notification {
   description
     "When the defect condition is met, this notification is sent.";
   leaf technology {
     type identityref {
       base technology-types;
     }
     description
       "The technology.";
   }
   leaf md-name-string {
     type leafref {
       path "/domains/domain/md-name-string";
     }
     mandatory true;



Kumar, et al.                Standards Track                   [Page 33]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


     description
       "Indicate which MD the defect belongs to.";
   }
   leaf ma-name-string {
     type leafref {
       path "/domains/domain/mas/ma/ma-name-string";
     }
     mandatory true;
     description
       "Indicate which MA the defect is associated with.";
   }
   leaf mep-name {
     type leafref {
       path "/domains/domain/mas/ma/mep/mep-name";
     }
     description
       "Indicate which MEP is seeing the defect.";
   }
   leaf defect-type {
     type identityref {
       base defect-types;
     }
     description
       "The currently active defects on the specific MEP.";
   }
   container generating-mepid {
     uses mep-id;
     description
       "Indicate who is generating the defect (if known). If
        unknown, set it to 0.";
   }
   uses defect-message {
     description
       "Defect message to provide more details.";
   }
 }

 notification defect-cleared-notification {
   description
     "When the defect is cleared, this notification is sent.";
   leaf technology {
     type identityref {
       base technology-types;
     }
     description
       "The technology.";
   }
   leaf md-name-string {



Kumar, et al.                Standards Track                   [Page 34]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


     type leafref {
       path "/domains/domain/md-name-string";
     }
     mandatory true;
     description
       "Indicate which MD the defect belongs to";
   }
   leaf ma-name-string {
     type leafref {
       path "/domains/domain/mas/ma/ma-name-string";
     }
     mandatory true;
     description
       "Indicate which MA the defect is associated with.";
   }
   leaf mep-name {
     type leafref {
       path "/domains/domain/mas/ma/mep/mep-name";
     }
     description
       "Indicate which MEP is seeing the defect.";
   }
   leaf defect-type {
     type identityref {
       base defect-types;
     }
     description
       "The currently active defects on the specific MEP.";
   }
   container generating-mepid {
     uses mep-id;
     description
       "Indicate who is generating the defect (if known). If
        unknown, set it to 0.";
   }
   uses defect-message {
     description
       "Defect message to provide more details.";
   }
 }

 rpc continuity-check {
   if-feature "continuity-check";
   description
     "Generates Continuity Check as per Table 4 of RFC 7276.";
   input {
     leaf technology {
       type identityref {



Kumar, et al.                Standards Track                   [Page 35]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


         base technology-types;
       }
       description
         "The technology.";
     }
     leaf md-name-string {
       type leafref {
         path "/domains/domain/md-name-string";
       }
       mandatory true;
       description
         "Indicate which MD the defect belongs to.";
     }
     leaf md-level {
       type leafref {
         path "/domains/domain/md-level";
       }
       description
         "The Maintenance Domain Level.";
     }
     leaf ma-name-string {
       type leafref {
         path "/domains/domain/mas/ma/ma-name-string";
       }
       mandatory true;
       description
         "Indicate which MA the defect is associated with.";
     }
     uses cos;
     uses time-to-live;
     leaf sub-type {
       type identityref {
         base command-sub-type;
       }
       description
         "Defines different command types.";
     }
     leaf source-mep {
       type leafref {
         path "/domains/domain/mas/ma/mep/mep-name";
       }
       description
         "Source MEP.";
     }
     container destination-mep {
       uses mep-address;
       uses mep-id {
         description



Kumar, et al.                Standards Track                   [Page 36]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


           "Only applicable if the destination is a MEP.";
       }
       description
         "Destination MEP.";
     }
     leaf count {
       type uint32;
       default "3";
       description
         "Number of continuity-check messages to be sent.";
     }
     leaf cc-transmit-interval {
       type time-interval;
       description
         "Time interval between echo requests.";
     }
     leaf packet-size {
       type uint32 {
         range "64..10000";
       }
       description
         "Size of continuity-check packets, in octets.";
     }
   }
   output {
     uses monitor-stats {
       description
         "Stats of Continuity Check.";
     }
   }
 }

 rpc continuity-verification {
   if-feature "connectivity-verification";
   description
     "Generates Connectivity Verification as per Table 4 in RFC 7276.";
   input {
     leaf md-name-string {
       type leafref {
         path "/domains/domain/md-name-string";
       }
       mandatory true;
       description
         "Indicate which MD the defect belongs to.";
     }
     leaf md-level {
       type leafref {
         path "/domains/domain/md-level";



