Internet Engineering Task Force (IETF)                       C. Jennings
Request for Comments: 8428                                         Cisco
Category: Standards Track                                      Z. Shelby
ISSN: 2070-1721                                                      ARM
                                                               J. Arkko
                                                             A. Keranen
                                                               Ericsson
                                                             C. Bormann
                                                Universitaet Bremen TZI
                                                            August 2018


                   Sensor Measurement Lists (SenML)

Abstract

  This specification defines a format for representing simple sensor
  measurements and device parameters in Sensor Measurement Lists
  (SenML).  Representations are defined in JavaScript Object Notation
  (JSON), Concise Binary Object Representation (CBOR), Extensible
  Markup Language (XML), and Efficient XML Interchange (EXI), which
  share the common SenML data model.  A simple sensor, such as a
  temperature sensor, could use one of these media types in protocols
  such as HTTP or the Constrained Application Protocol (CoAP) to
  transport the measurements of the sensor or to be configured.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8428.












Jennings, et al.             Standards Track                    [Page 1]

RFC 8428                          SenML                      August 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Requirements and Design Goals . . . . . . . . . . . . . . . .   4
  3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
  4.  SenML Structure and Semantics . . . . . . . . . . . . . . . .   6
    4.1.  Base Fields . . . . . . . . . . . . . . . . . . . . . . .   7
    4.2.  Regular Fields  . . . . . . . . . . . . . . . . . . . . .   7
    4.3.  SenML Labels  . . . . . . . . . . . . . . . . . . . . . .   8
    4.4.  Extensibility . . . . . . . . . . . . . . . . . . . . . .   9
    4.5.  Records and Their Fields  . . . . . . . . . . . . . . . .   9
      4.5.1.  Names . . . . . . . . . . . . . . . . . . . . . . . .   9
      4.5.2.  Units . . . . . . . . . . . . . . . . . . . . . . . .  10
      4.5.3.  Time  . . . . . . . . . . . . . . . . . . . . . . . .  10
      4.5.4.  Values  . . . . . . . . . . . . . . . . . . . . . . .  11
    4.6.  Resolved Records  . . . . . . . . . . . . . . . . . . . .  12
    4.7.  Associating Metadata  . . . . . . . . . . . . . . . . . .  12
    4.8.  Sensor Streaming Measurement Lists (SenSML) . . . . . . .  12
    4.9.  Configuration and Actuation Usage . . . . . . . . . . . .  13
  5.  JSON Representation (application/senml+json)  . . . . . . . .  13
    5.1.  Examples  . . . . . . . . . . . . . . . . . . . . . . . .  14
      5.1.1.  Single Data Point . . . . . . . . . . . . . . . . . .  14
      5.1.2.  Multiple Data Points  . . . . . . . . . . . . . . . .  14
      5.1.3.  Multiple Measurements . . . . . . . . . . . . . . . .  15
      5.1.4.  Resolved Data . . . . . . . . . . . . . . . . . . . .  17
      5.1.5.  Multiple Data Types . . . . . . . . . . . . . . . . .  17
      5.1.6.  Collection of Resources . . . . . . . . . . . . . . .  18
      5.1.7.  Setting an Actuator . . . . . . . . . . . . . . . . .  18
  6.  CBOR Representation (application/senml+cbor)  . . . . . . . .  19
  7.  XML Representation (application/senml+xml)  . . . . . . . . .  21
  8.  EXI Representation (application/senml-exi)  . . . . . . . . .  23





Jennings, et al.             Standards Track                    [Page 2]

RFC 8428                          SenML                      August 2018


  9.  Fragment Identification Methods . . . . . . . . . . . . . . .  26
    9.1.  Fragment Identification Examples  . . . . . . . . . . . .  26
    9.2.  Fragment Identification for XML and EXI Formats . . . . .  27
  10. Usage Considerations  . . . . . . . . . . . . . . . . . . . .  27
  11. CDDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
  12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  30
    12.1.  SenML Units Registry . . . . . . . . . . . . . . . . . .  30
    12.2.  SenML Labels Registry  . . . . . . . . . . . . . . . . .  35
    12.3.  Media Type Registrations . . . . . . . . . . . . . . . .  36
      12.3.1.  senml+json Media Type Registration . . . . . . . . .  37
      12.3.2.  sensml+json Media Type Registration  . . . . . . . .  38
      12.3.3.  senml+cbor Media Type Registration . . . . . . . . .  39
      12.3.4.  sensml+cbor Media Type Registration  . . . . . . . .  41
      12.3.5.  senml+xml Media Type Registration  . . . . . . . . .  42
      12.3.6.  sensml+xml Media Type Registration . . . . . . . . .  43
      12.3.7.  senml-exi Media Type Registration  . . . . . . . . .  44
      12.3.8.  sensml-exi Media Type Registration . . . . . . . . .  45
    12.4.  XML Namespace Registration . . . . . . . . . . . . . . .  47
    12.5.  CoAP Content-Format Registration . . . . . . . . . . . .  47
  13. Security Considerations . . . . . . . . . . . . . . . . . . .  47
  14. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  48
  15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  49
    15.1.  Normative References . . . . . . . . . . . . . . . . . .  49
    15.2.  Informative References . . . . . . . . . . . . . . . . .  51
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  53
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  54

1.  Overview

  Connecting sensors to the Internet is not new, and there have been
  many protocols designed to facilitate it.  This specification defines
  a format and media types for carrying simple sensor information in
  protocols such as HTTP [RFC7230] or CoAP [RFC7252].  The SenML format
  is designed so that processors with very limited capabilities could
  easily encode a sensor measurement into the media type, while at the
  same time, a server parsing the data could collect a large number of
  sensor measurements in a relatively efficient manner.  SenML can be
  used for a variety of data flow models, most notably data feeds
  pushed from a sensor to a collector, and for the web resource model
  where the sensor data is requested as a resource representation
  (e.g., "GET /sensor/temperature").

