Internet Engineering Task Force (IETF)                   P. Thubert, Ed.
Request for Comments: 8505                                         Cisco
Updates: 6775                                                E. Nordmark
Category: Standards Track                                         Zededa
ISSN: 2070-1721                                           S. Chakrabarti
                                                                Verizon
                                                             C. Perkins
                                                              Futurewei
                                                          November 2018


                Registration Extensions for IPv6 over
Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery

Abstract

  This specification updates RFC 6775 -- the Low-Power Wireless
  Personal Area Network (6LoWPAN) Neighbor Discovery specification --
  to clarify the role of the protocol as a registration technique and
  simplify the registration operation in 6LoWPAN routers, as well as to
  provide enhancements to the registration capabilities and mobility
  detection for different network topologies, including the Routing
  Registrars performing routing for host routes and/or proxy Neighbor
  Discovery in a low-power network.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8505.













Thubert, et al.              Standards Track                    [Page 1]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................4
     2.1. Requirements Language ......................................4
     2.2. Related Documents ..........................................4
     2.3. Abbreviations ..............................................4
     2.4. New Terms ..................................................6
  3. Applicability of Address Registration Options ...................7
  4. Extended Neighbor Discovery Options and Messages ................8
     4.1. Extended Address Registration Option (EARO) ................8
     4.2. Extended Duplicate Address Message Formats ................12
     4.3. Extensions to the Capability Indication Option ............13
  5. Updating RFC 6775 ..............................................14
     5.1. Extending the Address Registration Option .................16
     5.2. Transaction ID ............................................17
          5.2.1. Comparing TID Values ...............................17
     5.3. Registration Ownership Verifier (ROVR) ....................19
     5.4. Extended Duplicate Address Messages .......................20
     5.5. Registering the Target Address ............................20
     5.6. Link-Local Addresses and Registration .....................21
     5.7. Maintaining the Registration States .......................22
  6. Backward Compatibility .........................................24
     6.1. Signaling EARO Support ....................................25
     6.2. RFC 6775-Only 6LN .........................................25
     6.3. RFC 6775-Only 6LR .........................................25
     6.4. RFC 6775-Only 6LBR ........................................26
  7. Security Considerations ........................................26
  8. Privacy Considerations .........................................28







Thubert, et al.              Standards Track                    [Page 2]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  9. IANA Considerations ............................................29
     9.1. Address Registration Option Flags .........................29
     9.2. Address Registration Option I-Field .......................29
     9.3. ICMP Codes ................................................30
     9.4. New ARO Status Values .....................................31
     9.5. New 6LoWPAN Capability Bits ...............................32
  10. References ....................................................32
     10.1. Normative References .....................................32
     10.2. Informative References ...................................34
  Appendix A. Applicability and Fulfilled Requirements
              (Not Normative) .......................................38
  Appendix B. Requirements (Not Normative) ..........................39
    B.1. Requirements Related to Mobility ...........................39
    B.2. Requirements Related to Routing Protocols ..................40
    B.3. Requirements Related to Various Low-Power Link Types .......41
    B.4. Requirements Related to Proxy Operations ...................42
    B.5. Requirements Related to Security ...........................42
    B.6. Requirements Related to Scalability ........................44
    B.7. Requirements Related to Operations and Management ..........44
    B.8. Matching Requirements with Specifications ..................45
  Acknowledgments ...................................................47
  Authors' Addresses ................................................47

1.  Introduction

  IPv6 Low-Power and Lossy Networks (LLNs) support star and mesh
  topologies.  For such networks, "Neighbor Discovery Optimization for
  IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)"
  [RFC6775] (also referred to as "6LoWPAN Neighbor Discovery (ND)")
  defines a registration mechanism and a central IPv6 ND Registrar to
  ensure unique addresses.  The 6LoWPAN ND mechanism reduces the
  dependency of the IPv6 ND protocol [RFC4861] [RFC4862] on
  network-layer multicast and link-layer broadcast operations.

  This specification updates 6LoWPAN ND [RFC6775] to simplify and
  generalize registration in 6LoWPAN Routers (6LRs).  In particular,
  this specification modifies and extends the behavior and protocol
  elements of 6LoWPAN ND to enable the following actions:

  o  Determining the most recent location in the case of node mobility

  o  Simplifying the registration flow for Link-Local Addresses

  o  Support for a routing-unaware leaf node in a route-over network

  o  Proxy registration in a route-over network





Thubert, et al.              Standards Track                    [Page 3]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  o  Enabling verification for the registration, using the Registration
     Ownership Verifier (ROVR) (Section 5.3)

  o  Registration to an IPv6 ND proxy (e.g., a Routing Registrar)

  o  Better support for privacy and temporary addresses

  These features satisfy the requirements listed in Appendix B.

2.  Terminology

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Related Documents

  In this document, readers will encounter terms and concepts that are
  discussed in the following documents:

  o  "Neighbor Discovery for IP version 6 (IPv6)" [RFC4861]

  o  "IPv6 Stateless Address Autoconfiguration" [RFC4862]

  o  "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs):
     Overview, Assumptions, Problem Statement, and Goals" [RFC4919]

  o  "Problem Statement and Requirements for IPv6 over Low-Power
     Wireless Personal Area Network (6LoWPAN) Routing" [RFC6606]

  o  "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless
     Personal Area Networks (6LoWPANs)" [RFC6775]

2.3.  Abbreviations

  This document uses the following abbreviations:

  6BBR: 6LoWPAN Backbone Router

  6CIO: Capability Indication Option

  6LBR: 6LoWPAN Border Router

  6LN:  6LoWPAN Node



Thubert, et al.              Standards Track                    [Page 4]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  6LoWPAN:  IPv6 over Low-Power Wireless Personal Area Network

  6LR:  6LoWPAN Router

  ARO:  Address Registration Option

  DAC:  Duplicate Address Confirmation

  DAD:  Duplicate Address Detection

  DAR:  Duplicate Address Request

  DODAG:  Destination-Oriented Directed Acyclic Graph

  EARO: Extended Address Registration Option

  EDA:  Extended Duplicate Address

  EDAC: Extended Duplicate Address Confirmation

  EDAR: Extended Duplicate Address Request

  LLN:  Low-Power and Lossy Network

  NA:   Neighbor Advertisement

  NCE:  Neighbor Cache Entry

  ND:   Neighbor Discovery

  NS:   Neighbor Solicitation

  RA:   Router Advertisement

  ROVR: Registration Ownership Verifier (pronounced "rover")

  RPL:  IPv6 Routing Protocol for LLNs (pronounced "ripple") [RFC6550]

  RS:   Router Solicitation

  TID:  Transaction ID (a sequence counter in the EARO)










Thubert, et al.              Standards Track                    [Page 5]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


2.4.  New Terms

  Backbone Link:  An IPv6 transit link that interconnects two or more
        Backbone Routers.

  Binding:  The association between an IP address, a Media Access
        Control (MAC) address, and other information about the node
        that owns the IP address.

  Registration:  The process by which a 6LN registers an IPv6 Address
        with a 6LR in order to establish connectivity to the LLN.

  Registered Node:  The 6LN for which the registration is performed,
        according to the fields in the EARO.

  Registering Node:  The node that performs the registration.  Either
        the Registered Node or a proxy.

  IPv6 ND Registrar:  A node that can process a registration in either
        NS(EARO) or EDAR messages and consequently respond with an NA
        or EDAC message containing the EARO and appropriate status for
        the registration.

  Registered Address:  An address registered for the Registered Node.

  RFC 6775-only:  An implementation, a type of node, or a message that
        behaves only as specified by [RFC6775], as opposed to the
        behavior specified in this document.

  Route-over network:  A network for which connectivity is provided at
        the IP layer.

  Routing Registrar:  An IPv6 ND Registrar that also provides
        reachability services for the Registered Address, including DAD
        and proxy NA.

  Backbone Router (6BBR):  A Routing Registrar that proxies the 6LoWPAN
        ND operations specified in this document to ensure that
        multiple LLNs federated by a Backbone Link operate as a single
        IPv6 subnetwork.

  updated:  A 6LN, 6LR, or 6LBR that supports this specification, in
        contrast to an RFC 6775-only device.








Thubert, et al.              Standards Track                    [Page 6]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


3.  Applicability of Address Registration Options

  The ARO as described in [RFC6775] facilitates DAD for hosts and
  populates NCEs [RFC4861] in the routers.  This reduces the reliance
  on multicast operations, which are often as intrusive as broadcast,
  in IPv6 ND operations (see [Multicast-over-IEEE802-Wireless]).

  This document specifies new status codes for registrations rejected
  by a 6LR or 6LBR for reasons other than address duplication.
  Examples include:

  o  the router running out of space.

  o  a registration bearing a stale sequence number.  This could happen
     if the host moves after the registration was placed.

  o  a host misbehaving and attempting to register an invalid address,
     such as the unspecified address as defined in [RFC4291].

  o  a host using an address that is not topologically correct on
     that link.

  In such cases, the host will receive an error that will help diagnose
  the issue; the host may retry -- possibly with a different address or
  possibly registering to a different router -- depending on the
  returned error.  The ability to return errors to address
  registrations is not intended to be used to restrict the ability of
  hosts to form and use multiple addresses.  Each host may form and
  register a number of addresses for enhanced privacy, using mechanisms
  such as those described in [RFC4941] ("Privacy Extensions for
  Stateless Address Autoconfiguration in IPv6"), e.g., Stateless
  Address Autoconfiguration (SLAAC), and SHOULD conform to [RFC7934]
  ("Host Address Availability Recommendations").

  As indicated in IPv6 ND [RFC4861], a router needs enough storage to
  hold NCEs for all directly connected addresses to which it is
  currently forwarding packets (unused entries may be flushed).  In
  contrast, a router serving the address-registration mechanism needs
  enough storage to hold NCEs for all the addresses that may be
  registered to it, regardless of whether or not they are actively
  communicating.  The number of registrations supported by a 6LR or
  6LBR MUST be clearly documented by the vendor, and the dynamic use of
  associated resources SHOULD be made available to the network
  operator, e.g., to a management console.  Network administrators need
  to ensure that 6LRs/6LBRs in their network support the number and
  types of devices that can register to them, based on the number of
  IPv6 Addresses that those devices require, as well as their address
  renewal rate and behavior.



Thubert, et al.              Standards Track                    [Page 7]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


4.  Extended Neighbor Discovery Options and Messages

  This specification does not introduce any new options; it modifies
  existing options and updates the associated behaviors.

4.1.  Extended Address Registration Option (EARO)

  The ARO is defined in Section 4.1 of [RFC6775].