Kumar, et al.                Standards Track                   [Page 37]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


       }
       description
         "The Maintenance Domain Level.";
     }
     leaf ma-name-string {
       type leafref {
         path "/domains/domain/mas/ma/ma-name-string";
       }
       mandatory true;
       description
         "Indicate which MA the defect is associated with.";
     }
     uses cos;
     uses time-to-live;
     leaf sub-type {
       type identityref {
         base command-sub-type;
       }
       description
         "Defines different command types.";
     }
     leaf source-mep {
       type leafref {
         path "/domains/domain/mas/ma/mep/mep-name";
       }
       description
         "Source MEP.";
     }
     container destination-mep {
       uses mep-address;
       uses mep-id {
         description
           "Only applicable if the destination is a MEP.";
       }
       description
         "Destination MEP.";
     }
     leaf count {
       type uint32;
       default "3";
       description
         "Number of continuity-verification messages to be sent.";
     }
     leaf interval {
       type time-interval;
       description
         "Time interval between echo requests.";
     }



Kumar, et al.                Standards Track                   [Page 38]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


     leaf packet-size {
       type uint32 {
         range "64..10000";
       }
       description
         "Size of continuity-verification packets, in octets.";
     }
   }
   output {
     uses monitor-stats {
       description
         "Stats of Continuity Check.";
     }
   }
 }

 rpc traceroute {
   if-feature "traceroute";
   description
     "Generates Traceroute or Path Trace and returns response.
      References RFC 7276 for common Toolset name -- for
      MPLS-TP OAM, it's Route Tracing, and for TRILL OAM, it's
      Path Tracing tool.  Starts with TTL of one and increments
      by one at each hop until the destination is reached or TTL
      reaches max value.";
   input {
     leaf md-name-string {
       type leafref {
         path "/domains/domain/md-name-string";
       }
       mandatory true;
       description
         "Indicate which MD the defect belongs to.";
     }
     leaf md-level {
       type leafref {
         path "/domains/domain/md-level";
       }
       description
         "The Maintenance Domain Level.";
     }
     leaf ma-name-string {
       type leafref {
         path "/domains/domain/mas/ma/ma-name-string";
       }
       mandatory true;
       description
         "Indicate which MA the defect is associated with.";



Kumar, et al.                Standards Track                   [Page 39]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


     }
     uses cos;
     uses time-to-live;
     leaf command-sub-type {
       type identityref {
         base command-sub-type;
       }
       description
         "Defines different command types.";
     }
     leaf source-mep {
       type leafref {
         path "/domains/domain/mas/ma/mep/mep-name";
       }
       description
         "Source MEP.";
     }
     container destination-mep {
       uses mep-address;
       uses mep-id {
         description
           "Only applicable if the destination is a MEP.";
       }
       description
         "Destination MEP.";
     }
     leaf count {
       type uint32;
       default "1";
       description
         "Number of traceroute probes to send.  In protocols where a
          separate message is sent at each TTL, this is the number
          of packets to be sent at each TTL.";
     }
     leaf interval {
       type time-interval;
       description
         "Time interval between echo requests.";
     }
   }
   output {
     list response {
       key "response-index";
       leaf response-index {
         type uint8;
         description
           "Arbitrary index for the response.  In protocols that
            guarantee there is only a single response at each TTL,



Kumar, et al.                Standards Track                   [Page 40]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


            the TTL can be used as the response index.";
       }
       uses time-to-live;
       container destination-mep {
         description
           "MEP from which the response has been received";
         uses mep-address;
         uses mep-id {
           description
             "Only applicable if the destination is a MEP.";
         }
       }
       container mip {
         if-feature "mip";
         leaf interface {
           type if:interface-ref;
           description
             "MIP interface.";
         }
         uses mip-address;
         description
           "MIP responding with traceroute";
       }
       uses monitor-stats {
         description
           "Stats of traceroute.";
       }
       description
         "List of responses.";
     }
   }
 }
}


  <CODE ENDS>















Kumar, et al.                Standards Track                   [Page 41]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


6.  Base Mode

  The Base Mode ("default mode" described in Section 4) defines the
  default configuration that MUST be present in the devices that comply
  with this document.  Base Mode allows users to have a "zero-touch"
  experience.  Several parameters require technology-specific
  definition.