  There are many types of more complex measurements and measurements
  that this media type would not be suitable for.  SenML strikes a
  balance between having some information about the sensor carried with
  the sensor data so that the data is self-describing, but it also
  tries to make that a fairly minimal set of auxiliary information for




Jennings, et al.             Standards Track                    [Page 3]

RFC 8428                          SenML                      August 2018


  efficiency reasons.  Other information about the sensor can be
  discovered by other methods such as using the Constrained RESTful
  Environments (CoRE) Link Format [RFC6690].

  SenML is defined by a data model for measurements and simple metadata
  about measurements and devices.  The data is structured as a single
  array that contains a series of SenML Records that can each contain
  fields such as a unique identifier for the sensor, the time the
  measurement was made, the unit the measurement is in, and the current
  value of the sensor.  Serializations for this data model are defined
  for JSON [RFC8259], CBOR [RFC7049], XML [W3C.REC-xml-20081126], and
  Efficient XML Interchange (EXI) [W3C.REC-exi-20140211].

  For example, the following shows a measurement from a temperature
  gauge encoded in the JSON syntax.

  [
    {"n":"urn:dev:ow:10e2073a01080063","u":"Cel","v":23.1}
  ]

  In the example above, the array has a single SenML Record with a
  measurement for a sensor named "urn:dev:ow:10e2073a01080063" with a
  current value of 23.1 degrees Celsius.

2.  Requirements and Design Goals

  The design goal is to be able to send simple sensor measurements in
  small packets from large numbers of constrained devices.  Keeping the
  total size of the payload small makes it easy to also use SenML in
  constrained networks, e.g., in an IPv6 over Low-Power Wireless
  Personal Area Network (6LoWPAN) [RFC4944].  It is always difficult to
  define what small code is, but there is a desire to be able to
  implement this in roughly 1 KB of flash on an 8-bit microprocessor.
  Experience with power meters and other large-scale deployments has
  indicated that the solution needs to support allowing multiple
  measurements to be batched into a single HTTP or CoAP request.  This
  "batch" upload capability allows the server side to efficiently
  support a large number of devices.  It also conveniently supports
  batch transfers from proxies and storage devices, even in situations
  where the sensor itself sends just a single data item at a time.  The
  multiple measurements could be from multiple related sensors or from
  the same sensor but at different times.









Jennings, et al.             Standards Track                    [Page 4]

RFC 8428                          SenML                      August 2018


  The basic design is an array with a series of measurements.  The
  following example shows two measurements made at different times.
  The value of a measurement is given by the "v" field, the time of a
  measurement is in the "t" field, the "n" field has a unique sensor
  name, and the unit of the measurement is carried in the "u" field.

  [
    {"n":"urn:dev:ow:10e2073a01080063","u":"Cel","t":1.276020076e+09,
     "v":23.5},
    {"n":"urn:dev:ow:10e2073a01080063","u":"Cel","t":1.276020091e+09,
     "v":23.6}
  ]

  To keep the messages small, it does not make sense to repeat the "n"
  field in each SenML Record, so there is a concept of a Base Name,
  which is simply a string that is prepended to the Name field of all
  elements in that Record and any Records that follow it.  So, a more
  compact form of the example above is the following.

  [
    {"bn":"urn:dev:ow:10e2073a01080063","u":"Cel","t":1.276020076e+09,
     "v":23.5},
    {"u":"Cel","t":1.276020091e+09,
     "v":23.6}
  ]

  In the above example, the Base Name is in the "bn" field, and the "n"
  fields in each Record are empty strings, so they are omitted.

  Some devices have accurate time while others do not, so SenML
  supports absolute and relative times.  Time is represented in
  floating point as seconds.  Values greater than or equal to 2**28
  represent an absolute time relative to the Unix epoch.  Values less
  than 2**28 represent time relative to the current time.

  A simple sensor with no absolute wall-clock time might take a
  measurement every second, batch up 60 of them, and then send the
  batch to a server.  It would include the relative time each
  measurement was made compared to the time the batch was sent in each
  SenML Record.  If the server has accurate time based on, e.g., the
  Network Time Protocol (NTP), it may use the time it received the data
  and the relative offset to replace the times in the SenML with
  absolute times before saving the SenML information in a document
  database.







Jennings, et al.             Standards Track                    [Page 5]

RFC 8428                          SenML                      August 2018


3.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This document also uses the following terms:

  SenML Record:  One measurement or configuration instance in time
     presented using the SenML data model.

  SenML Pack:  One or more SenML Records in an array structure.

  SenML Label:  A short name used in SenML Records to denote different
     SenML fields (e.g., "v" for "value").

  SenML Field:  A component of a record that associates a value to a
     SenML Label for this record.

  SenSML:  Sensor Streaming Measurement List (see Section 4.8).

  SenSML Stream:  One or more SenML Records to be processed as a
     stream.

  This document uses the terms "attribute" and "tag" where they occur
  with the underlying technologies (XML, CBOR [RFC7049], and the CoRE
  Link Format [RFC6690]); they are not used for SenML concepts, per se.
  However, note that "attribute" has been widely used in the past as a
  synonym for the SenML "field".

  All comparisons of text strings are performed byte by byte, which
  results in the comparisons being case sensitive.

  Where arithmetic is used, this specification uses the familiar
  notation of the programming language C, except that the operator "**"
  stands for exponentiation.

4.  SenML Structure and Semantics

  Each SenML Pack carries a single array that represents a set of
  measurements and/or parameters.  This array contains a series of
  SenML Records with several fields described below.  There are two
  kinds of fields: base and regular.  Both the base and regular fields
  can be included in any SenML Record.  The base fields apply to the
  entries in the Record and also to all Records after it up to, but not




Jennings, et al.             Standards Track                    [Page 6]

RFC 8428                          SenML                      August 2018


  including, the next Record that has that same base field.  All base
  fields are optional.  Regular fields can be included in any SenML
  Record and apply only to that Record.