  This specification introduces the EARO; the EARO is based on the ARO
  for use in NS and NA messages.  The EARO includes a sequence counter
  called the Transaction ID (TID), which is used to determine the
  latest location of a registering mobile device.  A new T flag
  indicates that the presence of the TID field is populated and that
  the option is an EARO.  A 6LN requests routing or proxy services from
  a 6LR using a new R flag in the EARO.

  The EUI-64 field is redefined and renamed "ROVR field" in order to
  carry different types of information, e.g., cryptographic information
  of variable size (see Section 5.3).  A larger ROVR size MAY be used
  if and only if backward compatibility is not an issue in the
  particular LLN.  The length of the ROVR field, expressed in units of
  8 bytes, is the Length value of the option minus 1.  A larger ROVR
  size MAY be used if and only if backward compatibility is not an
  issue in the particular LLN.

  Section 5.1 discusses those changes in depth.
























Thubert, et al.              Standards Track                    [Page 8]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  The format of the EARO is shown in Figure 1:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Length    |    Status     |    Opaque     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Rsvd | I |R|T|     TID       |     Registration Lifetime     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
   ...            Registration Ownership Verifier (ROVR)           ...
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 1: EARO Format

  Option Fields:

  Type:       33

  Length:     8-bit unsigned integer.  The length of the option in
              units of 8 bytes.

  Status:     8-bit unsigned integer.  Indicates the status of a
              registration in the NA response.  MUST be set to 0 in NS
              messages.  See Table 1 below.

  Opaque:     An octet opaque to ND.  The 6LN MAY pass it transparently
              to another process.  It MUST be set to 0 when not used.

  Rsvd (Reserved):
              This field is unused.  It MUST be initialized to 0 by the
              sender and MUST be ignored by the receiver.

  I:          2-bit integer.  A value of 0 indicates that the Opaque
              field carries an abstract index that is used to decide in
              which routing topology the address is expected to be
              injected.  In that case, the Opaque field is passed to a
              routing process with the indication that it carries
              topology information, and the value of 0 indicates
              default.  All other values of "I" are reserved and
              MUST NOT be used.

  R:          The Registering Node sets the R flag to request
              reachability services for the Registered Address from a
              Routing Registrar.

  T:          1-bit flag.  Set if the next octet is used as a TID.



Thubert, et al.              Standards Track                    [Page 9]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  TID:        1-byte unsigned integer.  A Transaction ID that is
              maintained by the node and incremented with each
              transaction of one or more registrations performed at the
              same time to one or more 6LRs.  This field MUST be
              ignored if the T flag is not set.

  Registration Lifetime:
              16-bit integer, expressed in minutes.  A value of 0
              indicates that the registration has ended and that the
              associated state MUST be removed.

  Registration Ownership Verifier (ROVR):
              Enables the correlation between multiple attempts to
              register the same IPv6 Address.  The ROVR size MUST be
              64 bits when backward compatibility is needed; otherwise,
              the size MAY be 128, 192, or 256 bits.



































Thubert, et al.              Standards Track                   [Page 10]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  +-------+-----------------------------------------------------------+
  | Value | Description                                               |
  +-------+-----------------------------------------------------------+
  |  0-2  | As defined in [RFC6775].  Note: A Status value of 1       |
  |       | ("Duplicate Address") applies to the Registered Address.  |
  |       | If the Source Address conflicts with an existing          |
  |       | registration, "Duplicate Source Address" MUST be used.    |
  |       |                                                           |
  |   3   | Moved: The registration failed because it is not the most |
  |       | recent.  This Status indicates that the registration is   |
  |       | rejected because another more recent registration was     |
  |       | done, as indicated by the same ROVR and a more recent     |
  |       | TID.  One possible cause is a stale registration that has |
  |       | progressed slowly in the network and was passed by a more |
  |       | recent one.  It could also indicate a ROVR collision.     |
  |       |                                                           |
  |   4   | Removed: The binding state was removed.  This Status MAY  |
  |       | be placed in an NA(EARO) message that is sent as the      |
  |       | rejection of a proxy registration to an IPv6 ND           |
  |       | Registrar, or in an asynchronous NA(EARO), at any time.   |
  |       |                                                           |
  |   5   | Validation Requested: The Registering Node is challenged  |
  |       | for owning the Registered Address or for being an         |
  |       | acceptable proxy for the registration.  An IPv6 ND        |
  |       | Registrar MAY place this Status in asynchronous DAC or NA |
  |       | messages.                                                 |
  |       |                                                           |
  |   6   | Duplicate Source Address: The address used as the source  |
  |       | of the NS(EARO) conflicts with an existing registration.  |
  |       |                                                           |
  |   7   | Invalid Source Address: The address used as the source of |
  |       | the NS(EARO) is not a Link-Local Address.                 |
  |       |                                                           |
  |   8   | Registered Address Topologically Incorrect: The address   |
  |       | being registered is not usable on this link.              |
  |       |                                                           |
  |   9   | 6LBR Registry Saturated: A new registration cannot be     |
  |       | accepted because the 6LBR Registry is saturated.  Note:   |
  |       | This code is used by 6LBRs instead of Status 2 when       |
  |       | responding to a Duplicate Address message exchange and is |
  |       | passed on to the Registering Node by the 6LR.             |
  |       |                                                           |
  |   10  | Validation Failed: The proof of ownership of the          |
  |       | Registered Address is not correct.                        |
  +-------+-----------------------------------------------------------+

                       Table 1: EARO Status Codes




Thubert, et al.              Standards Track                   [Page 11]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


4.2.  Extended Duplicate Address Message Formats

  The DAR and DAC messages share a common base format as defined in
  Section 4.4 of [RFC6775].  Those messages enable information from the
  ARO to be transported over multiple hops.  The DAR and DAC are
  extended as shown in Figure 2:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |CodePfx|CodeSfx|          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Status     |     TID       |     Registration Lifetime     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
   ...            Registration Ownership Verifier (ROVR)           ...
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    +                                                               +
    |                                                               |
    +                       Registered Address                      +
    |                                                               |
    +                                                               +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 2: Extended Duplicate Address Message Format

  Modified Message Fields:

  Code:       The ICMP Code [RFC4443] for Duplicate Address messages is
              split into two 4-bit fields: the Code Prefix and the Code
              Suffix.  The Code Prefix MUST be set to 0 by the sender
              and MUST be ignored by the receiver.  A non-null value of
              the Code Suffix indicates support for this specification.
              It MUST be set to 1 when operating in a backward-
              compatible mode, indicating a ROVR size of 64 bits.  It
              MAY be 2, 3, or 4, denoting a ROVR size of 128, 192, or
              256 bits, respectively.

  TID:        1-byte integer.  Same definition and processing as the
              TID in the EARO as defined in Section 4.1.  This field
              MUST be ignored if the ICMP Code is null.







Thubert, et al.              Standards Track                   [Page 12]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Registration Ownership Verifier (ROVR):
              The size of the ROVR is known from the ICMP Code Suffix.
              This field has the same definition and processing as the
              ROVR in the EARO as defined in Section 4.1.

4.3.  Extensions to the Capability Indication Option

  This specification defines five new capability bits for use in the
  6CIO as defined by [RFC7400] ("6LoWPAN-GHC: Generic Header
  Compression for IPv6 over Low-Power Wireless Personal Area Networks
  (6LoWPANs)"), for use in IPv6 ND messages.  (The G flag is defined in
  Section 3.3 of [RFC7400].)

  The D flag indicates that the 6LBR supports EDAR and EDAC messages.
  A 6LR that learns the D flag from advertisements can then exchange
  EDAR and EDAC messages with the 6LBR, and it also sets the D flag as
  well as the L flag in the 6CIO in its own advertisements.  In this
  way, 6LNs will be able to prefer registration with a 6LR that can
  make use of new 6LBR features.

  The new L, B, and P flags indicate whether a router is capable of
  acting as a 6LR, 6LBR, or Routing Registrar (e.g., 6BBR) (or some
  combination thereof), respectively.  These flags are not mutually
  exclusive; an updated node can advertise multiple collocated
  functions.

  The E flag indicates that the EARO can be used in a registration.  A
  6LR that supports this specification MUST set the E flag.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |   Length = 1  |     Reserved      |D|L|B|P|E|G|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Reserved                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 3: New Capability Bits in the 6CIO













Thubert, et al.              Standards Track                   [Page 13]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Option Fields:

  Type:  36

  D: The 6LBR supports EDAR and EDAC messages.

  L: The node is a 6LR.

  B: The node is a 6LBR.

  P: The node is a Routing Registrar.

  E: The node is an IPv6 ND Registrar; i.e., it supports registrations
     based on the EARO.

5.  Updating RFC 6775

  The EARO (see Section 4.1) updates the ARO used within NS and NA
  messages between a 6LN and a 6LR.  The update enables a registration
  to a Routing Registrar in order to obtain additional services, such
  as return routability to the Registered Address by such means as
  routing and/or proxy ND, as illustrated in Figure 4.

                                Routing
                6LN            Registrar
                 |                |
                 |   NS(EARO)     |
                 |--------------->|
                 |                |
                 |                | Inject/maintain
                 |                | host route or
                 |                | IPv6 ND proxy state
                 |                | <----------------->
                 |   NA(EARO)     |
                 |<---------------|
                 |                |

                    Figure 4: (Re-)Registration Flow

  Similarly, the EDAR and EDAC update the DAR and DAC messages so as to
  transport the new information between 6LRs and 6LBRs across an LLN
  mesh.  The extensions to the ARO are the DAR and the DAC, as used in
  the Duplicate Address messages.  They convey the additional
  information all the way to the 6LBR.







Thubert, et al.              Standards Track                   [Page 14]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  In turn, the 6LBR may proxy the registration to obtain reachability
  services from a Routing Registrar such as a 6BBR, as illustrated in
  Figure 5.  This specification avoids the Duplicate Address message
  flow for Link-Local Addresses in a route-over [RFC6606] topology (see
  Section 5.6).

                                            Routing
     6LN          6LR            6LBR      Registrar
      |            |              |            |
      |<Link-local>|   <Routed>   |<Link-local>|
      |            |              |            |
      |  NS(EARO)  |              |            |
      |----------->|              |            |
      |            | Extended DAR |            |
      |            |------------->|            |
      |            |              |  proxy     |
      |            |              |  NS(EARO)  |
      |            |              |----------->|
      |            |              |            | Inject/maintain
      |            |              |            | host route or
      |            |              |            | IPv6 ND proxy state
      |            |              |            | <----------------->
      |            |              |  proxy     |
      |            |              |  NA(EARO)  |
      |            | Extended DAC |<-----------|
      |            |<-------------|            |
      |  NA(EARO)  |              |            |
      |<-----------|              |            |
      |            |              |            |

                    Figure 5: (Re-)Registration Flow

  This specification allows multiple registrations, including
  registrations for privacy and temporary addresses, and provides a
  mechanism to help clean up stale registration state as soon as
  possible, e.g., after a movement (see Section 7).

