Internet Engineering Task Force (IETF)                            Y. Lee
Request for Comments: 8454                                        Huawei
Category: Informational                                       S. Belotti
ISSN: 2070-1721                                                    Nokia
                                                               D. Dhody
                                                                 Huawei
                                                          D. Ceccarelli
                                                               Ericsson
                                                                B. Yoon
                                                                   ETRI
                                                         September 2018


 Information Model for Abstraction and Control of TE Networks (ACTN)

Abstract

  This document provides an information model for Abstraction and
  Control of TE Networks (ACTN).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8454.
















Lee, et al.                   Informational                     [Page 1]

RFC 8454                     ACTN Info Model              September 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Lee, et al.                   Informational                     [Page 2]

RFC 8454                     ACTN Info Model              September 2018


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  ACTN Common Interfaces Information Model  . . . . . . . . . .   5
  3.  Virtual Network Primitives  . . . . . . . . . . . . . . . . .   6
    3.1.  VN Instantiate  . . . . . . . . . . . . . . . . . . . . .   7
    3.2.  VN Modify . . . . . . . . . . . . . . . . . . . . . . . .   7
    3.3.  VN Delete . . . . . . . . . . . . . . . . . . . . . . . .   7
    3.4.  VN Update . . . . . . . . . . . . . . . . . . . . . . . .   7
    3.5.  VN Compute  . . . . . . . . . . . . . . . . . . . . . . .   8
    3.6.  VN Query  . . . . . . . . . . . . . . . . . . . . . . . .   8
  4.  TE Primitives . . . . . . . . . . . . . . . . . . . . . . . .   8
    4.1.  TE Instantiate  . . . . . . . . . . . . . . . . . . . . .   9
    4.2.  TE Modify . . . . . . . . . . . . . . . . . . . . . . . .   9
    4.3.  TE Delete . . . . . . . . . . . . . . . . . . . . . . . .   9
    4.4.  TE Topology Update (for TE Resources) . . . . . . . . . .   9
    4.5.  Path Compute  . . . . . . . . . . . . . . . . . . . . . .  10
  5.  VN Objects  . . . . . . . . . . . . . . . . . . . . . . . . .  10
    5.1.  VN Identifier . . . . . . . . . . . . . . . . . . . . . .  11
    5.2.  VN Service Characteristics  . . . . . . . . . . . . . . .  11
    5.3.  VN Endpoint . . . . . . . . . . . . . . . . . . . . . . .  13
    5.4.  VN Objective Function . . . . . . . . . . . . . . . . . .  14
    5.5.  VN Action Status  . . . . . . . . . . . . . . . . . . . .  14
    5.6.  VN Topology . . . . . . . . . . . . . . . . . . . . . . .  15
    5.7.  VN Member . . . . . . . . . . . . . . . . . . . . . . . .  15
      5.7.1.  VN Computed Path  . . . . . . . . . . . . . . . . . .  15
      5.7.2.  VN Service Preference . . . . . . . . . . . . . . . .  16
  6.  TE Objects  . . . . . . . . . . . . . . . . . . . . . . . . .  17
    6.1.  TE Tunnel Characteristics . . . . . . . . . . . . . . . .  17
  7.  Mapping of VN Primitives with VN Objects  . . . . . . . . . .  19
  8.  Mapping of TE Primitives with TE Objects  . . . . . . . . . .  20
  9.  Security Considerations . . . . . . . . . . . . . . . . . . .  20
  10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
  11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
    11.1.  Normative References . . . . . . . . . . . . . . . . . .  21
    11.2.  Informative References . . . . . . . . . . . . . . . . .  21
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  22
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  23












Lee, et al.                   Informational                     [Page 3]

RFC 8454                     ACTN Info Model              September 2018


1.  Introduction

  This document provides an information model for Abstraction and
  Control of TE Networks (ACTN).  The information model described in
  this document covers the interface requirements identified in the
  ACTN Framework document [RFC8453].

