Independent Submission                                        S. Deering
Request for Comments: 8507                                       Retired
Category: Historic                                        R. Hinden, Ed.
ISSN: 2070-1721                                     Check Point Software
                                                          December 2018


             Simple Internet Protocol (SIP) Specification

Abstract

  This document is published for the historical record.  The Simple
  Internet Protocol was the basis for one of the candidates for the
  IETF's Next Generation (IPng) work that became IPv6.

  The publication date of the original Internet-Draft was November 10,
  1992.  It is presented here substantially unchanged and is neither a
  complete document nor intended to be implementable.

  The paragraph that follows is the Abstract from the original draft.

  This document specifies a new version of IP called SIP, the Simple
  Internet Protocol.  It also describes the changes needed to ICMP,
  IGMP, and transport protocols such as TCP and UDP, in order to work
  with SIP.  A companion document [SIP-ADDR] describes the addressing
  and routing aspects of SIP, including issues of auto-configuration,
  host and subnet mobility, and multicast.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for the historical record.

  This document defines a Historic Document for the Internet community.
  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not candidates for any level of Internet Standard;
  see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8507.







Deering & Hinden                Historic                        [Page 1]

RFC 8507                     Simple IP (SIP)               December 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1. Preface .........................................................3
  2. Introduction ....................................................3
  3. Terminology .....................................................4
  4. SIP Header Format ...............................................5
  5. Addresses .......................................................6
     5.1. Text Representation of Addresses ...........................6
     5.2. Unicast Addresses ..........................................6
     5.3. Multicast Addresses ........................................8
     5.4. Special Addresses ..........................................9
  6. Packet Size Issues .............................................12
  7. Source Routing Header ..........................................13
  8. Fragmentation Header ...........................................14
  9. Changes to Other Protocols .....................................16
     9.1. Changes to ICMP ...........................................16
     9.2. Changes to IGMP ...........................................20
     9.3. Changes to Transport Protocols ............................21
     9.4. Changes to Link-Layer Protocols ...........................22
  10. Security Considerations .......................................22
  11. Acknowledgments ...............................................23
  12. Informative References ........................................23
  Appendix A. SIP Design Rationale ..................................25
  Appendix B. Future Directions .....................................25
  Authors' Addresses ................................................26














Deering & Hinden                Historic                        [Page 2]

RFC 8507                     Simple IP (SIP)               December 2018


1.  Preface

  This document is published for the historical record.

  Simple IP (SIP) was the basis for one of the candidates for the
  IETF's Next Generation (IPng) work; see "The Recommendation for the
  IP Next Generation Protocol" [RFC1752].  The original 1992
  Internet-Draft describing SIP is published here as part of the record
  of that work.

  SIP evolved into SIP Plus [RFC1710], which was assessed as a
  candidate for IPng [RFC1752] and led eventually to the development of
  IPv6, first published as [RFC1883].  The current specification for
  IPv6 is [RFC8200].

  The original Internet-Draft describing the Simple Internet Protocol
  was written by Steve Deering, and the Internet-Draft was posted on
  November 10, 1992.  The contents of this document are unchanged from
  that Internet-Draft, except for clarifications in the Abstract, the
  addition of this section, modifications to the authors' information,
  the updating of references, removal of the IANA considerations, and
  minor formatting changes.

  It should be noted that the original draft was not complete and that
  no attempt has been made to complete it.  This document is not
  intended to be implementable.

2.  Introduction

  SIP is a new version of IP.  Its salient differences from IP
  version 4 [RFC791], subsequently referred to as "IPv4", are:

      o  expansion of addresses to 64 bits,

      o  simplification of the IP header by eliminating some
         inessential fields, and

      o  relaxation of length restrictions on optional data, such as
         source-routing information.

  SIP retains the IP model of globally-unique addresses,
  hierarchically-structured for efficient routing.  Increasing the
  address size from 32 to 64 bits allows more levels of hierarchy to be
  encoded in the addresses, enough to enable efficient routing in an
  internet with tens of thousands of addressable devices in every
  office, every residence, and every vehicle in the world.  Keeping the





Deering & Hinden                Historic                        [Page 3]

RFC 8507                     Simple IP (SIP)               December 2018


  addresses fixed-length and relatively compact facilitates
  high-performance router and host implementation, and keeps the
  bandwidth overhead of the SIP headers almost as low as IPv4.

  The elimination of inessential fields also contributes to
  high-performance implementation, and to the likelihood of correct
  implementation.  A change in the way that optional data, such as
  source-routing information, is encoded allows for more efficient
  forwarding and less stringent limits on the length of such data.

  Despite these changes, SIP remains very similar to IPv4.  This
  similarity makes it easy to understand SIP (for those who already
  understand IPv4), makes it possible to reuse much of the code and
  data structures from IPv4 in an implementation of SIP (including
  almost all of ICMP and IGMP), and makes it straightforward to
  translate between SIP packets and IPv4 packets for transition
  purposes [IPAE].