4.1.  Base Fields

  Base Name:  This is a string that is prepended to the names found in
     the entries.

  Base Time:  A base time that is added to the time found in an entry.

  Base Unit:  A base unit that is assumed for all entries, unless
     otherwise indicated.  If a record does not contain a Unit value,
     then the Base Unit is used.  Otherwise, the value found in the
     Unit (if any) is used.

  Base Value:  A base value is added to the value found in an entry,
     similar to Base Time.

  Base Sum:  A base sum is added to the sum found in an entry, similar
     to Base Time.

  Base Version:  Version number of the media type format.  This field
     is an optional positive integer and defaults to 10 if not present.

4.2.  Regular Fields

  Name:  Name of the sensor or parameter.  When appended to the Base
     Name field, this must result in a globally unique identifier for
     the resource.  The name is optional, if the Base Name is present.
     If the name is missing, the Base Name must uniquely identify the
     resource.  This can be used to represent a large array of
     measurements from the same sensor without having to repeat its
     identifier on every measurement.

  Unit:  Unit for a measurement value.  Optional.

  Value:  Value of the entry.  Optional if a Sum value is present;
     otherwise, it's required.  Values are represented using basic data
     types.  This specification defines floating-point numbers ("v"
     field for "Value"), booleans ("vb" for "Boolean Value"), strings
     ("vs" for "String Value"), and binary data ("vd" for "Data
     Value").  Exactly one Value field MUST appear unless there is a
     Sum field, in which case it is allowed to have no Value field.

  Sum:  Integrated sum of the values over time.  Optional.  This field
     is in the unit specified in the Unit value multiplied by seconds.
     For historical reasons, it is named "sum" instead of "integral".



Jennings, et al.             Standards Track                    [Page 7]

RFC 8428                          SenML                      August 2018


  Time:  Time when the value was recorded.  Optional.

  Update Time:  Period of time in seconds that represents the maximum
     time before this sensor will provide an updated reading for a
     measurement.  Optional.  This can be used to detect the failure of
     sensors or the communications path from the sensor.

4.3.  SenML Labels

  Table 1 provides an overview of all SenML fields defined by this
  document with their respective labels and data types.

    +---------------+-------+------------+------------+------------+
    |          Name | Label | CBOR Label | JSON Type  | XML Type   |
    +---------------+-------+------------+------------+------------+
    |     Base Name | bn    |         -2 | String     | string     |
    |     Base Time | bt    |         -3 | Number     | double     |
    |     Base Unit | bu    |         -4 | String     | string     |
    |    Base Value | bv    |         -5 | Number     | double     |
    |      Base Sum | bs    |         -6 | Number     | double     |
    |  Base Version | bver  |         -1 | Number     | int        |
    |          Name | n     |          0 | String     | string     |
    |          Unit | u     |          1 | String     | string     |
    |         Value | v     |          2 | Number     | double     |
    |  String Value | vs    |          3 | String     | string     |
    | Boolean Value | vb    |          4 | Boolean    | boolean    |
    |    Data Value | vd    |          8 | String (*) | string (*) |
    |           Sum | s     |          5 | Number     | double     |
    |          Time | t     |          6 | Number     | double     |
    |   Update Time | ut    |          7 | Number     | double     |
    +---------------+-------+------------+------------+------------+

                          Table 1: SenML Labels

  (*) Data Value is a base64-encoded string with the URL-safe alphabet
  as defined in Section 5 of [RFC4648], with padding omitted.  (In
  CBOR, the octets in the Data Value are encoded using a definite-
  length byte string, major type 2.)

  For details of the JSON representation, see Section 5; for CBOR, see
  Section 6; and for XML, see Section 7.










Jennings, et al.             Standards Track                    [Page 8]

RFC 8428                          SenML                      August 2018


4.4.  Extensibility

  The SenML format can be extended with further custom fields.  Both
  new base and regular fields are allowed.  See Section 12.2 for
  details.  Implementations MUST ignore fields they don't recognize
  unless that field has a label name that ends with the "_" character,
  in which case an error MUST be generated.

  All SenML Records in a Pack MUST have the same version number.  This
  is typically done by adding a Base Version field to only the first
  Record in the Pack or by using the default value.

  Systems reading one of the objects MUST check for the Base Version
  field.  If this value is a version number larger than the version
  that the system understands, the system MUST NOT use this object.
  This allows the version number to indicate that the object contains
  structure or semantics that is different from what is defined in the
  present document beyond just making use of the extension points
  provided here.  New version numbers can only be defined in an RFC
  that updates this specification or its successors.

4.5.  Records and Their Fields

4.5.1.  Names

  The Name value is concatenated to the Base Name value to yield the
  name of the sensor.  The resulting concatenated name needs to
  uniquely identify and differentiate the sensor from all others.  The
  concatenated name MUST consist only of characters out of the set "A"
  to "Z", "a" to "z", and "0" to "9", as well as "-", ":", ".", "/",
  and "_"; furthermore, it MUST start with a character out of the set
  "A" to "Z", "a" to "z", or "0" to "9".  This restricted character set
  was chosen so that concatenated names can be used directly within
  various URI schemes (including segments of an HTTP path with no
  special encoding; note that a name that contains "/" characters maps
  into multiple URI path segments) and can be used directly in many
  databases and analytic systems.  [RFC5952] contains advice on
  encoding an IPv6 address in a name.  See Section 14 for privacy
  considerations that apply to the use of long-term stable unique
  identifiers.