  Section 5 of [RFC6775] specifies how a 6LN bootstraps an interface
  and locates available 6LRs.  A Registering Node SHOULD register to a
  6LR that supports this specification if one is found, as discussed in
  Section 6.1, instead of registering to an RFC 6775-only 6LR;
  otherwise, the Registering Node operates in a backward-compatible
  fashion when attaching to an RFC 6775-only 6LR.








Thubert, et al.              Standards Track                   [Page 15]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


5.1.  Extending the Address Registration Option

  The EARO updates the ARO and is backward compatible with the ARO if
  and only if the Length value of the option is set to 2.  The format
  of the EARO is presented in Section 4.1.  More details on backward
  compatibility can be found in Section 6.

  The NS message and the ARO are modified as follows:

  o  The Target Address field in the NS containing the EARO is now the
     field that indicates the address that is being registered, as
     opposed to the Source Address field in the NS as specified in
     [RFC6775] (see Section 5.5).  This change enables a 6LBR to send a
     proxy registration for a 6LN's address to a Routing Registrar and
     in most cases also avoids the use of an address as the Source
     Address before it is registered.

  o  The EUI-64 field in the ARO is renamed "Registration Ownership
     Verifier (ROVR)" and is not required to be derived from a MAC
     address (see Section 5.3).

  o  The option's Length value MAY be different than 2 and take a value
     between 3 and 5, in which case the EARO is not backward compatible
     with an ARO.  The increase in size corresponds to a larger ROVR
     field, so the size of the ROVR is inferred from the option's
     Length value.

  o  A new Opaque field is introduced to carry opaque information in
     cases where the registration is relayed to another process, e.g.,
     to be advertised by a routing protocol.  A new "I" field provides
     a type for the opaque information and indicates the other process
     to which the 6LN passes the opaque value.  A value of 0 for the
     "I" field indicates topological information to be passed to a
     routing process if the registration is redistributed.  In that
     case, a value of 0 for the Opaque field (1) is backward compatible
     with the reserved fields that are overloaded and (2) indicates
     that the default topology is to be used.

  o  This document specifies a new flag in the EARO: the R flag.  If
     the R flag is set, the Registering Node requests that the 6LR
     ensure reachability for the Registered Address, e.g., by means of
     routing or proxy ND.  Conversely, when it is not set, the R flag
     indicates that the Registering Node is a router and that it will
     advertise reachability to the Registered Address via a routing
     protocol (such as RPL [RFC6550]).






Thubert, et al.              Standards Track                   [Page 16]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  o  A node that supports this specification MUST provide a TID field
     in the EARO and set the T flag to indicate the presence of the TID
     (see Section 5.2).

  o  Finally, this specification introduces new status codes to help
     diagnose the cause of a registration failure (see Table 1).

  When registering, a 6LN that acts only as a host MUST set the R flag
  to indicate that it is not a router and that it will not handle its
  own reachability.  A 6LR that manages its reachability SHOULD NOT set
  the R flag; if it does, routes towards this router may be installed
  on its behalf and may interfere with those it advertises.

5.2.  Transaction ID

  The TID is a sequence number that is incremented by the 6LN with each
  re-registration to a 6LR.  The TID is used to determine the recency
  of the registration request.  The network uses the most recent TID to
  determine the most recent known location(s) of a moving 6LN.  When a
  Registered Node is registered with multiple 6LRs in parallel, the
  same TID MUST be used.  This enables the 6LBRs and/or Routing
  Registrars to determine whether the registrations are identical and
  to distinguish that situation from a movement (for example, see
  Section 5.7 and Appendix A).

5.2.1.  Comparing TID Values

  The operation of the TID is fully compatible with that of the RPL
  Path Sequence counter as described in Section 7.2 of [RFC6550]
  ("RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks").

  A TID is deemed to be more recent than another when its value is
  greater as determined by the operations detailed in this section.

  The TID range is subdivided in a "lollipop" fashion [Perlman83],
  where the values from 128 and greater are used as a linear sequence
  to indicate a restart and bootstrap the counter, and the values less
  than or equal to 127 are used as a circular sequence number space of
  size 128 as mentioned in [RFC1982].  Consideration is given to the
  mode of operation when transitioning from the linear region to the
  circular region.  Finally, when operating in the circular region, if
  sequence numbers are determined to be too far apart, then they are
  not comparable, as detailed below.

  A window of comparison, SEQUENCE_WINDOW = 16, is configured based on
  a value of 2^N, where N is defined to be 4 in this specification.





Thubert, et al.              Standards Track                   [Page 17]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  For a given sequence counter,

  1.  Prior to use, the sequence counter SHOULD be initialized to an
      implementation-defined value of 128 or greater.  A recommended
      value is 240 (256 - SEQUENCE_WINDOW).

  2.  When a sequence counter increment would cause the sequence
      counter to increment beyond its maximum value, the sequence
      counter MUST wrap back to 0.  When incrementing a sequence
      counter greater than or equal to 128, the maximum value is 255.
      When incrementing a sequence counter less than 128, the maximum
      value is 127.

  3.  When comparing two sequence counters, the following rules MUST be
      applied:

      1.  When a first sequence counter A is in the interval [128-255]
          and a second sequence counter B is in the interval [0-127]:

          1.  If (256 + B - A) is less than or equal to
              SEQUENCE_WINDOW, then B is greater than A, A is less than
              B, and the two are not equal.

          2.  If (256 + B - A) is greater than SEQUENCE_WINDOW, then A
              is greater than B, B is less than A, and the two are not
              equal.

          For example, if A is 240 and B is 5, then (256 + 5 - 240) is
          21.  21 is greater than SEQUENCE_WINDOW (16); thus, 240 is
          greater than 5.  As another example, if A is 250 and B is 5,
          then (256 + 5 - 250) is 11.  11 is less than SEQUENCE_WINDOW
          (16); thus, 250 is less than 5.

      2.  In the case where both sequence counters to be compared are
          less than or equal to 127, and in the case where both
          sequence counters to be compared are greater than or equal
          to 128:

          1.  If the absolute magnitude of difference between the two
              sequence counters is less than or equal to
              SEQUENCE_WINDOW, then a comparison as described in
              [RFC1982] is used to determine the relationships
              "greater than", "less than", and "equal".

          2.  If the absolute magnitude of difference of the two
              sequence counters is greater than SEQUENCE_WINDOW, then a
              desynchronization has occurred and the two sequence
              numbers are not comparable.



Thubert, et al.              Standards Track                   [Page 18]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  4.  If two sequence numbers are determined to be not comparable,
      i.e., the results of the comparison are not defined, then a node
      should give precedence to the sequence number that was most
      recently incremented.  Failing this, the node should select the
      sequence number in order to minimize the resulting changes to its
      own state.

5.3.  Registration Ownership Verifier (ROVR)

  The ROVR field replaces the EUI-64 field of the ARO defined in
  [RFC6775].  It is associated in the 6LR and the 6LBR with the
  registration state.  The ROVR can be a unique ID of the Registering
  Node, such as the EUI-64 address of an interface.  This can also be a
  token obtained with cryptographic methods that can be used in
  additional protocol exchanges to associate a cryptographic identity
  (key) with this registration to ensure that only the owner can modify
  it later, if the proof of ownership of the ROVR can be obtained.  The
  scope of a ROVR is the registration of a particular IPv6 Address, and
  it MUST NOT be used to correlate registrations of different
  addresses.

  The ROVR can be of different types; the type is signaled in the
  message that carries the new type.  For instance, the type can be a
  cryptographic string and can be used to prove the ownership of the
  registration as specified in [AP-ND] ("Address Protected Neighbor
  Discovery for Low-power and Lossy Networks").  In order to support
  the flows related to the proof of ownership, this specification
  introduces new status codes "Validation Requested" and "Validation
  Failed" in the EARO.

  Note regarding ROVR collisions: Different techniques for forming the
  ROVR will operate in different namespaces.  [RFC6775] specifies the
  use of EUI-64 addresses.  [AP-ND] specifies the generation of
  cryptographic tokens.  While collisions are not expected in the
  EUI-64 namespace only, they may happen if [AP-ND] is implemented by
  at least one of the nodes.  An implementation that understands the
  namespace MUST consider that ROVRs from different namespaces are
  different even if they have the same value.  An RFC 6775-only 6LBR or
  6LR will confuse the namespaces; this slightly increases the risk of
  a ROVR collision.  A ROVR collision has no effect if the two
  Registering Nodes register different addresses, since the ROVR is
  only significant within the context of one registration.  A ROVR is
  not expected to be unique to one registration, as this specification
  allows a node to use the same ROVR to register multiple IPv6
  Addresses.  This is why the ROVR MUST NOT be used as a key to
  identify the Registering Node or as an index to the registration.  It
  is only used as a match to ensure that the node that updates a
  registration for an IPv6 Address is the node that made the original



Thubert, et al.              Standards Track                   [Page 19]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  registration for that IPv6 Address.  Also, when the ROVR is not an
  EUI-64 address, then it MUST NOT be used as the Interface Identifier
  of the Registered Address.  This way, a registration that uses that
  ROVR will not collide with that of an IPv6 Address derived from
  EUI-64 and using the EUI-64 as the ROVR per [RFC6775].

  The Registering Node SHOULD store the ROVR, or enough information to
  regenerate it, in persistent memory.  If this is not done and an
  event such as a reboot causes a loss of state, re-registering the
  same address could be impossible until (1) the 6LRs and the 6LBR
  time out the previous registration or (2) a management action clears
  the relevant state in the network.

5.4.  Extended Duplicate Address Messages

  In order to map the new EARO content in the EDA messages, a new TID
  field is added to the EDAR and EDAC messages as a replacement for the
  Reserved field, and a non-null value of the ICMP Code indicates
  support for this specification.  The format of the EDAR and EDAC
  messages is presented in Section 4.2.

  As with the EARO, the EDA messages are backward compatible with the
  RFC 6775-only versions, as long as the ROVR field is 64 bits long.
  Remarks concerning backward compatibility for the protocol between
  the 6LN and the 6LR apply similarly between a 6LR and a 6LBR.

5.5.  Registering the Target Address

  An NS message with an EARO is a registration if and only if it also
  carries an SLLA Option ("SLLAO") [RFC6775] ("SLLA" stands for "Source
  Link-Layer Address").  The EARO can also be used in NS and NA
  messages between Routing Registrars to determine the distributed
  registration state; in that case, it does not carry the SLLA Option
  and is not confused with a registration.

  The Registering Node is the node that performs the registration to
  the Routing Registrar.  As also described in [RFC6775], it may be the
  Registered Node as well, in which case it registers one of its own
  addresses and indicates its own MAC address as the SLLA in the
  NS(EARO).