  The ACTN reference architecture [RFC8453] identifies a three-tier
  control hierarchy comprising the following as depicted in Figure 1:

     o Customer Network Controllers (CNCs)
     o Multi-Domain Service Coordinator (MDSC)
     o Provisioning Network Controllers (PNCs)

  +-------+                 +-------+                   +-------+
  | CNC-A |                 | CNC-B |                   | CNC-C |
  +-------+                 +-------+                   +-------+
       \                        |                          /
        ------------            | CMI         -------------
                    \           |            /
                     +----------------------+
                     |         MDSC         |
                     +----------------------+
                    /           |            \
        ------------            | MPI         -------------
       /                        |                          \
  +-------+                 +-------+                   +-------+
  |  PNC  |                 |  PNC  |                   |  PNC  |
  +-------+                 +-------+                   +-------+

              Figure 1: A Three-Tier ACTN Control Hierarchy

  The two interfaces with respect to the MDSC, one north of the MDSC
  and the other south of the MDSC, are referred to as "CMI" (CNC-MDSC
  Interface) and "MPI" (MDSC-PNC Interface), respectively.  This
  document models these two interfaces and derivative interfaces
  thereof (e.g., MDSC-to-MDSC in a hierarchy of MDSCs) as a single
  common interface.

1.1.  Terminology

  The terms "Virtual Network (VN)" and "Virtual Network Service (VNS)"
  are defined in [RFC8453].  Other key terms and concepts, for example,
  "abstraction", can be found in [RFC7926].







Lee, et al.                   Informational                     [Page 4]

RFC 8454                     ACTN Info Model              September 2018


2.  ACTN Common Interfaces Information Model

  This section provides an ACTN common interface information model to
  describe primitives, objects, their properties (represented as
  attributes), their relationships, and the resources for the service
  applications needed in the ACTN context.

  The standard interface is described between a client controller and a
  server controller.  A client-server relationship is recursive between
  a CNC and an MDSC and between an MDSC and a PNC.  In the CMI, the
  client is a CNC while the server is an MDSC.  In the MPI, the client
  is an MDSC and the server is a PNC.  There may also be MDSC-MDSC
  interfaces that need to be supported.  This may arise in a hierarchy
  of MDSCs in which workloads may need to be partitioned to multiple
  MDSCs.

  Basic primitives (messages) are required between the CNC-MDSC and
  MDSC-PNC controllers.  These primitives can then be used to support
  different ACTN network control functions like network topology
  requests/queries, VN service requests, path computation and
  connection control, VN service policy negotiation, enforcement,
  routing options, etc.

  There are two different types of primitives depending on the type of
  interface:

  o  Virtual Network primitives at CMI
  o  Traffic Engineering primitives at MPI

  As well described in [RFC8453], at the CMI level, there is no need
  for detailed TE information since the basic functionality is to
  translate customer service information into VNS operation.

  At the MPI level, MDSC has the main scope for multi-domain
  coordination and creation of a single end-to-end (E2E) abstracted
  network view that is strictly related to TE information.

  As for topology, this document employs two types of topology.

  o  The first type is referred to as "virtual network topology" and is
     associated with a VN.  Virtual network topology is a customized
     topology for view and control by the customer.  See Section 3.1
     for details.

  o  The second type is referred to as "TE topology" and is associated
     with provider network operation on which we can apply policy to
     obtain the required level of abstraction to represent the
     underlying physical network topology.



Lee, et al.                   Informational                     [Page 5]

RFC 8454                     ACTN Info Model              September 2018


3.  Virtual Network Primitives

  This section provides a list of main VN primitives related to VNs and
  that are necessary to satisfy the ACTN requirements specified in
  [ACTN-REQ].

  The following VN Action primitives are supported:

  o  VN Instantiate

  o  VN Modify

  o  VN Delete

  o  VN Update

  o  VN Path Compute

  o  VN Query

  VN Action is an object describing the main VN primitives.

  VN Action can assume one of the mentioned above primitives values.

  <VN Action> ::= <VN Instantiate> |

                  <VN Modify> |

                  <VN Delete> |

                  <VN Update> |

                  <VN Path Compute> |

                  <VN Query>

  All these actions will solely happen at CMI level between CNC and
  MDSC.













