Internet Engineering Task Force (IETF)                           E. Lear
Request for Comments: 8520                                 Cisco Systems
Category: Standards Track                                       R. Droms
ISSN: 2070-1721                                                   Google
                                                           D. Romascanu
                                                             March 2019


             Manufacturer Usage Description Specification

Abstract

  This memo specifies a component-based architecture for Manufacturer
  Usage Descriptions (MUDs).  The goal of MUD is to provide a means for
  end devices to signal to the network what sort of access and network
  functionality they require to properly function.  The initial focus
  is on access control.  Later work can delve into other aspects.

  This memo specifies two YANG modules, IPv4 and IPv6 DHCP options, a
  Link Layer Discovery Protocol (LLDP) TLV, a URL, an X.509 certificate
  extension, and a means to sign and verify the descriptions.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8520.
















Lear, et al.                 Standards Track                    [Page 1]

RFC 8520             Manufacturer Usage Descriptions          March 2019


Copyright Notice

  Copyright (c) 2019 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  What MUD Doesn't Do . . . . . . . . . . . . . . . . . . .   5
    1.2.  A Simple Example  . . . . . . . . . . . . . . . . . . . .   5
    1.3.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   6
    1.4.  Determining Intended Use  . . . . . . . . . . . . . . . .   6
    1.5.  Finding a Policy: The MUD URL . . . . . . . . . . . . . .   7
    1.6.  Processing of the MUD URL . . . . . . . . . . . . . . . .   8
    1.7.  Types of Policies . . . . . . . . . . . . . . . . . . . .   8
    1.8.  The Manufacturer Usage Description Architecture . . . . .  10
    1.9.  Order of Operations . . . . . . . . . . . . . . . . . . .  12
  2.  The MUD Model and Semantic Meaning  . . . . . . . . . . . . .  12
    2.1.  The IETF-MUD YANG Module  . . . . . . . . . . . . . . . .  14
  3.  MUD Model Definitions for the Root "mud" Container  . . . . .  15
    3.1.  mud-version . . . . . . . . . . . . . . . . . . . . . . .  15
    3.2.  MUD URL . . . . . . . . . . . . . . . . . . . . . . . . .  15
    3.3.  to-device-policy and from-device-policy Containers  . . .  16
    3.4.  last-update . . . . . . . . . . . . . . . . . . . . . . .  16
    3.5.  cache-validity  . . . . . . . . . . . . . . . . . . . . .  16
    3.6.  is-supported  . . . . . . . . . . . . . . . . . . . . . .  16
    3.7.  systeminfo  . . . . . . . . . . . . . . . . . . . . . . .  16
    3.8.  mfg-name, software-rev, model-name, and firmware-rev  . .  17
    3.9.  extensions  . . . . . . . . . . . . . . . . . . . . . . .  17
  4.  Augmentation to the ACL Model . . . . . . . . . . . . . . . .  17
    4.1.  manufacturer  . . . . . . . . . . . . . . . . . . . . . .  17
    4.2.  same-manufacturer . . . . . . . . . . . . . . . . . . . .  17
    4.3.  documentation . . . . . . . . . . . . . . . . . . . . . .  18
    4.4.  model . . . . . . . . . . . . . . . . . . . . . . . . . .  18
    4.5.  local-networks  . . . . . . . . . . . . . . . . . . . . .  18
    4.6.  controller  . . . . . . . . . . . . . . . . . . . . . . .  18
    4.7.  my-controller . . . . . . . . . . . . . . . . . . . . . .  19
    4.8.  direction-initiated . . . . . . . . . . . . . . . . . . .  19



Lear, et al.                 Standards Track                    [Page 2]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  5.  Processing of the MUD File  . . . . . . . . . . . . . . . . .  19
  6.  What Does a MUD URL Look Like?  . . . . . . . . . . . . . . .  19
  7.  The MUD YANG Model  . . . . . . . . . . . . . . . . . . . . .  20
  8.  The Domain Name Extension to the ACL Model  . . . . . . . . .  26
    8.1.  src-dnsname . . . . . . . . . . . . . . . . . . . . . . .  27
    8.2.  dst-dnsname . . . . . . . . . . . . . . . . . . . . . . .  27
    8.3.  The ietf-acldns Model . . . . . . . . . . . . . . . . . .  28
  9.  MUD File Example  . . . . . . . . . . . . . . . . . . . . . .  30
  10. The MUD URL DHCP Option . . . . . . . . . . . . . . . . . . .  32
    10.1.  Client Behavior  . . . . . . . . . . . . . . . . . . . .  33
    10.2.  Server Behavior  . . . . . . . . . . . . . . . . . . . .  33
    10.3.  Relay Requirements . . . . . . . . . . . . . . . . . . .  33
  11. The Manufacturer Usage Description (MUD) URL X.509 Extension   34
  12. The Manufacturer Usage Description LLDP Extension . . . . . .  36
  13. The Creating and Processing of Signed MUD Files . . . . . . .  38
    13.1.  Creating a MUD File Signature  . . . . . . . . . . . . .  38
    13.2.  Verifying a MUD File Signature . . . . . . . . . . . . .  38
  14. Extensibility . . . . . . . . . . . . . . . . . . . . . . . .  39
  15. Deployment Considerations . . . . . . . . . . . . . . . . . .  39
  16. Security Considerations . . . . . . . . . . . . . . . . . . .  40
  17. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  43
    17.1.  YANG Module Registrations  . . . . . . . . . . . . . . .  43
    17.2.  URI Registrations  . . . . . . . . . . . . . . . . . . .  43
    17.3.  DHCPv4 and DHCPv6 Options  . . . . . . . . . . . . . . .  43
    17.4.  PKIX Extensions  . . . . . . . . . . . . . . . . . . . .  43
    17.5.  Media Type Registration for MUD Files  . . . . . . . . .  44
    17.6.  IANA LLDP TLV Subtype Registry . . . . . . . . . . . . .  45
    17.7.  The MUD Well-Known Universal Resource Name (URNs)  . . .  45
    17.8.  Extensions Registry  . . . . . . . . . . . . . . . . . .  46
  18. References  . . . . . . . . . . . . . . . . . . . . . . . . .  46
    18.1.  Normative References . . . . . . . . . . . . . . . . . .  46
    18.2.  Informative References . . . . . . . . . . . . . . . . .  49
  Appendix A.  Default MUD Nodes  . . . . . . . . . . . . . . . . .  52
  Appendix B.  A Sample Extension: DETNET-indicator . . . . . . . .  56
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  60
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  60















Lear, et al.                 Standards Track                    [Page 3]

RFC 8520             Manufacturer Usage Descriptions          March 2019


1.  Introduction

  The Internet has largely been constructed for general purpose
  computers, those devices that may be used for a purpose that is
  specified by those who own the device.  In [RFC1984], it was presumed
  that an end device would be most capable of protecting itself.  This
  made sense when the typical device was a workstation or a mainframe,
  and it continues to make sense for general purpose computing devices
  today, including laptops, smart phones, and tablets.

  [RFC7452] discusses design patterns for, and poses questions about,
  smart objects.  Let us then posit a group of objects that are
  specifically not intended to be used for general purpose computing
  tasks.  These devices, which this memo refers to as Things, have a
  specific purpose.  By definition, therefore, all other uses are not
  intended.  If a small number of communication patterns follows from
  those small number of uses, the combination of these two statements
  can be restated as a Manufacturer Usage Description (MUD) that can be
  applied at various points within a network.  MUD primarily addresses
  threats to the device rather than the device as a threat.  In some
  circumstances, however, MUD may offer some protection in the latter
  case, depending on how the MUD URL is communicated and how devices
  and their communications are authenticated.

  We use the notion of "manufacturer" loosely in this context to refer
  to the entity or organization that will state how a device is
  intended to be used.  For example, in the context of a light bulb,
  this might indeed be the light bulb manufacturer.  In the context of
  a smarter device that has a built in Linux stack, it might be an
  integrator of that device.  The key points are that the device itself
  is assumed to serve a limited purpose, and that there exists an
  organization in the supply chain of that device that will take
  responsibility for informing the network about that purpose.

  The intent of MUD is to provide the following:

  o  Substantially reduce the threat surface on a device to those
     communications intended by the manufacturer.

  o  Provide a means to scale network policies to the ever-increasing
     number of types of devices in the network.

  o  Provide a means to address at least some vulnerabilities in a way
     that is faster than the time it might take to update systems.
     This will be particularly true for systems that are no longer
     supported.





Lear, et al.                 Standards Track                    [Page 4]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  o  Keep the cost of implementation of such a system to the bare
     minimum.

  o  Provide a means of extensibility for manufacturers to express
     other device capabilities or requirements.

  MUD consists of three architectural building blocks:

  o  A URL that can be used to locate a description;

  o  The description itself, including how it is interpreted; and

  o  A means for local network management systems to retrieve the
     description.

  MUD is most effective when the network is able to identify in some
  way the remote endpoints that Things will talk to.

  In this specification, we describe each of these building blocks and
  how they are intended to be used together.  However, they may also be
  used separately, independent of this specification, by local
  deployments for their own purposes.

1.1.  What MUD Doesn't Do

  MUD is not intended to address network authorization of general
  purpose computers, as their manufacturers cannot envision a specific
  communication pattern to describe.  In addition, even those devices
  that have a single or small number of uses might have very broad
  communication patterns.  MUD on its own is not for them either.

  Although MUD can provide network administrators with some additional
  protection when device vulnerabilities exist, it will never replace
  the need for manufacturers to patch vulnerabilities.

  Finally, no matter what the manufacturer specifies in a MUD file,
  these are not directives, but suggestions.  How they are instantiated
  locally will depend on many factors and will be ultimately up to the
  local network administrator, who must decide what is appropriate in a
  given circumstances.

1.2.  A Simple Example

  A light bulb is intended to light a room.  It may be remotely
  controlled through the network, and it may make use of a rendezvous
  service (which could be accessed by an application on a smart phone).
  What we can say about that light bulb, then, is that all other
  network access is unwanted.  It will not contact a news service, nor



Lear, et al.                 Standards Track                    [Page 5]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  speak to the refrigerator, and it has no need of a printer or other
  devices.  It has no social networking friends.  Therefore, applying
  an access list to it that states it will only connect to the single
  rendezvous service will not impede performing its function; at the
  same time, this will allow the network to provide the light bulb and
  other devices an additional layer of protection.

1.3.  Terminology

  MUD:  Manufacturer Usage Description.

  MUD file:  a file containing YANG-based JSON that describes a Thing
     and associated suggested specific network behavior.

  MUD file server:  a web server that hosts a MUD file.

  MUD manager:  the system that requests and receives the MUD file from
     the MUD server.  After it has processed a MUD file, it may direct
     changes to relevant network elements.

  MUD controller:  a synonym that has been used in the past for MUD
     manager.

  MUD URL:  a URL that can be used by the MUD manager to receive the
     MUD file.

  Thing:  the device emitting a MUD URL.