  The subsequent sections of this document specify SIP and its
  associated protocols without much explanation of why the design
  choices were made the way they were.  Appendix A presents the
  rationale for those aspects of SIP that differ from IPv4.

3.  Terminology

   system      - a device that implements SIP.

   router      - a system that forwards SIP packets.

   host        - any system that is not a router.

   link        - a communication facility or medium over which systems
                 can communicate at the link layer, i.e., the layer
                 immediately below SIP.

   interface   - a system's attachment point to a link.

   address     - a SIP-layer identifier for an interface or a group of
                 interfaces.

   subnet      - in the SIP unicast addressing hierarchy, a
                 lowest-level (finest-grain) cluster of addresses,
                 sharing a common address prefix (i.e., high-order
                 address bits).  Typically, all interfaces attached to
                 the same link have addresses in the same subnet;
                 however, in some cases, a single link may support more
                 than one subnet, or a single subnet may span more than
                 one link.



Deering & Hinden                Historic                        [Page 4]

RFC 8507                     Simple IP (SIP)               December 2018


   link MTU    - the maximum transmission unit, i.e., maximum packet
                 size in octets, that can be conveyed in one piece over
                 a link (where a packet is a SIP header plus payload).

   path MTU    - the minimum link MTU of all the links in a path
                 between a source system and a destination system.

   packetization
   layer       - any protocol layer above SIP that is responsible for
                 packetizing data to fit within outgoing SIP packets.
                 Typically, transport-layer protocols, such as TCP, are
                 packetization protocols, but there may also be
                 higher-layer packetization protocols, such as
                 protocols implemented on top of UDP.

4.  SIP Header Format

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Version|                        Reserved                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Payload Length        |  Payload Type |   Hop Limit   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                         Source Address                        +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                      Destination Address                      +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Version              4-bit IP version number = decimal 6.
                       <to be confirmed>

  Reserved             28-bit reserved field.  Initialized to zero
                       for transmission; ignored on reception.

  Payload Length       16-bit unsigned integer.  Length of payload,
                       i.e., the rest of the packet following the
                       SIP header, in octets.

  Payload Type         8-bit selector.  Identifies the type of
                       payload, e.g., TCP.

  Hop Limit            8-bit unsigned integer.  Decremented by 1
                       by each system that forwards the packet.
                       The packet is discarded if Hop Limit is
                       decremented to zero.



Deering & Hinden                Historic                        [Page 5]

RFC 8507                     Simple IP (SIP)               December 2018


  Source Address       64 bits.  See "Addresses" section, following.

  Destination Address  64 bits.  See "Addresses" section, following.

5.  Addresses

5.1.  Text Representation of Addresses

  SIP addresses are 64 bits (8 octets) long.  The text representation
  of a SIP addresses is 16 hexadecimal digits, with a colon between the
  4th and 5th digits, and optional colons between any subsequent pair
  of digits.  Leading zeros must not be dropped.  Examples:

         0123:4567:89AB:CDEF

         0123:456789ABCDEF

         0123:456789AB:CDE:F

  Programs that read the text representation of SIP addresses must be
  insensitive to the presence or absence of optional colons.  Programs
  that write the text representation of a SIP address should use the
  first format above (i.e., colons after the 4th, 8th, and 12th
  digits), in the absence of any knowledge of the structure or
  preferred format of the address, such as knowledge of the format in
  which it was originally read.

  The presence of at least one colon in the text representation allows
  SIP addresses to be easily distinguished from both domain names and
  the text representation of IPv4 addresses.

5.2.  Unicast Addresses

  A SIP unicast address is a globally-unique identifier for a single
  interface, i.e., no two interfaces in a SIP internet may have the
  same unicast address.  A single interface may, however, have more
  than one unicast address.

  A system considers its own unicast address(es) to have the following
  structure, where different addresses may have different values for n:

   |                         n bits                     |  64-n bits |
   +----------------------------------------------------+------------+
   |                     subnet prefix                  |interface ID|
   +----------------------------------------------------+------------+






Deering & Hinden                Historic                        [Page 6]

RFC 8507                     Simple IP (SIP)               December 2018


  To know the length of the subnet prefix, the system is required to
  associate with each of its addresses a 'subnet mask' of the following
  form:

   |                         n bits                     |  64-n bits |
   +----------------------------------------------------+------------+
   |1111111111111111111111111111111111111111111111111111|000000000000|
   +----------------------------------------------------+------------+

  A system may have a subnet mask of all-ones, which means that the
  system belongs to a subnet containing exactly one system -- itself.

  A system acquires its subnet mask(s) at the same time, and by the
  same mechanism, as it acquires its address(es), for example, by
  manual configuration or by a dynamic configuration protocol such as
  BOOTP [RFC951].

  Hosts are ignorant of any further structure in a unicast address.

