Internet Engineering Task Force (IETF)                       J. Tantsura
Request for Comments: 8476                                  Apstra, Inc.
Category: Standards Track                                    U. Chunduri
ISSN: 2070-1721                                      Huawei Technologies
                                                              S. Aldrin
                                                           Google, Inc.
                                                              P. Psenak
                                                          Cisco Systems
                                                          December 2018


             Signaling Maximum SID Depth (MSD) Using OSPF

Abstract

  This document defines a way for an Open Shortest Path First (OSPF)
  router to advertise multiple types of supported Maximum SID Depths
  (MSDs) at node and/or link granularity.  Such advertisements allow
  entities (e.g., centralized controllers) to determine whether a
  particular Segment Identifier (SID) stack can be supported in a given
  network.  This document only refers to the Signaling MSD as defined
  in RFC 8491, but it defines an encoding that can support other MSD
  types.  Here, the term "OSPF" means both OSPFv2 and OSPFv3.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8476.














Tantsura, et al.             Standards Track                    [Page 1]

RFC 8476                Signaling MSD Using OSPF           December 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
     1.2. Requirements Language ......................................4
  2. Node MSD Advertisement ..........................................5
  3. Link MSD Sub-TLV ................................................6
  4. Procedures for Defining and Using Node and Link MSD
     Advertisements ..................................................7
  5. IANA Considerations .............................................7
  6. Security Considerations .........................................8
  7. References ......................................................9
     7.1. Normative References .......................................9
     7.2. Informative References ....................................10
  Acknowledgements ..................................................11
  Contributors ......................................................11
  Authors' Addresses ................................................11



















Tantsura, et al.             Standards Track                    [Page 2]

RFC 8476                Signaling MSD Using OSPF           December 2018


1.  Introduction

  When Segment Routing (SR) paths are computed by a centralized
  controller, it is critical that the controller learn the Maximum SID
  Depth (MSD) that can be imposed at each node/link on a given SR path.
  This ensures that the Segment Identifier (SID) stack depth of a
  computed path doesn't exceed the number of SIDs the node is capable
  of imposing.

  [PCEP-EXT] defines how to signal MSD in the Path Computation Element
  Communication Protocol (PCEP).  However, if PCEP is not supported/
  configured on the head-end of an SR tunnel or a Binding-SID anchor
  node, and the controller does not participate in IGP routing, it has
  no way of learning the MSD of nodes and links.  BGP-LS (Distribution
  of Link-State and TE Information Using BGP) [RFC7752] defines a way
  to expose topology and associated attributes and capabilities of the
  nodes in that topology to a centralized controller.  MSD signaling by
  BGP-LS has been defined in [MSD-BGP].  Typically, BGP-LS is
  configured on a small number of nodes that do not necessarily act as
  head-ends.  In order for BGP-LS to signal MSD for all the nodes and
  links in the network for which MSD is relevant, MSD capabilities
  SHOULD be advertised by every OSPF router in the network.

  Other types of MSDs are known to be useful.  For example, [ELC-ISIS]
  defines Entropy Readable Label Depth (ERLD), which is used by a
  head-end to insert an Entropy Label (EL) at a depth where it can be
  read by transit nodes.

  This document defines an extension to OSPF used to advertise one or
  more types of MSDs at node and/or link granularity.  In the future,
  it is expected that new MSD-Types will be defined to signal
  additional capabilities, e.g., ELs, SIDs that can be imposed through
  recirculation, or SIDs associated with another data plane such
  as IPv6.

  MSD advertisements MAY be useful even if SR itself is not enabled.
  For example, in a non-SR MPLS network, MSD defines the maximum label
  depth.













Tantsura, et al.             Standards Track                    [Page 3]

RFC 8476                Signaling MSD Using OSPF           December 2018


1.1.  Terminology

  This memo makes use of the terms defined in [RFC7770].