  Manufacturer:  the entity that configures the Thing to emit the MUD
     URL and the one who asserts a recommendation in a MUD file.  The
     manufacturer might not always be the entity that constructs a
     Thing.  It could, for instance, be a systems integrator, or even a
     component provider.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.4.  Determining Intended Use

  The notion of intended use is in itself not new.  Network
  administrators apply access lists every day to allow for only such
  use.  This notion of white listing was well described by Chapman and
  Zwicky in [FW95].  Profiling systems that make use of heuristics to
  identify types of systems have existed for years as well.




Lear, et al.                 Standards Track                    [Page 6]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  A Thing could just as easily tell the network what sort of access it
  requires without going into what sort of system it is.  This would,
  in effect, be the converse of [RFC7488].  In seeking a general
  solution, however, we assume that a device will implement
  functionality necessary to fulfill its limited purpose.  This is
  basic economic constraint.  Unless the network would refuse access to
  such a device, its developers would have no reason to provide the
  network any information.  To date, such an assertion has held true.

1.5.  Finding a Policy: The MUD URL

  Our work begins with the device emitting a Universal Resource Locator
  (URL) [RFC3986].  This URL serves both to classify the device type
  and to provide a means to locate a policy file.

  MUD URLs MUST use the "https" scheme [RFC7230].

  In this memo, three means are defined to emit the MUD URL, as
  follows:

  o  A DHCP option [RFC2131] [RFC8415] that the DHCP client uses to
     inform the DHCP server.  The DHCP server may take further actions,
     such as acting as the MUD manager or passing the MUD URL along to
     the MUD manager.

  o  An X.509 constraint.  The IEEE has developed IEEE 802.1AR
     [IEEE8021AR] to provide a certificate-based approach to
     communicate device characteristics, which itself relies on
     [RFC5280].  The MUD URL extension is non-critical, as required by
     IEEE 802.1AR.  Various means may be used to communicate that
     certificate, including the Tunnel Extensible Authentication
     Protocol (TEAP) [RFC7170].

  o  Finally, a Link Layer Discovery Protocol (LLDP) frame is defined
     [IEEE8021AB].

  It is possible that there may be other means for a MUD URL to be
  learned by a network.  For instance, some devices may already be
  fielded or have very limited ability to communicate a MUD URL, and
  yet they can be identified through some means, such as a serial
  number or a public key.  In these cases, manufacturers may be able to
  map those identifiers to particular MUD URLs (or even the files
  themselves).  Similarly, there may be alternative resolution
  mechanisms available for situations where Internet connectivity is
  limited or does not exist.  Such mechanisms are not described in this
  memo, but they are possible.  Implementors are encouraged to allow
  for the flexibility of how MUD URLs may be learned.




Lear, et al.                 Standards Track                    [Page 7]

RFC 8520             Manufacturer Usage Descriptions          March 2019


1.6.  Processing of the MUD URL

  MUD managers that are able to do so SHOULD retrieve MUD URLs and
  signature files as per [RFC7230], using the GET method [RFC7231].
  They MUST validate the certificate using the rules in [RFC2818],
  Section 3.1.

  Requests for MUD URLs SHOULD include an "Accept" header field
  ([RFC7231], Section 5.3.2) containing "application/mud+json", an
  "Accept-Language" header field ([RFC7231], Section 5.3.5), and a
  "User-Agent" header field ([RFC7231], Section 5.5.3).

  MUD managers SHOULD automatically process 3xx response status codes.

  If a MUD manager is not able to fetch a MUD URL, other means MAY be
  used to import MUD files and associated signature files.  So long as
  the signature of the file can be validated, the file can be used.  In
  such environments, controllers SHOULD warn administrators when cache-
  validity expiry is approaching so that they may check for new files.

  It may not be possible for a MUD manager to retrieve a MUD file at
  any given time.  Should a MUD manager fail to retrieve a MUD file, it
  SHOULD consider the existing one safe to use, at least for a time.
  After some period, it SHOULD log that it has been unable to retrieve
  the file.  There may be very good reasons for such failures,
  including the possibility that the MUD manager is in an offline
  environment, the local Internet connection has failed, or the remote
  Internet connection has failed.  It is also possible that an attacker
  is attempting to interfere with the deployment of a device.  How to
  handle such circumstances is a local decision.

1.7.  Types of Policies

  When the MUD URL is resolved, the MUD manager retrieves a file that
  describes what sort of communications a device is designed to have.
  The manufacturer may specify either specific hosts for cloud-based
  services or certain classes for access within an operational network.
  An example of a class might be "devices of a specified manufacturer
  type", where the manufacturer type itself is indicated simply by the
  authority component (e.g., the domain name) of the MUD URL.  Another
  example might be to allow or disallow local access.  Just like other
  policies, these may be combined.  For example:

  o  Allow access to devices of the same manufacturer

  o  Allow access to and from controllers via the Constrained
     Application Protocol (COAP) [RFC7252]




Lear, et al.                 Standards Track                    [Page 8]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  o  Allow access to local DNS/NTP

  o  Deny all other access

  A printer might have a description that states:

  o  Allow access for port IPP or port LPD

  o  Allow local access for port HTTP

  o  Deny all other access

  In this way, anyone can print to the printer, but local access would
  be required for the management interface.

  The files that are retrieved are intended to be closely aligned to
  existing network architectures so that they are easy to deploy.  We
  make use of YANG [RFC7950] because it provides accurate and adequate
  models for use by network devices.  JSON [RFC8259] is used as a
  serialization format for compactness and readability, relative to
  XML.  Other formats may be chosen with later versions of MUD.

  While the policy examples given here focus on access control, this is
  not intended to be the sole focus.  By structuring the model
  described in this document with clear extension points, other
  descriptions could be included.  One that often comes to mind is
  quality of service.

  The YANG modules specified here are extensions of [RFC8519].  The
  extensions to this model allow for a manufacturer to express classes
  of systems that a manufacturer would find necessary for the proper
  function of the device.  Two modules are specified.  The first module
  specifies a means for domain names to be used in Access Control Lists
  (ACLs) so that devices that have their controllers in the cloud may
  be appropriately authorized with domain names, where the mapping of
  those names to addresses may rapidly change.

  The other module abstracts away IP addresses into certain classes
  that are instantiated into actual IP addresses through local
  processing.  Through these classes, manufacturers can specify how the
  device is designed to communicate, so that network elements can be
  configured by local systems that have local topological knowledge.
  That is, the deployment populates the classes that the manufacturer
  specifies.  The abstractions below map to zero or more hosts, as
  follows:

  Manufacturer:  A device made by a particular manufacturer, as
     identified by the authority component of its MUD URL.



Lear, et al.                 Standards Track                    [Page 9]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  same-manufacturer:  Devices that have the same authority component of
     their MUD URL.

  controller:  Devices that the local network administrator admits to
     the particular class.

  my-controller:  Devices intended to serve as controllers for the MUD
     URL that the Thing emitted.

  local:  The class of IP addresses that are scoped within some
     administrative boundary.  By default, it is suggested that this be
     the local subnet.

  The "manufacturer" classes can be easily specified by the
  manufacturer, whereas controller classes are initially envisioned to
  be specified by the administrator.

  Because manufacturers do not know who will be using their devices, it
  is important for functionality referenced in usage descriptions to be
  relatively ubiquitous and mature.  For these reasons, the YANG-based
  configuration in a MUD file is limited to the modules either
  specified or referenced in this document, or specified in documented
  extensions.

1.8.  The Manufacturer Usage Description Architecture

  With these components laid out, we now have the basis for an
  architecture.  This leads us to ASCII art.

   .......................................
   .                      ____________   .           _____________
   .                     |            |  .          |             |
   .                     |    MUD     |-->get URL-->|    MUD      |
   .                     |  Manager   |  .(https)   | File Server |
   .  End system network |____________|<-MUD file<-<|_____________|
   .                             .       .
   .                             .       .
   . _______                 _________   .
   .|       | (DHCP et al.) | router  |  .
   .| Thing |---->MUD URL-->|   or    |  .
   .|_______|               | switch  |  .
   .                        |_________|  .
   .......................................

                       Figure 1: MUD Architecture






Lear, et al.                 Standards Track                   [Page 10]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  In the above diagram, the switch or router collects MUD URLs and
  forwards them to the MUD manager (a network management system) for
  processing.  This happens in different ways, depending on how the URL
  is communicated.  For instance, in the case of DHCP, the DHCP server
  might receive the URL and then process it.  In the case of IEEE
  802.1X [IEEE8021X], the switch would carry the URL via a certificate
  to the authentication server via the Extensible Authentication
  Protocol (EAP) over Radius [RFC3748], which would then process it.
  One method to do this is TEAP, as described in [RFC7170].  The
  certificate extension is described below.

  The information returned by the MUD file server is valid for as long
  as the Thing is connected.  There is no expiry.  However, if the MUD
  manager has detected that the MUD file for a Thing has changed, it
  SHOULD update the policy expeditiously, taking into account whatever
  approval flow is required in a deployment.  In this way, new
  recommendations from the manufacturer can be processed in a timely
  fashion.

  The information returned by the MUD file server (a web server) is
  valid for the duration of the Thing's connection, or as specified in
  the description.  Thus, if the Thing is disconnected, any associated
  configuration in the switch can be removed.  Similarly, from time to
  time the description may be refreshed, based on new capabilities or
  communication patterns or vulnerabilities.

  The web server is typically run by or on behalf of the manufacturer.
  Its domain name is that of the authority found in the MUD URL.  For
  legacy cases where Things cannot emit a URL, if the switch is able to
  determine the appropriate URL, it may proxy it.  In a trivial case,
  it may hardcode a MUD URL on a switch port or a map from some
  available identifier such as an L2 address or certificate hash to a
  MUD URL.

  The role of the MUD manager in this environment is to do the
  following:

  o  receive MUD URLs,

  o  fetch MUD files,

  o  translate abstractions in the MUD files to specific network
     element configuration,

  o  maintain and update any required mappings of the abstractions, and

  o  update network elements with appropriate configuration.




Lear, et al.                 Standards Track                   [Page 11]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  A MUD manager may be a component of an Authentication, Authorization,
  and Accounting (AAA) system or a network management system.
  Communication within those systems and from those systems to network
  elements is beyond the scope of this memo.

1.9.  Order of Operations

  As mentioned above, MUD contains architectural building blocks, so
  the order of operation may vary.  However, here is one clear intended
  example:

  1.  Thing emits a URL.

  2.  That URL is forwarded to a MUD manager by the nearest switch (how
      this happens depends on the way in which the MUD URL is emitted).

  3.  The MUD manager retrieves the MUD file and signature from the MUD
      file server, assuming it doesn't already have copies.  After
      validating the signature, it may test the URL against a web or
      domain reputation service, and it may test any hosts within the
      file against those reputation services, as it deems fit.

  4.  The MUD manager may query the administrator for permission to add
      the Thing and associated policy.  If the Thing is known or the
      Thing type is known, it may skip this step.

  5.  The MUD manager instantiates local configuration based on the
      abstractions defined in this document.

  6.  The MUD manager configures the switch nearest the Thing.  Other
      systems may be configured as well.

  7.  When the Thing disconnects, policy is removed.

2.  The MUD Model and Semantic Meaning

  A MUD file consists of a YANG model instance that has been serialized
  in JSON [RFC7951].  For purposes of MUD, the nodes that can be
  modified are access lists as augmented by this model.  The MUD file
  is limited to the serialization of only the following YANG schema:

  o  ietf-access-control-list [RFC8519]

  o  ietf-mud (RFC 8520)

  o  ietf-acldns (RFC 8520)





Lear, et al.                 Standards Track                   [Page 12]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  Extensions may be used to add additional schema.  This is described
  further on.