6.1.  MEP Address

  In the Base Mode of operation, the MEP Address is by default the IP
  address of the interface on which the MEP is located.

6.2.  MEP ID for Base Mode

  In the Base Mode of operation, each device creates a single MEP
  associated with a virtual OAM port with no physical layer (NULL PHY).
  The MEP-ID associated with this MEP is zero (0).  The choice of
  MEP-ID of zero is explained below.

  MEP-ID is a 2-octet field by default.  It is never used on the wire
  except when using CCM.  It is important to have a method that can
  derive the MEP-ID of Base Mode in an automatic manner with no user
  intervention.  The IP address cannot be directly used for this
  purpose, as the MEP-ID is a much smaller field.  For the Base Mode of
  operation, MEP-ID is set to zero by default.

  The CCM packet uses the MEP-ID in the payload.  CCM MUST NOT be used
  in the Base Mode.  Hence, CCM MUST be disabled on the Maintenance
  Association of the Base Mode.

  If CCM is required, users MUST configure a separate Maintenance
  Association and assign unique values for the corresponding MEP IDs.

  CFM [IEEE802.1Q] defines MEP-ID as an unsigned integer in the range 1
  to 8191.  In this document, we propose extending the range to 0 to
  65535.  Value 0 is reserved for the MEP-ID in the Base Mode operation
  and MUST NOT be used for other purposes.

6.3.  Maintenance Association

  The ID of the Maintenance Association (MA-ID) [IEEE802.1Q] has a
  flexible format and includes two parts: Maintenance Domain Name and
  Short MA name.  In the Base Mode of operation, the value of the
  Maintenance Domain Name must be the character string
  "GenericBaseMode" (excluding the quotes).  In the Base Mode





Kumar, et al.                Standards Track                   [Page 42]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  operation, the Short MA Name format is set to a 2-octet integer
  format (value 3 in Short MA Format field [IEEE802.1Q]) and the Short
  MA name is set to 65532 (0xFFFC).

7.  Connection-Oriented OAM YANG Data Model Applicability

  The "ietf-connection-oriented-oam" module defined in this document
  provides a technology-independent abstraction of key OAM constructs
  for connection-oriented protocols.  This module can be further
  extended to include technology-specific details, e.g., adding new
  data nodes with technology-specific functions and parameters into
  proper anchor points of the base model, so as to develop a
  technology-specific connection-oriented OAM model.

  This section demonstrates the usability of the connection-oriented
  YANG OAM data model to various connection-oriented OAM technologies,
  e.g., TRILL and MPLS-TP.  Note that, in this section, we only present
  several snippets of technology-specific model extensions for
  illustrative purposes.  The complete model extensions should be
  worked on in respective protocol working groups.

7.1.  Generic YANG Data Model Extension for TRILL OAM

  The TRILL OAM YANG module [TRILL-YANG-OAM] is augmenting the
  connection-oriented OAM module for both configuration and RPC
  commands.

  In addition,the TRILL OAM YANG module also requires the base TRILL
  module ([TRILL-YANG]) to be supported, as there is a strong
  relationship between those modules.

  The configuration extensions for connection-oriented OAM include the
  MD configuration extension, technology type extension, MA
  configuration extension, Connectivity-Context extension, MEP
  Configuration extension, and ECMP extension.  In the RPC extension,
  the continuity-check and path-discovery RPC are extended with TRILL-
  specific parameters.

7.1.1.  MD Configuration Extension

  MD level configuration parameters are management information that can
  be inherited in the TRILL OAM model and set by the connection-
  oriented base model as default values.  For example, domain name can
  be set to area-ID in the TRILL OAM case.  In addition, at the
  Maintenance Domain Level (i.e., at root level), the domain data node
  can be augmented with technology type.





Kumar, et al.                Standards Track                   [Page 43]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  Note that MD level configuration parameters provide context
  information for the management system to correlate faults, defects,
  and network failures with location information; this helps quickly
  identify root causes of network failures.