Lee, et al.                   Informational                     [Page 6]

RFC 8454                     ACTN Info Model              September 2018


3.1.  VN Instantiate

  VN Instantiate refers to an action from customers/applications to
  request the creation of VNs.  VN Instantiate is for CNC-to-MDSC
  communication.  Depending on the agreement between client and
  provider, VN instantiate can imply different VN operations.  There
  are two types of VN instantiation:

  VN Type 1:  VN is viewed as a set of edge-to-edge links (VN members).

  VN Type 2:  VN is viewed as a VN-topology comprising virtual nodes
              and virtual links.

  Please see [RFC8453] for full details regarding the types of VN.

3.2.  VN Modify

  VN Modify refers to an action issued from customers/applications to
  modify an existing VN (i.e., an instantiated VN).  VN Modify is for
  CNC-to-MDSC communication.

  VN Modify, depending of the type of VN instantiated, can be:

  1.  a modification of the characteristics of VN members (edge-to-edge
      links) in the case of VN Type 1, or

  2.  a modification of an existing virtual topology (e.g., adding/
      deleting virtual nodes/links) in the case of VN Type 2.

3.3.  VN Delete

  VN Delete refers to an action issued from customers/applications to
  delete an existing VN.  VN Delete is for CNC-to-MDSC communication.

3.4.  VN Update

  "VN Update" refers to any update to the VN that needs to be updated
  to the customers.  VN Update is MDSC-to-CNC communication.  VN Update
  fulfills a push model at the CMI level, making customers aware of any
  specific changes in the topology details related to the instantiated
  VN.

  VN Update, depending of the type of VN instantiated, can be:

  1.  an update of VN members (edge-to-edge links) in case of VN Type
      1, or

  2.  an update of virtual topology in case of VN Type 2.



Lee, et al.                   Informational                     [Page 7]

RFC 8454                     ACTN Info Model              September 2018


  The connection-related information (e.g., Label Switched Paths
  (LSPs)) update association with VNs will be part of the "translation"
  function that happens in MDSC to map/translate VN request into TE
  semantics.  This information will be provided in case the customer
  optionally wants to have more-detailed TE information associated with
  the instantiated VN.

3.5.  VN Compute

  VN Compute consists of a Request and Reply.  "VN Compute Request"
  refers to an action from customers/applications to request a VN
  computation.

  "VN Compute Reply" refers to the reply in response to VN Compute
  Request.

  A VN Compute Request/Reply is to be differentiated from a VN
  Instantiate.  The purpose of VN Compute is a priori exploration to
  compute network resources availability and getting a possible VN view
  in which path details can be specified matching customer/applications
  constraints.  This a priori exploration may not guarantee the
  availability of the computed network resources at the time of
  instantiation.

3.6.  VN Query

  "VN Query" refers to an inquiry pertaining to a VN that has already
  been instantiated.  VN Query fulfills a pull model that permits
  getting a topology view.

  "VN Query Reply" refers to the reply in response to a VN Query.  The
  topology view returned by a VN Query Reply would be consistent with
  the topology type instantiated for any specific VN.

4.  TE Primitives

  This section provides a list of the main TE primitives necessary to
  satisfy ACTN requirements specified in [ACTN-REQ] related to typical
  TE operations supported at the MPI level.

  The TE action primitives defined in this section should be supported
  at the MPI consistently with the type of topology defined at the CMI.









Lee, et al.                   Informational                     [Page 8]

RFC 8454                     ACTN Info Model              September 2018


  The following TE action primitives are supported:

  o  TE Instantiate/Modify/Delete

  o  TE Topology Update (see Section 4.4. for the description)

  o  Path Compute

  TE Action is an object describing the main TE primitives.

  TE Action can assume one of the mentioned above primitives values.

  <TE Action> ::= <TE Instantiate> |

                  <TE Modify> |

                  <TE Delete> |

                  <TE Topology Update> |
                  <Path Compute> |

  All these actions will solely happen at MPI level between MDSC and
  PNC.

4.1.  TE Instantiate

  "TE Instantiate" refers to an action issued from MDSC to PNC to
  instantiate new TE tunnels.

4.2.  TE Modify

  "TE Modify" refers to an action issued from MDSC to PNC to modify
  existing TE tunnels.

4.3.  TE Delete

  "TE Delete" refers to an action issued from MDSC to PNC to delete
  existing TE tunnels.

