Internet Engineering Task Force (IETF)                   N. Bahadur, Ed.
Request for Comments: 8430                                          Uber
Category: Informational                                     S. Kini, Ed.
ISSN: 2070-1721
                                                              J. Medved
                                                                  Cisco
                                                         September 2018


                        RIB Information Model

Abstract

  Routing and routing functions in enterprise and carrier networks are
  typically performed by network devices (routers and switches) using a
  Routing Information Base (RIB).  Protocols and configurations push
  data into the RIB, and the RIB manager installs state into the
  hardware for packet forwarding.  This document specifies an
  information model for the RIB to enable defining a standardized data
  model.  The IETF's I2RS WG used this document to design the I2RS RIB
  data model.  This document is being published to record the higher-
  level information model decisions for RIBs so that other developers
  of RIBs may benefit from the design concepts.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8430.












Bahadur, et al.               Informational                     [Page 1]

RFC 8430                  RIB Information Model           September 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Bahadur, et al.               Informational                     [Page 2]

RFC 8430                  RIB Information Model           September 2018


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Conventions Used in This Document . . . . . . . . . . . .   6
  2.  RIB Data  . . . . . . . . . . . . . . . . . . . . . . . . . .   6
    2.1.  RIB Definition  . . . . . . . . . . . . . . . . . . . . .   7
    2.2.  Routing Instance  . . . . . . . . . . . . . . . . . . . .   7
    2.3.  Route . . . . . . . . . . . . . . . . . . . . . . . . . .   8
    2.4.  Nexthop . . . . . . . . . . . . . . . . . . . . . . . . .  10
      2.4.1.  Base Nexthops . . . . . . . . . . . . . . . . . . . .  12
      2.4.2.  Derived Nexthops  . . . . . . . . . . . . . . . . . .  14
      2.4.3.  Nexthop Indirection . . . . . . . . . . . . . . . . .  15
  3.  Reading from the RIB  . . . . . . . . . . . . . . . . . . . .  16
  4.  Writing to the RIB  . . . . . . . . . . . . . . . . . . . . .  16
  5.  Notifications . . . . . . . . . . . . . . . . . . . . . . . .  17
  6.  RIB Grammar . . . . . . . . . . . . . . . . . . . . . . . . .  17
    6.1.  Nexthop Grammar Explained . . . . . . . . . . . . . . . .  20
  7.  Using the RIB Grammar . . . . . . . . . . . . . . . . . . . .  20
    7.1.  Using Route Preference  . . . . . . . . . . . . . . . . .  20
    7.2.  Using Different Nexthop Types . . . . . . . . . . . . . .  20
      7.2.1.  Tunnel Nexthops . . . . . . . . . . . . . . . . . . .  21
      7.2.2.  Replication Lists . . . . . . . . . . . . . . . . . .  21
      7.2.3.  Weighted Lists  . . . . . . . . . . . . . . . . . . .  21
      7.2.4.  Protection  . . . . . . . . . . . . . . . . . . . . .  22
      7.2.5.  Nexthop Chains  . . . . . . . . . . . . . . . . . . .  22
      7.2.6.  Lists of Lists  . . . . . . . . . . . . . . . . . . .  23
    7.3.  Performing Multicast  . . . . . . . . . . . . . . . . . .  24
  8.  RIB Operations at Scale . . . . . . . . . . . . . . . . . . .  25
    8.1.  RIB Reads . . . . . . . . . . . . . . . . . . . . . . . .  25
    8.2.  RIB Writes  . . . . . . . . . . . . . . . . . . . . . . .  25
    8.3.  RIB Events and Notifications  . . . . . . . . . . . . . .  25
  9.  Security Considerations . . . . . . . . . . . . . . . . . . .  25
  10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  26
  11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  26
    11.1.  Normative References . . . . . . . . . . . . . . . . . .  26
    11.2.  Informative References . . . . . . . . . . . . . . . . .  27
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  28
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  28













Bahadur, et al.               Informational                     [Page 3]

RFC 8430                  RIB Information Model           September 2018


1.  Introduction

  Routing and routing functions in enterprise and carrier networks are
  traditionally performed in network devices.  Customarily, routers run
  routing protocols, and the routing protocols (along with static
  configuration information) populate the Routing Information Base
  (RIB) of the router.  The RIB is managed by the RIB manager, and the
  RIB manager provides a northbound interface to its clients (i.e., the
  routing protocols) to insert routes into the RIB.  The RIB manager
  consults the RIB and decides how to program the Forwarding
  Information Base (FIB) of the hardware by interfacing with the FIB
  manager.  The relationship between these entities is shown in
  Figure 1.

        +-------------+        +-------------+
        |RIB Client 1 | ...... |RIB Client N |
        +-------------+        +-------------+
               ^                      ^
               |                      |
               +----------------------+
                          |
                          V
               +---------------------+
               |    RIB Manager      |
               |                     |
               |     +--------+      |
               |     | RIB(s) |      |
               |     +--------+      |
               +---------------------+
                          ^
                          |
         +---------------------------------+
         |                                 |
         V                                 V
  +----------------+               +----------------+
  | FIB Manager 1  |               | FIB Manager M  |
  |   +--------+   |  ..........   |   +--------+   |
  |   | FIB(s) |   |               |   | FIB(s) |   |
  |   +--------+   |               |   +--------+   |
  +----------------+               +----------------+

          Figure 1: RIB Manager, RIB Clients, and FIB Managers

  Routing protocols are inherently distributed in nature, and each
  router makes an independent decision based on the routing data
  received from its peers.  With the advent of newer deployment
  paradigms and the need for specialized applications, there is an
  emerging need to guide the router's routing function [RFC7920].  The



Bahadur, et al.               Informational                     [Page 4]

RFC 8430                  RIB Information Model           September 2018


  traditional network-device RIB population that is protocol based
  suffices for most use cases where distributed network control is
  used.  However, there are use cases that the network operators
  currently address by configuring static routes, policies, and RIB
  import/export rules on the routers.  There is also a growing list of
  use cases in which a network operator might want to program the RIB
  based on data unrelated to just routing (within that network's
  domain).  Programming the RIB could be based on other information
  (such as routing data in the adjacent domain or the load on storage
  and compute) in the given domain.  Or, it could simply be a
  programmatic way of creating on-demand dynamic overlays (e.g., GRE
  tunnels) between compute hosts (without requiring the hosts to run
  traditional routing protocols).  If there was a standardized,
  publicly documented programmatic interface to a RIB, it would enable
  further networking applications that address a variety of use cases
  [RFC7920].