  Although it is RECOMMENDED that concatenated names be represented as
  URIs [RFC3986] or URNs [RFC8141], the restricted character set
  specified above puts strict limits on the URI schemes and URN
  namespaces that can be used.  As a result, implementers need to take
  care in choosing the naming scheme for concatenated names, because
  such names both need to be unique and need to conform to the
  restricted character set.  One approach is to include a bit string



Jennings, et al.             Standards Track                    [Page 9]

RFC 8428                          SenML                      August 2018


  that has guaranteed uniqueness (such as a 1-wire address [AN1796]).
  Some of the examples within this document use the device URN
  namespace as specified in [DEVICE-URN].  Universally Unique
  Identifiers (UUIDs) [RFC4122] are another way to generate a unique
  name.  However, the restricted character set does not allow the use
  of many URI schemes, such as the "tag" scheme [RFC4151] and the "ni"
  scheme [RFC6920], in names as such.  The use of URIs with characters
  incompatible with this set and possible mapping rules between the two
  are outside the scope of the present document.

4.5.2.  Units

  If the Record has no Unit, the Base Unit is used as the Unit.  Having
  no Unit and no Base Unit is allowed; any information that may be
  required about units applicable to the value then needs to be
  provided by the application context.

4.5.3.  Time

  If either the Base Time or Time value is missing, the missing field
  is considered to have a value of zero.  The Base Time and Time values
  are added together to get a value representing the time of
  measurement.

  Values less than 268,435,456 (2**28) represent time relative to the
  current time.  That is, a time of zero indicates that the sensor does
  not know the absolute time and the measurement was made roughly
  "now".  A negative value indicates seconds in the past from roughly
  "now".  Positive values up to 2**28 indicate seconds in the future
  from "now".  An example for employing positive values would be
  actuation use, when the desired change should happen in the future,
  but the sender or the receiver does not have accurate time available.

  Values greater than or equal to 2**28 represent an absolute time
  relative to the Unix epoch (1970-01-01T00:00Z in UTC time), and the
  time is counted the same way as the Portable Operating System
  Interface (POSIX) "seconds since the epoch" [TIME_T].  Therefore, the
  smallest absolute Time value that can be expressed (2**28) is
  1978-07-04 21:24:16 UTC.

  Because Time values up to 2**28 are used for representing time
  relative to "now" and Time and Base Time are added together, care
  must be taken to ensure that the sum does not inadvertently reach
  2**28 (i.e., absolute time) when relative time was intended to be
  used.






Jennings, et al.             Standards Track                   [Page 10]

RFC 8428                          SenML                      August 2018


  Obviously, SenML Records referenced to "now" are only useful within a
  specific communication context (e.g., based on information on when
  the SenML Pack, or a specific Record in a SenSML Stream, was sent) or
  together with some other context information that can be used for
  deriving a meaning of "now"; the expectation for any archival use is
  that they will be processed into UTC-referenced records before that
  context would cease to be available.  This specification deliberately
  leaves the accuracy of "now" very vague as it is determined by the
  overall systems that use SenML.  In a system where a sensor without
  wall-clock time sends a SenML Record with a time referenced to "now"
  over a high-speed RS-485 link to an embedded system with accurate
  time that resolves "now" based on the time of reception, the
  resulting time uncertainty could be within 1 ms.  At the other
  extreme, a deployment that sends SenML wind-speed readings over a
  Low-Earth Orbit (LEO) satellite link from a mountain valley might
  have resulting reception Time values that are easily a dozen minutes
  off the actual time of the sensor reading, with the time uncertainty
  depending on satellite locations and conditions.

4.5.4.  Values

  If only one of the Base Sum or Sum value is present, the missing
  field is considered to have a value of zero.  The Base Sum and Sum
  values are added together to get the sum of measurement.  If neither
  the Base Sum nor the Sum is present, then the measurement does not
  have a Sum value.

  If the Base Value or Value is not present, the missing field(s) is
  considered to have a value of zero.  The Base Value and Value are
  added together to get the value of the measurement.

  Representing the statistical characteristics of measurements, such as
  accuracy, can be very complex.  Future specification may add new
  fields to provide better information about the statistical properties
  of the measurement.

  In summary, the structure of a SenML Record is laid out to support a
  single measurement per Record.  If multiple data values are measured
  at the same time (e.g., air pressure and altitude), they are best
  kept as separate Records linked through their Time value; this is
  even true when one of the data values is more "meta" than others
  (e.g., describes a condition that influences other measurements at
  the same time).








Jennings, et al.             Standards Track                   [Page 11]

RFC 8428                          SenML                      August 2018


4.6.  Resolved Records

  Sometimes it is useful to be able to refer to a defined normalized
  format for SenML Records.  This normalized format tends to get used
  for big data applications and intermediate forms when converting to
  other formats.  Also, if SenML Records are used outside of a SenML
  Pack, they need to be resolved first to ensure applicable base values
  are applied.

  A SenML Record is referred to as "resolved" if it does not contain
  any base values, i.e., labels starting with the character "b", except
  for Base Version fields (see below), and has no relative times.  To
  resolve the Records, the applicable base values of the SenML Pack (if
  any) are applied to the Record.  That is, for the base values in the
  Record or before the Record in the Pack, Name and Base Name are
  concatenated, the Base Time is added to the time of the Record, the
  Base Unit is applied to the Record if it did not contain a Unit, etc.
  In addition, the Records need to be in chronological order in the
  Pack.  An example of this is shown in Section 5.1.4.

  The Base Version field MUST NOT be present in resolved Records if the
  SenML version defined in this document is used; otherwise, it MUST be
  present in all the resolved SenML Records.

  A future specification that defines new base fields needs to specify
  how the field is resolved.

4.7.  Associating Metadata

  SenML is designed to carry the minimum dynamic information about
  measurements and, for efficiency reasons, does not carry significant
  static metadata about the device, object, or sensors.  Instead, it is
  assumed that this metadata is carried out of band.  For web resources
  using SenML Packs, this metadata can be made available using the CoRE
  Link Format [RFC6690].  The most obvious use of this link format is
  to describe that a resource is available in a SenML format in the
  first place.  The relevant media type indicator is included in the
  Content-Type (ct=) link attribute (which is defined for the link
  format in Section 7.2.1 of [RFC7252]).