4.4.  TE Topology Update (for TE Resources)

  TE Topology Update is a primitive specifically related to MPI used to
  provide a TE resource update between any domain controller and MDSC
  regarding the entire content of any actual TE topology of a domain
  controller or an abstracted filtered view of TE topology depending on
  negotiated policy.

  See [TE-TOPO] for detailed YANG implementation of TE topology update.



Lee, et al.                   Informational                     [Page 9]

RFC 8454                     ACTN Info Model              September 2018


  <TE Topology Update> ::= <TE-topology-list>

  <TE-topology-list> ::= <TE-topology> [<TE-topology-list>]

  <TE-topology> ::= [<Abstraction>] <TE-Topology-identifier> <Node-
  list> <Link-list>
  <Node-list> ::= <Node>[<Node-list>]

  <Node> ::= <Node> <TE Termination Point-list>

  <TE Termination Point-list> ::= <TE Termination Point> [<TE-
  Termination Point-list>]

  <Link-list> ::= <Link>[<Link-list>]

  Where

  Abstraction provides information on the level of abstraction (as
  determined a priori).

  TE-topology-identifier is an identifier that identifies a specific
  te-topology, e.g., te-types:te-topology-id [TE-TOPO].

  Node-list is detailed information related to a specific node
  belonging to a te-topology, e.g., te-node-attributes [TE-TOPO].

  Link-list is information related to the specific link related
  belonging to a te-topology, e.g., te-link-attributes [TE-TOPO].

  TE Termination Point-list is detailed information associated with the
  termination points of a te-link related to a specific node, e.g.,
  interface-switching-capability [TE-TOPO].

4.5.  Path Compute

  Path Compute consists of Request and Reply.  "Path Compute Request"
  refers to an action from MDSC to PNC to request a path computation.

  "Path Compute Reply" refers to the reply in response to the Path
  Compute Request.

  The context of Path Compute is described in [Path-Compute].

5.  VN Objects

  This section provides a list of objects associated to VN action
  primitives.




Lee, et al.                   Informational                    [Page 10]

RFC 8454                     ACTN Info Model              September 2018


5.1.  VN Identifier

  A VN Identifier is a unique identifier of the VN.

5.2.  VN Service Characteristics

  VN Service Characteristics describes the customer/application
  requirements against the VNs to be instantiated.

  <VN Service Characteristics> ::= <VN Connectivity Type>

                                   <VN Directionality>

                                   (<VN Traffic Matrix>...)

                                   <VN Survivability>

  Where

  <VN Connectivity Type> ::= <P2P>|<P2MP>|<MP2MP>|<MP2P>|<Multi-
  destination>

  The Connectivity Type identifies the type of required VN Service.  In
  addition to the classical types of services (e.g., P2P/P2MP, etc.),
  ACTN defines the "multi-destination" service that is a new P2P
  service where the endpoints are not fixed.  They can be chosen among
  a list of preconfigured endpoints or dynamically provided by the CNC.

  VN Directionality indicates if a VN is unidirectional or
  bidirectional.  This implies that each VN member that belongs to the
  VN has the same directionality as the VN.

  <VN Traffic Matrix> ::= <Bandwidth>

                          [<VN Constraints>]

  The VN Traffic Matrix represents the traffic matrix parameters for
  the required service connectivity.  Bandwidth is a mandatory
  parameter, and a number of optional constraints can be specified in
  the VN Constraints (e.g., diversity, cost).  They can include
  objective functions and TE metric bounds as specified in [RFC5541].

  Further details on the VN constraints are specified below:

        <VN Constraints> ::= [<Layer Protocol>]
                             [<Diversity>]

                             ( <Metric> | <VN Objective Function> )



Lee, et al.                   Informational                    [Page 11]

RFC 8454                     ACTN Info Model              September 2018


     Where:

     Layer Protocol identifies the layer topology at which the VN
     service is requested.  It could be, for example, MPLS, Optical
     Data Unit (ODU), and Optical Channel (OCh).

     Diversity allows asking for diversity constraints for a VN
     Instantiate/Modify or a VN Path Compute.  For example, a new VN or
     a path is requested in total diversity from an existing one (e.g.,
     diversity exclusion).