  A programmatic interface to the RIB involves two types of operations:
  reading from the RIB and writing (adding/modifying/deleting) to the
  RIB.

  In order to understand what is in a router's RIB, methods like per-
  protocol SNMP MIBs and screen scraping are used.  These methods are
  not scalable since they are client pull mechanisms and not proactive
  push (from the router) mechanisms.  Screen scraping is error prone
  (since the output format can change) and is vendor dependent.
  Building a RIB from per-protocol MIBs is error prone since the MIB
  data represents protocol data and not the exact information that went
  into the RIB.  Thus, just getting read-only RIB information from a
  router is a hard task.

  Adding content to the RIB from a RIB client can be done today using
  static configuration mechanisms provided by router vendors.  However,
  the mix of what can be modified in the RIB varies from vendor to
  vendor, and the method of configuring it is also vendor dependent.
  This makes it hard for a RIB client to program a multi-vendor network
  in a consistent and vendor-independent way.

  The purpose of this document is to specify an information model for
  the RIB.  Using the information model, one can build a detailed data
  model for the RIB.  That data model could then be used by a RIB
  client to program a network device.  One data model that has been
  based on this document is the I2RS RIB data model [RFC8431].

  The rest of this document is organized as follows.  Section 2 goes
  into the details of what constitutes and can be programmed in a RIB.
  Guidelines for reading and writing the RIB are provided in Sections 3
  and 4, respectively.  Section 5 provides a high-level view of the



Bahadur, et al.               Informational                     [Page 5]

RFC 8430                  RIB Information Model           September 2018


  events and notifications going from a network device to a RIB client
  to update the RIB client on asynchronous events.  The RIB grammar is
  specified in Section 6.  Examples of using the RIB grammar are shown
  in Section 7.  Section 8 covers considerations for performing RIB
  operations at scale.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  RIB Data

  This section describes the details of a RIB.  It makes forward
  references to objects in the RIB grammar (see Section 6).  A high-
  level description of the RIB contents is as shown in Figure 2.
  Please note that for ease of representation in ASCII art, this
  drawing shows a single routing instance, a single RIB, and a single
  route.  Subsections of this section describe the logical data nodes
  that should be contained within a RIB.  Sections 3 and 4 describe the
  high-level read and write operations.

                         network-device
                               |
                               | 0..N
                               |
                        routing instance(s)
                         |             |
                         |             |
                   0..N  |             | 0..N
                         |             |
                    interface(s)     RIB(s)
                                       |
                                       |
                                       | 0..N
                                       |
                                     route(s)

                     Figure 2: RIB Information Model









Bahadur, et al.               Informational                     [Page 6]

RFC 8430                  RIB Information Model           September 2018


2.1.  RIB Definition

  A RIB, in the context of the RIB information model, is an entity that
  contains routes.  It is identified by its name and is contained
  within a routing instance (see Section 2.2).  A network device MAY
  contain routing instances, and each routing instance MAY contain
  RIBs.  The name MUST be unique within a routing instance.  All routes
  in a given RIB MUST be of the same address family (e.g., IPv4).  Each
  RIB MUST belong to a routing instance.

  A routing instance may contain two or more RIBs of the same address
  family (e.g., IPv6).  A typical case where this can be used is for
  multi-topology routing [RFC4915] [RFC5120].

  Each RIB MAY be associated with an ENABLE_IP_RPF_CHECK attribute that
  enables Reverse Path Forwarding (RPF) checks on all IP routes in that
  RIB.  The RPF check is used to prevent spoofing and limit malicious
  traffic.  For IP packets, the IP source address is looked up and the
  RPF interface(s) associated with the route for that IP source address
  is found.  If the incoming IP packet's interface matches one of the
  RPF interfaces, then the IP packet is forwarded based on its IP
  destination address; otherwise, the IP packet is discarded.

2.2.  Routing Instance

  A routing instance, in the context of the RIB information model, is a
  collection of RIBs, interfaces, and routing parameters.  A routing
  instance creates a logical slice of the router.  It allows different
  logical slices across a set of routers to communicate with each
  other.  Layer 3 VPNs, Layer 2 VPNs (L2VPNs), and Virtual Private LAN
  Service (VPLS) can be modeled as routing instances.  Note that
  modeling an L2VPN using a routing instance only models the Layer 3
  (RIB) aspect and does not model any Layer 2 information (like ARP)
  that might be associated with the L2VPN.

  The set of interfaces indicates which interfaces are associated with
  this routing instance.  The RIBs specify how incoming traffic is to
  be forwarded, and the routing parameters control the information in
  the RIBs.  The intersection set of interfaces of two routing
  instances MUST be the null set.  In other words, an interface MUST
  NOT be present in two routing instances.  Thus, a routing instance
  describes the routing information and parameters across a set of
  interfaces.








Bahadur, et al.               Informational                     [Page 7]

RFC 8430                  RIB Information Model           September 2018


  A routing instance MUST contain the following mandatory fields:

  o  INSTANCE_NAME: A routing instance is identified by its name,
     INSTANCE_NAME.  This MUST be unique across all routing instances
     in a given network device.

  o  rib-list: This is the list of RIBs associated with this routing
     instance.  Each routing instance can have multiple RIBs to
     represent routes of different types.  For example, one would put
     IPv4 routes in one RIB and MPLS routes in another RIB.  The list
     of RIBs can be an empty list.

  A routing instance MAY contain the following fields:

  o  interface-list: This represents the list of interfaces associated
     with this routing instance.  The interface list helps constrain
     the boundaries of packet forwarding.  Packets coming in on these
     interfaces are directly associated with the given routing
     instance.  The interface list contains a list of identifiers, with
     each identifier uniquely identifying an interface.

  o  ROUTER_ID: This field identifies the network device in control
     plane interactions with other network devices.  This field is to
     be used if one wants to virtualize a physical router into multiple
     virtual routers.  Each virtual router MUST have a unique
     ROUTER_ID.  A ROUTER_ID MUST be unique across all network devices
     in a given domain.