4.8.  Sensor Streaming Measurement Lists (SenSML)

  In some usage scenarios of SenML, the implementations store or
  transmit SenML in a stream-like fashion, where data is collected over
  time and continuously added to the object.  This mode of operation is
  optional, but systems or protocols using SenML in this fashion MUST
  specify that they are doing this.  SenML defines separate media types
  to indicate Sensor Streaming Measurement Lists (SenSML) for this



Jennings, et al.             Standards Track                   [Page 12]

RFC 8428                          SenML                      August 2018


  usage (see Section 12.3.2).  In this situation, the SenSML Stream can
  be sent and received in a partial fashion, i.e., a measurement entry
  can be read as soon as the SenML Record is received and does not have
  to wait for the full SenSML Stream to be complete.

  If times relative to "now" (see Section 4.5.3) are used in SenML
  Records of a SenSML Stream, their interpretation of "now" is based on
  the time when the specific Record is sent in the stream.

4.9.  Configuration and Actuation Usage

  SenML can also be used for configuring parameters and controlling
  actuators.  When a SenML Pack is sent (e.g., using an HTTP/CoAP POST
  or PUT method) and the semantics of the target are such that SenML is
  interpreted as configuration/actuation, SenML Records are interpreted
  as a request to change the values of given (sub)resources (given as
  names) to given values at the given time(s).  The semantics of the
  target resource supporting this usage can be described, e.g., using
  [RID-CoRE].  Examples of actuation usage are shown in Section 5.1.7.

5.  JSON Representation (application/senml+json)

  For the SenML fields shown in Table 2, the SenML Labels are used as
  the JSON object member names within JSON objects representing the
  JSON SenML Records.

                  +---------------+-------+-----------+
                  |          Name | Label | JSON Type |
                  +---------------+-------+-----------+
                  |     Base Name | bn    | String    |
                  |     Base Time | bt    | Number    |
                  |     Base Unit | bu    | String    |
                  |    Base Value | bv    | Number    |
                  |      Base Sum | bs    | Number    |
                  |  Base Version | bver  | Number    |
                  |          Name | n     | String    |
                  |          Unit | u     | String    |
                  |         Value | v     | Number    |
                  |  String Value | vs    | String    |
                  | Boolean Value | vb    | Boolean   |
                  |    Data Value | vd    | String    |
                  |           Sum | s     | Number    |
                  |          Time | t     | Number    |
                  |   Update Time | ut    | Number    |
                  +---------------+-------+-----------+

                       Table 2: JSON SenML Labels




Jennings, et al.             Standards Track                   [Page 13]

RFC 8428                          SenML                      August 2018


  The root JSON value consists of an array with one JSON object for
  each SenML Record.  All the fields in the above table MAY occur in
  the Records with member values of the type specified in the table.

  Only the UTF-8 [RFC3629] form of JSON is allowed.  Characters in the
  String Value are encoded using the escape sequences defined in
  [RFC8259].  Octets in the Data Value are base64 encoded with the URL-
  safe alphabet as defined in Section 5 of [RFC4648], with padding
  omitted.

  Systems receiving measurements MUST be able to process the range of
  floating-point numbers that are representable as IEEE double-
  precision, floating-point numbers [IEEE.754].  This allows Time
  values to have better than microsecond precision over the next 100
  years.  The number of significant digits in any measurement is not
  relevant, so a reading of 1.1 has exactly the same semantic meaning
  as 1.10.  If the value has an exponent, the "e" MUST be in lower
  case.  In the interest of avoiding unnecessary verbosity and speeding
  up processing, the mantissa SHOULD be less than 19 characters long,
  and the exponent SHOULD be less than 5 characters long.

5.1.  Examples

5.1.1.  Single Data Point

  The following shows a temperature reading taken approximately "now"
  by a 1-wire sensor device that was assigned the unique 1-wire address
  of 10e2073a01080063:

  [
    {"n":"urn:dev:ow:10e2073a01080063","u":"Cel","v":23.1}
  ]

5.1.2.  Multiple Data Points

  The following example shows voltage and current "now", i.e., at an
  unspecified time.

[
 {"bn":"urn:dev:ow:10e2073a01080063:","n":"voltage","u":"V","v":120.1},
 {"n":"current","u":"A","v":1.2}
]









Jennings, et al.             Standards Track                   [Page 14]

RFC 8428                          SenML                      August 2018


  The next example is similar to the above one, but it shows current at
  Tue Jun 8 18:01:16.001 UTC 2010 and at each second for the previous 5
  seconds.

  [
    {"bn":"urn:dev:ow:10e2073a0108006:","bt":1.276020076001e+09,
     "bu":"A","bver":5,
     "n":"voltage","u":"V","v":120.1},
    {"n":"current","t":-5,"v":1.2},
    {"n":"current","t":-4,"v":1.3},
    {"n":"current","t":-3,"v":1.4},
    {"n":"current","t":-2,"v":1.5},
    {"n":"current","t":-1,"v":1.6},
    {"n":"current","v":1.7}
  ]

  As an example of SenSML, the following stream of measurements may be
  sent via a long-lived HTTP POST from the producer of the stream to
  its consumer, and each measurement object may be reported at the time
  it was measured:

  [
    {"bn":"urn:dev:ow:10e2073a01080063","bt":1.320067464e+09,
     "bu":"%RH","v":21.2},
    {"t":10,"v":21.3},
    {"t":20,"v":21.4},
    {"t":30,"v":21.4},
    {"t":40,"v":21.5},
    {"t":50,"v":21.5},
    {"t":60,"v":21.5},
    {"t":70,"v":21.6},
    {"t":80,"v":21.7},
  ...