  This specification adds the capability to proxy the registration
  operation on behalf of a Registered Node that is reachable over an
  LLN mesh.  In that case, if the Registered Node is reachable from the
  Routing Registrar via a mesh-under configuration, the Registering
  Node indicates the MAC address of the Registered Node as the SLLA in
  the NS(EARO).  If the Registered Node is reachable over a route-over
  configuration from the Registering Node, the SLLA in the NS(ARO) is



Thubert, et al.              Standards Track                   [Page 20]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  that of the Registering Node.  This enables the Registering Node to
  attract the packets from the Routing Registrar and route them over
  the LLN to the Registered Node.

  In order to enable the latter operation, this specification changes
  the behavior of the 6LN and the 6LR so that the Registered Address is
  found in the Target Address field of the NS and NA messages as
  opposed to the Source Address field.  With this convention, a TLLA
  Option (Target Link-Layer Address Option, or "TLLAO") indicates the
  link-layer address of the 6LN that owns the address.

  A Registering Node (e.g., a 6LBR also acting as a RPL root) that
  advertises reachability for the 6LN MUST place its own link-layer
  address in the SLLA Option of the registration NS(EARO) message.
  This maintains compatibility with RFC 6775-only 6LoWPAN ND.

5.6.  Link-Local Addresses and Registration

  LLN nodes are often not wired and may move.  There is no guarantee
  that a Link-Local Address will remain unique among a huge and
  potentially variable set of neighboring nodes.

  Compared to [RFC6775], this specification only requires that a
  Link-Local Address be unique from the perspective of the two nodes
  that use it to communicate (e.g., the 6LN and the 6LR in an NS/NA
  exchange).  This simplifies the DAD process in a route-over topology
  for Link-Local Addresses by avoiding an exchange of EDA messages
  between the 6LR and a 6LBR for those addresses.

  An exchange between two nodes using Link-Local Addresses implies that
  they are reachable over one hop.  A node MUST register a Link-Local
  Address to a 6LR in order to obtain further reachability by way of
  that 6LR and, in particular, to use the Link-Local Address as the
  Source Address to register other addresses, e.g., global addresses.

  If there is no collision with a previously registered address, then
  the Link-Local Address is unique from the standpoint of this 6LR and
  the registration is not a duplicate.  Two different 6LRs might claim
  the same Link-Local Address but different link-layer addresses.  In
  that case, a 6LN MUST only interact with at most one of the 6LRs.

  The exchange of EDAR and EDAC messages between the 6LR and a 6LBR,
  which ensures that an address is unique across the domain covered by
  the 6LBR, does not need to take place for Link-Local Addresses.







Thubert, et al.              Standards Track                   [Page 21]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  When sending an NS(EARO) to a 6LR, a 6LN MUST use a Link-Local
  Address as the Source Address of the registration, whatever the type
  of IPv6 Address that is being registered.  That Link-Local Address
  MUST be either an address that is already registered to the 6LR or
  the address that is being registered.

  When a 6LN starts up, it typically multicasts an RS and receives one
  or more unicast RA messages from 6LRs.  If the 6LR can process EARO
  messages, then it places a 6CIO in its RA message with the E flag set
  as required in Section 6.1.

  When a Registering Node does not have an already-registered address,
  it MUST register a Link-Local Address, using it as both the Source
  Address and the Target Address of an NS(EARO) message.  In that case,
  it is RECOMMENDED to use an address for which DAD is not required
  (see [RFC6775]), e.g., derived from a globally unique EUI-64 address;
  using the SLLA Option in the NS is consistent with existing ND
  specifications such as [RFC4429] ("Optimistic Duplicate Address
  Detection (DAD) for IPv6").  The 6LN MAY then use that address to
  register one or more other addresses.

  A 6LR that supports this specification replies with an NA(EARO),
  setting the appropriate status.  Since there is no exchange of EDAR
  or EDAC messages for Link-Local Addresses, the 6LR may answer
  immediately to the registration of a Link-Local Address, based solely
  on its existing state and the SLLA Option that is placed in the
  NS(EARO) message as required in [RFC6775].

  A node registers its IPv6 Global Unicast Addresses (GUAs) to a 6LR in
  order to establish global reachability for these addresses via that
  6LR.  When registering with an updated 6LR, a Registering Node does
  not use a GUA as the Source Address, in contrast to a node that
  complies with [RFC6775].  For non-Link-Local Addresses, the exchange
  of EDAR and EDAC messages MUST conform to [RFC6775], but the extended
  formats described in this specification for the DAR and the DAC are
  used to relay the extended information in the case of an EARO.

5.7.  Maintaining the Registration States

  This section discusses protocol actions that involve the Registering
  Node, the 6LR, and the 6LBR.  It must be noted that the portion that
  deals with a 6LBR only applies to those addresses that are registered
  to it; as discussed in Section 5.6, this is not the case for
  Link-Local Addresses.  The registration state includes all data that
  is stored in the router relative to that registration, in particular,
  but not limited to, an NCE.  6LBRs and Routing Registrars may store
  additional registration information and use synchronization protocols
  that are out of scope for this document.



Thubert, et al.              Standards Track                   [Page 22]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  A 6LR cannot accept a new registration when its registration storage
  space is exhausted.  In that situation, the EARO is returned in an NA
  message with a status code of "Neighbor Cache Full" (Status 2; see
  [RFC6775] and Table 1), and the Registering Node may attempt to
  register to another 6LR.

  If the registry in the 6LBR is full, then the 6LBR cannot decide
  whether a registration for a new address is a duplicate.  In that
  case, the 6LBR replies to an EDAR message with an EDAC message that
  carries a new status code indicating "6LBR Registry Saturated"
  (Table 1).  Note: This code is used by 6LBRs instead of "Neighbor
  Cache Full" when responding to a Duplicate Address message exchange
  and is passed on to the Registering Node by the 6LR.  There is no
  point in the node retrying this registration via another 6LR, since
  the problem is network-wide.  The node may abandon that address,
  de-register other addresses first to make room, or keep the address
  "tentative" [RFC4861] and retry later.

  A node renews an existing registration by sending a new NS(EARO)
  message for the Registered Address, and the 6LR MUST report the new
  registration to the 6LBR.

  A node that ceases to use an address SHOULD attempt to de-register
  that address from all the 6LRs to which it has registered the
  address.  This is achieved using an NS(EARO) message with a
  Registration Lifetime of 0.  If this is not done, the associated
  state will remain in the network until the current Registration
  Lifetime expires; this may lead to a situation where the 6LR
  resources become saturated, even if they were correctly planned to
  start with.  The 6LR may then take defensive measures that may
  prevent this node or some other nodes from owning as many addresses
  as they request (see Section 7).

  A node that moves away from a particular 6LR SHOULD attempt to
  de-register all of its addresses registered to that 6LR and register
  to a new 6LR with an incremented TID.  When/if the node appears
  elsewhere, an asynchronous NA(EARO) or EDAC message with a status
  code of "Moved" SHOULD be used to clean up the state in the previous
  location.  The "Moved" status can be used by a Routing Registrar in
  an NA(EARO) message to indicate that the ownership of the proxy state
  was transferred to another Routing Registrar due to movement of the
  device.  If the receiver of the message has registration state
  corresponding to the related address, it SHOULD propagate the status
  down the forwarding path to the Registered Node (e.g., reversing an
  existing RPL [RFC6550] path as prescribed in [Efficient-NPDAO]).
  Whether it could do so or not, the receiver MUST clean up said state.





Thubert, et al.              Standards Track                   [Page 23]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Upon receiving an NS(EARO) message with a Registration Lifetime of 0
  and determining that this EARO is the most recent for a given NCE
  (see Section 5.2), a 6LR cleans up its NCE.  If the address was
  registered to the 6LBR, then the 6LR MUST report to the 6LBR, through
  a Duplicate Address exchange with the 6LBR, indicating the null
  Registration Lifetime and the latest TID that this 6LR is aware of.

  Upon receiving the EDAR message, the 6LBR determines if this is the
  most recent TID it has received for that particular registry entry.
  If so, then the EDAR is answered with an EDAC message bearing a
  status code of 0 ("Success") [RFC6775], and the entry is scheduled to
  be removed.  Otherwise, a status code of "Moved" is returned instead,
  and the existing entry is maintained.

  When an address is scheduled to be removed, the 6LBR SHOULD keep its
  NCE in a DELAY state [RFC4861] for a configurable period of time, so
  as to prevent a scenario where (1) a mobile node that de-registered
  from one 6LR did not yet register to a new one or (2) the new
  registration did not yet reach the 6LBR due to propagation delays in
  the network.  Once the DELAY time has passed, the 6LBR silently
  removes its entry.

6.  Backward Compatibility

  This specification changes the behavior of the peers in a
  registration flow.  To enable backward compatibility, a 6LN that
  registers to a 6LR that is not known to support this specification
  MUST behave in a manner that is backward compatible with [RFC6775].
  Conversely, if the 6LR is found to support this specification, then
  the 6LN MUST conform to this specification when communicating with
  that 6LR.

  A 6LN that supports this specification MUST always use an EARO as a
  replacement for an ARO in its registration to a router.  This
  behavior is backward compatible, since the T flag and TID field
  occupy fields that are reserved in [RFC6775] and are thus ignored by
  an RFC 6775-only router.  A router that supports this specification
  MUST answer an NS(ARO) and an NS(EARO) with an NA(EARO).  A router
  that does not support this specification will consider the ROVR as an
  EUI-64 address and treat it the same; this scenario has no
  consequence if the Registered Addresses are different.










Thubert, et al.              Standards Track                   [Page 24]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


6.1.  Signaling EARO Support

  [RFC7400] specifies the 6CIO, which indicates a node's capabilities
  to the node's peers.  The 6CIO MUST be present in both RS and RA
  messages, unless the 6CIO information was already shared in recent
  exchanges or pre-configured in all nodes in a network.  In any case,
  a 6CIO MUST be placed in an RA message that is sent in response to an
  RS with a 6CIO.

  Section 4.3 defines a new flag for the 6CIO to signal EARO support by
  the issuer of the message.  New flags are also added to the 6CIO to
  signal the sender's capability to act as a 6LR, 6LBR, and Routing
  Registrar (see Section 4.3).

  Section 4.3 also defines a new flag that indicates the support of
  EDAR and EDAC messages by the 6LBR.  This flag is valid in RA
  messages but not in RS messages.  More information on the 6LBR is
  found in a separate Authoritative Border Router Option (ABRO).  The
  ABRO is placed in RA messages as prescribed by [RFC6775]; in
  particular, it MUST be placed in an RA message that is sent in
  response to an RS with a 6CIO indicating the capability to act as a
  6LR, since the RA propagates information between routers.