  A routing instance may be created purely for the purposes of packet
  processing and may not have any interfaces associated with it.  For
  example, an incoming packet in routing instance A might have a
  nexthop of routing instance B, and after packet processing in B, the
  nexthop might be routing instance C.  Thus, routing instance B is not
  associated with any interface.  And, given that this routing instance
  does not do any control-plane interaction with other network devices,
  a ROUTER_ID is also not needed.

2.3.  Route

  A route is essentially a match condition and an action following the
  match.  The match condition specifies the kind of route (IPv4, MPLS,
  etc.) and the set of fields to match on.  Figure 3 represents the
  overall contents of a route.  Please note that for ease of depiction
  in ASCII art, only a single instance of the route-attribute, match
  flags, and nexthop is depicted.






Bahadur, et al.               Informational                     [Page 8]

RFC 8430                  RIB Information Model           September 2018


                                route
                                | | |
                      +---------+ | +----------+
                      |           |            |
                 0..N |           |            |

        route-attribute         match         nexthop
                                  |
                                  |
                  +-------+-------+-------+--------+
                  |       |       |       |        |
                  |       |       |       |        |

                 IPv4    IPv6    MPLS    MAC    Interface

                          Figure 3: Route Model

  This document specifies the following match types:

  o  IPv4: Match on destination and/or source IP address in the IPv4
     header

  o  IPv6: Match on destination and/or source IP address in the IPv6
     header

  o  MPLS: Match on an MPLS label at the top of the MPLS label stack

  o  MAC: Match on Media Access Control (MAC) destination addresses in
     the Ethernet header

  o  Interface: Match on the incoming interface of the packet

  A route MAY be matched on one or more of these match types by policy
  as either an "AND" (to restrict the number of routes) or an "OR" (to
  combine two filters).

  Each route MUST have the following mandatory route-attributes
  associated with it:

  o  ROUTE_PREFERENCE: This is a numerical value that allows for
     comparing routes from different protocols.  Static configuration
     is also considered a protocol for the purpose of this field.  It
     is also known as "administrative distance".  The lower the value,
     the higher the preference.  For example, there can be an OSPF
     route for 192.0.2.1/32 (or IPv6 2001:DB8::1/128) with a preference
     of 5.  If a controller programs a route for 192.0.2.1/32 (or IPv6
     2001:DB8::1/128) with a preference of 2, then the controller's
     route will be preferred by the RIB manager.  Preference should be



Bahadur, et al.               Informational                     [Page 9]

RFC 8430                  RIB Information Model           September 2018


     used to dictate behavior.  For more examples of preference, see
     Section 7.1.

  Each route can have one or more optional route-attributes associated
  with it.

  o  route-vendor-attributes: Vendors can specify vendor-specific
     attributes using this.  The details of this attribute are outside
     the scope of this document.

  Each route has a nexthop associated with it.  Nexthops are described
  in Section 2.4.

  Additional features to match multicast packets were considered (e.g.,
  TTL of the packet to limit the range of a multicast group), but these
  were not added to this information model.  Future RIB information
  models should investigate these multicast features.

2.4.  Nexthop

  A nexthop represents an object resulting from a route lookup.  For
  example, if a route lookup results in sending the packet out of a
  given interface, then the nexthop represents that interface.

  Nexthops can be either fully resolved or unresolved.  A resolved
  nexthop has adequate information to send the outgoing packet to the
  destination by forwarding it on an interface to a directly connected
  neighbor.  For example, a nexthop to a point-to-point interface or a
  nexthop to an IP address on an Ethernet interface has the nexthop
  resolved.  An unresolved nexthop is something that requires the RIB
  manager to determine the final resolved nexthop.  For example, a
  nexthop could be an IP address.  The RIB manager would resolve how to
  reach that IP address; for example, is the IP address reachable by
  regular IP forwarding, by an MPLS tunnel, or by both?  If the RIB
  manager cannot resolve the nexthop, then the nexthop remains in an
  unresolved state and is NOT a candidate for installation in the FIB.
  Future RIB events can cause an unresolved nexthop to get resolved
  (e.g., an IP address being advertised by an IGP neighbor).
  Conversely, resolved nexthops can also become unresolved (e.g., in
  the case of a tunnel going down); hence, they would no longer be
  candidates to be installed in the FIB.

  When at least one of a route's nexthops is resolved, then the route
  can be used to forward packets.  Such a route is considered eligible
  to be installed in the FIB and is henceforth referred to as a FIB-
  eligible route.  Conversely, when all the nexthops of a route are
  unresolved, that route can no longer be used to forward packets.
  Such a route is considered ineligible to be installed in the FIB and



Bahadur, et al.               Informational                    [Page 10]

RFC 8430                  RIB Information Model           September 2018


  is henceforth referred to as a FIB-ineligible route.  The RIB
  information model allows a RIB client to program routes whose
  nexthops may be unresolved initially.  Whenever an unresolved nexthop
  gets resolved, the RIB manager will send a notification of the same
  (see Section 5).

  The overall structure and usage of a nexthop is as shown in the
  figure below.  For ease of description using ASCII art, only a single
  instance of any component of the nexthop is shown in Figure 4.

                              route
                                |
                                | 0..N
                                |
                              nexthop <-------------------------------+
                                |                                     |
         +-------+----------------------------+-------------+         |
         |       |              |             |             |         |
         |       |              |             |             |         |
      base   load-balance   protection      replicate     chain       |
         |       |              |             |             |         |
         |       |2..N          |2..N         |2..N         |1..N     |
         |       |              |             |             |         |
         |       |              V             |             |         |
         |       +------------->+<------------+-------------+         |
         |                      |                                     |
         |                      +-------------------------------------+
         |
         +-------------------+
                             |
                             |
                             |
                             |
    +---------------+--------+--------+--------------+----------+
    |               |                 |              |          |
    |               |                 |              |          |
 nexthop-id  egress-interface  ip-address     logical-tunnel    |
                                                                |
                                                                |
                         +--------------------------------------+
                         |
      +----------------------+------------------+-------------+
      |                      |                  |             |
      |                      |                  |             |
tunnel-encapsulation   tunnel-decapsulation  rib-name   special-nexthop

                         Figure 4: Nexthop Model




Bahadur, et al.               Informational                    [Page 11]

RFC 8430                  RIB Information Model           September 2018


  This document specifies a very generic, extensible, and recursive
  grammar for nexthops.  A nexthop can be a base nexthop or a derived
  nexthop.  Section 2.4.1 details base nexthops, and Section 2.4.2
  explains various kinds of derived nexthops.  There are certain
  special nexthops, and those are described in Section 2.4.1.1.
  Lastly, Section 2.4.3 delves into nexthop indirection and its use.
  Examples of when and how to use tunnel nexthops and derived nexthops
  are shown in Section 7.2.