7.1.1.1.  Technology Type Extension

  No TRILL technology type has been defined in the connection-oriented
  base model.  Therefore, a technology type extension is required in
  the TRILL OAM model.  The technology type "trill" is defined as an
  identity that augments the base "technology-types" defined in the
  connection-oriented base model:

     identity trill{
      base co-oam:technology-types;
      description
       "trill type";
     }

7.1.2.  MA Configuration Extension

  MA level configuration parameters are management information that can
  be inherited in the TRILL OAM model and set by the connection-
  oriented base model as default values.  In addition, at the
  Maintenance Association (MA) level (i.e., at the second level), the
  MA data node can be augmented with a connectivity-context extension.

  Note that MA level configuration parameters provide context
  information for the management system to correlate faults, defects,
  and network failures with location information; this helps quickly
  identify root causes of network failures.

7.1.2.1.  Connectivity-Context Extension

  In TRILL OAM, one example of connectivity-context is either a 12-bit
  VLAN ID or a 24-bit Fine-Grained Label.  The connection-oriented base
  model defines a placeholder for context-id.  This allows other
  technologies to easily augment that to include technology-specific
  extensions.  The snippet below depicts an example of augmenting
  connectivity-context to include either a VLAN ID or Fine-Grained
  Label.

     augment /co-oam:domains/co-oam:domain
  /co-oam:mas/co-oam:ma/co-oam:connectivity-context:
           +--:(connectivity-context-vlan)
           |  +--rw connectivity-context-vlan?   vlan
           +--:(connectivity-context-fgl)
              +--rw connectivity-context-fgl?    fgl



Kumar, et al.                Standards Track                   [Page 44]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


7.1.3.  MEP Configuration Extension

  The MEP configuration definition in the connection-oriented base
  model already supports configuring the interface of MEP with either a
  MAC address or IP address.  In addition, the MEP address can be
  represented using a 2-octet RBridge Nickname in TRILL OAM.  Hence,
  the TRILL OAM model augments the MEP configuration in the base model
  to add a nickname case to the MEP address choice node as follows:

  augment /co-oam:domains/co-oam:domain
  /co-oam:mas/co-oam:ma/co-oam:mep/co-oam:mep-address:
           +--:( mep-address-trill)
           |  +--rw mep-address-trill?  tril-rb-nickname

  In addition, at the Maintenance association End Point (MEP) level
  (i.e., at the third level), the MEP data node can be augmented with
  an ECMP extension.

7.1.3.1.  ECMP Extension

  Since TRILL supports ECMP path selection, flow-entropy in TRILL is
  defined as a 96-octet field in the Layer-Independent OAM Management
  in the Multi-Layer Environment (LIME) model extension for TRILL OAM.
  The snippet below illustrates its extension.

     augment /co-oam:domains/co-oam:domain
  /co-oam:mas/co-oam:ma/co-oam:mep:
              +--rw flow-entropy-trill?   flow-entropy-trill
     augment /co-oam:domains/co-oam:domain
  /co-oam:mas/co-oam:ma/co-oam:mep/co-oam:session:
              +--rw flow-entropy-trill?   flow-entropy-trill




















Kumar, et al.                Standards Track                   [Page 45]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


7.1.4.  RPC Extension

  In the TRILL OAM YANG data model, the continuity-check and path-
  discovery RPC commands are extended with TRILL-specific requirements.
  The snippet below depicts an example of the TRILL OAM RPC extension.

     augment /co-oam:continuity-check/co-oam:input:
           +--ro (out-of-band)?
           |  +--:(ipv4-address)
           |  |  +--ro ipv4-address?      inet:ipv4-address
           |  +--:(ipv6-address)
           |  |  +--ro ipv6-address?      inet:ipv6-address
           |  +--:(trill-nickname)
           |     +--ro trill-nickname?    tril-rb-nickname
           +--ro diagnostic-vlan?   boolean
     augment /co-oam:continuity-check/co-oam:input:
              +--ro flow-entropy-trill?   flow-entropy-trill
     augment /co-oam:continuity-check/co-oam:output:
           +--ro upstream-rbridge?   tril-rb-nickname
           +--ro next-hop-rbridge*   tril-rb-nickname
     augment /co-oam:path-discovery/co-oam:input:
           +--ro (out-of-band)?
           |  +--:(ipv4-address)
           |  |  +--ro ipv4-address?      inet:ipv4-address
           |  +--:(ipv6-address)
           |  |  +--ro ipv6-address?      inet:ipv6-address
           |  +--:(trill-nickname)
           |     +--ro trill-nickname?    tril-rb-nickname
           +--ro diagnostic-vlan?   boolean
     augment /co-oam:path-discovery/co-oam:input:
              +--ro flow-entropy-trill?   flow-entropy-trill
     augment /co-oam:path-discovery/co-oam:output/co-oam:response:
           +--ro upstream-rbridge?   tril-rb-nickname
           +--ro next-hop-rbridge*   tril-rb-nickname