5.1.3.  Multiple Measurements

  The following example shows humidity measurements from a mobile
  device with a 1-wire address 10e2073a01080063, starting at Mon Oct 31
  13:24:24 UTC 2011.  The device also provides position data, which is
  provided in the same measurement or parameter array as separate
  entries.  Note that time is used to correlate data that belongs
  together, e.g., a measurement and a parameter associated with it.
  Finally, the device also reports extra data about its battery status
  at a separate time.







Jennings, et al.             Standards Track                   [Page 15]

RFC 8428                          SenML                      August 2018


  [
    {"bn":"urn:dev:ow:10e2073a01080063","bt":1.320067464e+09,
     "bu":"%RH","v":20},
    {"u":"lon","v":24.30621},
    {"u":"lat","v":60.07965},
    {"t":60,"v":20.3},
    {"u":"lon","t":60,"v":24.30622},
    {"u":"lat","t":60,"v":60.07965},
    {"t":120,"v":20.7},
    {"u":"lon","t":120,"v":24.30623},
    {"u":"lat","t":120,"v":60.07966},
    {"u":"%EL","t":150,"v":98},
    {"t":180,"v":21.2},
    {"u":"lon","t":180,"v":24.30628},
    {"u":"lat","t":180,"v":60.07967}
  ]

  The following table shows the size of this example in various forms,
  as well as the size of each of these forms compressed with gzip.

                  +----------+------+-----------------+
                  | Encoding | Size | Compressed Size |
                  +----------+------+-----------------+
                  | JSON     | 573  |       206       |
                  | XML      | 649  |       235       |
                  | CBOR     | 254  |       196       |
                  | EXI      | 161  |       184       |
                  +----------+------+-----------------+

                        Table 3: Size Comparisons





















Jennings, et al.             Standards Track                   [Page 16]

RFC 8428                          SenML                      August 2018


5.1.4.  Resolved Data

  The following shows the example from the previous section in resolved
  format.

  [
    {"n":"urn:dev:ow:10e2073a01080063","u":"%RH","t":1.320067464e+09,
     "v":20},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lon","t":1.320067464e+09,
     "v":24.30621},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lat","t":1.320067464e+09,
     "v":60.07965},
    {"n":"urn:dev:ow:10e2073a01080063","u":"%RH","t":1.320067524e+09,
     "v":20.3},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lon","t":1.320067524e+09,
     "v":24.30622},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lat","t":1.320067524e+09,
     "v":60.07965},
    {"n":"urn:dev:ow:10e2073a01080063","u":"%RH","t":1.320067584e+09,
     "v":20.7},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lon","t":1.320067584e+09,
     "v":24.30623},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lat","t":1.320067584e+09,
     "v":60.07966},
    {"n":"urn:dev:ow:10e2073a01080063","u":"%EL","t":1.320067614e+09,
     "v":98},
    {"n":"urn:dev:ow:10e2073a01080063","u":"%RH","t":1.320067644e+09,
     "v":21.2},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lon","t":1.320067644e+09,
     "v":24.30628},
    {"n":"urn:dev:ow:10e2073a01080063","u":"lat","t":1.320067644e+09,
     "v":60.07967}
  ]

5.1.5.  Multiple Data Types

  The following example shows a sensor that returns different data
  types.

 [
   {"bn":"urn:dev:ow:10e2073a01080063:","n":"temp","u":"Cel","v":23.1},
   {"n":"label","vs":"Machine Room"},
   {"n":"open","vb":false},
   {"n":"nfc-reader","vd":"aGkgCg"}
 ]






Jennings, et al.             Standards Track                   [Page 17]

RFC 8428                          SenML                      August 2018


5.1.6.  Collection of Resources

  The following example shows the results from a query to one device
  that aggregates multiple measurements from other devices.  The
  example assumes that a client has fetched information from a device
  at 2001:db8::2 by performing a GET operation on http://[2001:db8::2]
  at Mon Oct 31 16:27:09 UTC 2011 and has gotten two separate values as
  a result: a temperature and humidity measurement as well as the
  results from another device at http://[2001:db8::1] that also had a
  temperature and humidity measurement.  Note that the last record
  would use the Base Name from the 3rd record but the Base Time from
  the first record.

  [
    {"bn":"2001:db8::2/","bt":1.320078429e+09,
     "n":"temperature","u":"Cel","v":25.2},
    {"n":"humidity","u":"%RH","v":30},
    {"bn":"2001:db8::1/","n":"temperature","u":"Cel","v":12.3},
    {"n":"humidity","u":"%RH","v":67}
  ]

5.1.7.  Setting an Actuator

  The following example shows the SenML that could be used to set the
  current set point of a typical residential thermostat that has a
  temperature set point, a switch to turn on and off the heat, and a
  switch to turn on the fan override.

  [
    {"bn":"urn:dev:ow:10e2073a01080063:"},
    {"n":"temp","u":"Cel","v":23.1},
    {"n":"heat","u":"/","v":1},
    {"n":"fan","u":"/","v":0}
  ]

  In the following example, two different lights are turned on.  It is
  assumed that the lights are on a network that can guarantee delivery
  of the messages to the two lights within 15 ms (e.g., a network using
  802.1BA [IEEE802.1BA] and 802.1AS [IEEE802.1AS] for time
  synchronization).  The controller has set the time of the lights to
  come on at 20 ms in the future from the current time.  This allows
  both lights to receive the message, wait till that time, then apply
  the switch command so that both lights come on at the same time.