2.4.1.  Base Nexthops

  At the lowest level, a nexthop can be one of the following:

  o  Identifier: This is an identifier returned by the network device
     representing a nexthop.  This can be used as a way of reusing a
     nexthop when programming derived nexthops.

  o  Interface nexthops: These are nexthops that are pointing to an
     interface.  Various attributes associated with these nexthops are:

     *  Egress-interface: This represents a physical, logical, or
        virtual interface on the network device.  Address resolution
        must not be required on this interface.  This interface may
        belong to any routing instance.

     *  IP address: A route lookup on this IP address is done to
        determine the egress-interface.  Address resolution may be
        required depending on the interface.

        +  An optional rib-name can also be specified to indicate the
           RIB in which the IP address is to be looked up.  One can use
           the rib-name field to direct the packet from one domain into
           another domain.  By default the RIB will be the same as the
           one that route belongs to.

     These attributes can be used in combination as follows:

     *  Egress-interface and IP address: This can be used in cases
        where, e.g., the IP address is a link-local address.

     *  Egress-interface and MAC address: The egress-interface must be
        an Ethernet interface.  Address resolution is not required for
        this nexthop.








Bahadur, et al.               Informational                    [Page 12]

RFC 8430                  RIB Information Model           September 2018


  o  Tunnel nexthops: These are nexthops that are pointing to a tunnel.
     The types of tunnel nexthops are:

     *  tunnel-encapsulation: This can be an encapsulation representing
        an IP tunnel, MPLS tunnel, or others as defined in this
        document.  An optional egress-interface can be chained to the
        tunnel-encapsulation to indicate which interface to send the
        packet out on.  The egress-interface is useful when the network
        device contains Ethernet interfaces and one needs to perform
        address resolution for the IP packet.

     *  tunnel-decapsulation: This is to specify decapsulating a tunnel
        header.  After decapsulation, further lookup on the packet can
        be done via chaining it with another nexthop.  The packet can
        also be sent out via an egress-interface directly.

     *  logical-tunnel: This can be an MPLS Label Switched Path (LSP)
        or a GRE tunnel (or others as defined in this document) that is
        represented by a unique identifier (e.g., name).

  o  rib-name: A nexthop pointing to a RIB.  This indicates that the
     route lookup needs to continue in the specified RIB.  This is a
     way to perform chained lookups.

  Tunnel nexthops allow a RIB client to program static tunnel headers.
  There can be cases where the remote tunnel endpoint does not support
  dynamic signaling (e.g., no LDP support on a host); in those cases,
  the RIB client might want to program the tunnel header on both ends
  of the tunnel.  The tunnel nexthop is kept generic with
  specifications provided for some commonly used tunnels.  It is
  expected that the data model will model these tunnel types with
  complete accuracy.

2.4.1.1.  Special Nexthops

  Special nexthops are for performing specific well-defined functions
  (e.g., DISCARD).  The purpose of each of them is explained below:

  o  DISCARD: This indicates that the network device should drop the
     packet and increment a drop counter.

  o  DISCARD_WITH_ERROR: This indicates that the network device should
     drop the packet, increment a drop counter, and send back an
     appropriate error message (like ICMP error).







Bahadur, et al.               Informational                    [Page 13]

RFC 8430                  RIB Information Model           September 2018


  o  RECEIVE: This indicates that the traffic is destined for the
     network device, for example, protocol packets or Operations,
     Administration, and Maintenance (OAM) packets.  All locally
     destined traffic SHOULD be throttled to avoid a denial-of-service
     attack on the router's control plane.  An optional rate limiter
     can be specified to indicate how to throttle traffic destined for
     the control plane.  The description of the rate limiter is outside
     the scope of this document.

2.4.2.  Derived Nexthops

  Derived nexthops can be:

  o  weighted lists, which are used for load-balancing;

  o  preference lists, which are used for protection using primary and
     backup;

  o  replication lists, which are lists of nexthops to which to
     replicate a packet;

  o  nexthop chains, which are for chaining multiple operations or
     attaching multiple headers; or

  o  lists of lists, which are a recursive application of the above.

  Nexthop chains (see Section 7.2.5 for usage) are a way to perform
  multiple operations on a packet by logically combining them.  For
  example, one can chain together "decapsulate MPLS header" and "send
  it out a specific egress-interface".  Chains can be used to specify
  multiple headers over a packet before a packet is forwarded.  One
  simple example is that of MPLS over GRE, wherein the packet has an
  inner MPLS header followed by a GRE header followed by an IP header.
  The outermost IP header is decided by the network device, whereas the
  MPLS header or GRE header is specified by the controller.  Not every
  network device will be able to support all kinds of nexthop chains
  and an arbitrary number of headers chained together.  The RIB data
  model SHOULD provide a way to expose a nexthop chaining capability
  supported by a given network device.

  It is expected that all network devices will have a limit on how many
  levels of lookup can be performed, and not all hardware will be able
  to support all kinds of nexthops.  RIB capability negotiation becomes
  very important for this reason, and a RIB data model MUST specify a
  way for a RIB client to learn about the network device's
  capabilities.