7.2.  Generic YANG Data Model Extension for MPLS-TP OAM

  The MPLS-TP OAM YANG module can augment the connection-oriented OAM
  module with some technology-specific details.  [MPLS-TP-OAM-YANG]
  presents the YANG data model for MPLS-TP OAM.

  The configuration extensions for connection-oriented OAM include the
  MD configuration extension, Technology type extension, Technology
  Subtype extension, MA configuration extension, and MEP Configuration
  extension.






Kumar, et al.                Standards Track                   [Page 46]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


7.2.1.  MD Configuration Extension

  MD level configuration parameters are management information that can
  be inherited in the MPLS-TP OAM model and set by the connection-
  oriented OAM base model as default values.  For example, domain name
  can be set to area-ID or the provider's Autonomous System Number
  (ASN) [RFC6370] in the MPLS-TP OAM case.  In addition, at the
  Maintenance Domain Level (i.e., at root level), the domain data node
  can be augmented with technology type and technology subtype.

  Note that MD level configuration parameters provide context
  information for the management system to correlate faults, defects,
  and network failures with location information; this helps quickly
  identify root causes of network failures

7.2.1.1.  Technology Type Extension

  No MPLS-TP technology type has been defined in the connection-
  oriented base model, hence it is required in the MPLS-TP OAM model.
  The technology type "mpls-tp" is defined as an identity that augments
  the base "technology-types" defined in the connection-oriented base
  model:

      identity mpls-tp{
            base co-oam:technology-types;
            description
             "mpls-tp type";
           }

7.2.1.2.  Technology Subtype Extension

  In MPLS-TP, since different encapsulation types such as IP/UDP
  encapsulation and PW-ACH encapsulation can be employed, the
  "technology-sub-type" data node is defined and added into the MPLS-TP
  OAM model to further identify the encapsulation types within the
  MPLS-TP OAM model.  Based on it, we also define a technology subtype
  for IP/UDP encapsulation and PW-ACH encapsulation.  Other
  encapsulation types can be defined in the same way.  The snippet
  below depicts an example of several encapsulation types.












Kumar, et al.                Standards Track                   [Page 47]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  identity technology-sub-type {
        description
        "Certain implementations can have different
         encapsulation types such as IP/UDP, PW-ACH, and so on.
         Instead of defining separate models for each
         encapsulation, we define a technology subtype to
         further identify different encapsulations.
         Technology subtype is associated at the MA level."; }

             identity technology-sub-type-udp {
               base technology-sub-type;
               description
                 "Technology subtype is IP/UDP encapsulation.";
             }

             identity technology-sub-type-ach {
               base technology-sub-type;
               description
                 "Technology subtype is PW-ACH encapsulation.";
             }
             }

        augment "/co-oam:domains/co-oam:domain"
              + "/co-oam:mas/co-oam:ma" {
               leaf technology-sub-type {
                 type identityref {
                   base technology-sub-type;
                 }
               }
             }

7.2.2.  MA Configuration Extension

  MA level configuration parameters are management information that can
  be inherited in the MPLS-TP OAM model and set by the connection-
  oriented OAM base model as default values.  Examples of MA Name are
  MPLS-TP LSP MEG_ID, MEG Section ID, or MEG PW ID [RFC6370].

  Note that MA level configuration parameters provide context
  information for the management system to correlate faults, defects,
  and network failures with location information; this helps quickly
  identify root causes of network failures.

7.2.3.  MEP Configuration Extension

  In MPLS-TP, MEP-ID is either a variable-length label value in case of
  G-ACH encapsulation or a 2-octet unsigned integer value in case of
  IP/UDP encapsulation.  One example of MEP-ID is MPLS-TP LSP_MEP_ID



Kumar, et al.                Standards Track                   [Page 48]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  [RFC6370].  In the connection-oriented base model, MEP-ID is defined
  as a choice/case node that can support an int32 value, and the same
  definition can be used for MPLS-TP with no further modification.  In
  addition, at the Maintenance association End Point (MEP) level (i.e.,
  at the third level), the MEP data node can be augmented with a
  session extension and interface extension.