           <Diversity> ::= (<VN-exclusion> (<VN-id>...)) |

                    (<VN-Member-exclusion> (<VN-Member-id>...))

     Metric can include all the Metrics (cost, delay, delay variation,
     latency) and bandwidth utilization parameters defined and
     referenced by [RFC3630] and [RFC7471].

     As for VN Objective Function, see Section 5.4.

  VN Survivability describes all attributes related to the VN recovery
  level and its survivability policy enforced by the customers/
  applications.

     <VN Survivability> ::= <VN Recovery Level>

                             [<VN Tunnel Recovery Level>]

                             [<VN Survivability Policy>]
        Where:

        VN Recovery Level is a value representing the requested level
        of resiliency required against the VN.  The following values
        are defined:

        o  Unprotected VN

        o  VN with per tunnel recovery: The recovery level is defined
           against the tunnels composing the VN, and it is specified in
           the VN Tunnel Recovery Level.

        <VN Tunnel Recovery Level> ::= <0:1>|<1+1>|<1:1>|<1:N>|<M:N>|
                             <On the fly restoration>

        The VN Tunnel Recovery Level indicates the type of protection
        or restoration mechanism applied to the VN.  It augments the
        recovery types defined in [RFC4427].



Lee, et al.                   Informational                    [Page 12]

RFC 8454                     ACTN Info Model              September 2018


        <VN Survivability Policy> ::= [<Local Reroute Allowed>]

                                      [<Domain Preference>]

                                      [<Push Allowed>]

                                      [<Incremental Update>]

        Where:

        Local Reroute Allowed is a delegation policy to the Server on
        whether or not to allow a local reroute fix upon a failure of
        the primary LSP.

        Domain Preference is only applied on the MPI where the MDSC
        (client) provides a domain preference to each PNC (server),
        e.g., when an inter-domain link fails, then PNC can choose the
        alternative peering with this info.

        Push Allowed is a policy that allows a server to trigger an
        updated VN topology upon failure without an explicit request
        from the client.  Push action can be set as default unless
        otherwise specified.

        Incremental Update is another policy that triggers an
        incremental update from the server since the last period of
        update.  Incremental update can be set as default unless
        otherwise specified.

5.3.  VN Endpoint

  VN End-Point Object describes the VN's customer endpoint
  characteristics.

  <VN End-Point> ::= (<Access Point Identifier>

                     [<Access Link Capability>]
                     [<Source Indicator>])...

     Where:

    Access Point Identifier represents a unique identifier of the
    client endpoint.  They are used by the customer to ask for the
    setup of a virtual network instantiation.  A VN End-Point is
    defined against each AP in the network and is shared between
    customer and provider.  Both the customer and the provider will map
    it against their own physical resources.




Lee, et al.                   Informational                    [Page 13]

RFC 8454                     ACTN Info Model              September 2018


    Access Link Capability identifies the capabilities of the access
    link related to the given access point (e.g., max-bandwidth,
    bandwidth availability, etc.).

    Source Indicator indicates whether or not an endpoint is the
    source.

5.4.  VN Objective Function

  The VN Objective Function applies to each VN member (i.e., each E2E
  tunnel) of a VN.

  The VN Objective Function can reuse objective functions defined in
  Section 4 of [RFC5541].

  For a single path computation, the following objective functions are
  defined:

  o  MCP is the Minimum Cost Path with respect to a specific metric
     (e.g., shortest path).

  o  MLP is the Minimum Load Path, meaning find a path composted by te-
     link least loaded.

  o  MBP is the Maximum residual Bandwidth Path.

  For a concurrent path computation, the following objective functions
  are defined:

  o  MBC is to Minimize aggregate Bandwidth Consumption.

  o  MLL is to Minimize the Load of the most loaded Link.

  o  MCC is to Minimize the Cumulative Cost of a set of paths.

5.5.  VN Action Status

  VN Action Status is the status indicator whether or not the VN has
  been successfully instantiated, modified, or deleted in the server
  network in response to a particular VN action.

  Note that this action status object can be implicitly indicated and,
  thus, not included in any of the VN primitives discussed in
  Section 3.