Bahadur, et al.               Informational                    [Page 14]

RFC 8430                  RIB Information Model           September 2018


2.4.2.1.  Nexthop List Attributes

  For nexthops that are of the form of a list(s), attributes can be
  associated with each member of the list to indicate the role of an
  individual member of the list.  Two attributes are specified:

  o  NEXTHOP_PREFERENCE: This is used for protection schemes.  It is an
     integer value between 1 and 99.  A lower value indicates higher
     preference.  To download a primary/standby pair to the FIB, the
     nexthops that are resolved and have the two highest preferences
     are selected.  Each <NEXTHOP_PREFERENCE> should have a unique
     value within a <nexthop-protection> (see Section 6).

  o  NEXTHOP_LB_WEIGHT: This is used for load-balancing.  Each list
     member MUST be assigned a weight between 1 and 99.  The weight
     determines the proportion of traffic to be sent over a nexthop
     used for forwarding as a ratio of the weight of this nexthop
     divided by the weights of all the nexthops of this route that are
     used for forwarding.  To perform equal load-balancing, one MAY
     specify a weight of "0" for all the member nexthops.  The value
     "0" is reserved for equal load-balancing and, if applied, MUST be
     applied to all member nexthops.  Note that a weight of 0 is
     special because of historical reasons.

2.4.3.  Nexthop Indirection

  Nexthops can be identified by an identifier to create a level of
  indirection.  The identifier is set by the RIB manager and returned
  to the RIB client on request.

  One example of usage of indirection is a nexthop that points to
  another network device (e.g., a BGP peer).  The returned nexthop
  identifier can then be used for programming routes to point to the
  this nexthop.  Given that the RIB manager has created an indirection
  using the nexthop identifier, if the transport path to the network
  device (BGP peer) changes, that change in path will be seamless to
  the RIB client and all routes that point to that network device will
  automatically start going over the new transport path.  Nexthop
  indirection using identifiers could be applied to not only unicast
  nexthops but also nexthops that contain chains and nested nexthops.
  See Section 2.4.2 for examples.










Bahadur, et al.               Informational                    [Page 15]

RFC 8430                  RIB Information Model           September 2018


3.  Reading from the RIB

  A RIB data model MUST allow a RIB client to read entries for RIBs
  created by that entity.  The network device administrator MAY allow
  reading of other RIBs by a RIB client through access lists on the
  network device.  The details of access lists are outside the scope of
  this document.

  The data model MUST support a full read of the RIB and subsequent
  incremental reads of changes to the RIB.  When sending data to a RIB
  client, the RIB manager SHOULD try to send all dependencies of an
  object prior to sending that object.

4.  Writing to the RIB

  A RIB data model MUST allow a RIB client to write entries for RIBs
  created by that entity.  The network device administrator MAY allow
  writes to other RIBs by a RIB client through access lists on the
  network device.  The details of access lists are outside the scope of
  this document.

  When writing an object to a RIB, the RIB client SHOULD try to write
  all dependencies of the object prior to sending that object.  The
  data model SHOULD support requesting identifiers for nexthops and
  collecting the identifiers back in the response.

  Route programming in the RIB MUST result in a return code that
  contains the following attributes:

  o  Installed: Yes/No (indicates whether the route got installed in
     the FIB)

  o  Active: Yes/No (indicates whether a route is fully resolved and is
     a candidate for selection)

  o  Reason: E.g., "Not authorized"

  The data model MUST specify which objects can be modified.  An object
  that can be modified is one whose contents can be changed without
  having to change objects that depend on it and without affecting any
  data forwarding.  To change a non-modifiable object, one will need to
  create a new object and delete the old one.  For example, routes that
  use a nexthop that is identified by a nexthop identifier should be
  unaffected when the contents of that nexthop changes.







Bahadur, et al.               Informational                    [Page 16]

RFC 8430                  RIB Information Model           September 2018


5.  Notifications

  Asynchronous notifications are sent by the network device's RIB
  manager to a RIB client when some event occurs on the network device.
  A RIB data model MUST support sending asynchronous notifications.  A
  brief list of suggested notifications is as below:

  o  Route change notification (with a return code as specified in
     Section 4)

  o  Nexthop resolution status (resolved/unresolved) notification

6.  RIB Grammar

  This section specifies the RIB information model in Routing Backus-
  Naur Form (rBNF) [RFC5511].  This grammar is intended to help the
  reader better understand Section 2 in order to derive a data model.

<routing-instance> ::= <INSTANCE_NAME>
                       [<interface-list>] <rib-list>
                       [<ROUTER_ID>]


<interface-list> ::= (<INTERFACE_IDENTIFIER> ...)


<rib-list> ::= (<rib> ...)
<rib> ::= <rib-name> <address-family>
                    [<route> ... ]
                    [ENABLE_IP_RPF_CHECK]
<address-family> ::= <IPV4_ADDRESS_FAMILY> | <IPV6_ADDRESS_FAMILY> |
                     <MPLS_ADDRESS_FAMILY> | <IEEE_MAC_ADDRESS_FAMILY>


<route> ::= <match> <nexthop>
            [<route-attributes>]
            [<route-vendor-attributes>]


<match> ::= <IPV4> <ipv4-route> | <IPV6> <ipv6-route> |
            <MPLS> <MPLS_LABEL> | <IEEE_MAC> <MAC_ADDRESS> |
            <INTERFACE> <INTERFACE_IDENTIFIER>
<route-type> ::= <IPV4> | <IPV6> | <MPLS> | <IEEE_MAC> | <INTERFACE>








Bahadur, et al.               Informational                    [Page 17]

RFC 8430                  RIB Information Model           September 2018


<ipv4-route> ::= <ip-route-type>
                 (<destination-ipv4-address> | <source-ipv4-address> |
                  (<destination-ipv4-address> <source-ipv4-address>))
<destination-ipv4-address> ::= <ipv4-prefix>
<source-ipv4-address> ::= <ipv4-prefix>
<ipv4-prefix> ::= <IPV4_ADDRESS> <IPV4_PREFIX_LENGTH>


<ipv6-route> ::= <ip-route-type>
                 (<destination-ipv6-address> | <source-ipv6-address> |
                  (<destination-ipv6-address> <source-ipv6-address>))
<destination-ipv6-address> ::= <ipv6-prefix>
<source-ipv6-address> ::= <ipv6-prefix>
<ipv6-prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>
<ip-route-type> ::= <SRC> | <DEST> | <DEST_SRC>

<route-attributes> ::= <ROUTE_PREFERENCE> [<LOCAL_ONLY>]
                       [<address-family-route-attributes>]