  To provide the widest possible deployment, publishers of MUD files
  SHOULD make use of the abstractions in this memo and avoid the use of
  IP addresses.  A MUD manager SHOULD NOT automatically implement any
  MUD file that contains IP addresses, especially those that might have
  local significance.  The addressing of one side of an access list is
  implicit, based on whether it is applied as to-device-policy or
  from-device-policy.

  With the exceptions of the "name" of the ACL, "type", "name" of the
  Access Control Entry (ACE), and TCP and UDP source and destination
  port information, publishers of MUD files SHOULD limit the use of ACL
  model leaf nodes expressed to those found in this specification.
  Absent any extensions, MUD files are assumed to implement only the
  following ACL model features:

  o  match-on-ipv4, match-on-ipv6, match-on-tcp, match-on-udp,
     match-on-icmp

  Furthermore, only "accept" or "drop" actions SHOULD be included.  A
  MUD manager MAY choose to interpret "reject" as "drop".  A MUD
  manager SHOULD ignore all other actions.  This is because
  manufacturers do not have sufficient context within a local
  deployment to know whether reject is appropriate.  That is a decision
  that should be left to a network administrator.

  Given that MUD does not deal with interfaces, the support of the
  "ietf-interfaces" module [RFC8343] is not required.  Specifically,
  the support of interface-related features and branches (e.g.,
  interface-attachment and interface-stats) of the ACL YANG module is
  not required.

  In fact, MUD managers MAY ignore any particular component of a
  description or MAY ignore the description in its entirety, and they
  SHOULD carefully inspect all MUD descriptions.  Publishers of MUD
  files MUST NOT include other nodes except as described in
  Section 3.9.  See that section for more information.












Lear, et al.                 Standards Track                   [Page 13]

RFC 8520             Manufacturer Usage Descriptions          March 2019


2.1.  The IETF-MUD YANG Module

  This module is structured into three parts:

  o  The first component, the "mud" container, holds information that
     is relevant to retrieval and validity of the MUD file itself, as
     well as policy intended to and from the Thing.

  o  The second component augments the matching container of the ACL
     model to add several nodes that are relevant to the MUD URL, or
     they are otherwise abstracted for use within a local environment.

  o  The third component augments the tcp-acl container of the ACL
     model to add the ability to match on the direction of initiation
     of a TCP connection.

  A valid MUD file will contain two root objects: a "mud" container and
  an "acls" container.  Extensions may add additional root objects as
  required.  As a reminder, when parsing acls, elements within a
  "match" block are logically ANDed.  In general, a single abstraction
  in a match statement should be used.  For instance, it makes little
  sense to match both "my-controller" and "controller" with an
  argument, since they are highly unlikely to be the same value.

  A simplified graphical representation of the data models is used in
  this document.  The meaning of the symbols in these diagrams is
  explained in [RFC8340].
























Lear, et al.                 Standards Track                   [Page 14]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  module: ietf-mud
    +--rw mud!
       +--rw mud-version           uint8
       +--rw mud-url               inet:uri
       +--rw last-update           yang:date-and-time
       +--rw mud-signature?        inet:uri
       +--rw cache-validity?       uint8
       +--rw is-supported          boolean
       +--rw systeminfo?           string
       +--rw mfg-name?             string
       +--rw model-name?           string
       +--rw firmware-rev?         string
       +--rw software-rev?         string
       +--rw documentation?        inet:uri
       +--rw extensions*           string
       +--rw from-device-policy
       |  +--rw acls
       |     +--rw access-list* [name]
       |        +--rw name    -> /acl:acls/acl/name
       +--rw to-device-policy
          +--rw acls
             +--rw access-list* [name]
                +--rw name    -> /acl:acls/acl/name

    augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
      +--rw mud
         +--rw manufacturer?        inet:host
         +--rw same-manufacturer?   empty
         +--rw model?               inet:uri
         +--rw local-networks?      empty
         +--rw controller?          inet:uri
         +--rw my-controller?       empty
    augment
      /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches
         /acl:l4/acl:tcp/acl:tcp:
      +--rw direction-initiated?   direction

3.  MUD Model Definitions for the Root "mud" Container

3.1.  mud-version

  This node specifies the integer version of the MUD specification.
  This memo specifies version 1.

3.2.  MUD URL

  This URL identifies the MUD file.  This is useful when the file and
  associated signature are manually uploaded, say, in an offline mode.



Lear, et al.                 Standards Track                   [Page 15]

RFC 8520             Manufacturer Usage Descriptions          March 2019


3.3.  to-device-policy and from-device-policy Containers

  [RFC8519] describes access lists.  In the case of MUD, a MUD file
  must be explicit in describing the communication pattern of a Thing,
  and that includes indicating what is to be permitted or denied in
  either direction of communication.  Hence, each of these containers
  indicates the appropriate direction of a flow in association with a
  particular Thing.  They contain references to specific access lists.

3.4.  last-update

  This is a date-and-time value of when the MUD file was generated.
  This is akin to a version number.  Its form is taken from [RFC6991].

3.5.  cache-validity

  This uint8 is the period of time in hours that a network management
  station MUST wait since its last retrieval before checking for an
  update.  It is RECOMMENDED that this value be no less than 24, and it
  MUST NOT be more than 168 for any Thing that is supported.  This
  period SHOULD be no shorter than any period determined through HTTP
  caching directives (e.g., "cache-control" or "Expires").  N.B., the
  expiring of this timer does not require the MUD manager to discard
  the MUD file, nor terminate access to a Thing.  See Section 16 for
  more information.

3.6.  is-supported

  This boolean is an indication from the manufacturer to the network
  administrator as to whether or not the Thing is supported.  In this
  context, a Thing is said to not be supported if the manufacturer
  intends never to issue a firmware or software update to the Thing or
  never to update the MUD file.  A MUD manager MAY still periodically
  check for updates.

3.7.  systeminfo

  This is a textual UTF-8 description of the Thing to be connected.
  The intent is for administrators to be able to see a brief
  displayable description of the Thing.  It SHOULD NOT exceed 60
  characters worth of display space.










Lear, et al.                 Standards Track                   [Page 16]

RFC 8520             Manufacturer Usage Descriptions          March 2019


3.8.  mfg-name, software-rev, model-name, and firmware-rev

  These optional fields are filled in as specified by [RFC8348].  Note
  that firmware-rev and software-rev MUST NOT be populated in a MUD
  file if the device can be upgraded but the MUD URL cannot be.  This
  would be the case, for instance, with MUD URLs that are contained in
  802.1AR certificates.

3.9.  extensions

  This optional leaf-list names MUD extensions that are used in the MUD
  file.  Note that MUD extensions MUST NOT be used in a MUD file
  without the extensions being declared.  Implementations MUST ignore
  any node in this file that they do not understand.

  Note that extensions can either extend the MUD file as described in
  the previous paragraph or reference other work.  An extension example
  can be found in Appendix B.

4.  Augmentation to the ACL Model

  Note that in this section, when we use the term "match", we are
  referring to the ACL model "matches" node.

4.1.  manufacturer

  This node consists of a hostname that would be matched against the
  authority component of another Thing's MUD URL.  In its simplest
  form, "manufacturer" and "same-manufacturer" may be implemented as
  access lists.  In more complex forms, additional network capabilities
  may be used.  For example, if one saw the line "manufacturer" :
  "flobbidy.example.com", then all Things that registered with a MUD
  URL that contained flobbity.example.com in its authority section
  would match.

4.2.  same-manufacturer

  This null-valued node is an equivalent for when the manufacturer
  element is used to indicate that the authority found in another
  Thing's MUD URL matches that of the authority found in this Thing's
  MUD URL.  For example, if the Thing's MUD URL were
  "https://b1.example.com/ThingV1", then all devices that had a MUD URL
  with an authority section of b1.example.com would match.








Lear, et al.                 Standards Track                   [Page 17]

RFC 8520             Manufacturer Usage Descriptions          March 2019


4.3.  documentation

  This URI consists of a URL that points to documentation relating to
  the device and the MUD file.  This can prove particularly useful when
  the "controller" class is used, so that its use can be explained.

4.4.  model

  This string matches the entire MUD URL, thus covering the model that
  is unique within the context of the authority.  It may contain not
  only model information, but versioning information as well, and any
  other information that the manufacturer wishes to add.  The intended
  use is for devices of this precise class to match, to permit or deny
  communication between one another.

4.5.  local-networks

  This null-valued node expands to include local networks.  Its default
  expansion is that packets must not traverse toward a default route
  that is received from the router.  However, administrators may expand
  the expression as is appropriate in their deployments.

4.6.  controller

  This URI specifies a value that a controller will register with the
  MUD manager.  The node then is expanded to the set of hosts that are
  so registered.  This node may also be a URN.  In this case, the URN
  describes a well-known service, such as DNS or NTP, that has been
  standardized.  Both of those URNs may be found in Section 17.7.

  When "my-controller" is used, it is possible that the administrator
  will be prompted to populate that class for each and every model.
  Use of "controller" with a named class allows the user to populate
  that class only once for many different models that a manufacturer
  may produce.

  Controller URIs MAY take the form of a URL (e.g., "http[s]://").
  However, MUD managers MUST NOT resolve and retrieve such files, and
  it is RECOMMENDED that there be no such file at this time, as their
  form and function may be defined at a point in the future.  For now,
  URLs should serve simply as class names and may be populated by the
  local deployment administrator.

  Great care should be taken by MUD managers when invoking the
  controller class in the form of URLs.  For one thing, it requires
  some understanding by the administrator as to when it is appropriate.





Lear, et al.                 Standards Track                   [Page 18]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  Pre-registration in such classes by controllers with the MUD server
  is encouraged.  The mechanism to do that is beyond the scope of this
  work.

4.7.  my-controller

  This null-valued node signals to the MUD manager to use whatever
  mapping it has for this MUD URL to a particular group of hosts.  This
  may require prompting the administrator for class members.  Future
  work should seek to automate membership management.

4.8.  direction-initiated

  This MUST only be applied to TCP.  This matches the direction in
  which a TCP connection is initiated.  When the direction initiated is
  "from-device", packets that are transmitted in the direction of a
  Thing MUST be dropped unless the Thing has first initiated a TCP
  connection.  By way of example, this node may be implemented in its
  simplest form by looking at naked SYN bits, but it may also be
  implemented through more stateful mechanisms.

  When applied, this matches packets when the flow was initiated in the
  corresponding direction.  [RFC6092] specifies IPv6 guidance best
  practices.  While that document is scoped specifically to IPv6, its
  contents are applicable for IPv4 as well.

5.  Processing of the MUD File

  To keep things relatively simple in addition to whatever definitions
  exist, we also apply two additional default behaviors:

  o  Anything not explicitly permitted is denied.

  o  Local DNS and NTP are, by default, permitted to and from the
     Thing.

  An explicit description of the defaults can be found in Appendix A.
  These are applied AFTER all other explicit rules.  Thus, a default
  behavior can be changed with a "drop" action.