8.  Security Considerations

  The YANG module specified in this document defines a schema for data
  that is designed to be accessed via network management protocols such
  as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
  is the secure transport layer, and the mandatory-to-implement secure
  transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The Network Configuration Access Control Model [RFC8341] provides the
  means to restrict access for particular NETCONF or RESTCONF users to
  a preconfigured subset of all available NETCONF or RESTCONF protocol
  operations and content.

  There are a number of data nodes defined in the YANG module that are
  writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive in some
  network environments.  Write operations (e.g., edit-config) to these
  data nodes without proper protection can have a negative effect on
  network operations.  These are the subtrees and data nodes and their
  sensitivity/vulnerability:

  /co-oam:domains/co-oam:domain/

  /co-oam:domains/co-oam:domain/co-oam:mas/co-oam:ma

  /co-oam:domains/co-oam:domain/co-oam:mas/co-oam:ma/co-oam:mep

  /co-oam:domains/co-oam:domain/co-oam:mas/co-oam:ma/co-oam:mep/
  co-oam:session

  Unauthorized access to any of these lists can adversely affect OAM
  management system handling of end-to-end OAM and coordination of OAM
  within underlying network layers.  This may lead to inconsistent
  configuration, reporting, and presentation for the OAM mechanisms
  used to manage the network.







Kumar, et al.                Standards Track                   [Page 49]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


9.  IANA Considerations

  This document registers a URI in the "IETF XML Registry" [RFC3688].
  The following registration has been made:

    URI: urn:ietf:params:xml:ns:yang:ietf-connection-oriented-oam
    Registrant Contact: The IESG.
    XML: N/A; the requested URI is an XML namespace.

  This document registers a YANG module in the "YANG Module Names"
  registry [RFC6020].

 name:         ietf-connection-oriented-oam
 namespace:    urn:ietf:params:xml:ns:yang:ietf-connection-oriented-oam
 prefix:       co-oam
 reference:    RFC 8531

10.  References

10.1.  Normative References

  [IEEE802.1Q]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks-Bridges and Bridged Networks", IEEE Std 802.1Q.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.




Kumar, et al.                Standards Track                   [Page 50]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  [RFC6370]  Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
             Profile (MPLS-TP) Identifiers", RFC 6370,
             DOI 10.17487/RFC6370, September 2011,
             <https://www.rfc-editor.org/info/rfc6370>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
             Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
             <https://www.rfc-editor.org/info/rfc8343>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

10.2.  Informative References

  [G.800]    "Unified functional architecture of transport networks",
             ITU-T Recommendation G.800, 2016.

  [G.8013]   "OAM functions and mechanisms for Ethernet based
             networks", ITU-T Recommendation G.8013/Y.1731, 2013.

  [MEF-17]   MEF Forum, "Service OAM Requirements & Framework - Phase
             1", MEF 17, April 2007.

  [MPLS-TP-OAM-YANG]
             Zhang, L., Zheng, L., Aldrin, S., and G. Mirsky, "YANG
             Data Model for MPLS-TP Operations, Administration, and
             Maintenance (OAM)", Work in Progress, draft-zhang-mpls-tp-
             yang-oam-05, October 2017.





Kumar, et al.                Standards Track                   [Page 51]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  [RFC6291]  Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
             D., and S. Mansfield, "Guidelines for the Use of the "OAM"
             Acronym in the IETF", BCP 161, RFC 6291,
             DOI 10.17487/RFC6291, June 2011,
             <https://www.rfc-editor.org/info/rfc6291>.

  [RFC6325]  Perlman, R., Eastlake 3rd, D., Dutt, D., Gai, S., and A.
             Ghanwani, "Routing Bridges (RBridges): Base Protocol
             Specification", RFC 6325, DOI 10.17487/RFC6325, July 2011,
             <https://www.rfc-editor.org/info/rfc6325>.

  [RFC6371]  Busi, I., Ed. and D. Allan, Ed., "Operations,
             Administration, and Maintenance Framework for MPLS-Based
             Transport Networks", RFC 6371, DOI 10.17487/RFC6371,
             September 2011, <https://www.rfc-editor.org/info/rfc6371>.