<address-family-route-attributes> ::= <ip-route-attributes> |
                                      <mpls-route-attributes> |
                                      <ethernet-route-attributes>
<ip-route-attributes> ::= <>
<mpls-route-attributes> ::= <>
<ethernet-route-attributes> ::= <>
<route-vendor-attributes> ::= <>


<nexthop> ::= <nexthop-base> |
              (<NEXTHOP_LOAD_BALANCE> <nexthop-lb>) |
              (<NEXTHOP_PROTECTION> <nexthop-protection>) |
              (<NEXTHOP_REPLICATE> <nexthop-replicate>) |
              <nexthop-chain>

<nexthop-base> ::= <NEXTHOP_ID> |
                   <nexthop-special> |
                   <egress-interface> |
                   <ipv4-address> | <ipv6-address> |
                   (<egress-interface>
                       (<ipv4-address> | <ipv6-address>)) |
                   (<egress-interface> <IEEE_MAC_ADDRESS>) |
                   <tunnel-encapsulation> | <tunnel-decapsulation> |
                   <logical-tunnel> |
                   <rib-name>

<egress-interface> ::= <INTERFACE_IDENTIFIER>





Bahadur, et al.               Informational                    [Page 18]

RFC 8430                  RIB Information Model           September 2018


<nexthop-special> ::= <DISCARD> | <DISCARD_WITH_ERROR> |
                      (<RECEIVE> [<COS_VALUE>])


<nexthop-lb> ::= <NEXTHOP_LB_WEIGHT> <nexthop>
                 (<NEXTHOP_LB_WEIGHT> <nexthop) ...


<nexthop-protection> = <NEXTHOP_PREFERENCE> <nexthop>
                      (<NEXTHOP_PREFERENCE> <nexthop>)...

<nexthop-replicate> ::= <nexthop> <nexthop> ...


<nexthop-chain> ::= <nexthop> ...


<logical-tunnel> ::= <tunnel-type> <TUNNEL_NAME>
<tunnel-type> ::= <IPV4> | <IPV6> | <MPLS> | <GRE> | <VxLAN> | <NVGRE>

<tunnel-encapsulation> ::= (<IPV4> <ipv4-header>) |
                           (<IPV6> <ipv6-header>) |
                           (<MPLS> <mpls-header>) |
                           (<GRE> <gre-header>) |
                           (<VXLAN> <vxlan-header>) |
                           (<NVGRE> <nvgre-header>)

<ipv4-header> ::= <SOURCE_IPv4_ADDRESS> <DESTINATION_IPv4_ADDRESS>
                  <PROTOCOL> [<TTL>] [<DSCP>]

<ipv6-header> ::= <SOURCE_IPV6_ADDRESS> <DESTINATION_IPV6_ADDRESS>
                  <NEXT_HEADER> [<TRAFFIC_CLASS>]
                  [<FLOW_LABEL>] [<HOP_LIMIT>]

<mpls-header> ::= (<mpls-label-operation> ...)
<mpls-label-operation> ::= (<MPLS_PUSH> <MPLS_LABEL> [<S_BIT>]
                                        [<TOS_VALUE>] [<TTL_VALUE>]) |
                           (<MPLS_SWAP> <IN_LABEL> <OUT_LABEL>
                                       [<TTL_ACTION>])

<gre-header> ::= <GRE_IP_DESTINATION> <GRE_PROTOCOL_TYPE> [<GRE_KEY>]
<vxlan-header> ::= (<ipv4-header> | <ipv6-header>)
                   [<VXLAN_IDENTIFIER>]
<nvgre-header> ::= (<ipv4-header> | <ipv6-header>)
                   <VIRTUAL_SUBNET_ID>
                   [<FLOW_ID>]





Bahadur, et al.               Informational                    [Page 19]

RFC 8430                  RIB Information Model           September 2018


<tunnel-decapsulation> ::= ((<IPV4> <IPV4_DECAP> [<TTL_ACTION>]) |
                           (<IPV6> <IPV6_DECAP> [<HOP_LIMIT_ACTION>]) |
                           (<MPLS> <MPLS_POP> [<TTL_ACTION>]))

                       Figure 5: RIB rBNF Grammar

6.1.  Nexthop Grammar Explained

  A nexthop is used to specify the next network element to forward the
  traffic to.  It is also used to specify how the traffic should be
  load-balanced, protected using preference, or multicast using
  replication.  This is explicitly specified in the grammar.  The
  nexthop has recursion built in to address complex use cases like the
  one defined in Section 7.2.6.

7.  Using the RIB Grammar

  The RIB grammar is very generic and covers a variety of features.
  This section provides examples on using objects in the RIB grammar
  and examples to program certain use cases.

7.1.  Using Route Preference

  Using route preference, a client can preinstall alternate paths in
  the network.  For example, if OSPF has a route preference of 10, then
  another client can install a route with a route preference of 20 to
  the same destination.  The OSPF route will get precedence and will
  get installed in the FIB.  When the OSPF route is withdrawn, the
  alternate path will get installed in the FIB.

  Route preference can also be used to prevent denial-of-service
  attacks by installing routes with the best preference, which either
  drops the offending traffic or routes it to some monitoring/analysis
  station.  Since the routes are installed with the best preference,
  they will supersede any route installed by any other protocol.

7.2.  Using Different Nexthop Types

  The RIB grammar allows one to create a variety of nexthops.  This
  section describes uses for certain types of nexthops.











Bahadur, et al.               Informational                    [Page 20]

RFC 8430                  RIB Information Model           September 2018


7.2.1.  Tunnel Nexthops

  A tunnel nexthop points to a tunnel of some kind.  Traffic that goes
  over the tunnel gets encapsulated with the tunnel-encapsulation.
  Tunnel nexthops are useful for abstracting out details of the network
  by having the traffic seamlessly route between network edges.  At the
  end of a tunnel, the tunnel will get decapsulated.  Thus, the grammar
  supports two kinds of operations: one for encapsulation and another
  for decapsulation.

7.2.2.  Replication Lists

  One can create a replication list for replicating traffic to multiple
  destinations.  The destinations, in turn, could be derived nexthops
  in themselves (at a level supported by the network device); point to
  multipoint and broadcast are examples that involve replication.