  Routers may acquire, through manual configuration or the operation of
  routing protocols, additional masks that identify higher-level
  clusters in a hierarchical addressing plan.  For example, the routers
  within a single site would typically have a 'site mask', such as the
  following:

   |                  m bits                 |       64-m bits       |
   +-----------------------------------------+-----------------------+
   |11111111111111111111111111111111111111111|00000000000000000000000|
   +-----------------------------------------+-----------------------+

  by which they could deduce the following structure in the site's
  addresses:

   |                  m bits                 |  p bits  | 64-m-p bits|
   +-----------------------------------------+----------+------------+
   |                site prefix              |subnet  ID|interface ID|
   +-----------------------------------------+----------+------------+

  All knowledge by SIP systems of the structure of unicast addresses is
  based on possession of such masks -- there is no "wired-in" knowledge
  of unicast address formats.

  The SIP Addressing and Routing document [SIP-ADDR] proposes two
  hierarchical addressing plans, one based on a hierarchy of SIP
  service providers, and one based on a geographic hierarchy.






Deering & Hinden                Historic                        [Page 7]

RFC 8507                     Simple IP (SIP)               December 2018


5.3.  Multicast Addresses

  A SIP multicast address is an identifier for a group of interfaces.
  An interface may belong to any number of multicast groups.  Multicast
  addresses have the following format:

   |1|   7   |  4 |  4 |                  48 bits                    |
   +-+-------+----+----+---------------------------------------------+
   |C|1111111|flgs|scop|                  group ID                   |
   +-+-------+----+----+---------------------------------------------+

  where:

    C = IPv4 compatibility flag; see [IPAE].

    1111111 in the rest of the first octet identifies the address as
            being a multicast address.

                                +-+-+-+-+
    flgs is a set of 4 flags:   |0|0|0|T|
                                +-+-+-+-+

      the high-order 3 flags are reserved, and must be initialized
      to 0.

      T = 0 indicates a permanently-assigned ("well-known") multicast
            address, assigned by the global internet numbering
            authority.

      T = 1 indicates a non-permanently-assigned ("transient")
            multicast address.

    scop is a 4-bit multicast scope value:

      0 reserved
      1 intra-system scope
      2 intra-link scope
      3 (unassigned)
      4 (unassigned)
      5 intra-site scope
      6 (unassigned)
      7 (unassigned)
      8 intra-metro scope
      9 (unassigned)
      A (unassigned)
      B intra-country scope
      C (unassigned)




Deering & Hinden                Historic                        [Page 8]

RFC 8507                     Simple IP (SIP)               December 2018


      D (unassigned)
      E global scope
      F reserved

    group ID identifies the multicast group, either permanent or
    transient, within the given scope.

  The "meaning" of a permanently-assigned multicast address is
  independent of the scope value.  For example, if the "NTP servers
  group" is assigned a permanent multicast address with a group ID of
  43 (hex), then:

    7F01:000000000043 means all NTP servers on the same system as the
    sender.

    7F02:000000000043 means all NTP servers on the same link as the
    sender.

    7F05:000000000043 means all NTP servers at the same site as the
    sender.

    7F0E:000000000043 means all NTP servers in the internet.

  Non-permanently-assigned multicast addresses are meaningful only
  within a given scope.  For example, a group identified by the
  non-permanent, intra-site multicast address 7F15:000000000043 at one
  site bears no relationship to a group using the same address at a
  different site, nor to a non-permanent group using the same group ID
  with different scope, nor to a permanent group with the same
  group ID.

5.4.  Special Addresses

  There are a number of "special purpose" SIP addresses:

    The Unspecified Address: 0000:0000:0000:0000

      This address shall never be assigned to any system.  It may be
      used wherever an address appears, to indicate the absence of an
      address.  One example of its use is in the Source Address field
      of a SIP packet sent by an initializing host, before it has
      learned its own address.

    The Loopback Address: 0000:0000:0000:0001

      This address may be used by a system to send a SIP packet to
      itself.




Deering & Hinden                Historic                        [Page 9]

RFC 8507                     Simple IP (SIP)               December 2018


    Anyone Addresses: <prefix><zero>

      Addresses of this form may be used to send to the "nearest"
      system (according the routing protocols' measure of distance)
      that "knows" it has a unicast address prefix of <prefix>.

      Since hosts know only their subnet prefix(es), and no
      higher-level prefixes, a host with the following address:

      +----------------------------------------------+----------------+
      |               subnet prefix = A              |interface ID = B|
      +----------------------------------------------+----------------+

      shall recognize only the following Anyone address as identifying
      itself:

      +----------------------------------------------+----------------+
      |               subnet prefix = A              |0000000000000000|
      +----------------------------------------------+----------------+

      An intra-site router that knows that one of its addresses has the
      format:

      +-------------------------------+--------------+----------------+
      |         site prefix = X       |subnet  ID = Y|interface ID = Z|
      +-------------------------------+--------------+----------------+

      shall accept packets sent to either of the following two Anyone
      addresses as if they had been sent to the router's own address:

      +-------------------------------+-------------------------------+
      |         site prefix = X       |0000000000000000000000000000000|
      +-------------------------------+-------------------------------+

      +-------------------------------+--------------+----------------+
      |         site prefix = X       |subnet  ID = Y|0000000000000000|
      +-------------------------------+--------------+----------------+

      Anyone Addresses work as follows:

        If any system belonging to subnet A sends a packet to
        subnet A's Anyone address, the packet shall be looped-back
        within the sending system itself, since it is the nearest
        system to itself with the subnet A prefix.  If a system outside
        of subnet A sends a packet to subnet A's Anyone address, the
        packet shall be accepted by the first router on subnet A that
        the packet reaches.