  BGP-LS:  Distribution of Link-State and TE Information Using BGP

  OSPF:    Open Shortest Path First

  MSD:     Maximum SID Depth - the number of SIDs supported by a node
           or a link on a node

  SID:     Segment Identifier as defined in [RFC8402]

  Label Imposition:  Imposition is the act of modifying and/or adding
           labels to the outgoing label stack associated with a packet.
           This includes:

           *  replacing the label at the top of the label stack with a
              new label

           *  pushing one or more new labels onto the label stack

  The number of labels imposed is then the sum of the number of labels
  that are replaced and the number of labels that are pushed.  See
  [RFC3031] for further details.

  PCEP:    Path Computation Element Communication Protocol

  SR:      Segment Routing

  LSA:     Link State Advertisement

  RI:      Router Information

1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.










Tantsura, et al.             Standards Track                    [Page 4]

RFC 8476                Signaling MSD Using OSPF           December 2018


2.  Node MSD Advertisement

  The Node MSD TLV within the body of the OSPF RI Opaque LSA [RFC7770]
  is defined to carry the provisioned SID depth of the router
  originating the RI LSA.  Node MSD is the smallest MSD supported by
  the node on the set of interfaces configured for use by the
  advertising IGP instance.  MSD values may be learned via a hardware
  API or may be provisioned.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type                       |  Length                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    MSD-Type   |  MSD-Value    |  MSD-Type...  |  MSD-Value... |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 1: Node MSD TLV

  Type: 12

  Length: variable (multiple of 2 octets); represents the total length
  of the value field in octets.

  Value: consists of one or more pairs of a 1-octet MSD-Type and
  1-octet MSD-Value.

  MSD-Type: one of the values defined in the "IGP MSD-Types" registry
  defined in [RFC8491].

  MSD-Value: a number in the range of 0-255.  For all MSD-Types, 0
  represents the lack of ability to impose an MSD stack of any depth;
  any other value represents that of the node.  This value MUST
  represent the lowest value supported by any link configured for use
  by the advertising OSPF instance.

  This TLV is optional and is applicable to both OSPFv2 and OSPFv3.
  The scope of the advertisement is specific to the deployment.

  When multiple Node MSD TLVs are received from a given router, the
  receiver MUST use the first occurrence of the TLV in the Router
  Information (RI) LSA.  If the Node MSD TLV appears in multiple RI
  LSAs that have different flooding scopes, the Node MSD TLV in the RI
  LSA with the area-scoped flooding scope MUST be used.  If the Node
  MSD TLV appears in multiple RI LSAs that have the same flooding
  scope, the Node MSD TLV in the RI LSA with the numerically smallest
  Instance ID MUST be used and other instances of the Node MSD TLV MUST
  be ignored.  The RI LSA can be advertised at any of the defined



Tantsura, et al.             Standards Track                    [Page 5]

RFC 8476                Signaling MSD Using OSPF           December 2018


  opaque flooding scopes (link, area, or Autonomous System (AS)).  For
  the purpose of Node MSD TLV advertisement, area-scoped flooding is
  RECOMMENDED.

3.  Link MSD Sub-TLV

  The Link MSD sub-TLV is defined to carry the MSD of the interface
  associated with the link.  MSD values may be learned via a hardware
  API or may be provisioned.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Type                       |  Length                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    MSD-Type   |  MSD-Value    |  MSD-Type...  |  MSD-Value... |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 2: Link MSD Sub-TLV

  Type:
     For OSPFv2, the link-level MSD-Value is advertised as an optional
     sub-TLV of the OSPFv2 Extended Link TLV as defined in [RFC7684]
     and has a type of 6.

     For OSPFv3, the link-level MSD-Value is advertised as an optional
     sub-TLV of the E-Router-LSA TLV as defined in [RFC8362] and has a
     type of 9.

  Length: variable; same as defined in Section 2.

  Value: consists of one or more pairs of a 1-octet MSD-Type and
  1-octet MSD-Value.

  MSD-Type: one of the values defined in the "IGP MSD-Types" registry
  defined in [RFC8491].