  A replication list (at the simplest level) can be represented as:

  <nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> [ <nexthop> ... ]

  The above can be derived from the grammar as follows:

  <nexthop> ::= <nexthop-replicate>
  <nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> <nexthop> ...

7.2.3.  Weighted Lists

  A weighted list is used to load-balance traffic among a set of
  nexthops.  From a modeling perspective, a weighted list is very
  similar to a replication list, with the difference that each member
  nexthop MUST have a NEXTHOP_LB_WEIGHT associated with it.

  A weighted list (at the simplest level) can be represented as:

  <nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<nexthop> <NEXTHOP_LB_WEIGHT>)
                     [(<nexthop> <NEXTHOP_LB_WEIGHT>)... ]

  The above can be derived from the grammar as follows:

  <nexthop> ::= <nexthop-lb>
  <nexthop> ::= <NEXTHOP_LOAD_BALANCE>
                  <NEXTHOP_LB_WEIGHT> <nexthop>
                  (<NEXTHOP_LB_WEIGHT> <nexthop>) ...
  <nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<NEXTHOP_LB_WEIGHT> <nexthop>)
                  (<NEXTHOP_LB_WEIGHT> <nexthop>) ...





Bahadur, et al.               Informational                    [Page 21]

RFC 8430                  RIB Information Model           September 2018


7.2.4.  Protection

  A primary/backup protection can be represented as:

  <nexthop> ::= <NEXTHOP_PROTECTION> <1> <interface-primary>
                                     <2> <interface-backup>)

  The above can be derived from the grammar as follows:

<nexthop> ::= <nexthop-protection>
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
                     (<NEXTHOP_PREFERENCE> <nexthop>)...)
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
                     (<NEXTHOP_PREFERENCE> <nexthop>))
<nexthop> ::= <NEXTHOP_PROTECTION> ((<NEXTHOP_PREFERENCE> <nexthop-base>
                     (<NEXTHOP_PREFERENCE> <nexthop-base>))
<nexthop> ::= <NEXTHOP_PROTECTION> (<1> <interface-primary>
                     (<2> <interface-backup>))

  Traffic can be load-balanced among multiple primary nexthops and a
  single backup.  In such a case, the nexthop will look like:

  <nexthop> ::= <NEXTHOP_PROTECTION> (<1>
                (<NEXTHOP_LOAD_BALANCE>
                 (<NEXTHOP_LB_WEIGHT> <nexthop-base>
                 (<NEXTHOP_LB_WEIGHT> <nexthop-base>) ...))
                  <2> <nexthop-base>)

  A backup can also have another backup.  In such a case, the list will
  look like:

  <nexthop> ::= <NEXTHOP_PROTECTION> (<1> <nexthop>
                <2> <NEXTHOP_PROTECTION>(<1> <nexthop> <2> <nexthop>))

7.2.5.  Nexthop Chains

  A nexthop chain is a way to perform multiple operations on a packet
  by logically combining them.  For example, when a VPN packet comes on
  the WAN interface and has to be forwarded to the correct VPN
  interface, one needs to pop the VPN label before sending the packet
  out.  Using a nexthop chain, one can chain together "pop MPLS header"
  and "send it out a specific egress-interface".









Bahadur, et al.               Informational                    [Page 22]

RFC 8430                  RIB Information Model           September 2018


  The above example can be derived from the grammar as follows:

  <nexthop-chain> ::= <nexthop> <nexthop>
  <nexthop-chain> ::= <nexthop-base> <nexthop-base>
  <nexthop-chain> ::= <tunnel-decapsulation> <egress-interface>
  <nexthop-chain> ::= (<MPLS> <MPLS_POP>) <interface-outgoing>

  Elements in a nexthop chain are evaluated left to right.

  A nexthop chain can also be used to put one or more headers on an
  outgoing packet.  One example is a pseudowire, which is MPLS over
  some transport (MPLS or GRE, for instance).  Another example is
  Virtual eXtensible Local Area Network (VXLAN) over IP.  A nexthop
  chain thus allows a RIB client to break up the programming of the
  nexthop into independent pieces (one per encapsulation).

  A simple example of MPLS over GRE can be represented as follows:

  <nexthop-chain> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)
                      <interface-outgoing>

  The above can be derived from the grammar as follows:

  <nexthop-chain> ::= <nexthop> <nexthop> <nexthop>
  <nexthop-chain> ::= <nexthop-base> <nexthop-base> <nexthop-base>
  <nexthop-chain> ::= <tunnel-encapsulation> <tunnel-encapsulation>
                      <egress-interface>
  <nexthop-chain> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)
                      <interface-outgoing>

7.2.6.  Lists of Lists

  Lists of lists is a derived construct.  One example of usage of such
  a construct is to replicate traffic to multiple destinations with
  load-balancing.  In other words, for each branch of the replication
  tree, there are multiple interfaces on which traffic needs to be
  load-balanced.  So, the outer list is a replication list for
  multicast and the inner lists are weighted lists for load-balancing.
  Let's take an example of a network element that has to replicate
  traffic to two other network elements.  Traffic to the first network
  element should be load-balanced equally over two interfaces:
  outgoing-1-1 and outgoing-1-2.  Traffic to the second network element
  should be load-balanced over three interfaces: outgoing-2-1,
  outgoing-2-2, and outgoing-2-3 (in the ratio 20:20:60).