6.  What Does a MUD URL Look Like?

  MUD URLs are required to use the "https" scheme, in order to
  establish the MUD file server's identity and assure integrity of the
  MUD file.






Lear, et al.                 Standards Track                   [Page 19]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  Any "https://" URL can be a MUD URL.  For example:

    https://things.example.org/product_abc123/v5
    https://www.example.net/mudfiles/temperature_sensor/
    https://example.com/lightbulbs/colour/v1

  A manufacturer may construct a MUD URL in any way, so long as it
  makes use of the "https" scheme.

7.  The MUD YANG Model

  <CODE BEGINS>file "[email protected]"
  module ietf-mud {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-mud";
    prefix ietf-mud;

    import ietf-access-control-list {
      prefix acl;
    }
    import ietf-yang-types {
      prefix yang;
    }
    import ietf-inet-types {
      prefix inet;
    }

    organization
      "IETF OPSAWG (Operations and Management Area Working Group)";
    contact
      "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
       WG List: [email protected]

       Author: Eliot Lear
               [email protected]

       Author: Ralph Droms
               [email protected]

       Author: Dan Romascanu
               [email protected]
      ";
    description
      "This YANG module defines a component that augments the
       IETF description of an access list.  This specific module
       focuses on additional filters that include local, model,
       and same-manufacturer.




Lear, et al.                 Standards Track                   [Page 20]

RFC 8520             Manufacturer Usage Descriptions          March 2019


       This module is intended to be serialized via JSON and stored
       as a file, as described in RFC 8520.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
       NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
       'MAY', and 'OPTIONAL' in this document are to be interpreted as
       described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
       they appear in all capitals, as shown here.

       Copyright (c) 2019 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (http://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 8520; see
       the RFC itself for full legal notices.";

    revision 2019-01-28 {
      description
        "Initial proposed standard.";
      reference
        "RFC 8520: Manufacturer Usage Description
         Specification";
    }

    typedef direction {
      type enumeration {
        enum to-device {
          description
            "packets or flows destined to the target
             Thing.";
        }
        enum from-device {
          description
            "packets or flows destined from
             the target Thing.";
        }
      }
      description
        "Which way are we talking about?";
    }

    container mud {



Lear, et al.                 Standards Track                   [Page 21]

RFC 8520             Manufacturer Usage Descriptions          March 2019


      presence "Enabled for this particular MUD URL";
      description
        "MUD-related information, as specified
         by RFC 8520.";
      uses mud-grouping;
    }

    grouping mud-grouping {
      description
        "Information about when support ends (or ended)
         and when to refresh.";
      leaf mud-version {
        type uint8;
        mandatory true;
        description
          "This is the version of the MUD
           specification.  This memo specifies version 1.";
      }
      leaf mud-url {
        type inet:uri;
        mandatory true;
        description
          "This is the MUD URL associated with the entry found
           in a MUD file.";
      }
      leaf last-update {
        type yang:date-and-time;
        mandatory true;
        description
          "This is intended to be when the current MUD file
           was generated.  MUD managers SHOULD NOT check
           for updates between this time plus cache validity.";
      }
      leaf mud-signature {
        type inet:uri;
        description
          "A URI that resolves to a signature as
           described in this specification.";
      }
      leaf cache-validity {
        type uint8 {
          range "1..168";
        }
        units "hours";
        default "48";
        description
          "The information retrieved from the MUD server is
           valid for these many hours, after which it should



Lear, et al.                 Standards Track                   [Page 22]

RFC 8520             Manufacturer Usage Descriptions          March 2019


           be refreshed.  N.B., MUD manager implementations
           need not discard MUD files beyond this period.";
      }
      leaf is-supported {
        type boolean;
        mandatory true;
        description
          "This boolean indicates whether or not the Thing is
           currently supported by the manufacturer.";
      }
      leaf systeminfo {
        type string;
        description
          "A UTF-8 description of this Thing.  This
           should be a brief description that may be
           displayed to the user to determine whether
           to allow the Thing on the
           network.";
      }
      leaf mfg-name {
        type string;
        description
          "Manufacturer name, as described in
           the ietf-hardware YANG module.";
      }
      leaf model-name {
        type string;
        description
          "Model name, as described in the
           ietf-hardware YANG module.";
      }
      leaf firmware-rev {
        type string;
        description
          "firmware-rev, as described in the
           ietf-hardware YANG module.  Note that this field
           MUST NOT be included when the device can be
           updated but the MUD URL cannot.";
      }
      leaf software-rev {
        type string;
        description
          "software-rev, as described in the
           ietf-hardware YANG module.  Note that this field
           MUST NOT be included when the device can be
           updated but the MUD URL cannot.";
      }
      leaf documentation {



Lear, et al.                 Standards Track                   [Page 23]

RFC 8520             Manufacturer Usage Descriptions          March 2019


        type inet:uri;
        description
          "This URL points to documentation that
           relates to this device and any classes that it uses
           in its MUD file.  A caution: MUD managers need
           not resolve this URL on their own but rather simply
           provide it to the administrator.  Parsing HTML is
           not an intended function of a MUD manager.";
      }
      leaf-list extensions {
        type string {
          length "1..40";
        }
        description
          "A list of extension names that are used in this MUD
           file.  Each name is registered with the IANA and
           described in an RFC.";
      }
      container from-device-policy {
        description
          "The policies that should be enforced on traffic
           coming from the device.  These policies are not
           necessarily intended to be enforced at a single
           point but may be rendered by the controller to any
           relevant enforcement points in the network or
           elsewhere.";
        uses access-lists;
      }
      container to-device-policy {
        description
          "The policies that should be enforced on traffic
           going to the device.  These policies are not
           necessarily intended to be enforced at a single
           point but may be rendered by the controller to any
           relevant enforcement points in the network or
           elsewhere.";
        uses access-lists;
      }
    }

    grouping access-lists {
      description
        "A grouping for access lists in the context of device
         policy.";
      container access-lists {
        description
          "The access lists that should be applied to traffic
           to or from the device.";



Lear, et al.                 Standards Track                   [Page 24]

RFC 8520             Manufacturer Usage Descriptions          March 2019


        list access-list {
          key "name";
          description
            "Each entry on this list refers to an ACL that
             should be present in the overall access list
             data model.  Each ACL is identified by name and
             type.";
          leaf name {
            type leafref {
              path "/acl:acls/acl:acl/acl:name";
            }
            description
              "The name of the ACL for this entry.";
          }
        }
      }
    }

    augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches" {
      description
        "adding abstractions to avoid the need of IP addresses.";
      container mud {
        description
          "MUD-specific matches.";
        leaf manufacturer {
          type inet:host;
          description
            "A domain that is intended to match the authority
             section of the MUD URL.  This node is used to specify
             one or more manufacturers a device should
             be authorized to access.";
        }
        leaf same-manufacturer {
          type empty;
          description
            "This node matches the authority section of the MUD URL
             of a Thing.  It is intended to grant access to all
             devices with the same authority section.";
        }
        leaf model {
          type inet:uri;
          description
            "Devices of the specified model type will match if
             they have an identical MUD URL.";
        }
        leaf local-networks {
          type empty;
          description



Lear, et al.                 Standards Track                   [Page 25]

RFC 8520             Manufacturer Usage Descriptions          March 2019


            "IP addresses will match this node if they are
             considered local addresses.  A local address may be
             a list of locally defined prefixes and masks
             that indicate a particular administrative scope.";
        }
        leaf controller {
          type inet:uri;
          description
            "This node names a class that has associated with it
             zero or more IP addresses to match against.  These
             may be scoped to a manufacturer or via a standard
             URN.";
        }
        leaf my-controller {
          type empty;
          description
            "This node matches one or more network elements that
             have been configured to be the controller for this
             Thing, based on its MUD URL.";
        }
      }
    }
    augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches"
          + "/acl:l4/acl:tcp/acl:tcp" {
      description
        "add direction-initiated";
      leaf direction-initiated {
        type direction;
        description
          "This node matches based on which direction a
           connection was initiated.  The means by which that
           is determined is discussed in this document.";
      }
    }
  }
  <CODE ENDS>

8.  The Domain Name Extension to the ACL Model

  This module specifies an extension to the IETF-ACL model such that
  domain names may be referenced by augmenting the "matches" node.
  Different implementations may deploy differing methods to maintain
  the mapping between the IP address and domain name, if indeed any are
  needed.  However, the intent is that resources that are referred to
  using a name should be authorized (or not) within an access list.






Lear, et al.                 Standards Track                   [Page 26]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  The structure of the change is as follows:

  module: ietf-acldns
    augment /acl:acls/acl:acl/acl:aces/acl:ace/
      acl:matches/acl:l3/acl:ipv4/acl:ipv4:
      +--rw src-dnsname?   inet:host
      +--rw dst-dnsname?   inet:host
    augment /acl:acls/acl:acl/acl:aces/acl:ace/
      acl:matches/acl:l3/acl:ipv6/acl:ipv6:
      +--rw src-dnsname?   inet:host
      +--rw dst-dnsname?   inet:host

  The choice of these particular points in the access control list
  model is based on the assumption that we are in some way referring to
  IP-related resources, as that is what the DNS returns.  A domain name
  in our context is defined in [RFC6991].  The augmentations are
  replicated across IPv4 and IPv6 to allow MUD file authors the ability
  to control the IP version that the Thing may utilize.

  The following nodes are defined.

8.1.  src-dnsname

  The argument corresponds to a domain name of a source as specified by
  inet:host.  A number of means may be used to resolve hosts.  What is
  important is that such resolutions be consistent with ACLs that are
  required by Things to properly operate.

8.2.  dst-dnsname

  The argument corresponds to a domain name of a destination as
  specified by inet:host.  See the previous section (Section 8.1)
  relating to resolution.

  Note that when using either of these with a MUD file, because access
  is associated with a particular Thing, MUD files MUST NOT contain
  either a src-dnsname in an ACL associated with from-device-policy or
  a dst-dnsname associated with to-device-policy.













Lear, et al.                 Standards Track                   [Page 27]

RFC 8520             Manufacturer Usage Descriptions          March 2019


8.3.  The ietf-acldns Model

  <CODE BEGINS>file "[email protected]"
  module ietf-acldns {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-acldns";
    prefix ietf-acldns;

    import ietf-access-control-list {
      prefix acl;
    }
    import ietf-inet-types {
      prefix inet;
    }

    organization
      "IETF OPSAWG (Operations and Management Area Working Group)";
    contact
      "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
       WG List: [email protected]

       Author: Eliot Lear
               [email protected]

       Author: Ralph Droms
               [email protected]

       Author: Dan Romascanu
               [email protected]
      ";
    description
      "This YANG module defines a component that augments the
       IETF description of an access list to allow DNS names
       as matching criteria.