6.2.  RFC 6775-Only 6LN

  An RFC 6775-only 6LN will use the Registered Address as the Source
  Address of the NS message and will not use an EARO.  An updated 6LR
  MUST accept that registration if it is valid per [RFC6775], and it
  MUST manage the binding cache accordingly.  The updated 6LR MUST then
  use the RFC 6775-only DAR and DAC messages as specified in [RFC6775]
  to indicate to the 6LBR that the TID is not present in the messages.

  The main difference from [RFC6775] is that the exchange of DAR and
  DAC messages for the purpose of DAD is avoided for Link-Local
  Addresses.  In any case, the 6LR MUST use an EARO in the reply and
  can use any of the status codes defined in this specification.

6.3.  RFC 6775-Only 6LR

  An updated 6LN discovers the capabilities of the 6LR in the 6CIO in
  RA messages from that 6LR; if the 6CIO was not present in the RA,
  then the 6LR is assumed to be RFC 6775-only.

  An updated 6LN MUST use an EARO in the request, regardless of the
  type of 6LR -- RFC 6775-only or updated; this implies that the T flag
  is set.  It MUST use a ROVR of 64 bits if the 6LR is RFC 6775-only.





Thubert, et al.              Standards Track                   [Page 25]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  If an updated 6LN moves from an updated 6LR to an RFC 6775-only 6LR,
  the RFC 6775-only 6LR will send an RFC 6775-only DAR message, which
  cannot be compared with an updated one for recency.  Allowing
  RFC 6775-only DAR messages to update a state established by the
  updated protocol in the 6LBR would be an attack vector; therefore,
  this cannot be the default behavior.  But if RFC 6775-only and
  updated 6LRs coexist temporarily in a network, then it makes sense
  for an administrator to install a policy that allows this behavior,
  using some method that is out of scope for this document.

6.4.  RFC 6775-Only 6LBR

  With this specification, the Duplicate Address messages are extended
  to transport the EARO information.  As with the NS/NA exchange, an
  updated 6LBR MUST always use the EDAR and EDAC messages.

  Note that an RFC 6775-only 6LBR will accept and process an EDAR
  message as if it were an RFC 6775-only DAR, as long as the ROVR is
  64 bits long.  An updated 6LR discovers the capabilities of the 6LBR
  in the 6CIO in RA messages from the 6LR; if the 6CIO was not present
  in any RA, then the 6LBR is assumed to be RFC 6775-only.

  If the 6LBR is RFC 6775-only, the 6LR MUST use only the 64 leftmost
  bits of the ROVR and place the result in the EDAR message to maintain
  compatibility.  This way, the support of DAD is preserved.

7.  Security Considerations

  This specification extends [RFC6775], and the Security Considerations
  section of that document also applies to this document.  In
  particular, the link layer SHOULD be sufficiently protected to
  prevent rogue access.

  [RFC6775] does not protect the content of its messages and expects
  lower-layer encryption to defeat potential attacks.  This
  specification requires the LLN MAC layer to provide secure unicast
  to/from a Routing Registrar and secure broadcast or multicast from
  the Routing Registrar in a way that prevents tampering with or
  replaying the ND messages.

  This specification recommends using privacy techniques (see
  Section 8) and protecting against address theft via methods that are
  outside the scope of this document.  As an example, [AP-ND]
  guarantees the ownership of the Registered Address using a
  cryptographic ROVR.






Thubert, et al.              Standards Track                   [Page 26]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  The registration mechanism may be used by a rogue node to attack the
  6LR or 6LBR with a denial-of-service attack against the registry.  It
  may also happen that the registry of a 6LR or 6LBR is saturated and
  cannot take any more registrations; this scenario effectively denies
  the requesting node the capability to use a new address.  In order to
  alleviate those concerns, (1) Section 5.2 provides a sequence counter
  that keeps incrementing to detect and clean up stale registration
  information and that contributes to defeat replay attacks and
  (2) Section 5.7 provides a number of recommendations that ensure that
  a stale registration is removed as soon as possible from the 6LR
  and 6LBR.

  In particular, this specification recommends that:

  o  A node that ceases to use an address SHOULD attempt to de-register
     that address from all the 6LRs to which it is registered.

  o  The registration lifetimes SHOULD be individually configurable for
     each address or group of addresses.  A node SHOULD be configured
     for each address (or address category) with a Registration
     Lifetime that reflects the expectation of how long it will use the
     address with the 6LR to which the address is registered.  In
     particular, use cases that involve mobility or rapid address
     changes SHOULD use lifetimes that are the same order of magnitude
     as the duration of the expectation of presence but that are still
     longer.

  o  The router (6LR or 6LBR) SHOULD be configurable so as to limit the
     number of addresses that can be registered by a single node, but
     as a protective measure only.  In any case, a router MUST be able
     to keep a minimum number of addresses per node.  That minimum
     depends on the type of device and ranges between 3 for a very
     constrained LLN and 10 for a larger device.  A node may be
     identified by its MAC address, as long as it is not obfuscated by
     privacy measures.  A stronger identification (e.g., by security
     credentials) is RECOMMENDED.  When the maximum is reached, the
     router SHOULD use a Least Recently Used (LRU) algorithm to
     clean up the addresses, keeping at least one Link-Local Address.
     The router SHOULD attempt to keep one or more stable addresses if
     stability can be determined, e.g., because they are used over a
     much longer time span than other (privacy, shorter-lived)
     addresses.

  o  In order to avoid denial of registration due to a lack of
     resources, administrators should take great care to deploy
     adequate numbers of 6LRs to cover the needs of the nodes in their
     range, so as to avoid a situation of starving nodes.  It is
     expected that the 6LBR that serves an LLN is a more capable node



Thubert, et al.              Standards Track                   [Page 27]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


     than the average 6LR, but in a network condition where it may
     become saturated, a particular LLN should distribute the 6LBR
     functionality -- for instance, by leveraging a high-speed Backbone
     Link and Routing Registrars to aggregate multiple LLNs into a
     larger subnet.

  The LLN nodes depend on a 6LBR and may use the services of a Routing
  Registrar for their operation.  A trust model MUST be put in place to
  ensure that only authorized devices are acting in these roles, so as
  to avoid threats such as black-holing or bombing attack whereby an
  impersonated 6LBR would destroy state in the network by using the
  "Removed" status code.  At a minimum, this trust model could be based
  on Layer 2 access control or could provide role validation as well
  (see Req-5.1 in Appendix B.5).

8.  Privacy Considerations

  As indicated in Section 3, this protocol does not limit the number of
  IPv6 Addresses that each device can form.  However, to mitigate
  denial-of-service attacks, it can be useful as a protective measure
  to have a limit that is high enough not to interfere with the normal
  behavior of devices in the network.  A host should be able to form
  and register any address that is topologically correct in the
  subnet(s) advertised by the 6LR/6LBR.

  This specification does not mandate any particular way for forming
  IPv6 Addresses, but it discourages using EUI-64 for forming the
  Interface Identifier in the Link-Local Address because this method
  prevents the usage of Secure Neighbor Discovery (SEND) [RFC3971],
  Cryptographically Generated Addresses (CGAs) [RFC3972], and other
  address privacy techniques.

  [RFC8065] ("Privacy Considerations for IPv6 Adaptation-Layer
  Mechanisms") explains why privacy is important and how to form
  privacy-aware addresses.  All implementations and deployments must
  consider the option of privacy addresses in their own environments.

  The IPv6 Address of the 6LN in the IPv6 header can be compressed
  statelessly when the Interface Identifier in the IPv6 Address can be
  derived from the lower-layer address.  When it is not critical to
  benefit from that compression, e.g., the address can be compressed
  statefully, or it is rarely used and/or it is used only over one hop,
  privacy concerns should be considered.  In particular, new
  implementations should follow [RFC8064] ("Recommendation on Stable
  IPv6 Interface Identifiers").  [RFC8064] recommends the mechanism
  specified in [RFC7217] ("A Method for Generating Semantically Opaque
  Interface Identifiers with IPv6 Stateless Address Autoconfiguration
  (SLAAC)") for generating Interface Identifiers to be used in SLAAC.



Thubert, et al.              Standards Track                   [Page 28]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


9.  IANA Considerations

  IANA has made a number of changes under the "Internet Control Message
  Protocol version 6 (ICMPv6) Parameters" registry, as follows.

9.1.  Address Registration Option Flags

  IANA has created a new subregistry for "Address Registration Option
  Flags" under the "Internet Control Message Protocol version 6
  (ICMPv6) Parameters" registry.  (See [RFC4443] for information
  regarding ICMPv6.)

  This specification defines eight positions -- bit 0 to bit 7 -- and
  assigns bit 6 for the R flag and bit 7 for the T flag (see
  Section 4.1).  The registration procedure is "IETF Review" or "IESG
  Approval" (see [RFC8126]).

  The initial contents of the registry are shown in Table 2.

               +-------------+--------------+------------+
               |  ARO Status | Description  | Reference  |
               +-------------+--------------+------------+
               |     0-5     | Unassigned   |            |
               |             |              |            |
               |      6      | R Flag       | RFC 8505   |
               |             |              |            |
               |      7      | T Flag       | RFC 8505   |
               +-------------+--------------+------------+

             Table 2: New Address Registration Option Flags

9.2.  Address Registration Option I-Field

  IANA has created a new subregistry for "Address Registration Option
  I-Field" under the "Internet Control Message Protocol version 6
  (ICMPv6) Parameters" registry.

  This specification defines four integer values from 0 to 3 and
  assigns value 0 to "Abstract Index for Topology Selection" (see
  Section 4.1).  The registration procedure is "IETF Review" or "IESG
  Approval" [RFC8126].










Thubert, et al.              Standards Track                   [Page 29]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  The initial contents of the registry are shown in Table 3.

     +--------+---------------------------------------+------------+
     | Value  | Meaning                               | Reference  |
     +--------+---------------------------------------+------------+
     | 0      | Abstract Index for Topology Selection | RFC 8505   |
     |        |                                       |            |
     | 1-3    | Unassigned                            |            |
     +--------+---------------------------------------+------------+

              Table 3: New Subregistry for the EARO I-Field

9.3.  ICMP Codes

  IANA has created two new subregistries of the 'ICMPv6 "Code" Fields'
  registry, which itself is a subregistry of ICMPv6 codes in the
  "Internet Control Message Protocol version 6 (ICMPv6) Parameters"
  registry.

  The new subregistries relate to ICMP Types 157 (Duplicate Address
  Request) (shown in Table 4) and 158 (Duplicate Address Confirmation)
  (shown in Table 5), respectively.  For those two ICMP types, the ICMP
  Code field is split into two subfields: the Code Prefix and the Code
  Suffix.  The new subregistries relate to the Code Suffix portion of
  the ICMP Code.  The range of the Code Suffix is 0-15 in all cases.
  The registration procedure is "IETF Review" or "IESG Approval"
  [RFC8126] for both subregistries.