Bahadur, et al.               Informational                    [Page 23]

RFC 8430                  RIB Information Model           September 2018


  This can be derived from the grammar as follows:

<nexthop> ::= <nexthop-replicate>
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>...)
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>)
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE> <nexthop-lb>)
             (<NEXTHOP_LOAD_BALANCE> <nexthop-lb>))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
             (<NEXTHOP_LB_WEIGHT> <nexthop>
             (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
              ((<NEXTHOP_LOAD_BALANCE>
               (<NEXTHOP_LB_WEIGHT> <nexthop>
               (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
             (<NEXTHOP_LB_WEIGHT> <nexthop>
              (<NEXTHOP_LB_WEIGHT> <nexthop>)))
               ((<NEXTHOP_LOAD_BALANCE>
               (<NEXTHOP_LB_WEIGHT> <nexthop>
               (<NEXTHOP_LB_WEIGHT> <nexthop>)
               (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
              (<NEXTHOP_LB_WEIGHT> <nexthop>)
              (<NEXTHOP_LB_WEIGHT> <nexthop>)))
              ((<NEXTHOP_LOAD_BALANCE>
              (<NEXTHOP_LB_WEIGHT> <nexthop>)
              (<NEXTHOP_LB_WEIGHT> <nexthop>)
              (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE>
              ((<NEXTHOP_LOAD_BALANCE>
                (50 <outgoing-1-1>)
                (50 <outgoing-1-2>)))
               ((<NEXTHOP_LOAD_BALANCE>
                 (20 <outgoing-2-1>)
                 (20 <outgoing-2-2>)
                 (60 <outgoing-2-3>)))

7.3.  Performing Multicast

  IP multicast involves matching a packet on (S,G) or (*,G), where both
  S (Source) and G (Group) are IP prefixes.  Following the match, the
  packet is replicated to one or more recipients.  How the recipients
  subscribe to the multicast group is outside the scope of this
  document.

  In PIM-based multicast, the packets are IP forwarded on an IP
  multicast tree.  The downstream nodes on each point in the multicast
  tree are one or more IP addresses.  These can be represented as a
  replication list (see Section 7.2.2).



Bahadur, et al.               Informational                    [Page 24]

RFC 8430                  RIB Information Model           September 2018


  In MPLS-based multicast, the packets are forwarded on a Point-to-
  Multipoint (P2MP) LSP.  The nexthop for a P2MP LSP can be represented
  in the nexthop grammar as a <logical-tunnel> (P2MP LSP identifier) or
  a replication list (see Section 7.2.2) of <tunnel-encapsulation>,
  with each tunnel-encapsulation representing a single MPLS downstream
  nexthop.

8.  RIB Operations at Scale

  This section discusses the scale requirements for a RIB data model.
  The RIB data model should be able to handle a large scale of
  operations to enable deployment of RIB applications in large
  networks.

8.1.  RIB Reads

  Bulking (grouping of multiple objects in a single message) MUST be
  supported when a network device sends RIB data to a RIB client.
  Similarly, the data model MUST enable a RIB client to request data in
  bulk from a network device.

8.2.  RIB Writes

  Bulking (grouping of multiple write operations in a single message)
  MUST be supported when a RIB client wants to write to the RIB.  The
  response from the network device MUST include a return-code for each
  write operation in the bulk message.

8.3.  RIB Events and Notifications

  There can be cases where a single network event results in multiple
  events and/or notifications from the network device to a RIB client.
  On the other hand, due to timing of multiple things happening at the
  same time, a network device might have to send multiple events and/or
  notifications to a RIB client.  The network-device-originated event/
  notification message MUST support the bulking of multiple events and
  notifications in a single message.

9.  Security Considerations

  The information model specified in this document defines a schema for
  data models that are designed to be accessed via network management
  protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040].  The
  lowest NETCONF layer is the secure transport layer, and the
  mandatory-to-implement secure transport is Secure Shell (SSH)
  [RFC6242].  The lowest RESTCONF layer is HTTPS, and the mandatory-to-
  implement secure transport is TLS [RFC8446].




Bahadur, et al.               Informational                    [Page 25]

RFC 8430                  RIB Information Model           September 2018


  The NETCONF access control model [RFC8341] provides the means to
  restrict access for particular NETCONF or RESTCONF users to a
  preconfigured subset of all available NETCONF or RESTCONF protocol
  operations and content.

  The RIB information model specifies read and write operations to
  network devices.  These network devices might be considered sensitive
  or vulnerable in some network environments.  Write operations to
  these network devices without proper protection can have a negative
  effect on network operations.  Due to this factor, it is recommended
  that data models also consider the following in their design:

  o  Require utilization of the authentication and authorization
     features of the NETCONF or RESTCONF suite of protocols.

  o  Augment the limits on how much data can be written or updated by a
     remote entity built to include enough protection for a RIB data
     model.

  o  Expose the specific RIB data model implemented via NETCONF/
     RESTCONF data models.

10.  IANA Considerations

  This document has no IANA actions.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.




Bahadur, et al.               Informational                    [Page 26]

RFC 8430                  RIB Information Model           September 2018


  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

11.2.  Informative References

  [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
             Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
             RFC 4915, DOI 10.17487/RFC4915, June 2007,
             <https://www.rfc-editor.org/info/rfc4915>.

  [RFC5120]  Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
             Topology (MT) Routing in Intermediate System to
             Intermediate Systems (IS-ISs)", RFC 5120,
             DOI 10.17487/RFC5120, February 2008,
             <https://www.rfc-editor.org/info/rfc5120>.

  [RFC5511]  Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
             Used to Form Encoding Rules in Various Routing Protocol
             Specifications", RFC 5511, DOI 10.17487/RFC5511, April
             2009, <https://www.rfc-editor.org/info/rfc5511>.

  [RFC7920]  Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
             Statement for the Interface to the Routing System",
             RFC 7920, DOI 10.17487/RFC7920, June 2016,
             <https://www.rfc-editor.org/info/rfc7920>.

  [RFC8431]  Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini,
             S., and N. Bahadur, "A YANG Data Model for the Routing
             Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431,
             September 2018, <http://www.rfc-editor.org/info/rfc8431>.











Bahadur, et al.               Informational                    [Page 27]

RFC 8430                  RIB Information Model           September 2018


Acknowledgements

  The authors would like to thank Ron Folkes, Jeffrey Zhang, the WG
  co-Chairs, and reviewers for their comments and suggestions on this
  document.  The following people contributed to the design of the RIB
  information model as part of the I2RS Interim meeting in April 2013:

  Wes George, Chris Liljenstolpe, Jeff Tantsura, Susan Hares, and
  Fabian Schneider.

Authors' Addresses

  Nitin Bahadur (editor)
  Uber
  900 Arastradero Rd
  Palo Alto, CA  94304
  United States of America

  Email: [email protected]


  Sriganesh Kini (editor)

  Email: [email protected]


  Jan Medved
  Cisco

  Email: [email protected]





















Bahadur, et al.               Informational                    [Page 28]