Deering & Hinden                Historic                       [Page 10]

RFC 8507                     Simple IP (SIP)               December 2018


        Similarly, a packet sent to site X's Anyone address from
        outside of site X shall be accepted by the first encountered
        router belonging to site X, i.e., one of site X's boundary
        routers.  If a higher-level prefix P identifies, say, a
        particular service provider, then a packet sent to <P> <zero>
        from outside of provider P's facilities shall be delivered to
        the nearest entry router into P's facilities.

      Anyone addresses are most commonly used in conjunction with the
      SIP source routing header, to cause a packet to be routed via one
      or more specified "transit domains", without the need to identify
      individual routers in those domains.

      The value zero is reserved at each level of every unicast address
      hierarchy, to serve as an Anyone address for that level.

    The Reserved Multicast Address:   7F0s:0000:0000:0000

      This multicast address (with any scope value, s) is reserved, and
      shall never be assigned to any multicast group.

    The All Systems Addresses:   7F01:0000:0000:0001
                                 7F02:0000:0000:0001

      These multicast addresses identify the group of all SIP systems,
      within scope 1 (intra-system) or 2 (intra-link).

    The All Hosts Addresses:   7F01:0000:0000:0002
                               7F02:0000:0000:0002

      These multicast addresses identify the group of all SIP hosts,
      within scope 1 (intra-system) or 2 (intra-link).

    The All Routers Addresses:   7F01:0000:0000:0003
                                 7F02:0000:0000:0003

      These multicast addresses identify the group of all SIP routers,
      within scope 1 (intra-system) or 2 (intra-link).


  A host is required to recognize the following addresses as
  identifying itself: its own unicast addresses, the Anyone addresses
  with the same subnet prefixes as its unicast addresses, the Loopback
  address, the All Systems and All Hosts addresses, and any other
  multicast addresses to which the host belongs.






Deering & Hinden                Historic                       [Page 11]

RFC 8507                     Simple IP (SIP)               December 2018


  A router is required to recognize the following addresses as
  identifying itself: its own unicast addresses, the Anyone addresses
  with the same subnet or higher-level prefixes as its unicast
  addresses, the Loopback address, the All Systems and All Routers
  addresses, and any other multicast addresses to which the host
  belongs.

6.  Packet Size Issues

  SIP requires that every link in the internet have an MTU of 576
  octets or greater.  On any link that cannot convey a 576-octet packet
  in one piece, link-specific fragmentation and reassembly must be
  provided at a layer below SIP.

      (Note: this minimum link MTU is NOT the same as the one in IPv4.
      In IPv4, the minimum link MTU is 68 octets [ [RFC791], page 25 ];
      576 octets is the minimum reassembly buffer size required in an
      IPv4 system, which has nothing to do with link MTUs.)

  From each link to which a system is directly attached, the system
  must be able to accept packets as large as that link's MTU.  Links
  that have a configurable MTU, such as PPP links [RFC1661], should be
  configured with an MTU of 600 octets or greater.

  SIP systems are expected to implement Path MTU Discovery [RFC1191],
  in order to discover and take advantage of paths with MTU greater
  than 576 octets.  However, a minimal SIP implementation (e.g., in a
  boot ROM) may simply restrict itself to sending packets no larger
  than 576 octets, and omit implementation of Path MTU Discovery.

  Path MTU Discovery requires support both in the SIP layer and in the
  packetization layers.  A system that supports Path MTU Discovery at
  the SIP layer may serve packetization layers that are unable to adapt
  to changes of the path MTU.  Such packetization layers must limit
  themselves to sending packets no longer than 576 octets, even when
  sending to destinations that belong to the same subnet.

      (Note: Unlike IPv4, it is unnecessary in SIP to set a "Don't
      Fragment" flag in the packet header in order to perform Path MTU
      Discovery; that is an implicit attribute of every SIP packet.
      Also, those parts of the RFC-1191 procedures that involve use of
      a table of MTU "plateaus" do not apply to SIP, because the SIP
      version of the "Datagram Too Big" message always identifies the
      exact MTU to be used.)







Deering & Hinden                Historic                       [Page 12]

RFC 8507                     Simple IP (SIP)               December 2018


7.  Source Routing Header

  A Payload Type of <TBD> in the immediately preceding header indicates
  the presence of this Source Routing header:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Reserved                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Num Addrs   |   Next Addr   |  Payload Type |    Reserved   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                           Address[0]                          +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                           Address[1]                          +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     .                               .                               .
     .                               .                               .
     .                               .                               .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                     Address[Num Addrs - 1]                    +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Reserved             Initialized to zero for transmission; ignored
                          on reception.