  [
    {"bt":1.320078429e+09,"bu":"/","n":"2001:db8::3","v":1},
    {"n":"2001:db8::4","v":1}
  ]



Jennings, et al.             Standards Track                   [Page 18]

RFC 8428                          SenML                      August 2018


  The following shows two lights being turned off using a
  non-deterministic network that has high odds of delivering a message
  in less than 100 ms and uses NTP for time synchronization.  The
  current time is 1320078429.  The user has just turned off a light
  switch that is turning off two lights.  Both lights are immediately
  dimmed to 50% brightness to give the user instant feedback that
  something is changing.  However, given the network, the lights will
  probably dim at somewhat different times.  Then 100 ms in the future,
  both lights will go off at the same time.  The instant, but not
  synchronized, dimming gives the user the sensation of quick
  responses, and the timed-off 100 ms in the future gives the
  perception of both lights going off at the same time.

  [
    {"bt":1.320078429e+09,"bu":"/","n":"2001:db8::3","v":0.5},
    {"n":"2001:db8::4","v":0.5},
    {"n":"2001:db8::3","t":0.1,"v":0},
    {"n":"2001:db8::4","t":0.1,"v":0}
  ]

6.  CBOR Representation (application/senml+cbor)

  The CBOR [RFC7049] representation is equivalent to the JSON
  representation, with the following changes:

  o  For JSON Numbers, the CBOR representation can use integers,
     floating-point numbers, or decimal fractions (CBOR Tag 4);
     however, a representation SHOULD be chosen such that when the CBOR
     value is converted to an IEEE double-precision, floating-point
     value, it has exactly the same value as the original JSON Number
     converted to that form.  For the version number, only an unsigned
     integer is allowed.

  o  Characters in the String Value are encoded using a text string
     with a definite length (major type 3).  Octets in the Data Value
     are encoded using a byte string with a definite length (major type
     2).

  o  For compactness, the CBOR representation uses integers for the
     labels, as defined in Table 4.  This table is conclusive, i.e.,
     there is no intention to define any additional integer map keys;
     any extensions will use string map keys.  This allows translators
     converting between CBOR and JSON representations to also convert
     all future labels without needing to update implementations.  Base
     values are given negative CBOR labels, and others are given
     non-negative labels.





Jennings, et al.             Standards Track                   [Page 19]

RFC 8428                          SenML                      August 2018


                 +---------------+-------+------------+
                 |          Name | Label | CBOR Label |
                 +---------------+-------+------------+
                 |  Base Version | bver  |         -1 |
                 |     Base Name | bn    |         -2 |
                 |     Base Time | bt    |         -3 |
                 |     Base Unit | bu    |         -4 |
                 |    Base Value | bv    |         -5 |
                 |      Base Sum | bs    |         -6 |
                 |          Name | n     |          0 |
                 |          Unit | u     |          1 |
                 |         Value | v     |          2 |
                 |  String Value | vs    |          3 |
                 | Boolean Value | vb    |          4 |
                 |           Sum | s     |          5 |
                 |          Time | t     |          6 |
                 |   Update Time | ut    |          7 |
                 |    Data Value | vd    |          8 |
                 +---------------+-------+------------+

           Table 4: CBOR Representation: Integers for Map Keys

  o  For streaming SenSML in CBOR representation, the array containing
     the records SHOULD be a CBOR array with an indefinite length; for
     non-streaming SenML, an array with a definite length MUST be used.

  The following example shows a dump of the CBOR example for the same
  sensor measurement as in Section 5.1.2.

0000 87 a7 21 78 1b 75 72 6e 3a 64 65 76 3a 6f 77 3a |..!x.urn:dev:ow:|
0010 31 30 65 32 30 37 33 61 30 31 30 38 30 30 36 3a |10e2073a0108006:|
0020 22 fb 41 d3 03 a1 5b 00 10 62 23 61 41 20 05 00 |".A...[..b#aA ..|
0030 67 76 6f 6c 74 61 67 65 01 61 56 02 fb 40 5e 06 |gvoltage.aV..@^.|
0040 66 66 66 66 66 a3 00 67 63 75 72 72 65 6e 74 06 |fffff..gcurrent.|
0050 24 02 fb 3f f3 33 33 33 33 33 33 a3 00 67 63 75 |$..?.333333..gcu|
0060 72 72 65 6e 74 06 23 02 fb 3f f4 cc cc cc cc cc |rrent.#..?......|
0070 cd a3 00 67 63 75 72 72 65 6e 74 06 22 02 fb 3f |...gcurrent."..?|
0080 f6 66 66 66 66 66 66 a3 00 67 63 75 72 72 65 6e |.ffffff..gcurren|
0090 74 06 21 02 f9 3e 00 a3 00 67 63 75 72 72 65 6e |t.!..>...gcurren|
00a0 74 06 20 02 fb 3f f9 99 99 99 99 99 9a a3 00 67 |t. ..?.........g|
00b0 63 75 72 72 65 6e 74 06 00 02 fb 3f fb 33 33 33 |current....?.333|
00c0 33 33 33                                        |333|
00c3








Jennings, et al.             Standards Track                   [Page 20]

RFC 8428                          SenML                      August 2018


  In CBOR diagnostic notation (Section 6 of [RFC7049]), this is:

 [{-2: "urn:dev:ow:10e2073a0108006:",
   -3: 1276020076.001, -4: "A", -1: 5, 0: "voltage", 1: "V", 2: 120.1},
  {0: "current", 6: -5, 2: 1.2}, {0: "current", 6: -4, 2: 1.3},
  {0: "current", 6: -3, 2: 1.4}, {0: "current", 6: -2, 2: 1.5},
  {0: "current", 6: -1, 2: 1.6}, {0: "current", 6: 0, 2: 1.7}]

7.  XML Representation (application/senml+xml)

  A SenML Pack or Stream can also be represented in XML format as
  defined in this section.

  Only the UTF-8 form of XML is allowed.  Octets in the Data Value are
  base64 encoded with the URL-safe alphabet as defined in Section 5 of
  [RFC4648], with padding omitted.

  The following shows an XML example for the same sensor measurement as
  in Section 5.1.2.