  The initial contents of these subregistries are as follows:

  +--------------+--------------------------------------+------------+
  | Code Suffix  | Meaning                              | Reference  |
  +--------------+--------------------------------------+------------+
  | 0            | DAR message                          | RFC 6775   |
  |              |                                      |            |
  | 1            | EDAR message with 64-bit ROVR field  | RFC 8505   |
  |              |                                      |            |
  | 2            | EDAR message with 128-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 3            | EDAR message with 192-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 4            | EDAR message with 256-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 5-15         | Unassigned                           |            |
  +--------------+--------------------------------------+------------+

          Table 4: Code Suffixes for ICMP Type 157 DAR Message




Thubert, et al.              Standards Track                   [Page 30]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  +--------------+--------------------------------------+------------+
  | Code Suffix  | Meaning                              | Reference  |
  +--------------+--------------------------------------+------------+
  | 0            | DAC message                          | RFC 6775   |
  |              |                                      |            |
  | 1            | EDAC message with 64-bit ROVR field  | RFC 8505   |
  |              |                                      |            |
  | 2            | EDAC message with 128-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 3            | EDAC message with 192-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 4            | EDAC message with 256-bit ROVR field | RFC 8505   |
  |              |                                      |            |
  | 5-15         | Unassigned                           |            |
  +--------------+--------------------------------------+------------+

          Table 5: Code Suffixes for ICMP Type 158 DAC Message

9.4.  New ARO Status Values

  IANA has made additions to the "Address Registration Option Status
  Values" subregistry, as follows:

   +-------+--------------------------------------------+------------+
   | Value | Description                                | Reference  |
   +-------+--------------------------------------------+------------+
   |   3   | Moved                                      | RFC 8505   |
   |       |                                            |            |
   |   4   | Removed                                    | RFC 8505   |
   |       |                                            |            |
   |   5   | Validation Requested                       | RFC 8505   |
   |       |                                            |            |
   |   6   | Duplicate Source Address                   | RFC 8505   |
   |       |                                            |            |
   |   7   | Invalid Source Address                     | RFC 8505   |
   |       |                                            |            |
   |   8   | Registered Address Topologically Incorrect | RFC 8505   |
   |       |                                            |            |
   |   9   | 6LBR Registry Saturated                    | RFC 8505   |
   |       |                                            |            |
   |   10  | Validation Failed                          | RFC 8505   |
   +-------+--------------------------------------------+------------+

                     Table 6: New ARO Status Values







Thubert, et al.              Standards Track                   [Page 31]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


9.5.  New 6LoWPAN Capability Bits

  IANA has made additions to the "6LoWPAN Capability Bits" subregistry,
  as follows:

            +------+---------------------------+------------+
            | Bit  | Description               | Reference  |
            +------+---------------------------+------------+
            |  10  | EDA Support (D bit)       | RFC 8505   |
            |      |                           |            |
            |  11  | 6LR capable (L bit)       | RFC 8505   |
            |      |                           |            |
            |  12  | 6LBR capable (B bit)      | RFC 8505   |
            |      |                           |            |
            |  13  | Routing Registrar (P bit) | RFC 8505   |
            |      |                           |            |
            |  14  | EARO support (E bit)      | RFC 8505   |
            +------+---------------------------+------------+

                  Table 7: New 6LoWPAN Capability Bits

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing
             Architecture", RFC 4291, DOI 10.17487/RFC4291,
             February 2006, <https://www.rfc-editor.org/info/rfc4291>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", STD 89,
             RFC 4443, DOI 10.17487/RFC4443, March 2006,
             <https://www.rfc-editor.org/info/rfc4443>.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             DOI 10.17487/RFC4861, September 2007,
             <https://www.rfc-editor.org/info/rfc4861>.







Thubert, et al.              Standards Track                   [Page 32]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
             Address Autoconfiguration", RFC 4862,
             DOI 10.17487/RFC4862, September 2007,
             <https://www.rfc-editor.org/info/rfc4862>.

  [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
             over Low-Power Wireless Personal Area Networks (6LoWPANs):
             Overview, Assumptions, Problem Statement, and Goals",
             RFC 4919, DOI 10.17487/RFC4919, August 2007,
             <https://www.rfc-editor.org/info/rfc4919>.

  [RFC6282]  Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
             Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
             DOI 10.17487/RFC6282, September 2011,
             <https://www.rfc-editor.org/info/rfc6282>.

  [RFC6606]  Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem
             Statement and Requirements for IPv6 over Low-Power
             Wireless Personal Area Network (6LoWPAN) Routing",
             RFC 6606, DOI 10.17487/RFC6606, May 2012,
             <https://www.rfc-editor.org/info/rfc6606>.

  [RFC6775]  Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
             Bormann, "Neighbor Discovery Optimization for IPv6 over
             Low-Power Wireless Personal Area Networks (6LoWPANs)",
             RFC 6775, DOI 10.17487/RFC6775, November 2012,
             <https://www.rfc-editor.org/info/rfc6775>.

  [RFC7400]  Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
             IPv6 over Low-Power Wireless Personal Area Networks
             (6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400,
             November 2014, <https://www.rfc-editor.org/info/rfc7400>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.









Thubert, et al.              Standards Track                   [Page 33]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


10.2.  Informative References

  [Alternative-Ellip-Curve-Reps]
             Struik, R., "Alternative Elliptic Curve Representations",
             Work in Progress, draft-struik-lwip-curve-
             representations-00, October 2017.

  [AP-ND]    Thubert, P., Ed., Sarikaya, B., Sethi, M., and R. Struik,
             "Address Protected Neighbor Discovery for Low-power and
             Lossy Networks", Work in Progress, draft-ietf-6lo-
             ap-nd-08, October 2018.

  [Arch-for-6TiSCH]
             Thubert, P., Ed., "An Architecture for IPv6 over the
             TSCH mode of IEEE 802.15.4", Work in Progress,
             draft-ietf-6tisch-architecture-17, November 2018.

  [Efficient-NPDAO]
             Jadhav, R., Ed., Thubert, P., Sahoo, R., and Z. Cao,
             "Efficient Route Invalidation", Work in Progress,
             draft-ietf-roll-efficient-npdao-09, October 2018.

  [IEEE-802-15-4]
             IEEE, "IEEE Standard for Low-Rate Wireless Networks",
             IEEE Standard 802.15.4, DOI 10.1109/IEEESTD.2016.7460875,
             <https://ieeexplore.ieee.org/document/7460875/>.

  [IPv6-Backbone-Router]
             Thubert, P., Ed. and C. Perkins, "IPv6 Backbone Router",
             Work in Progress, draft-ietf-6lo-backbone-router-08,
             October 2018.

  [IPv6-over-802.11ah]
             Del Carpio Vega, L., Robles, M., and R. Morabito, "IPv6
             over 802.11ah", Work in Progress, draft-delcarpio-6lo-
             wlanah-01, October 2015.

  [IPv6-over-NFC]
             Choi, Y., Ed., Hong, Y-G., Youn, J-S., Kim, D-K., and J-H.
             Choi, "Transmission of IPv6 Packets over Near Field
             Communication", Work in Progress, draft-ietf-6lo-nfc-12,
             November 2018.

  [IPv6-over-PLC]
             Hou, J., Liu, B., Hong, Y-G., Tang, X., and C. Perkins,
             "Transmission of IPv6 Packets over PLC Networks", Work in
             Progress, draft-hou-6lo-plc-05, October 2018.




Thubert, et al.              Standards Track                   [Page 34]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  [Multicast-over-IEEE802-Wireless]
             Perkins, C., McBride, M., Stanley, D., Kumari, W., and JC.
             Zuniga, "Multicast Considerations over IEEE 802 Wireless
             Media", Work in Progress, draft-ietf-mboned-ieee802-mcast-
             problems-03, October 2018.

  [ND-Optimizations]
             Chakrabarti, S., Nordmark, E., Thubert, P., and M.
             Wasserman, "IPv6 Neighbor Discovery Optimizations for
             Wired and Wireless Networks", Work in Progress,
             draft-chakrabarti-nordmark-6man-efficient-nd-07,
             February 2015.

  [Perlman83]
             Perlman, R., "Fault-Tolerant Broadcast of Routing
             Information", North-Holland Computer Networks 7:
             pp. 395-405, DOI 10.1016/0376-5075(83)90034-X, 1983,
             <http://www.cs.illinois.edu/~pbg/courses/cs598fa09/
             readings/p83.pdf>.

  [RFC1958]  Carpenter, B., Ed., "Architectural Principles of the
             Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,
             <https://www.rfc-editor.org/info/rfc1958>.

  [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
             DOI 10.17487/RFC1982, August 1996,
             <https://www.rfc-editor.org/info/rfc1982>.

  [RFC3610]  Whiting, D., Housley, R., and N. Ferguson, "Counter with
             CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610,
             September 2003, <https://www.rfc-editor.org/info/rfc3610>.

  [RFC3810]  Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
             Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
             DOI 10.17487/RFC3810, June 2004,
             <https://www.rfc-editor.org/info/rfc3810>.

  [RFC3971]  Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
             "SEcure Neighbor Discovery (SEND)", RFC 3971,
             DOI 10.17487/RFC3971, March 2005,
             <https://www.rfc-editor.org/info/rfc3971>.

  [RFC3972]  Aura, T., "Cryptographically Generated Addresses (CGA)",
             RFC 3972, DOI 10.17487/RFC3972, March 2005,
             <https://www.rfc-editor.org/info/rfc3972>.






Thubert, et al.              Standards Track                   [Page 35]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  [RFC4429]  Moore, N., "Optimistic Duplicate Address Detection (DAD)
             for IPv6", RFC 4429, DOI 10.17487/RFC4429, April 2006,
             <https://www.rfc-editor.org/info/rfc4429>.

  [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy
             Extensions for Stateless Address Autoconfiguration in
             IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
             <https://www.rfc-editor.org/info/rfc4941>.

  [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
             Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
             JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
             Low-Power and Lossy Networks", RFC 6550,
             DOI 10.17487/RFC6550, March 2012,
             <https://www.rfc-editor.org/info/rfc6550>.

  [RFC7217]  Gont, F., "A Method for Generating Semantically Opaque
             Interface Identifiers with IPv6 Stateless Address
             Autoconfiguration (SLAAC)", RFC 7217,
             DOI 10.17487/RFC7217, April 2014,
             <https://www.rfc-editor.org/info/rfc7217>.