       Copyright (c) 2019 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (http://trustee.ietf.org/license-info).";

    revision 2019-01-28 {
      description
        "Base version of dnsname extension of the ACL model.";



Lear, et al.                 Standards Track                   [Page 28]

RFC 8520             Manufacturer Usage Descriptions          March 2019


      reference
        "RFC 8520: Manufacturer Usage Description
         Specification";
    }

    grouping dns-matches {
      description
        "Domain names for matching.";
      leaf src-dnsname {
        type inet:host;
        description
          "domain name to be matched against.";
      }
      leaf dst-dnsname {
        type inet:host;
        description
          "domain name to be matched against.";
      }
    }

    augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches"
          + "/acl:l3/acl:ipv4/acl:ipv4" {
      description
        "Adding domain names to matching.";
      uses dns-matches;
    }
    augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches"
          + "/acl:l3/acl:ipv6/acl:ipv6" {
      description
        "Adding domain names to matching.";
      uses dns-matches;
    }
  }
  <CODE ENDS>

















Lear, et al.                 Standards Track                   [Page 29]

RFC 8520             Manufacturer Usage Descriptions          March 2019


9.  MUD File Example

  This example contains two access lists that are intended to provide
  outbound access to a cloud service on TCP port 443.

  {
    "ietf-mud:mud": {
      "mud-version": 1,
      "mud-url": "https://lighting.example.com/lightbulb2000",
      "last-update": "2019-01-28T11:20:51+01:00",
      "cache-validity": 48,
      "is-supported": true,
      "systeminfo": "The BMS Example Light Bulb",
      "from-device-policy": {
        "access-lists": {
          "access-list": [
            {
              "name": "mud-76100-v6fr"
            }
          ]
        }
      },
      "to-device-policy": {
        "access-lists": {
          "access-list": [
            {
              "name": "mud-76100-v6to"
            }
          ]
        }
      }
    },
    "ietf-access-control-list:acls": {
      "acl": [
        {
          "name": "mud-76100-v6to",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {
                "name": "cl0-todev",
                "matches": {
                  "ipv6": {
                    "ietf-acldns:src-dnsname": "test.example.com",
                    "protocol": 6
                  },
                  "tcp": {
                    "ietf-mud:direction-initiated": "from-device",



Lear, et al.                 Standards Track                   [Page 30]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                    "source-port": {
                      "operator": "eq",
                      "port": 443
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        },
        {
          "name": "mud-76100-v6fr",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {
                "name": "cl0-frdev",
                "matches": {
                  "ipv6": {
                    "ietf-acldns:dst-dnsname": "test.example.com",
                    "protocol": 6
                  },
                  "tcp": {
                    "ietf-mud:direction-initiated": "from-device",
                    "destination-port": {
                      "operator": "eq",
                      "port": 443
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        }
      ]
    }
  }

  In this example, two policies are declared: one from the Thing and
  the other to the Thing.  Each policy names an access list that
  applies to the Thing and one that applies from the Thing.  Within
  each access list, access is permitted to packets flowing to or from



Lear, et al.                 Standards Track                   [Page 31]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  the Thing that can be mapped to the domain name of
  "service.bms.example.com".  For each access list, the enforcement
  point should expect that the Thing initiated the connection.

10.  The MUD URL DHCP Option

  The IPv4 MUD URL client option has the following format:

    +------+-----+------------------------------
    | code | len |  MUDstring
    +------+-----+------------------------------

  Code OPTION_MUD_URL_V4 (161) has been assigned by IANA.  len is a
  single octet that indicates the length of the MUD string in octets.
  The MUDstring is defined as follows:

   MUDstring = mudurl [ " " reserved ]
   mudurl = URI; a URL [RFC3986] that uses the "https" scheme [RFC7230]
   reserved = 1*( OCTET ) ; from [RFC5234]

  The entire option MUST NOT exceed 255 octets.  If a space follows the
  MUD URL, a reserved string that will be defined in future
  specifications follows.  MUD managers that do not understand this
  field MUST ignore it.

  The IPv6 MUD URL client option has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         OPTION_MUD_URL_V6     |        option-length          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            MUDstring                          |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  OPTION_MUD_URL_V6 (112).

  option-length contains the length of the MUDstring, as defined above,
  in octets.

  The intent of this option is to provide both a new Thing classifier
  to the network as well as some recommended configuration to the
  routers that implement the policy.  However, it is entirely the
  purview of the network system as managed by the network administrator
  to decide what to do with this information.  The key function of this





Lear, et al.                 Standards Track                   [Page 32]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  option is simply to identify the type of Thing to the network in a
  structured way such that the policy can be easily found with existing
  toolsets.

10.1.  Client Behavior

  A DHCPv4 client MAY emit a DHCPv4 option, and a DHCPv6 client MAY
  emit a DHCPv6 option.  These options are singletons, as specified in
  [RFC7227].  Because clients are intended to have at most one MUD URL
  associated with them, they may emit at most one MUD URL option via
  DHCPv4 and one MUD URL option via DHCPv6.  In the case where both v4
  and v6 DHCP options are emitted, the same URL MUST be used.

10.2.  Server Behavior

  A DHCP server may ignore these options or take action based on
  receipt of these options.  When a server consumes this option, it
  will either forward the URL and relevant client information (such as
  the gateway address or giaddr and requested IP address, and lease
  length) to a network management system or retrieve the usage
  description itself by resolving the URL.

  DHCP servers may implement MUD functionality themselves or they may
  pass along appropriate information to a network management system or
  MUD manager.  A DHCP server that does process the MUD URL MUST adhere
  to the process specified in [RFC2818] and [RFC5280] to validate the
  TLS certificate of the web server hosting the MUD file.  Those
  servers will retrieve the file, process it, and create and install
  the necessary configuration on the relevant network element.  Servers
  SHOULD monitor the gateway for state changes on a given interface.  A
  DHCP server that does not provide MUD functionality and has forwarded
  a MUD URL to a MUD manager MUST notify the MUD manager of any
  corresponding change to the DHCP state of the client (such as
  expiration or explicit release of a network address lease).

  Should the DHCP server fail, in the case when it implements the MUD
  manager functionality, any backup mechanisms SHOULD include the MUD
  state, and the server SHOULD resolve the status of clients upon its
  restart, similar to what it would do absent MUD manager
  functionality.  In the case where the DHCP server forwards
  information to the MUD manager, the MUD manager will either make use
  of redundant DHCP servers for information or clear state based on
  other network information, such as monitoring port status on a switch
  via SNMP, Radius accounting, or similar mechanisms.

10.3.  Relay Requirements

  There are no additional requirements for relays.



Lear, et al.                 Standards Track                   [Page 33]

RFC 8520             Manufacturer Usage Descriptions          March 2019


11.  The Manufacturer Usage Description (MUD) URL X.509 Extension

  This section defines an X.509 non-critical certificate extension that
  contains a single URL that points to an online Manufacturer Usage
  Description concerning the certificate subject.  The URI must be
  represented as described in Section 7.4 of [RFC5280].

  Any Internationalized Resource Identifiers (IRIs) MUST be mapped to
  URIs as specified in Section 3.1 of [RFC3987] before they are placed
  in the certificate extension.

  The semantics of the URL are defined Section 6 of this document.

  The choice of id-pe is based on guidance found in Section 4.2.2 of
  [RFC5280]:

        These extensions may be used to direct applications to on-line
        information about the issuer or the subject.

  The MUD URL is precisely that: online information about the
  particular subject.

  In addition, a separate new extension is defined as id-pe-mudsigner.
  This contains the subject field of the signing certificate of the MUD
  file.  Processing of this field is specified in Section 13.2.

  The purpose of this signature is to make a claim that the MUD file
  found on the server is valid for a given device, independent of any
  other factors.  There are several security considerations below in
  Section 16.

  A new content-type id-ct-mud is also defined.  While signatures are
  detached today, should a MUD file be transmitted as part of a
  Cryptographic Message Syntax (CMS) message, this content-type SHOULD
  be used.
















Lear, et al.                 Standards Track                   [Page 34]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  This module imports from [RFC5912] and [RFC6268].  The new extension
  is identified as follows:

  <CODE BEGINS>
     MUDURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
                  internet(1) security(5) mechanisms(5) pkix(7)
                  id-mod(0) id-mod-mudURLExtn2016(88) }
      DEFINITIONS IMPLICIT TAGS ::= BEGIN

      -- EXPORTS ALL --

     IMPORTS

       -- RFC 5912
       EXTENSION
       FROM PKIX-CommonTypes-2009
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5) mechanisms(5) pkix(7) id-mod(0)
              id-mod-pkixCommon-02(57) }

       -- RFC 5912
       id-ct
       FROM PKIXCRMF-2009
            { iso(1) identified-organization(3) dod(6) internet(1)
              security(5)  mechanisms(5) pkix(7) id-mod(0)
              id-mod-crmf2005-02(55) }

       -- RFC 6268
       CONTENT-TYPE
       FROM CryptographicMessageSyntax-2010
         { iso(1) member-body(2) us(840) rsadsi(113549)
           pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }

       -- RFC 5912
       id-pe, Name
       FROM PKIX1Explicit-2009
             { iso(1) identified-organization(3) dod(6) internet(1)
               security(5) mechanisms(5) pkix(7) id-mod(0)
               id-mod-pkix1-explicit-02(51) } ;

      --
      -- Certificate Extensions
      --

      MUDCertExtensions EXTENSION ::=
         { ext-MUDURL | ext-MUDsigner, ... }

      ext-MUDURL EXTENSION ::=



Lear, et al.                 Standards Track                   [Page 35]

RFC 8520             Manufacturer Usage Descriptions          March 2019


         { SYNTAX MUDURLSyntax IDENTIFIED BY id-pe-mud-url }

      id-pe-mud-url OBJECT IDENTIFIER ::= { id-pe 25 }

      MUDURLSyntax ::= IA5String

      ext-MUDsigner EXTENSION ::=
         { SYNTAX MUDsignerSyntax IDENTIFIED BY id-pe-mudsigner }

      id-pe-mudsigner OBJECT IDENTIFIER ::= { id-pe 30 }

      MUDsignerSyntax ::= Name

      --
      -- CMS Content Types
      --

      MUDContentTypes CONTENT-TYPE ::=
         { ct-mud, ... }

       ct-mud CONTENT-TYPE ::=
         { -- directly include the content
           IDENTIFIED BY id-ct-mudtype }
         -- The binary data that is in the form
         -- "application/mud+json" is directly encoded as the
         -- signed data.  No additional ASN.1 encoding is added.

      id-ct-mudtype OBJECT IDENTIFIER ::= { id-ct 41 }

      END
  <CODE ENDS>

  While this extension can appear in either an 802.AR manufacturer
  certificate (IDevID) or a deployment certificate (LDevID), of course
  it is not guaranteed in either, nor is it guaranteed to be carried
  over.  It is RECOMMENDED that MUD manager implementations maintain a
  table that maps a Thing to its MUD URL based on IDevIDs.

12.  The Manufacturer Usage Description LLDP Extension

  The IEEE802.1AB Link Layer Discovery Protocol (LLDP) is a one-hop,
  vendor-neutral link-layer protocol used by end host network Things
  for advertising their identity, capabilities, and neighbors on an
  IEEE 802 local area network.  Its Type-Length-Value (TLV) design
  allows for "vendor-specific" extensions to be defined.  IANA has a
  registered IEEE 802 organizationally unique identifier (OUI) defined
  as documented in [RFC7042].  The MUD LLDP extension uses a subtype
  defined in this document to carry the MUD URL.