Lee, et al.                   Informational                    [Page 14]

RFC 8454                     ACTN Info Model              September 2018


5.6.  VN Topology

  When a VN is seen by the customer as a topology, it is referred to as
  "VN topology".  This is associated with VN Type 2, which is composed
  of virtual nodes and virtual links.

  <VN Topology> ::= <Virtual node list> <Virtual link list>

  <Virtual node list> ::= <Virtual node> [<Virtual node list>]

  <Virtual link list> :: = <Virtual link>  [<Virtual link list>]

5.7.  VN Member

  VN Member describes details of a VN Member that is a list of a set of
  VN Members represented as VN_Member_List.

  <VN_Member_List> ::= <VN Member> [<VN_Member_List>]

  Where <VN Member> ::= <Ingress VN End-Point>

                        [<VN Associated LSP>]

                        <Egress VN End-Point>

  Ingress VN End-Point is the VN End-Point information for the ingress
  portion of the AP.  See Section 5.3 for VN End-Point details.

  Egress VN End-Point is the VN End-Point information for the egress
  portion of the AP.  See Section 5.3 for VN End-Point details.

  VN Associated LSP describes the instantiated LSPs in the Provider's
  network for the VN Type 1.  It describes the instantiated LSPs over
  the VN topology for VN Type 2.

5.7.1.  VN Computed Path

  The VN Computed Path is the list of paths obtained after the VN path
  computation request from a higher controller.  Note that the computed
  path is to be distinguished from the LSP.  When the computed path is
  signaled in the network (and thus the resource is reserved for that
  path), it becomes an LSP.

  <VN Computed Path> ::= (<Path>...)







Lee, et al.                   Informational                    [Page 15]

RFC 8454                     ACTN Info Model              September 2018


5.7.2.  VN Service Preference

  This section provides the VN Service preference.  VN Service is
  defined in Section 2.

  <VN Service Preference> ::= [<Location Service Preference >]

                          [<Client-specific Preference >]

                          [<End-Point Dynamic Selection Preference >]

  Where

     Location Service Preference describes the End-Point Location's
     (e.g., data centers (DCs)) support for certain Virtual Network
     Functions (VNFs) (e.g., security function, firewall capability,
     etc.) and is used to find the path that satisfies the VNF
     constraint.

     Client-specific Preference describes any preference related to VNS
     that an application/client can enforce via CNC towards lower-level
     controllers.  For example, CNC can enforce client-specific
     preferences, e.g., selection of a destination DC from the set of
     candidate DCs based on some criteria in the context of Virtual
     Machine (VM) migration.  MSDC/PNC should then provide the DC
     interconnection that supports the Client-specific Preference.

     End-Point Dynamic Selection Preference describes if the endpoint
     (e.g., DC) can support load-balancing, disaster recovery, or VM
     migration and so can be part of the selection by MDSC following
     service Preference enforcement by CNC.




















Lee, et al.                   Informational                    [Page 16]

RFC 8454                     ACTN Info Model              September 2018


6.  TE Objects

6.1.  TE Tunnel Characteristics

  Tunnel Characteristics describes the parameters needed to configure
  TE tunnel.

  <TE Tunnel Characteristics> ::= [<Tunnel Type>]

                                  <Tunnel Id>

                                  [<Tunnel Layer>]

                                  [<Tunnel end-point>]

                                  [<Tunnel protection-restoration>]

                                  <Tunnel Constraints>

                                 [<Tunnel Optimization>]

  Where

  <Tunnel Type> ::= <P2P>|<P2MP>|<MP2MP>|<MP2P>

  The Tunnel Type identifies the type of required tunnel.  In this
  document, only the P2P model is provided.

  Tunnel Id is the TE tunnel identifier

  Tunnel Layer represents the layer technology of the LSPs supporting
  the tunnel

  <Tunnel End Points> ::= <Source> <Destination>

  <Tunnel protection-restoration> ::= <prot 0:1>|<prot 1+1>|<prot
  1:1>|<prot 1:N>|prot <M:N>|<restoration>
  Tunnel Constraints are the base tunnel configuration constraints
  parameters.