  The MSD-Value field contains the Link MSD of the router originating
  the corresponding LSA as specified for OSPFv2 and OSPFv3.  The Link
  MSD is a number in the range of 0-255.  For all MSD-Types, 0
  represents the lack of ability to impose an MSD stack of any depth;
  any other value represents that of the particular link when used as
  an outgoing interface.

  If this sub-TLV is advertised multiple times for the same link in
  different OSPF Extended Link Opaque LSAs / E-Router-LSAs originated
  by the same OSPF router, the sub-TLV in the OSPFv2 Extended Link




Tantsura, et al.             Standards Track                    [Page 6]

RFC 8476                Signaling MSD Using OSPF           December 2018


  Opaque LSA with the smallest Opaque ID or in the OSPFv3 E-Router-LSA
  with the smallest Link State ID MUST be used by receiving OSPF
  routers.  This situation SHOULD be logged as an error.

4.  Procedures for Defining and Using Node and Link MSD Advertisements

  When Link MSD is present for a given MSD-Type, the value of the Link
  MSD MUST take precedence over the Node MSD.  When a Link MSD-Type is
  not signaled but the Node MSD-Type is, then the Node MSD-Type value
  MUST be considered as the MSD value for that link.

  In order to increase flooding efficiency, it is RECOMMENDED that
  routers with homogenous Link MSD values advertise just the Node MSD
  value.

  The meaning of the absence of both Node and Link MSD advertisements
  for a given MSD-Type is specific to the MSD-Type.  Generally, it can
  only be inferred that the advertising node does not support
  advertisement of that MSD-Type.  However, in some cases the lack of
  advertisement might imply that the functionality associated with the
  MSD-Type is not supported.  Per [RFC8491], the correct interpretation
  MUST be specified when an MSD-Type is defined.

5.  IANA Considerations

  This specification updates several existing OSPF registries.

  IANA has allocated TLV type 12 from the "OSPF Router Information (RI)
  TLVs" registry as defined by [RFC7770].

     Value     Description                      Reference
     -----     ---------------                  -------------
     12        Node MSD                         This document

                          Figure 3: RI Node MSD

  IANA has allocated sub-TLV type 6 from the "OSPFv2 Extended Link TLV
  Sub-TLVs" registry.

     Value     Description                      Reference
     -----     ---------------                  -------------
     6         OSPFv2 Link MSD                  This document

                        Figure 4: OSPFv2 Link MSD







Tantsura, et al.             Standards Track                    [Page 7]

RFC 8476                Signaling MSD Using OSPF           December 2018


  IANA has allocated sub-TLV type 9 from the "OSPFv3 Extended-LSA
  Sub-TLVs" registry.

     Value     Description                      Reference
     -----     ---------------                  -------------
     9         OSPFv3 Link MSD                  This document

                        Figure 5: OSPFv3 Link MSD

6.  Security Considerations

  Security concerns for OSPF are addressed in [RFC7474], [RFC4552], and
  [RFC7166].  Further security analysis for the OSPF protocol is done
  in [RFC6863].  Security considerations as specified by [RFC7770],
  [RFC7684], and [RFC8362] are applicable to this document.

  Implementations MUST ensure that malformed TLVs and sub-TLVs defined
  in this document are detected and do not provide a vulnerability for
  attackers to crash the OSPF router or routing process.  Reception of
  malformed TLVs or sub-TLVs SHOULD be counted and/or logged for
  further analysis.  Logging of malformed TLVs and sub-TLVs SHOULD be
  rate-limited to prevent a Denial-of-Service (DoS) attack (distributed
  or otherwise) from overloading the OSPF control plane.

  Advertisement of an incorrect MSD value may have negative
  consequences.  If the value is smaller than supported, path
  computation may fail to compute a viable path.  If the value is
  larger than supported, an attempt to instantiate a path that can't be
  supported by the head-end (the node performing the SID imposition)
  may occur.

  The presence of this information may also inform an attacker of how
  to induce any of the aforementioned conditions.

  There's no DoS risk specific to this extension, and it is not
  vulnerable to replay attacks.