     Num Addrs            Number of addresses in the Source Routing
                          header.

     Next Addr            Index of next address to be processed;
                          initialized to 0 by the originating system.

     Payload Type         Identifies the type of payload following the
                          Source Routing header.













Deering & Hinden                Historic                       [Page 13]

RFC 8507                     Simple IP (SIP)               December 2018


  A Source Routing header is not examined or processed until it reaches
  the system identified in the Destination Address field of the SIP
  header.  In that system, dispatching on the Payload Type of the SIP
  (or subsequent) header causes the Source Routing module to be
  invoked, which performs the following algorithm:

      o  If Next Addr < Num Addrs, swap the SIP Destination Address and
         Address[Next Addr], increment Next Addr by one, and re-submit
         the packet to the SIP module for forwarding to the next
         destination.

      o  If Next Addr = Num Addrs, dispatch to the local protocol
         module identified by the Payload Type field in the Source
         Routing header.

      o  If Next Addr > Num Addrs, send an ICMP Parameter Problem
         message to the Source Address, pointing to the Num Addrs
         field.

8.  Fragmentation Header

  A Payload Type of <TBD> in the immediately preceding header indicates
  the presence of this Fragmentation header:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Identification                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0 M|      Fragment Offset    |  Payload Type |    Reserved   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Identification       A value that changes on each packet sent with
                          the same Source Address, Destination Address,
                          and preceding Payload Type.

     M flag               1 = more fragments; 0 = last fragment.

     Fragment Offset      The offset, in 8-octet chunks, of the
                          following payload, relative to the original,
                          unfragmented payload.

     Payload Type         Identifies the type of payload following the
                          Fragmentation header.

     Reserved             Initialized to zero for transmission; ignored
                          on reception.






Deering & Hinden                Historic                       [Page 14]

RFC 8507                     Simple IP (SIP)               December 2018


  The Fragmentation header is NOT intended to support general,
  SIP-layer fragmentation.  In particular, SIP routers shall not
  fragment a SIP packet that is too big for the MTU of its next hop,
  except in the special cases described below; in the normal case, such
  a packet results in an ICMP Packet Too Big message being sent back to
  its source, for use by the source system's Path MTU Discovery
  algorithm.

  The special cases for which the Fragmentation header is intended are
  the following:

      o  A SIP packet that is "tunneled", either by encapsulation
         within another SIP packet or by insertion of a Source Routing
         header en-route, may, after the addition of the extra header
         fields, exceed the MTU of the tunnel's path; if the original
         packet is 576 octets or less in length, the tunnel entry
         system cannot respond to the source with a Packet Too Big
         message, and therefore must insert a Fragmentation header and
         fragment the packet to fit within the tunnel's MTU.

      o  An IPv4 fragment that is translated into a SIP packet, or an
         unfragmented IPv4 packet that is translated into too long a
         SIP packet to fit in the remaining path MTU, must include the
         SIP Fragmentation header, so that it may be properly
         reassembled at the destination SIP system.

  Every SIP system must support SIP fragmentation and reassembly, since
  any system may be configured to serve as a tunnel entry or exit
  point, and any SIP system may be destination of IPv4 fragments.  All
  SIP systems must be capable of reassembling, from fragments, a SIP
  packet of up to 1024 octets in length, including the SIP header; a
  system may be capable of assembling packets longer than 1024 octets.

  Routers do not examine or process Fragmentation headers of packets
  that they forward; only at the destination system is the
  Fragmentation header acted upon (i.e., reassembly performed), as a
  result of dispatching on the Payload Type of the preceding header.

  Fragmentation and reassembly employ the same algorithm as IPv4, with
  the following exceptions:

      o  All headers up to and including the Fragmentation header are
         repeated in each fragment; no headers or data following the
         Fragmentation header are repeated in each fragment.

      o  the Identification field is increased to 32 bits, to decrease
         the risk of wraparound of that field within the maximum packet
         lifetime over very high-throughput paths.



Deering & Hinden                Historic                       [Page 15]

RFC 8507                     Simple IP (SIP)               December 2018


  The similarity of the algorithm and the field layout to that of IPv4
  enables existing IPv4 fragmentation and reassembly code and data
  structures to be re-used with little modification.

9.  Changes to Other Protocols

  Upgrading IPv4 to SIP entails changes to the associated control
  protocols, ICMP and IGMP, as well as to the transport layer, above,
  and possibly to the link-layer, below.  This section identifies those
  changes.

9.1.  Changes to ICMP

  SIP uses a subset of ICMP [[RFC792], [RFC950], [RFC1122], [RFC1191],
  [RFC1256]], with a few minor changes and some additions.  The
  presence of an ICMP header is indicated by a Payload Type of 1.

  One change to all ICMP messages is that, when used with SIP, the ICMP
  checksum includes a pseudo-header, like TCP and UDP, consisting of
  the SIP Source Address, Destination Address, Payload Length, and
  Payload Type (see section 8.3).