Lee, et al.                   Informational                    [Page 17]

RFC 8454                     ACTN Info Model              September 2018


  Where <Tunnel Constraints> ::= [<Topology Id>]

                                 [<Bandwidth>]

                                 [<Disjointness>]

                                 [<SRLG>]

                                 [<Priority>]

                                 [<Affinities>]

                                 [<Tunnel Optimization>]

                                 [<Objective Function>]

  Topology Id references the topology used to compute the tunnel path.

  Bandwidth is the bandwidth used as a parameter in path computation.

  <Disjointness> ::= <node> | <link> | <srlg>

  Disjointness provides the type of resources from which the tunnel has
  to be disjointed.

  Shared Risk Link Group (SRLG) is a group of physical resources
  impacted by the same risk from which an E2E tunnel is required to be
  disjointed.

  <Priority> ::= <Holding Priority> <Setup Priority>

  where

  Setup Priority indicates the level of priority for taking resources
  from another tunnel [RFC3209].

  Holding Priority indicates the level of priority to hold resources
  avoiding preemption from another tunnel [RFC3209].

  Affinities represents the structure to validate a link belonging to
  the path of the tunnel [RFC3209].

  <Tunnel Optimization> ::= <Metric> | <Objective Function>

  Metric can include all the Metrics (cost, delay, delay variation,
  latency) and bandwidth utilization parameters defined and referenced
  by [RFC3630] and [RFC7471].




Lee, et al.                   Informational                    [Page 18]

RFC 8454                     ACTN Info Model              September 2018


  <Objective Function> ::= <objective function type>

  <objective function type> ::= <MCP> | <MLP> | <MBP> | <MBC> | <MLL>
  | <MCC>

  See Section 5.4 for a description of objective function type.

7.  Mapping of VN Primitives with VN Objects

  This section describes the mapping of VN primitives with VN Objects
  based on Section 5.

  <VN Instantiate> ::= <VN Service Characteristics>

                       <VN Member-List>

                       [<VN Service Preference>]

                       [<VN Topology>]

  <VN Modify> ::= <VN identifier>

                  <VN Service Characteristics>

                  <VN Member-List>

                  [<VN Service Preference>]

                  [<VN Topology>]

  <VN Delete> ::= <VN Identifier>

  <VN Update> :: = <VN Identifier>
                   [<VN Member-List>]

                   [<VN Topology>]

  <VN Path Compute Request> ::= <VN Service Characteristics>

                                <VN Member-List>

                                [<VN Service Preference>]

  <VN Path Compute Reply> ::= <VN Computed Path>

  <VN Query> ::= <VN Identifier>





Lee, et al.                   Informational                    [Page 19]

RFC 8454                     ACTN Info Model              September 2018


  <VN Query Reply> ::= <VN Identifier>

                       <VN Associated LSP>

                       [<TE Topology Reference>]

8.  Mapping of TE Primitives with TE Objects

  This section describes the mapping of TE primitives with TE Objects
  based on Section 6.

  <TE Instantiate> ::= <TE Tunnel Characteristics>

  <TE Modify> ::=  <TE Tunnel Characteristics>

  <TE Delete> ::= <Tunnel Id>
  <TE Topology Update> ::= <TE-topology-list>

  <Path Compute Request> ::= <TE Tunnel Characteristics>

  <Path Compute Reply> ::= <TE Computed Path>

                           <TE Tunnel Characteristics>

9.  Security Considerations

  The ACTN information model is not directly relevant when considering
  potential security issues.  Rather, it defines a set of interfaces
  for TE networks.  The underlying protocols, procedures, and
  implementations used to exchange the information model described in
  this document will need to secure the request and control of
  resources with proper authentication and authorization mechanisms.
  In addition, the data exchanged over the ACTN interfaces discussed in
  this document requires verification of data integrity.  Backup or
  redundancies should also be available to restore the affected data to
  its correct state.

  Implementations of the ACTN framework will have distributed
  functional components that will exchange an instantiation that
  adheres to this information model.  Implementations should encrypt
  data that flows between them, especially when they are implemented at
  remote nodes and irrespective of whether these data flows are on
  external or internal network interfaces.  The information model may
  contain customer, application, and network data that, for business or
  privacy reasons, may be considered sensitive.  It should be stored
  only in an encrypted data store.