Tantsura, et al.             Standards Track                    [Page 8]

RFC 8476                Signaling MSD Using OSPF           December 2018


7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031,
             DOI 10.17487/RFC3031, January 2001,
             <https://www.rfc-editor.org/info/rfc3031>.

  [RFC7684]  Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,
             Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute
             Advertisement", RFC 7684, DOI 10.17487/RFC7684,
             November 2015, <https://www.rfc-editor.org/info/rfc7684>.

  [RFC7770]  Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
             S. Shaffer, "Extensions to OSPF for Advertising Optional
             Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
             February 2016, <https://www.rfc-editor.org/info/rfc7770>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8362]  Lindem, A., Roy, A., Goethals, D., Reddy Vallem, V., and
             F. Baker, "OSPFv3 Link State Advertisement (LSA)
             Extensibility", RFC 8362, DOI 10.17487/RFC8362,
             April 2018, <https://www.rfc-editor.org/info/rfc8362>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC8491]  Tantsura, J., Chunduri, U., Aldrin, S., and L. Ginsberg,
             "Signaling Maximum SID Depth (MSD) Using IS-IS", RFC 8491,
             DOI 10.17487/RFC8491, November 2018,
             <https://www.rfc-editor.org/info/rfc8491>.








Tantsura, et al.             Standards Track                    [Page 9]

RFC 8476                Signaling MSD Using OSPF           December 2018


7.2.  Informative References

  [ELC-ISIS] Xu, X., Kini, S., Sivabalan, S., Filsfils, C., and S.
             Litkowski, "Signaling Entropy Label Capability and Entropy
             Readable Label-stack Depth Using OSPF", Work in Progress,
             draft-ietf-ospf-mpls-elc-07, September 2018.

  [MSD-BGP]  Tantsura, J., Chunduri, U., Mirsky, G., and S. Sivabalan,
             "Signaling MSD (Maximum SID Depth) using Border Gateway
             Protocol Link-State", Work in Progress, draft-ietf-idr-
             bgp-ls-segment-routing-msd-02, August 2018.

  [PCEP-EXT] Sivabalan, S., Filsfils, C., Tantsura, J., Henderickx, W.,
             and J. Hardwick, "PCEP Extensions for Segment Routing",
             Work in Progress, draft-ietf-pce-segment-routing-14,
             October 2018.

  [RFC4552]  Gupta, M. and N. Melam, "Authentication/Confidentiality
             for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,
             <https://www.rfc-editor.org/info/rfc4552>.

  [RFC6863]  Hartman, S. and D. Zhang, "Analysis of OSPF Security
             According to the Keying and Authentication for Routing
             Protocols (KARP) Design Guide", RFC 6863,
             DOI 10.17487/RFC6863, March 2013,
             <https://www.rfc-editor.org/info/rfc6863>.

  [RFC7166]  Bhatia, M., Manral, V., and A. Lindem, "Supporting
             Authentication Trailer for OSPFv3", RFC 7166,
             DOI 10.17487/RFC7166, March 2014,
             <https://www.rfc-editor.org/info/rfc7166>.

  [RFC7474]  Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
             "Security Extension for OSPFv2 When Using Manual Key
             Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
             <https://www.rfc-editor.org/info/rfc7474>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <https://www.rfc-editor.org/info/rfc7752>.









Tantsura, et al.             Standards Track                   [Page 10]

RFC 8476                Signaling MSD Using OSPF           December 2018


Acknowledgements

  The authors would like to thank Acee Lindem, Ketan Talaulikar, Tal
  Mizrahi, Stephane Litkowski, and Bruno Decraene for their reviews and
  valuable comments.

Contributors

  The following person contributed to this document:

  Les Ginsberg

  Email: [email protected]

Authors' Addresses

  Jeff Tantsura
  Apstra, Inc.

  Email: [email protected]


  Uma Chunduri
  Huawei Technologies

  Email: [email protected]


  Sam Aldrin
  Google, Inc.

  Email: [email protected]


  Peter Psenak
  Cisco Systems

  Email: [email protected]













Tantsura, et al.             Standards Track                   [Page 11]