Lear, et al.                 Standards Track                   [Page 36]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  The LLDP vendor-specific frame has the following format:

  +--------+--------+----------+---------+--------------
  |TLV Type|  len   |   OUI    |subtype  | MUDString
  |  =127  |        |= 00 00 5E|  = 1    |
  |(7 bits)|(9 bits)|(3 octets)|(1 octet)|(1-255 octets)
  +--------+--------+----------+---------+--------------

  where:

  o  TLV Type = 127 indicates a vendor-specific TLV

  o  len = indicates the TLV string length

  o  OUI = 00 00 5E is the organizationally unique identifier of IANA

  o  subtype = 1 (as assigned by IANA for the MUDstring)

  o  MUDstring = the length MUST NOT exceed 255 octets

  The intent of this extension is to provide both a new Thing
  classifier to the network as well as some recommended configuration
  to the routers that implement the policy.  However, it is entirely
  the purview of the network system as managed by the network
  administrator to decide what to do with this information.  The key
  function of this extension is simply to identify the type of Thing to
  the network in a structured way such that the policy can be easily
  found with existing toolsets.

  Hosts, routers, or other network elements that implement this option
  are intended to have at most one MUD URL associated with them, so
  they may transmit at most one MUD URL value.

  Hosts, routers, or other network elements that implement this option
  may ignore these options or take action based on receipt of these
  options.  For example, they may fill in information in the respective
  extensions of the LLDP Management Information Base (MIB).  LLDP
  operates in a one-way direction.  Link Layer Discovery Protocol Data
  Units (LLDPDUs) are not exchanged as information requests by one
  Thing and responses sent by another Thing.  The other Things do not
  acknowledge LLDP information received from a Thing.  No specific
  network behavior is guaranteed.  When a Thing consumes this
  extension, it may either forward the URL and relevant remote Thing
  information to a MUD manager or retrieve the usage description by
  resolving the URL in accordance with normal HTTP semantics.






Lear, et al.                 Standards Track                   [Page 37]

RFC 8520             Manufacturer Usage Descriptions          March 2019


13.  The Creating and Processing of Signed MUD Files

  Because MUD files contain information that may be used to configure
  network access lists, they are sensitive.  To ensure that they have
  not been tampered with, it is important that they be signed.  We make
  use of DER-encoded Cryptographic Message Syntax (CMS) [RFC5652] for
  this purpose.

13.1.  Creating a MUD File Signature

  A MUD file MUST be signed using CMS as an opaque binary object.  In
  order to make successful verification more likely, intermediate
  certificates SHOULD be included.  The signature is stored at the
  location specified in the MUD file.  Signatures are transferred using
  content-type "application/pkcs7-signature".

  For example:

  % openssl cms -sign -signer mancertfile -inkey mankey \
                -in mudfile -binary -outform DER -binary \
                -certfile intermediatecert -out mudfile.p7s

  Note: A MUD file may need to be re-signed if the signature expires.

13.2.  Verifying a MUD File Signature

  Prior to processing the rest of a MUD file, the MUD manager MUST
  retrieve the MUD signature file by retrieving the value of "mud-
  signature" and validating the signature across the MUD file.  The Key
  Usage Extension in the signing certificate MUST be present and have
  the bit digitalSignature(0) set.  When the id-pe-mudsigner extension
  is present in a device's X.509 certificate, the MUD signature file
  MUST have been generated by a certificate whose subject matches the
  contents of that id-pe-mudsigner extension.  If these conditions are
  not met, or if it cannot validate the chain of trust to a known trust
  anchor, the MUD manager MUST cease processing the MUD file until an
  administrator has given approval.

  The purpose of the signature on the file is to assign accountability
  to an entity, whose reputation can be used to guide administrators on
  whether or not to accept a given MUD file.  It is already common
  place to check web reputation on the location of a server on which a
  file resides.  While it is likely that the manufacturer will be the
  signer of the file, this is not strictly necessary, and it may not be
  desirable.  For one thing, in some environments, integrators may
  install their own certificates.  For another, what is more important
  is the accountability of the recommendation, and not just the
  relationship between the Thing and the file.



Lear, et al.                 Standards Track                   [Page 38]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  An example:

  % openssl cms -verify -in mudfile.p7s -inform DER -content mudfile

  Note the additional step of verifying the common trust root.

14.  Extensibility

  One of our design goals is to see that MUD files are able to be
  understood by as broad a cross-section of systems as is possible.
  Coupled with the fact that we have also chosen to leverage existing
  mechanisms, we are left with no ability to negotiate extensions and a
  limited desire for those extensions in any event.  As such, a two-
  tier extensibility framework is employed, as follows:

  1.  At a coarse grain, a protocol version is included in a MUD URL.
      This memo specifies MUD version 1.  Any and all changes are
      entertained when this version is bumped.  Transition approaches
      between versions would be a matter for discussion in future
      versions.

  2.  At a finer grain, only extensions that would not incur additional
      risk to the Thing are permitted.  Specifically, adding nodes to
      the mud container is permitted with the understanding that such
      additions will be ignored by unaware implementations.  Any such
      extensions SHALL be standardized through the IETF process and
      MUST be named in the "extensions" list.  MUD managers MUST ignore
      YANG nodes they do not understand and SHOULD create an exception
      to be resolved by an administrator, so as to avoid any policy
      inconsistencies.

15.  Deployment Considerations

  Because MUD consists of a number of architectural building blocks, it
  is possible to assemble different deployment scenarios.  One key
  aspect is where to place policy enforcement.  In order to protect the
  Thing from other Things within a local deployment, policy can be
  enforced on the nearest switch or access point.  In order to limit
  unwanted traffic within a network, it may also be advisable to
  enforce policy as close to the Internet as possible.  In some
  circumstances, policy enforcement may not be available at the closest
  hop.  At that point, the risk of lateral infection (infection of
  devices that reside near one another) is increased to the number of
  Things that are able to communicate without protection.

  A caution about some of the classes: admission of a Thing into the
  "manufacturer" and "same-manufacturer" class may have impact on the
  access of other Things.  Put another way, the admission may grow the



Lear, et al.                 Standards Track                   [Page 39]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  access list on switches connected to other Things, depending on how
  access is managed.  Some care should be given on managing that access
  list growth.  Alternative methods such as additional network
  segmentation can be used to keep that growth within reason.

  Because as of this writing MUD is a new concept, one can expect a
  great many devices to not have implemented it.  It remains a local
  deployment decision as to whether a device that is first connected
  should be allowed broad or limited access.  Furthermore, as mentioned
  in the introduction, a deployment may choose to ignore a MUD policy
  in its entirety and simply take into account the MUD URL as a
  classifier to be used as part of a local policy decision.

  Finally, please see directly below information regarding device
  lifetimes and use of domain names.

16.  Security Considerations

  Based on how a MUD URL is emitted, a Thing may be able to lie about
  what it is, thus gaining additional network access.  This can happen
  in a number of ways when a device emits a MUD URL using DHCP or LLDP,
  such as being inappropriately admitted to a class such as
  "same-manufacturer", being given access to a device such as
  "my-controller", or being permitted access to an Internet resource,
  where such access would otherwise be disallowed.  Whether that is the
  case will depend on the deployment.  Implementations SHOULD be
  configurable to disallow additive access for devices using MUD URLs
  that are not emitted in a secure fashion such as in a certificate.
  Similarly, implementations SHOULD NOT grant elevated permissions
  (beyond those of devices presenting no MUD policy) to devices that do
  not strongly bind their identity to their L2/L3 transmissions.  When
  insecure methods are used by the MUD manager, the classes SHOULD NOT
  contain devices that use both insecure and secure methods, in order
  to prevent privilege escalation attacks, and MUST NOT contain devices
  with the same MUD URL that are derived from both strong and weak
  authentication methods.

  Devices may forge source (L2/L3) information.  Deployments should
  apply appropriate protections to bind communications to the
  authentication that has taken place.  For 802.1X authentication, IEEE
  802.1AE (MACsec) [IEEE8021AE] is one means by which this may happen.
  A similar approach can be used with 802.11i (Wi-Fi Protected Access 2
  (WPA2)) [IEEE80211i].  Other means are available with other lower-
  layer technologies.  Implementations using session-oriented access
  that is not cryptographically bound should take care to remove state
  when any form of break in the session is detected.





Lear, et al.                 Standards Track                   [Page 40]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  A rogue certification authority (CA) may sign a certificate that
  contains the same subject name as is listed in the MUDsigner field in
  the manufacturer certificate, thus seemingly permitting a substitute
  MUD file for a device.  There are two mitigations available: First,
  if the signer changes, this may be flagged as an exception by the MUD
  manager.  Second, if the MUD file also changes, the MUD manager
  SHOULD seek administrator approval (it should do this in any case).
  In all circumstances, the MUD manager MUST maintain a cache of
  trusted CAs for this purpose.  When such a rogue is discovered, it
  SHOULD be removed.

  Additional mitigations are described below.

  When certificates are not present, Things claiming to be of a certain
  manufacturer SHOULD NOT be included in that manufacturer grouping
  without additional validation of some form.  This will be relevant
  when the MUD manager makes use of primitives such as "manufacturer"
  for the purpose of accessing Things of a particular type.  Similarly,
  network management systems may be able to fingerprint the Thing.  In
  such cases, the MUD URL can act as a classifier that can be proven or
  disproven.  Fingerprinting may have other advantages as well: when
  802.1AR certificates are used, because they themselves cannot change,
  fingerprinting offers the opportunity to add artifacts to the MUD
  string in the form of the reserved field discussed in Section 10.
  The meaning of such artifacts is left as future work.

  MUD managers SHOULD NOT accept a usage description for a Thing with
  the same Media Access Control (MAC) address that has indicated a
  change of the URL authority without some additional validation (such
  as review by a network administrator).  New Things that present some
  form of unauthenticated MUD URL SHOULD be validated by some external
  means when they would be given increased network access.

  It may be possible for a rogue manufacturer to inappropriately
  exercise the MUD file parser, in order to exploit a vulnerability.
  There are two recommended approaches to address this threat.  The
  first is to validate that the signer of the MUD file is known to and
  trusted by the MUD manager.  The second is to have a system do a
  primary scan of the file to ensure that it is both parseable and
  believable at some level.  MUD files will likely be relatively small,
  to start with.  The number of ACEs used by any given Thing should be
  relatively small as well.  It may also be useful to limit retrieval
  of MUD URLs to only those sites that are known to have decent web or
  domain reputations.

  Use of a URL necessitates the use of domain names.  If a domain name
  changes ownership, the new owner of that domain may be able to
  provide MUD files that MUD managers would consider valid.  MUD



Lear, et al.                 Standards Track                   [Page 41]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  managers SHOULD cache certificates used by the MUD file server.  When
  a new certificate is retrieved for whatever reason, the MUD manager
  should check to see if ownership of the domain has changed.  A fair
  programmatic approximation of this is when the name servers for the
  domain have changed.  If the actual MUD file has changed, the MUD
  manager MAY check the WHOIS database to see if registration ownership
  of a domain has changed.  If a change has occurred, or if for some
  reason it is not possible to determine whether ownership has changed,
  further review may be warranted.  Note, this remediation does not
  take into account the case of a Thing that was produced long ago and
  only recently fielded, or the case where a new MUD manager has been
  installed.