  [RFC7428]  Brandt, A. and J. Buron, "Transmission of IPv6 Packets
             over ITU-T G.9959 Networks", RFC 7428,
             DOI 10.17487/RFC7428, February 2015,
             <https://www.rfc-editor.org/info/rfc7428>.

  [RFC7668]  Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
             Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
             Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
             <https://www.rfc-editor.org/info/rfc7668>.

  [RFC7934]  Colitti, L., Cerf, V., Cheshire, S., and D. Schinazi,
             "Host Address Availability Recommendations", BCP 204,
             RFC 7934, DOI 10.17487/RFC7934, July 2016,
             <https://www.rfc-editor.org/info/rfc7934>.

  [RFC8064]  Gont, F., Cooper, A., Thaler, D., and W. Liu,
             "Recommendation on Stable IPv6 Interface Identifiers",
             RFC 8064, DOI 10.17487/RFC8064, February 2017,
             <https://www.rfc-editor.org/info/rfc8064>.

  [RFC8065]  Thaler, D., "Privacy Considerations for IPv6 Adaptation-
             Layer Mechanisms", RFC 8065, DOI 10.17487/RFC8065,
             February 2017, <https://www.rfc-editor.org/info/rfc8065>.






Thubert, et al.              Standards Track                   [Page 36]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  [RFC8105]  Mariager, P., Petersen, J., Ed., Shelby, Z., Van de Logt,
             M., and D. Barthel, "Transmission of IPv6 Packets over
             Digital Enhanced Cordless Telecommunications (DECT) Ultra
             Low Energy (ULE)", RFC 8105, DOI 10.17487/RFC8105,
             May 2017, <https://www.rfc-editor.org/info/rfc8105>.

  [RFC8163]  Lynn, K., Ed., Martocci, J., Neilson, C., and S.
             Donaldson, "Transmission of IPv6 over Master-Slave/Token-
             Passing (MS/TP) Networks", RFC 8163, DOI 10.17487/RFC8163,
             May 2017, <https://www.rfc-editor.org/info/rfc8163>.

  [RFC8279]  Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
             Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
             Explicit Replication (BIER)", RFC 8279,
             DOI 10.17487/RFC8279, November 2017,
             <https://www.rfc-editor.org/info/rfc8279>.

  [Routing-for-RPL-Leaves]
             Thubert, P., Ed., "Routing for RPL Leaves", Work in
             Progress, draft-thubert-roll-unaware-leaves-05, May 2018.































Thubert, et al.              Standards Track                   [Page 37]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


Appendix A.  Applicability and Fulfilled Requirements (Not Normative)

  This specification extends 6LoWPAN ND to provide a sequence number to
  the registration and fulfills the requirements expressed in
  Appendix B.1 by enabling the mobility of devices from one LLN to the
  next.  A full specification for enabling mobility based on the use of
  the EARO and the registration procedures defined in this document can
  be found in subsequent work [IPv6-Backbone-Router] ("IPv6 Backbone
  Router").  The 6BBR is an example of a Routing Registrar that acts as
  an IPv6 ND proxy over a Backbone Link that federates multiple LLNs as
  well as the Backbone Link itself into a single IPv6 subnet.  The
  expected registration flow in that case is illustrated in Figure 6,
  noting that any combination of 6LR, 6LBR, and 6BBR may be collocated.

      6LN              6LR             6LBR            6BBR
       |                |               |                |
       |   NS(EARO)     |               |                |
       |--------------->|               |                |
       |                | Extended DAR  |                |
       |                |-------------->|                |
       |                |               |                |
       |                |               | proxy NS(EARO) |
       |                |               |--------------->|
       |                |               |                | NS(DAD)
       |                |               |                | ------>
       |                |               |                | <wait>
       |                |               |                |
       |                |               | proxy NA(EARO) |
       |                |               |<---------------|
       |                | Extended DAC  |                |
       |                |<--------------|                |
       |   NA(EARO)     |               |                |
       |<---------------|               |                |
       |                |               |                |

                    Figure 6: (Re-)Registration Flow

  [Arch-for-6TiSCH] ("An Architecture for IPv6 over the TSCH mode of
  IEEE 802.15.4") describes how a 6LoWPAN ND host using the
  Time-Slotted Channel Hopping (TSCH) mode of IEEE Std. 802.15.4
  [IEEE-802-15-4] can connect to the Internet via a RPL mesh network.
  Doing so requires additions to the 6LoWPAN ND protocol to support
  mobility and reachability in a secure and manageable network
  environment.  This document specifies those new operations and
  fulfills the requirements listed in Appendix B.2.






Thubert, et al.              Standards Track                   [Page 38]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  The term "LLN" is used loosely in this document and is intended to
  cover multiple types of WLANs and WPANs, including Low-Power IEEE
  Std. 802.11 networking, Bluetooth low energy, IEEE Std. 802.11ah, and
  IEEE Std. 802.15.4 wireless meshes, so as to address the requirements
  discussed in Appendix B.3.

  This specification can be used by any wireless node to register its
  IPv6 Addresses with a Routing Registrar and to obtain routing
  services such as proxy ND operations over a Backbone Link.  This
  satisfies the requirements expressed in Appendix B.4.

  This specification is extended by [AP-ND] to provide a solution to
  some of the security-related requirements expressed in Appendix B.5.

  [ND-Optimizations] ("IPv6 Neighbor Discovery Optimizations for Wired
  and Wireless Networks") suggests that 6LoWPAN ND [RFC6775] can be
  extended to other types of links (beyond IEEE Std. 802.15.4) for
  which it was defined.  The registration technique is beneficial when
  the link-layer technique used to carry IPv6 multicast packets is not
  sufficiently efficient in terms of delivery ratio or energy
  consumption in the end devices -- in particular, to enable
  energy-constrained sleeping nodes.  The value of such an extension is
  especially apparent in the case of mobile wireless nodes, to reduce
  the multicast operations that are related to IPv6 ND [RFC4861]
  [RFC4862] and affect the operation of the wireless medium
  [Multicast-over-IEEE802-Wireless].  This fulfills the scalability
  requirements listed in Appendix B.6.

Appendix B.  Requirements (Not Normative)

  This appendix lists requirements that were discussed by the
  6lo Working Group for an update to 6LoWPAN ND.  How those
  requirements are matched with existing specifications at the time
  of this writing is shown in Appendix B.8.

B.1.  Requirements Related to Mobility

  Due to the unstable nature of LLN links, even in an LLN of immobile
  nodes, a 6LN may change its point of attachment from, say, 6LR-a to
  6LR-b but may not be able to notify 6LR-a.  Consequently, 6LR-a may
  still attract traffic that it cannot deliver any more.  When links to
  a 6LR change state, there is thus a need to identify stale states in
  a 6LR and restore reachability in a timely fashion, e.g., by using
  some type of signaling upon detection of the movement or using a
  keep-alive mechanism with a period that is consistent with the needs
  of the application.





Thubert, et al.              Standards Track                   [Page 39]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Req-1.1:  Upon a change of point of attachment, connectivity via a
            new 6LR MUST be restored in a timely fashion without the
            need to de-register from the previous 6LR.

  Req-1.2:  For that purpose, the protocol MUST enable differentiating
            between multiple registrations from one 6LN and
            registrations from different 6LNs claiming the same
            address.

  Req-1.3:  Stale states MUST be cleaned up in 6LRs.

  Req-1.4:  A 6LN SHOULD also be able to register its address
            concurrently to multiple 6LRs.

B.2.  Requirements Related to Routing Protocols

  The point of attachment of a 6LN may be a 6LR in an LLN mesh.  IPv6
  routing in an LLN can be based on RPL, which is the routing protocol
  that was defined by the IETF for this particular purpose.  Other
  routing protocols are also considered by Standards Development
  Organizations (SDOs) on the basis of the expected network
  characteristics.  It is required that a 6LN attached via ND to a 6LR
  indicate whether or not it (1) participates in the selected routing
  protocol to obtain reachability via the 6LR or (2) expects the 6LR to
  manage its reachability.

  The specified updates enable other specifications to define new
  services such as Source Address Validation Improvement (SAVI) (via
  [AP-ND]), participation as an unaware leaf to a routing protocol
  (such as the protocol described in [RFC6550] (RPL)) (via
  [Routing-for-RPL-Leaves]), and registration to Backbone Routers
  performing proxy ND in an LLN (via [IPv6-Backbone-Router]).

  Beyond the 6LBR unicast address registered by ND, other addresses,
  including multicast addresses, are needed as well.  For example, a
  routing protocol often uses a multicast address to register changes
  to established paths.  ND needs to register such a multicast address
  to enable routing concurrently with discovery.

  Multicast is needed for groups.  Groups may be formed by device type
  (e.g., routers, street lamps), location (geography, RPL subtree),
  or both.

  The Bit Index Explicit Replication (BIER) architecture [RFC8279]
  proposes an optimized technique to enable multicast in an LLN with a
  very limited requirement for routing state in the nodes.





Thubert, et al.              Standards Track                   [Page 40]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Related requirements are as follows:

  Req-2.1:  The ND registration method SHOULD be extended so that the
            6LR is instructed whether to advertise the address of a 6LN
            over the selected routing protocol and obtain reachability
            to that address using the selected routing protocol.

  Req-2.2:  Considering RPL, the ARO that is used in the ND
            registration SHOULD be extended to carry enough information
            to generate a DAO message as specified in Section 6.4 of
            [RFC6550] -- in particular, the capability to compute a
            Path Sequence and, as an option, a RPLInstanceID.

  Req-2.3:  Multicast operations SHOULD be supported and optimized --
            for instance, using BIER or the Multicast Protocol for
            Low-Power and Lossy Networks (MPL).  Whether ND is
            appropriate for the registration to the Routing Registrar
            is to be defined, considering the additional burden of
            supporting Multicast Listener Discovery Version 2 (MLDv2)
            for IPv6 [RFC3810].

B.3.  Requirements Related to Various Low-Power Link Types

  6LoWPAN ND [RFC6775] was defined with a focus on IEEE Std.802.15.4
  and, in particular, the capability to derive a unique identifier from
  a globally unique EUI-64 address.  At this point, the 6lo Working
  Group is extending the 6LoWPAN Header Compression (HC) technique
  [RFC6282] to other link types, including ITU-T G.9959 [RFC7428],
  Master-Slave/Token-Passing [RFC8163], Digital Enhanced Cordless
  Telecommunications (DECT) Ultra Low Energy [RFC8105], Near Field
  Communication [IPv6-over-NFC], and IEEE Std. 802.11ah
  [IPv6-over-802.11ah], as well as Bluetooth low energy [RFC7668] and
  Power Line Communication (PLC) Networks [IPv6-over-PLC].

  Related requirements are as follows:

  Req-3.1:  The support of the registration mechanism SHOULD be
            extended to more LLN links than IEEE Std.802.15.4, matching
            at least the LLN links for which an "IPv6 over foo"
            specification exists, as well as low-power Wi-Fi.