  There are a set of ICMP messages called "error messages", each of
  which, for IPv4, carries the IPv4 header plus 64 bits or more of data
  from the packet that invoked the error message.  When used with SIP,
  ICMP error messages carry the first 256 octets of the invoking SIP
  packet, or the entire invoking packet if it is shorter than
  256 octets.

  For most of the ICMP message types, the packets retain the same
  format and semantics as with IPv4; however, some of the fields are
  given new names to match SIP terminology.

  The changes to specific message types are as follows:

    Destination Unreachable

      The following Codes have different names when used with SIP:

        1 - destination address unreachable (IPv4 "host unreachable")
        7 - destination address unknown (IPv4 "dest. host unknown")
        2 - payload type unknown (IPv4 "protocol unreachable")
        4 - packet too big (IPv4 "fragmentation needed and DF set")








Deering & Hinden                Historic                       [Page 16]

RFC 8507                     Simple IP (SIP)               December 2018


      The following Codes retain the same names when used with SIP:

        3 - port unreachable
        5 - source route failed
        8 - source host isolated
       13 - communication administratively prohibited

      The following Codes are not used with SIP:

        0 - net unreachable
        6 - destination network unknown
        9 - comm. with dest. network administratively prohibited
       10 - comm. with dest. host administratively prohibited
       11 - network unreachable for type of service
       12 - host unreachable for type of service

      For "packet too big" messages (Code 4), the minimum legal value
      in the Next-Hop MTU field [RFC1191] is 576.


    Time Exceeded

      The name of Code 0 is changed to "hop limit exceeded in transit".


    Parameter Problem

      The Pointer field is extended to 16 bits and moved to the
      low-order end of the second 32-bit word, as follows:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Type     |      Code     |            Checksum         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Reserved           |            Pointer          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                           |
      |           first 256 octets of the invoking packet         |
      |                                                           |













Deering & Hinden                Historic                       [Page 17]

RFC 8507                     Simple IP (SIP)               December 2018


    Redirect

      Only Code 1 is used for SIP, meaning "redirect packets for the
      destination address".

      The Redirect header is modified for SIP, to accommodate the
      64-bit address of the "preferred router" and to retain 64-bit
      alignment, as follows:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Type     |      Code     |            Checksum         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Reserved                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                             |
      +                        Preferred Router                     +
      |                                                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                             |
      |             first 256 octets of the invoking packet         |
      |                                                             |






























Deering & Hinden                Historic                       [Page 18]

RFC 8507                     Simple IP (SIP)               December 2018


    Router Advertisement

      The format of the Router Advertisement message is changed to:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     Code      |           Checksum          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Num Addrs   |Addr Entry Size|           Lifetime          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                             |
      +                       Router Address[0]                     +
      |                                                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Preference Level[0]                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Reserved[0]                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                             |
      +                       Router Address[1]                     +
      |                                                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Preference Level[1]                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Reserved[1]                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               .                             |
      |                               .                             |
      |                               .                             |

      The value in the Addr Entry Size field is 4, and all of the
      Reserved fields are initialized to zero by senders and ignored by
      receivers.


    Router Solicitation

      No changes.


    Echo and Echo Reply

      No changes.









Deering & Hinden                Historic                       [Page 19]

RFC 8507                     Simple IP (SIP)               December 2018


    The following ICMP message types are not used with SIP:

      Source Quench
      Timestamp
      Timestamp Reply
      Information Request
      Information Reply
      Address Mask Request
      Address Mask Reply

9.2.  Changes to IGMP

  SIP uses the Internet Group Management Protocol, IGMP [RFC1112].  The
  presence of an IGMP header is indicated by a Payload Type of 2.

  When used with SIP, the IGMP checksum includes a pseudo-header, like
  TCP and UDP, consisting of the SIP Source Address, Destination
  Address, Payload Length, and Payload Type (see section 8.3).

  The format of an IGMP Host Membership Query message becomes:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Version| Type  |    Reserved   |           Checksum            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Reserved                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The format of an IGMP Host Membership Report message becomes:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Version| Type  |    Reserved   |           Checksum            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            Reserved                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                       Multicast Address                       +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  For both message types, the Version number remains 1, and the
  Reserved fields are set to zero by senders and ignored by receivers.










Deering & Hinden                Historic                       [Page 20]

RFC 8507                     Simple IP (SIP)               December 2018


9.3.  Changes to Transport Protocols

  The service interface to SIP has some differences from IPv4's service
  interface.  Existing transport protocols that use IPv4 must be
  changed to operate over SIP's service interface.  The differences
  from IPv4 are:

      o  Any addresses passed across the interface are 64 bits long,
         rather than 32 bits.

      o  The following IPv4 variables are not passed across the
         interface: Precedence, Type-of-Service, Identifier,
         Don't Fragment Flag

      o  SIP options have a different format than IPv4 options.  (For
         SIP, "options" are all headers between, and not including, the
         SIP header and the transport header.  The only IPv4 option
         currently specified for SIP is Loose Source Routing.

      o  ICMP error messages for SIP that are passed up to the
         transport layer carry the first 256 octets of the invoking SIP
         packet.