Lee, et al.                   Informational                    [Page 20]

RFC 8454                     ACTN Info Model              September 2018


  The ACTN security discussion is further split into two specific
  interfaces:

  o  Interface between the CNC and MDSC, CNC-MDSC Interface (CMI)

  o  Interface between the MDSC and PNC, MDSC-PNC Interface (MPI).

  See the detailed discussion of the CMI and MPI in Sections 9.1 and
  9.2 (respectively) in [RFC8453].

  The conclusion is that all data models and protocols used to realize
  the ACTN information model should have rich security features, as
  discussed in this section.  Additional security risks may still
  exist.  Therefore, discussion and applicability of specific security
  functions and protocols will be better described in documents that
  are use case and environment specific.

10.  IANA Considerations

  This document has no IANA actions.

11.  References

11.1.  Normative References

  [RFC8453]  Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
             Abstraction and Control of TE Networks (ACTN)", RFC 8453,
             DOI 10.17487/RFC8453, August 2018,
             <https://www.rfc-editor.org/info/rfc8453>.

11.2.  Informative References

  [ACTN-REQ]
             Lee, Y., Ceccarelli, D., Miyasaka, T., Shin, J., and K.
             Lee, "Requirements for Abstraction and Control of TE
             Networks", Work in Progress,
             draft-ietf-teas-actn-requirements-09, March 2018.

  [Path-Compute]
             Busi, I., Belotti, S., Lopezalvarez, V., Dios, O., Sharma,
             A., Shi, Y., Vilata, R., and K. Sethuraman, "Yang model
             for requesting Path Computation", Work in Progress,
             draft-ietf-teas-yang-path-computation-02, June 2018.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <https://www.rfc-editor.org/info/rfc3209>.



Lee, et al.                   Informational                    [Page 21]

RFC 8454                     ACTN Info Model              September 2018


  [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630,
             DOI 10.17487/RFC3630, September 2003,
             <https://www.rfc-editor.org/info/rfc3630>.

  [RFC4427]  Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery
             (Protection and Restoration) Terminology for Generalized
             Multi-Protocol Label Switching (GMPLS)", RFC 4427,
             DOI 10.17487/RFC4427, March 2006,
             <https://www.rfc-editor.org/info/rfc4427>.

  [RFC5541]  Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of
             Objective Functions in the Path Computation Element
             Communication Protocol (PCEP)", RFC 5541,
             DOI 10.17487/RFC5541, June 2009,
             <https://www.rfc-editor.org/info/rfc5541>.

  [RFC7471]  Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
             Previdi, "OSPF Traffic Engineering (TE) Metric
             Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
             <https://www.rfc-editor.org/info/rfc7471>.

  [RFC7926]  Farrel, A., Ed., Drake, J., Bitar, N., Swallow, G.,
             Ceccarelli, D., and X. Zhang, "Problem Statement and
             Architecture for Information Exchange between
             Interconnected Traffic-Engineered Networks", BCP 206,
             RFC 7926, DOI 10.17487/RFC7926, July 2016,
             <https://www.rfc-editor.org/info/rfc7926>.

  [TE-TOPO]  Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
             O. Dios, "YANG Data Model for Traffic Engineering (TE)
             Topologies", Work in Progress,
             draft-ietf-teas-yang-te-topo-18, June 2018.

Contributors

  Haomian Zheng
  Huawei Technologies
  Email: [email protected]

  Xian Zhang
  Huawei Technologies
  Email: [email protected]








Lee, et al.                   Informational                    [Page 22]

RFC 8454                     ACTN Info Model              September 2018


Authors' Addresses

  Young Lee (Editor)
  Huawei Technologies
  5340 Legacy Drive
  Plano, TX 75023, USA

  Phone: (469)277-5838
  Email: [email protected]


  Sergio Belotti (Editor)
  Nokia
  Via Trento, 30
  Vimercate, Italy

  Email: [email protected]


  Dhruv Dhody
  Huawei Technologies,
  Divyashree Technopark, Whitefield
  Bangalore, India

  Email: [email protected]


  Daniele Ceccarelli
  Ericsson
  Torshamnsgatan,48
  Stockholm, Sweden

  Email: [email protected]


  Bin Yeong Yoon
  ETRI

  Email: [email protected]












Lee, et al.                   Informational                    [Page 23]