  Req-3.2:  As part of this extension, a mechanism to compute a unique
            identifier should be provided, with the capability to form
            a Link-Local Address that SHOULD be unique at least within
            the LLN connected to a 6LBR discovered by ND in each node
            within the LLN.





Thubert, et al.              Standards Track                   [Page 41]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Req-3.3:  The ARO used in the ND registration SHOULD be extended to
            carry the relevant forms of the unique identifier.

  Req-3.4:  ND should specify the formation of a site-local address
            that follows the security recommendations in [RFC7217].

B.4.  Requirements Related to Proxy Operations

  Duty-cycled devices may not be awake to answer a lookup from a node
  that uses IPv6 ND and may need a proxy.  Additionally, the
  duty-cycled device may rely on the 6LBR to perform registration to
  the Routing Registrar.

  The ND registration method SHOULD defend the addresses of duty-cycled
  devices that are sleeping most of the time and incapable of defending
  their own addresses.

  Related requirements are as follows:

  Req-4.1:  The registration mechanism SHOULD enable a third party to
            proxy-register an address on behalf of a 6LN that may be
            sleeping or located deeper in an LLN mesh.

  Req-4.2:  The registration mechanism SHOULD be applicable to a
            duty-cycled device regardless of the link type and SHOULD
            enable a Routing Registrar to operate as a proxy to defend
            the Registered Addresses on its behalf.

  Req-4.3:  The registration mechanism SHOULD enable long sleep
            durations, on the order of multiple days to a month.

B.5.  Requirements Related to Security

  In order to guarantee the operations of the 6LoWPAN ND flows,
  spoofing the roles of the 6LR, 6LBR, and Routing Registrar should be
  avoided.  Once a node successfully registers an address, 6LoWPAN ND
  should provide energy-efficient means for the 6LBR to protect that
  ownership even when the node that registered the address is sleeping.

  In particular, the 6LR and the 6LBR should then be able to verify
  whether a subsequent registration for a given address comes from the
  original node.

  In an LLN, it makes sense to base security on Layer 2 security.
  During bootstrap of the LLN, nodes join the network after
  authorization by a Joining Assistant (JA) or a Commissioning Tool
  (CT).  After joining, nodes communicate with each other via secured
  links.  The keys for Layer 2 security are distributed by the JA/CT.



Thubert, et al.              Standards Track                   [Page 42]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  The JA/CT can be part of the LLN or be outside the LLN.  In both
  cases, the ability to route packets between the JA/CT and the joining
  node is needed.

  Related requirements are as follows:

  Req-5.1:  6LoWPAN ND security mechanisms SHOULD provide a mechanism
            for the 6LR, 6LBR, and Routing Registrar to authenticate
            and authorize one another for their respective roles, as
            well as with the 6LN for the role of 6LR.

  Req-5.2:  6LoWPAN ND security mechanisms SHOULD provide a mechanism
            for the 6LR and the 6LBR to validate new registrations of
            authorized nodes.  Joining of unauthorized nodes MUST be
            prevented.

  Req-5.3:  The use of 6LoWPAN ND security mechanisms SHOULD NOT result
            in large packet sizes.  In particular, the NS, NA, DAR, and
            DAC messages for a re-registration flow SHOULD NOT exceed
            80 octets so as to fit in a secured IEEE Std.802.15.4
            [IEEE-802-15-4] frame.

  Req-5.4:  Recurrent 6LoWPAN ND security operations MUST NOT be
            computationally intensive on the 6LN's CPU.  When
            calculation of a key hash is employed, a mechanism lighter
            than SHA-1 SHOULD be used.

  Req-5.5:  The number of keys that the 6LN needs to manipulate SHOULD
            be minimized.

  Req-5.6:  6LoWPAN ND security mechanisms SHOULD enable (1) the
            variation of CCM ("Counter with CBC-MAC") [RFC3610] called
            "CCM*" for use at both Layer 2 and Layer 3 and (2) the
            reuse of a security code that has to be present on the
            device for upper-layer security (e.g., TLS).  Algorithm
            agility and support for large keys (e.g., 256-bit key
            sizes) are also desirable.

  Req-5.7:  Public key and signature sizes SHOULD be minimized while
            maintaining adequate confidentiality and data origin
            authentication for multiple types of applications with
            various degrees of criticality.

  Req-5.8:  Routing of packets should continue when links pass from the
            unsecured state to the secured state.






Thubert, et al.              Standards Track                   [Page 43]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Req-5.9:  6LoWPAN ND security mechanisms SHOULD provide a mechanism
            for the 6LR and the 6LBR to validate whether a new
            registration for a given address corresponds to the same
            6LN that registered it initially and, if not, determine the
            rightful owner and deny or clean up the registration if it
            is a duplicate.

B.6.  Requirements Related to Scalability

  Use cases from Automatic Meter Reading (AMR) (collection-tree
  operations) and Advanced Metering Infrastructure (AMI) (bidirectional
  communication to the meters) indicate the need for a large number of
  LLN nodes pertaining to a single RPL DODAG (e.g., 5000) and connected
  to the 6LBR over a large number of LLN hops (e.g., 15).

  Related requirements are as follows:

  Req-6.1:  The registration mechanism SHOULD enable a single 6LBR to
            register multiple thousands of devices.

  Req-6.2:  The timing of the registration operation should allow for
            long latency, such as that found in LLNs with ten or
            more hops.

B.7.  Requirements Related to Operations and Management

  Guideline 3.8 in Section 3 of [RFC1958] ("Architectural Principles of
  the Internet") recommends the following: "Avoid options and
  parameters whenever possible.  Any options and parameters should be
  configured or negotiated dynamically rather than manually."  This is
  especially true in LLNs where the number of devices may be large and
  manual configuration is infeasible.  Capabilities for dynamic
  configuration of LLN devices can also be constrained by network and
  power limitations.

  A network administrator should be able to validate that the network
  is operating within capacity and that, in particular, a 6LBR does not
  get overloaded with an excessive amount of registrations, so the
  administrator can take actions such as adding a Backbone Link with
  additional 6LBRs and Routing Registrars to the network.











Thubert, et al.              Standards Track                   [Page 44]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


  Related requirements are as follows:

  Req-7.1:  A management model SHOULD be provided that enables access
            to the 6LBR, monitors its usage vs. capacity, and sends
            alerts in the case of congestion.  It is recommended that
            the 6LBR be reachable over a non-LLN link.

  Req-7.2:  A management model SHOULD be provided that enables access
            to the 6LR and its capacity to host additional NCEs.  This
            management model SHOULD avoid polling individual 6LRs in a
            way that could disrupt the operation of the LLN.

  Req-7.3:  Information on successful and failed registrations SHOULD
            be provided, including information such as the ROVR of the
            6LN, the Registered Address, the address of the 6LR, and
            the duration of the registration flow.

  Req-7.4:  In the case of a failed registration, information on the
            failure, including the identification of the node that
            rejected the registration and the status in the EARO,
            SHOULD be provided.

B.8.  Matching Requirements with Specifications

            +-------------+--------------------------------+
            | Requirement | Document                       |
            +-------------+--------------------------------+
            | Req-1.1     | [IPv6-Backbone-Router]         |
            |             |                                |
            | Req-1.2     | [RFC6775]                      |
            |             |                                |
            | Req-1.3     | [RFC6775]                      |
            |             |                                |
            | Req-1.4     | RFC 8505                       |
            |             |                                |
            | Req-2.1     | RFC 8505                       |
            |             |                                |
            | Req-2.2     | RFC 8505                       |
            |             |                                |
            | Req-2.3     |                                |
            |             |                                |
            | Req-3.1     | Technology Dependent           |
            |             |                                |
            | Req-3.2     | Technology Dependent           |
            |             |                                |
            | Req-3.3     | Technology Dependent           |
            |             |                                |
            | Req-3.4     | Technology Dependent           |



Thubert, et al.              Standards Track                   [Page 45]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


            |             |                                |
            | Req-4.1     | RFC 8505                       |
            |             |                                |
            | Req-4.2     | RFC 8505                       |
            |             |                                |
            | Req-4.3     | [RFC6775]                      |
            |             |                                |
            | Req-5.1     |                                |
            |             |                                |
            | Req-5.2     | [AP-ND]                        |
            |             |                                |
            | Req-5.3     |                                |
            |             |                                |
            | Req-5.4     |                                |
            |             |                                |
            | Req-5.5     | [AP-ND]                        |
            |             |                                |
            | Req-5.6     | [Alternative-Ellip-Curve-Reps] |
            |             |                                |
            | Req-5.7     | [AP-ND]                        |
            |             |                                |
            | Req-5.8     |                                |
            |             |                                |
            | Req-5.9     | [AP-ND]                        |
            |             |                                |
            | Req-6.1     | RFC 8505                       |
            |             |                                |
            | Req-6.2     | RFC 8505                       |
            |             |                                |
            | Req-7.1     |                                |
            |             |                                |
            | Req-7.2     |                                |
            |             |                                |
            | Req-7.3     |                                |
            |             |                                |
            | Req-7.4     |                                |
            +-------------+--------------------------------+

              Table 8: Documents That Address Requirements












Thubert, et al.              Standards Track                   [Page 46]

RFC 8505         Registration Extensions for 6LoWPAN ND    November 2018


Acknowledgments

  Kudos to Eric Levy-Abegnoli, who designed the "First-Hop Security"
  infrastructure upon which the first Backbone Router was implemented.
  Many thanks to Sedat Gormus, Rahul Jadhav, Tim Chown, Juergen
  Schoenwaelder, Chris Lonvick, Dave Thaler, Adrian Farrel, Peter Yee,
  Warren Kumari, Benjamin Kaduk, Mirja Kuehlewind, Ben Campbell, Eric
  Rescorla, and Lorenzo Colitti for their various contributions and
  reviews.  Also, many thanks to Thomas Watteyne for the world's first
  implementation of a 6LN that was instrumental to the early tests of
  the 6LR, 6LBR, and Backbone Router.

Authors' Addresses

  Pascal Thubert (editor)
  Cisco Systems, Inc.
  Building D (Regus) 45 Allee des Ormes
  Mougins - Sophia Antipolis
  France

  Phone: +33 4 97 23 26 34
  Email: [email protected]


  Erik Nordmark
  Zededa
  Santa Clara, CA
  United States of America

  Email: [email protected]


  Samita Chakrabarti
  Verizon
  San Jose, CA
  United States of America

  Email: [email protected]


  Charles E. Perkins
  Futurewei
  2330 Central Expressway
  Santa Clara, CA  95050
  United States of America

  Email: [email protected]




Thubert, et al.              Standards Track                   [Page 47]