  Transport protocols that use IPv4 addresses for their own purposes,
  such as identifying connection state or inclusion in a pseudo-header
  checksum, must be changed to use 64-bit SIP addresses for those
  purposes instead.

  For SIP, the pseudo-header checksums of TCP, UDP, ICMP, and IGMP
  include the SIP Source Address, Destination Address, Payload Length,
  and Payload Type, with the following caveats:

      o  If the packet contains a Source Routing header, the
         destination address used in the pseudo-header checksum is that
         of the final destination.

      o  The Payload Length used in the pseudo-header checksum is the
         length of the transport-layer packet, including the transport
         header.

      o  The Payload Type used in the pseudo-header checksum is the
         Payload Type from the header immediately preceding the
         transport header.

      o  When added to the pseudo-header checksum, the Payload Type is
         treated as the left octet of a 16-bit word, with zeros in the
         the right octet, when viewed in IP standard octet order.




Deering & Hinden                Historic                       [Page 21]

RFC 8507                     Simple IP (SIP)               December 2018


      o  If either of the two addresses used in the pseudo-header
         checksum has its high-order bit set to 1, only the low-order
         32-bits of that address shall be used in the sum.  The
         high-order bit is used to indicate that the addressed system
         is an IPv4 system, and that the low-order 32-bits of the
         address contain that system's IPv4 address [IPAE].

  The semantics of SIP service differ from IPv4 service in three ways
  that may affect some transport protocols:

    (1)  SIP does not enforce maximum packet lifetime.  Any transport
         protocol that relies on IPv4 to limit packet lifetime must
         take this change into account, for example, by providing its
         own mechanisms for detecting and discarding obsolete packets.

    (2)  SIP does not checksum its own header fields.  Any transport
         protocol that relies on IPv4 to assure the integrity of the
         source and destinations addresses, packet length, and
         transport protocol identifier must take this change into
         account.  In particular, when used with SIP, the UDP checksum
         is mandatory, and ICMP and IGMP are changed to use a
         pseudo-header checksum.

    (3)  SIP does not (except in special cases) fragment packets that
         exceed the MTU of their delivery paths.  Therefore, a
         transport protocol must not send packets longer than
         576 octets unless it implements Path MTU Discovery [RFC1191]
         and is capable of adapting its transmitted packet size in
         response to changes of the path MTU.

9.4.  Changes to Link-Layer Protocols

  Link-layer media that have an MTU less than 576 must be enhanced
  with a link-specific fragmentation and reassembly mechanism, to
  support SIP.

  For links on which ARP is used by IPv4, the identical ARP protocol is
  used for SIP.  The low-order 32-bits of SIP addresses are used
  wherever IPv4 addresses would appear; since ARP is used only among
  systems on the same subnet, the high-order 32-bits of the SIP
  addresses may be inferred from the subnet prefix (assuming the subnet
  prefix is at least 32 bits long).  [This is subject to change -- see
  Appendix B.]

10.  Security Considerations

  <to be done>




Deering & Hinden                Historic                       [Page 22]

RFC 8507                     Simple IP (SIP)               December 2018


11.  Acknowledgments

  The author acknowledges the many helpful suggestions and the words of
  encouragement from Dave Clark, Dave Crocker, Deborah Estrin, Bob
  Hinden, Christian Huitema, Van Jacobson, Jeff Mogul, Dave Nichols,
  Erik Nordmark, Dave Oran, Craig Partridge, Scott Shenker, Paul
  Tsuchiya, Lixia Zhang, the members of End-to-End Research Group and
  the IPAE Working Group, and the participants in the big-internet and
  sip mailing lists.  He apologizes to those whose names he has not
  explicitly listed.  [If you want to be on the list in the next draft,
  just let him know!]

  Editor's note: Steve Deering was employed by the Xerox Palo Alto
  Research Center in Palo Alto, CA USA when this work was done.

12.  Informative References

  [IPAE]     Crocker, D. and R. Hinden, "IP Address Encapsulation
             (IPAE): A Mechanism for Introducing a New IP", Work in
             Progress, draft-crocker-ip-encaps-01, November 1992.

  [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791,
             DOI 10.17487/RFC0791, September 1981,
             <https://www.rfc-editor.org/info/rfc791>.

  [RFC792]  Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, DOI 10.17487/RFC0792, September 1981,
             <https://www.rfc-editor.org/info/rfc792>.

  [RFC950]  Mogul, J. and J. Postel, "Internet Standard Subnetting
             Procedure", STD 5, RFC 950, DOI 10.17487/RFC0950,
             August 1985, <https://www.rfc-editor.org/info/rfc950>.

  [RFC951]  Croft, W. and J. Gilmore, "Bootstrap Protocol", RFC 951,
             DOI 10.17487/RFC0951, September 1985,
             <https://www.rfc-editor.org/info/rfc951>.