  The release of a MUD URL by a Thing reveals what the Thing is and
  provides an attacker with guidance on what vulnerabilities may be
  present.

  While the MUD URL itself is not intended to be unique to a specific
  Thing, the release of the URL may aid an observer in identifying
  individuals when combined with other information.  This is a privacy
  consideration.

  In addressing both of these concerns, implementors should take into
  account what other information they are advertising through
  mechanisms such as Multicast DNS (mDNS) [RFC6872]; how a Thing might
  otherwise be identified, perhaps through how it behaves when it is
  connected to the network; and whether a Thing is intended to be used
  by individuals or carry personal identifying information, and then
  apply appropriate data minimization techniques.  One approach is to
  make use of TEAP [RFC7170] as the means to share information with
  authorized components in the network.  Network elements may also
  assist in limiting access to the MUD URL through the use of
  mechanisms such as DHCPv6-Shield [RFC7610].

  There is the risk of the MUD manager itself being spied on to
  determine what things are connected to the network.  To address this
  risk, MUD managers may choose to make use of TLS proxies that they
  trust that would aggregate other information.

  Please note that the security considerations mentioned in Section 3.7
  of [RFC8407] are not applicable in this case because the YANG
  serialization is not intended to be accessed via NETCONF.  However,
  for those who try to instantiate this model in a network element via
  the Network Configuration Protocol (NETCONF), all objects in each
  model in this document exhibit similar security characteristics as
  [RFC8519].  The basic purpose of MUD is to configure access, so by
  its very nature, it can be disruptive if used by unauthorized
  parties.



Lear, et al.                 Standards Track                   [Page 42]

RFC 8520             Manufacturer Usage Descriptions          March 2019


17.  IANA Considerations

17.1.  YANG Module Registrations

  The following YANG modules have been registered in the "YANG Module
  Names" registry:

     Name: ietf-mud
     URN: urn:ietf:params:xml:ns:yang:ietf-mud
     Prefix: ietf-mud
     Registrant contact: The IESG
     Reference: RFC 8520

     Name: ietf-acldns
     URI: urn:ietf:params:xml:ns:yang:ietf-acldns
     Prefix: ietf-acldns
     Registrant contact: The IESG
     Reference: RFC 8520

17.2.  URI Registrations

  IANA has added the following entries to the "IETF XML registry":

  URI: urn:ietf:params:xml:ns:yang:ietf-acldns
  Registrant Contact: The IESG.
  XML: N/A.  The requested URI is an XML namespace.

  URI: urn:ietf:params:xml:ns:yang:ietf-mud
  Registrant Contact: The IESG.
  XML: N/A.  The requested URI is an XML namespace.

17.3.  DHCPv4 and DHCPv6 Options

  The IANA has allocated OPTION_MUD_URL_V4 (161) in the "Dynamic Host
  Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP)
  Parameters" registry, and OPTION_MUD_URL_V6 (112) in the "Dynamic
  Host Configuration Protocol for IPv6 (DHCPv6)" registry, as described
  in Section 10.

17.4.  PKIX Extensions

  IANA has made the following assignments for:

  o  The MUDURLExtnModule-2016 ASN.1 module (88) in the "SMI Security
     for PKIX Module Identifier" registry (1.3.6.1.5.5.7.0).

  o  id-pe-mud-url object identifier (25) from the "SMI Security for
     PKIX Certificate Extension" registry (1.3.6.1.5.5.7.1).



Lear, et al.                 Standards Track                   [Page 43]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  o  id-pe-mudsigner object identifier (30) from the "SMI Security for
     PKIX Certificate Extension" registry.

  o  id-ct-mudtype object identifier (41) from the "SMI Security for
     S/MIME CMS Content Type" registry.

  o  The use of these values is specified in Section 11.

17.5.  Media Type Registration for MUD Files

  The following media type is defined for the transfer of MUD files:

  o  Type name: application

  o  Subtype name: mud+json

  o  Required parameters: N/A

  o  Optional parameters: N/A

  o  Encoding considerations: 8bit; "application/mud+json" values are
     represented as JSON objects; UTF-8 encoding MUST be employed
     [RFC3629].

  o  Security considerations: See Security Considerations of RFC 8520
     and Section 12 of [RFC8259].

  o  Interoperability considerations: N/A

  o  Published specification: RFC 8520

  o  Applications that use this media type: MUD managers as specified
     by RFC 8520.

  o  Fragment identifier considerations: N/A

  o  Additional information:
     Magic number(s): N/A
     File extension(s): N/A
     Macintosh file type code(s): N/A

  o  Person & email address to contact for further information:
     Eliot Lear <[email protected]>, Ralph Droms <[email protected]>,
     Dan Romascanu <[email protected]>

  o  Intended usage: COMMON

  o  Restrictions on usage: none



Lear, et al.                 Standards Track                   [Page 44]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  o  Author:
     Eliot Lear <[email protected]>
     Ralph Droms <[email protected]>
     Dan Romascanu <[email protected]>

  o  Change controller: IESG

  o  Provisional registration? (standards tree only): No.

17.6.  IANA LLDP TLV Subtype Registry

  IANA has created a new registry titled "IANA Link Layer Discovery
  Protocol (LLDP) TLV Subtypes" under "IEEE 802 Numbers".  The policy
  for this registry is Expert Review [RFC8126].  The maximum number of
  entries in the registry is 256.

  IANA has populated the initial registry as follows:

  LLDP subtype value: 1 (All the other 255 values are initially marked
  as "Unassigned".)

  Description: the Manufacturer Usage Description (MUD) Uniform
  Resource Locator (URL)

  Reference: RFC 8520

17.7.  The MUD Well-Known Universal Resource Name (URNs)

  The following parameter registry has been added in accordance with
  [RFC3553].

     Registry name: MUD Well-Known Universal Resource Name (URN)
     Specification: RFC 8520
     Repository: https://www.iana.org/assignments/mud
     Index value:  Encoded identically to a TCP/UDP port service
                   name, as specified in Section 5.1 of [RFC6335]

  The following entries have been added to the "MUD Well-Known
  Universal Resource Name (URN)" registry:

  "urn:ietf:params:mud:dns" refers to the service specified by
  [RFC1123].  "urn:ietf:params:mud:ntp" refers to the service specified
  by [RFC5905].








Lear, et al.                 Standards Track                   [Page 45]

RFC 8520             Manufacturer Usage Descriptions          March 2019


17.8.  Extensions Registry

  The IANA has established a registry of extensions as follows:

     Registry name: MUD Extensions
     Registry policy: Standards Action
     Reference: RFC 8520
     Extension name: UTF-8-encoded string, not to exceed 40 characters.

  Each extension MUST follow the rules specified in this specification.
  As is usual, the IANA issues early allocations in accordance with
  [RFC7120].

18.  References

18.1.  Normative References

  [IEEE8021AB]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks-- Station and Media Access Control Connectivity
             Discovery", IEEE 802.1AB.

  [RFC1123]  Braden, R., Ed., "Requirements for Internet Hosts -
             Application and Support", STD 3, RFC 1123,
             DOI 10.17487/RFC1123, October 1989,
             <https://www.rfc-editor.org/info/rfc1123>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2131]  Droms, R., "Dynamic Host Configuration Protocol",
             RFC 2131, DOI 10.17487/RFC2131, March 1997,
             <https://www.rfc-editor.org/info/rfc2131>.

  [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818,
             DOI 10.17487/RFC2818, May 2000,
             <https://www.rfc-editor.org/info/rfc2818>.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
             2003, <https://www.rfc-editor.org/info/rfc3629>.

  [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
             Levkowetz, Ed., "Extensible Authentication Protocol
             (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
             <https://www.rfc-editor.org/info/rfc3748>.



Lear, et al.                 Standards Track                   [Page 46]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.

  [RFC3987]  Duerst, M. and M. Suignard, "Internationalized Resource
             Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
             January 2005, <https://www.rfc-editor.org/info/rfc3987>.

  [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <https://www.rfc-editor.org/info/rfc5234>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
             RFC 5652, DOI 10.17487/RFC5652, September 2009,
             <https://www.rfc-editor.org/info/rfc5652>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <https://www.rfc-editor.org/info/rfc5905>.

  [RFC5912]  Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
             Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
             DOI 10.17487/RFC5912, June 2010,
             <https://www.rfc-editor.org/info/rfc5912>.

  [RFC6268]  Schaad, J. and S. Turner, "Additional New ASN.1 Modules
             for the Cryptographic Message Syntax (CMS) and the Public
             Key Infrastructure Using X.509 (PKIX)", RFC 6268,
             DOI 10.17487/RFC6268, July 2011,
             <https://www.rfc-editor.org/info/rfc6268>.

  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
             Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165,
             RFC 6335, DOI 10.17487/RFC6335, August 2011,
             <https://www.rfc-editor.org/info/rfc6335>.





Lear, et al.                 Standards Track                   [Page 47]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC7120]  Cotton, M., "Early IANA Allocation of Standards Track Code
             Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
             2014, <https://www.rfc-editor.org/info/rfc7120>.

  [RFC7227]  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
             S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
             BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
             <https://www.rfc-editor.org/info/rfc7227>.

  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.

  [RFC7231]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
             DOI 10.17487/RFC7231, June 2014,
             <https://www.rfc-editor.org/info/rfc7231>.

  [RFC7610]  Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield:
             Protecting against Rogue DHCPv6 Servers", BCP 199,
             RFC 7610, DOI 10.17487/RFC7610, August 2015,
             <https://www.rfc-editor.org/info/rfc7610>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
             RFC 7951, DOI 10.17487/RFC7951, August 2016,
             <https://www.rfc-editor.org/info/rfc7951>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.



Lear, et al.                 Standards Track                   [Page 48]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  [RFC8348]  Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
             YANG Data Model for Hardware Management", RFC 8348,
             DOI 10.17487/RFC8348, March 2018,
             <https://www.rfc-editor.org/info/rfc8348>.

  [RFC8415]  Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
             Richardson, M., Jiang, S., Lemon, T., and T. Winters,
             "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
             RFC 8415, DOI 10.17487/RFC8415, November 2018,
             <https://www.rfc-editor.org/info/rfc8415>.

  [RFC8519]  Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
             "YANG Data Model for Network Access Control Lists (ACLs)",
             RFC 8519, DOI 10.17487/RFC8519, March 2019,
             <https://www.rfc-editor.org/info/rfc8519>.

18.2.  Informative References

  [FW95]     Chapman, D. and E. Zwicky, "Building Internet Firewalls",
             First Edition, November 1995.

  [IEEE80211i]
             IEEE, "IEEE Standard for information technology-
             Telecommunications and information exchange between
             systems-Local and metropolitan area networks-Specific
             requirements-Part 11: Wireless LAN Medium Access Control
             (MAC) and Physical Layer (PHY) specifications: Amendment
             6: Medium Access Control (MAC) Security Enhancements",
             IEEE 802.11i.

  [IEEE8021AE]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks-Media Access Control (MAC) Security",
             IEEE 802.1AE.

  [IEEE8021AR]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Secure Device Identity", IEEE 802.1AR.

  [IEEE8021X]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Port-Based Network Access Control", IEEE 802.1X.