  [RFC6905]  Senevirathne, T., Bond, D., Aldrin, S., Li, Y., and R.
             Watve, "Requirements for Operations, Administration, and
             Maintenance (OAM) in Transparent Interconnection of Lots
             of Links (TRILL)", RFC 6905, DOI 10.17487/RFC6905, March
             2013, <https://www.rfc-editor.org/info/rfc6905>.

  [RFC7174]  Salam, S., Senevirathne, T., Aldrin, S., and D. Eastlake
             3rd, "Transparent Interconnection of Lots of Links (TRILL)
             Operations, Administration, and Maintenance (OAM)
             Framework", RFC 7174, DOI 10.17487/RFC7174, May 2014,
             <https://www.rfc-editor.org/info/rfc7174>.

  [RFC7276]  Mizrahi, T., Sprecher, N., Bellagamba, E., and Y.
             Weingarten, "An Overview of Operations, Administration,
             and Maintenance (OAM) Tools", RFC 7276,
             DOI 10.17487/RFC7276, June 2014,
             <https://www.rfc-editor.org/info/rfc7276>.

  [RFC7455]  Senevirathne, T., Finn, N., Salam, S., Kumar, D., Eastlake
             3rd, D., Aldrin, S., and Y. Li, "Transparent
             Interconnection of Lots of Links (TRILL): Fault
             Management", RFC 7455, DOI 10.17487/RFC7455, March 2015,
             <https://www.rfc-editor.org/info/rfc7455>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.



Kumar, et al.                Standards Track                   [Page 52]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  [RFC8532]  Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and
             S. Raghavan, "Generic YANG Data Model for the Management
             of Operations, Administration, and Maintenance (OAM)
             Protocols That Use Connectionless Communications",
             RFC 8532, DOI 10.17487/RFC8532, April 2019,
             <https://www.rfc-editor.org/info/rfc8532>.

  [TRILL-YANG]
             Weiguo, H., Yizhou, L., Kumar, D., Durrani, M., Zhai, H.,
             and L. Xia, "TRILL YANG Data Model", Work in Progress,
             draft-ietf-trill-yang-04, December 2015.

  [TRILL-YANG-OAM]
             Kumar, D., Senevirathne, T., Finn, N., Salam, S., Xia, L.,
             and H. Weiguo, "YANG Data Model for TRILL Operations,
             Administration, and Maintenance (OAM)", Work in Progress,
             draft-ietf-trill-yang-oam-05, March 2017.

Acknowledgments

  Giles Heron came up with the idea of developing a YANG data model as
  a way of creating a unified OAM API set (interface); this document
  was largely inspired by that.  Alexander Clemm provided many valuable
  tips, comments, and remarks that helped to refine the YANG data model
  presented in this document.

  Carlos Pignataro, David Ball, Mahesh Jethanandani, Benoit Claise,
  Ladislav Lhotka, Jens Guballa, Yuji Tochio, Gregory Mirsky, Huub van
  Helvoort, Tom Taylor, Dapeng Liu, Mishael Wexler, and Adi Molkho
  contributed to and participated in the development of this document.

Contributors

  Tissa Senevirathne
  Consultant

  Email: [email protected]


  Norman Finn
  CISCO Systems
  510 McCarthy Blvd
  Milpitas, CA  95035
  United States of America

  Email: [email protected]





Kumar, et al.                Standards Track                   [Page 53]

RFC 8531         Connection-Oriented OAM YANG Data Model      April 2019


  Samer Salam
  CISCO Systems
  595 Burrard St. Suite 2123
  Vancouver, BC  V7X 1J1
  Canada

  Email: [email protected]

Authors' Addresses

  Deepak Kumar
  CISCO Systems
  510 McCarthy Blvd
  Milpitas, CA  95035
  United States of America

  Email: [email protected]


  Qin Wu
  Huawei
  101 Software Avenue, Yuhua District
  Nanjing, Jiangsu  210012
  China

  Email: [email protected]


  Michael Wang
  Huawei Technologies, Co., Ltd
  101 Software Avenue, Yuhua District
  Nanjing  210012
  China

  Email: [email protected]
















Kumar, et al.                Standards Track                   [Page 54]