  [RFC1112]  Deering, S., "Host extensions for IP multicasting", STD 5,
             RFC 1112, DOI 10.17487/RFC1112, August 1989,
             <https://www.rfc-editor.org/info/rfc1112>.

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122,
             DOI 10.17487/RFC1122, October 1989,
             <https://www.rfc-editor.org/info/rfc1122>.






Deering & Hinden                Historic                       [Page 23]

RFC 8507                     Simple IP (SIP)               December 2018


  [RFC1191]  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
             DOI 10.17487/RFC1191, November 1990,
             <https://www.rfc-editor.org/info/rfc1191>.

  [RFC1256]  Deering, S., Ed., "ICMP Router Discovery Messages",
             RFC 1256, DOI 10.17487/RFC1256, September 1991,
             <https://www.rfc-editor.org/info/rfc1256>.

  [RFC1661]  Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
             STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
             <https://www.rfc-editor.org/info/rfc1661>.

  [RFC1710]  Hinden, R., "Simple Internet Protocol Plus White Paper",
             RFC 1710, DOI 10.17487/RFC1710, October 1994,
             <https://www.rfc-editor.org/info/rfc1710>.

  [RFC1752]  Bradner, S. and A. Mankin, "The Recommendation for the IP
             Next Generation Protocol", RFC 1752, DOI 10.17487/RFC1752,
             January 1995, <https://www.rfc-editor.org/info/rfc1752>.

  [RFC1883]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 1883, DOI 10.17487/RFC1883,
             December 1995, <https://www.rfc-editor.org/info/rfc1883>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

  [SIP-ADDR] Deering, S., "Simple Internet Protocol (SIP) Addressing
             and Routing", Work in Progress, November 1992.




















Deering & Hinden                Historic                       [Page 24]

RFC 8507                     Simple IP (SIP)               December 2018


Appendix A.  SIP Design Rationale

  <this section still to be done>

  Fields present in IPv4, but absent in SIP:

    Header Length    Not needed; SIP header length is fixed.

    Precedence &
    Type of Service  Not used; transport-layer Port fields (or perhaps
                     a to-be-defined value in the Reserved field of the
                     SIP header) may be used for classifying packets at
                     a granularity finer than host-to-host, as required
                     for special handling.

    Header Checksum  Not used; transport pseudo-header checksum
                     protects destinations from accepting corrupted
                     packets.

  Need to justify:

    change of Total Length -> Payload Length, excluding header
    change of Protocol -> Payload Type
    change of Time to Live -> Hop Limit
    movement of fragmentation fields out of fixed header
    bigger minimum MTU, and reliance on PMTU Discovery

Appendix B.  Future Directions

  SIP as specified above is a fully functional replacement for IPv4,
  with a number of improvements, particularly in the areas of
  scalability of routing and addressing, and performance.  Some
  additional improvements are still under consideration:

      o  ARP may be modified to carry full 64-bit addresses, and to use
         link-layer multicast addresses, rather than broadcast
         addresses.

      o  The 28-bit Reserved field in the SIP header may be defined as
         a "Flow ID", or partitioned into a Type of Service field and a
         Flow ID field, for classifying packets deserving of special
         handling, e.g., non-default quality of service or real-time
         service.  On the other hand, the transport-layer port fields
         may be adequate for performing any such classification.  (One
         possibility would be simply to remove the port fields from TCP
         & UDP and append them to the SIP header, as in XNS.)





Deering & Hinden                Historic                       [Page 25]

RFC 8507                     Simple IP (SIP)               December 2018


      o  A new ICMP "destination has moved" message may defined, for
         re-routing to mobile hosts or subnets, and to domains that
         have changed their address prefixes.

      o  An explicit Trace Route message or option may be defined; the
         current IPv4 traceroute scheme will work fine with SIP, but it
         does not work for multicast, for which it has become very
         apparent that management and debugging tools are needed.

      o  A new Host-to-Router protocol may be specified, encompassing
         the requirements of router discovery, black-hole detection,
         auto- configuration of subnet prefixes, "beaconing" for mobile
         hosts, and, possibly, address resolution.  The OSI End System
         To Intermediate System Protocol may serve as a good model for
         such a protocol.

      o  The requirement that SIP addresses be strictly bound to
         interfaces may be relaxed, so that, for example, a system
         might have fewer addresses than interfaces.  There is some
         experience with this approach in the current Internet, with
         the use of "unnumbered links" in routing protocols such as
         OSPF.

      o  Authentication and integrity-assurance mechanisms for all
         clients of SIP, including ICMP and IGMP, may be specified,
         possibly based on the Secure Data Network System (SNDS) SP-3
         or SP-4 protocol.

Authors' Addresses

  Stephen E. Deering
  Retired
  Vancouver, British Columbia
  Canada


  Robert M. Hinden (editor)
  Check Point Software
  959 Skyway Road
  San Carlos, CA  94070
  USA

  Email: [email protected]








Deering & Hinden                Historic                       [Page 26]