  [RFC1984]  IAB and IESG, "IAB and IESG Statement on Cryptographic
             Technology and the Internet", BCP 200, RFC 1984,
             DOI 10.17487/RFC1984, August 1996,
             <https://www.rfc-editor.org/info/rfc1984>.




Lear, et al.                 Standards Track                   [Page 49]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  [RFC3553]  Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
             IETF URN Sub-namespace for Registered Protocol
             Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
             2003, <https://www.rfc-editor.org/info/rfc3553>.

  [RFC6092]  Woodyatt, J., Ed., "Recommended Simple Security
             Capabilities in Customer Premises Equipment (CPE) for
             Providing Residential IPv6 Internet Service", RFC 6092,
             DOI 10.17487/RFC6092, January 2011,
             <https://www.rfc-editor.org/info/rfc6092>.

  [RFC6872]  Gurbani, V., Ed., Burger, E., Ed., Anjali, T., Abdelnur,
             H., and O. Festor, "The Common Log Format (CLF) for the
             Session Initiation Protocol (SIP): Framework and
             Information Model", RFC 6872, DOI 10.17487/RFC6872,
             February 2013, <https://www.rfc-editor.org/info/rfc6872>.

  [RFC7042]  Eastlake 3rd, D. and J. Abley, "IANA Considerations and
             IETF Protocol and Documentation Usage for IEEE 802
             Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042,
             October 2013, <https://www.rfc-editor.org/info/rfc7042>.

  [RFC7170]  Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
             "Tunnel Extensible Authentication Protocol (TEAP) Version
             1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
             <https://www.rfc-editor.org/info/rfc7170>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7452]  Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
             "Architectural Considerations in Smart Object Networking",
             RFC 7452, DOI 10.17487/RFC7452, March 2015,
             <https://www.rfc-editor.org/info/rfc7452>.

  [RFC7488]  Boucadair, M., Penno, R., Wing, D., Patil, P., and T.
             Reddy, "Port Control Protocol (PCP) Server Selection",
             RFC 7488, DOI 10.17487/RFC7488, March 2015,
             <https://www.rfc-editor.org/info/rfc7488>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.





Lear, et al.                 Standards Track                   [Page 50]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
             Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
             <https://www.rfc-editor.org/info/rfc8343>.

  [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
             Documents Containing YANG Data Models", BCP 216, RFC 8407,
             DOI 10.17487/RFC8407, October 2018,
             <https://www.rfc-editor.org/info/rfc8407>.











































Lear, et al.                 Standards Track                   [Page 51]

RFC 8520             Manufacturer Usage Descriptions          March 2019


Appendix A.  Default MUD Nodes

  What follows is the portion of a MUD file that permits DNS traffic to
  a controller that is registered with the URN
  "urn:ietf:params:mud:dns" and traffic NTP to a controller that is
  registered with "urn:ietf:params:mud:ntp".  This is considered the
  default behavior, and the ACEs are in effect appended to whatever
  other "ace" entries that a MUD file contains.  To block DNS or NTP,
  one repeats the matching statement but replaces the "forwarding"
  action "accept" with "drop".  Because ACEs are processed in the order
  they are received, the defaults would not be reached.  A MUD manager
  might further decide to optimize to simply not include the defaults
  when they are overridden.

  Four "acl" list entries that implement default MUD nodes are listed
  below.  Two are for IPv4 and two are for IPv6 (one in each direction
  for both versions of IP).  Note that neither the access list name nor
  the ace name need be retained or used in any way by local
  implementations; they are simply there for the sake of completeness.

   "ietf-access-control-list:acls": {
      "acl": [
        {
          "name": "mud-59776-v4to",
          "type": "ipv4-acl-type",
          "aces": {
            "ace": [
              {
                "name": "ent0-todev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:dns"
                  },
                  "ipv4": {
                    "protocol": 17
                  },
                  "udp": {
                    "source-port": {
                      "operator": "eq",
                      "port": 53
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              },
              {



Lear, et al.                 Standards Track                   [Page 52]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                "name": "ent1-todev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:ntp"
                  },
                  "ipv4": {
                    "protocol": 17
                  },
                  "udp": {
                    "source-port": {
                      "operator": "eq",
                      "port": 123
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        },
        {
          "name": "mud-59776-v4fr",
          "type": "ipv4-acl-type",
          "aces": {
            "ace": [
              {
                "name": "ent0-frdev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:dns"
                  },
                  "ipv4": {
                    "protocol": 17
                  },
                  "udp": {
                    "destination-port": {
                      "operator": "eq",
                      "port": 53
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              },
              {



Lear, et al.                 Standards Track                   [Page 53]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                "name": "ent1-frdev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:ntp"
                  },
                  "ipv4": {
                    "protocol": 17
                  },
                  "udp": {
                    "destination-port": {
                      "operator": "eq",
                      "port": 123
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        },
        {
          "name": "mud-59776-v6to",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {
                "name": "ent0-todev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:dns"
                  },
                  "ipv6": {
                    "protocol": 17
                  },
                  "udp": {
                    "source-port": {
                      "operator": "eq",
                      "port": 53
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              },
              {



Lear, et al.                 Standards Track                   [Page 54]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                "name": "ent1-todev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:ntp"
                  },
                  "ipv6": {
                    "protocol": 17
                  },
                  "udp": {
                    "source-port": {
                      "operator": "eq",
                      "port": 123
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        },
        {
          "name": "mud-59776-v6fr",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {
                "name": "ent0-frdev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:dns"
                  },
                  "ipv6": {
                    "protocol": 17
                  },
                  "udp": {
                    "destination-port": {
                      "operator": "eq",
                      "port": 53
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              },
              {



Lear, et al.                 Standards Track                   [Page 55]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                "name": "ent1-frdev",
                "matches": {
                  "ietf-mud:mud": {
                    "controller": "urn:ietf:params:mud:ntp"
                  },
                  "ipv6": {
                    "protocol": 17
                  },
                  "udp": {
                    "destination-port": {
                      "operator": "eq",
                      "port": 123
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        }
      ]
    }

Appendix B.  A Sample Extension: DETNET-indicator

  In this sample extension, we augment the core MUD model to indicate
  whether the device implements DETNET.  If a device claims not to use
  DETNET, but then later attempts to do so, a notification or exception
  might be generated.  Note that this example is intended only for
  illustrative purposes.

Extension Name: "Example-Extension" (to be used in the extensions list)
Standard: RFC 8520 (but do not register the example)

  This extension augments the MUD model to include a single node, using
  the following sample module that has the following tree structure:

  module: ietf-mud-detext-example
    augment /ietf-mud:mud:
      +--rw is-detnet-required?   boolean









Lear, et al.                 Standards Track                   [Page 56]

RFC 8520             Manufacturer Usage Descriptions          March 2019


  The model is defined as follows:

  <CODE BEGINS>file "[email protected]"
  module ietf-mud-detext-example {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-mud-detext-example";
    prefix ietf-mud-detext-example;

    import ietf-mud {
      prefix ietf-mud;
    }

    organization
      "IETF OPSAWG (Operations and Management Area Working Group)";
    contact
      "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
       WG List: [email protected]

       Author: Eliot Lear
               [email protected]

       Author: Ralph Droms
               [email protected]

       Author: Dan Romascanu
               [email protected]
      ";
    description
      "Sample extension to a MUD module to indicate a need
       for DETNET support.";

    revision 2019-01-28 {
      description
        "Initial revision.";
      reference
        "RFC 8520: Manufacturer Usage Description
         Specification";
    }

    augment "/ietf-mud:mud" {
      description
        "This adds a simple extension for a manufacturer
          to indicate whether DETNET is required by a
         device.";
      leaf is-detnet-required {
        type boolean;
        description
          "This value will equal 'true' if a device requires



Lear, et al.                 Standards Track                   [Page 57]

RFC 8520             Manufacturer Usage Descriptions          March 2019


           DETNET to properly function.";
      }
    }
  }
  <CODE ENDS>

  Using the previous example, we now show how the extension would be
  expressed:

  {
    "ietf-mud:mud": {
      "mud-version": 1,
      "mud-url": "https://lighting.example.com/lightbulb2000",
      "last-update": "2019-01-28T11:20:51+01:00",
      "cache-validity": 48,
      "extensions": [
          "ietf-mud-detext-example"
       ],
      "ietf-mud-detext-example:is-detnet-required": "false",
      "is-supported": true,
      "systeminfo": "The BMS Example Light Bulb",
      "from-device-policy": {
        "access-lists": {
          "access-list": [
            {
              "name": "mud-76100-v6fr"
            }
          ]
        }
      },
      "to-device-policy": {
        "access-lists": {
          "access-list": [
            {
              "name": "mud-76100-v6to"
            }
          ]
        }
      }
    },
    "ietf-access-control-list:acls": {
      "acl": [
        {
          "name": "mud-76100-v6to",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {



Lear, et al.                 Standards Track                   [Page 58]

RFC 8520             Manufacturer Usage Descriptions          March 2019


                "name": "cl0-todev",
                "matches": {
                  "ipv6": {
                    "ietf-acldns:src-dnsname": "test.example.com",
                    "protocol": 6
                  },
                  "tcp": {
                    "ietf-mud:direction-initiated": "from-device",
                    "source-port": {
                      "operator": "eq",
                      "port": 443
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        },
        {
          "name": "mud-76100-v6fr",
          "type": "ipv6-acl-type",
          "aces": {
            "ace": [
              {
                "name": "cl0-frdev",
                "matches": {
                  "ipv6": {
                    "ietf-acldns:dst-dnsname": "test.example.com",
                    "protocol": 6
                  },
                  "tcp": {
                    "ietf-mud:direction-initiated": "from-device",
                    "destination-port": {
                      "operator": "eq",
                      "port": 443
                    }
                  }
                },
                "actions": {
                  "forwarding": "accept"
                }
              }
            ]
          }
        }



Lear, et al.                 Standards Track                   [Page 59]

RFC 8520             Manufacturer Usage Descriptions          March 2019


      ]
    }
  }

Acknowledgments

  The authors would like to thank Einar Nilsen-Nygaard, who
  singlehandedly updated the model to match the updated ACL model,
  Bernie Volz, Tom Gindin, Brian Weis, Sandeep Kumar, Thorsten Dahm,
  John Bashinski, Steve Rich, Jim Bieda, Dan Wing, Joe Clarke, Henk
  Birkholz, Adam Montville, Jim Schaad, and Robert Sparks for their
  valuable advice and reviews.  Russ Housley entirely rewrote
  Section 11 to be a complete module.  Adrian Farrel provided the basis
  for the privacy considerations text.  Kent Watsen provided a thorough
  review of the architecture and the YANG model.  The remaining errors
  in this work are entirely the responsibility of the authors.

Authors' Addresses

  Eliot Lear
  Cisco Systems
  Richtistrasse 7
  Wallisellen  CH-8304
  Switzerland

  Phone: +41 44 878 9200
  Email: [email protected]


  Ralph Droms
  Google
  355 Main St., 5th Floor
  Cambridge, MA  02142
  United States of America

  Phone: +1 978 376 3731
  Email: [email protected]


  Dan Romascanu

  Phone: +972 54 5555347
  Email: [email protected]








Lear, et al.                 Standards Track                   [Page 60]