  <sensml xmlns="urn:ietf:params:xml:ns:senml">
    <senml bn="urn:dev:ow:10e2073a0108006:" bt="1.276020076001e+09"
    bu="A" bver="5" n="voltage" u="V" v="120.1"></senml>
    <senml n="current" t="-5" v="1.2"></senml>
    <senml n="current" t="-4" v="1.3"></senml>
    <senml n="current" t="-3" v="1.4"></senml>
    <senml n="current" t="-2" v="1.5"></senml>
    <senml n="current" t="-1" v="1.6"></senml>
    <senml n="current" v="1.7"></senml>
  </sensml>

  The SenML Stream is represented as a sensml element that contains a
  series of senml elements for each SenML Record.  The SenML fields are
  represented as XML attributes.  For each field defined in this
  document, the following table shows the SenML Labels, which are used
  for the XML attribute name, as well as the according restrictions on
  the XML attribute values ("type") as used in the XML senml elements.














Jennings, et al.             Standards Track                   [Page 21]

RFC 8428                          SenML                      August 2018


                  +---------------+-------+----------+
                  |          Name | Label | XML Type |
                  +---------------+-------+----------+
                  |     Base Name | bn    | string   |
                  |     Base Time | bt    | double   |
                  |     Base Unit | bu    | string   |
                  |    Base Value | bv    | double   |
                  |      Base Sum | bs    | double   |
                  |  Base Version | bver  | int      |
                  |          Name | n     | string   |
                  |          Unit | u     | string   |
                  |         Value | v     | double   |
                  |  String Value | vs    | string   |
                  |    Data Value | vd    | string   |
                  | Boolean Value | vb    | boolean  |
                  |           Sum | s     | double   |
                  |          Time | t     | double   |
                  |   Update Time | ut    | double   |
                  +---------------+-------+----------+

                        Table 5: XML SenML Labels

  The RelaxNG [RNC] Schema for the XML is:

  default namespace = "urn:ietf:params:xml:ns:senml"
  namespace rng = "http://relaxng.org/ns/structure/1.0"

  senml = element senml {
    attribute bn { xsd:string }?,
    attribute bt { xsd:double }?,
    attribute bv { xsd:double }?,
    attribute bs { xsd:double }?,
    attribute bu { xsd:string }?,
    attribute bver { xsd:int }?,

    attribute n { xsd:string }?,
    attribute s { xsd:double }?,
    attribute t { xsd:double }?,
    attribute u { xsd:string }?,
    attribute ut { xsd:double }?,

    attribute v { xsd:double }?,
    attribute vb { xsd:boolean }?,
    attribute vs { xsd:string }?,
    attribute vd { xsd:string }?
  }





Jennings, et al.             Standards Track                   [Page 22]

RFC 8428                          SenML                      August 2018


  sensml =
    element sensml {
      senml+
  }

  start = sensml

8.  EXI Representation (application/senml-exi)

  For efficient transmission of SenML over, e.g., a constrained
  network, EXI can be used.  This encodes the XML Schema
  [W3C.REC-xmlschema-1-20041028] structure of SenML into binary tags
  and values rather than ASCII text.  An EXI representation of SenML
  SHOULD be made using the strict schema mode of EXI.  However, this
  mode does not allow tag extensions to the schema; therefore, any
  extensions will be lost in the encoding.  For uses where extensions
  need to be preserved in EXI, the non-strict schema mode of EXI MAY be
  used.

  The EXI header MUST include "EXI Options", as defined in
  [W3C.REC-exi-20140211], with a schemaId set to the value of "a",
  indicating the schema provided in this specification.  Future
  revisions to the schema can change the value of the schemaId to allow
  for backwards compatibility.  When the data will be transported over
  CoAP or HTTP, an EXI Cookie SHOULD NOT be used as it simply makes
  things larger and is redundant to information provided in the
  Content-Type header.
























Jennings, et al.             Standards Track                   [Page 23]

RFC 8428                          SenML                      August 2018


  The following is the XSD Schema to be used for strict schema-guided
  EXI processing.  It is generated from the RelaxNG.

  <?xml version="1.0" encoding="utf-8"?>
  <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified"
  targetNamespace="urn:ietf:params:xml:ns:senml"
  xmlns:ns1="urn:ietf:params:xml:ns:senml">
    <xs:element name="senml">
      <xs:complexType>
        <xs:attribute name="bn" type="xs:string" />
        <xs:attribute name="bt" type="xs:double" />
        <xs:attribute name="bv" type="xs:double" />
        <xs:attribute name="bs" type="xs:double" />
        <xs:attribute name="bu" type="xs:string" />
        <xs:attribute name="bver" type="xs:int" />
        <xs:attribute name="n" type="xs:string" />
        <xs:attribute name="s" type="xs:double" />
        <xs:attribute name="t" type="xs:double" />
        <xs:attribute name="u" type="xs:string" />
        <xs:attribute name="ut" type="xs:double" />
        <xs:attribute name="v" type="xs:double" />
        <xs:attribute name="vb" type="xs:boolean" />
        <xs:attribute name="vs" type="xs:string" />
        <xs:attribute name="vd" type="xs:string" />
      </xs:complexType>
    </xs:element>
    <xs:element name="sensml">
      <xs:complexType>
        <xs:sequence>
          <xs:element maxOccurs="unbounded" ref="ns1:senml" />
        </xs:sequence>
      </xs:complexType>
    </xs:element>
  </xs:schema>

  The following shows a hexdump of the EXI produced from encoding the
  following XML example.  Note that this example is the same
  information as the first example in Section 5.1.2 but in JSON format.

  <sensml xmlns="urn:ietf:params:xml:ns:senml">
    <senml bn="urn:dev:ow:10e2073a01080063:" n="voltage" u="V"
    v="120.1"></senml>
    <senml n="current" u="A" v="1.2"></senml>
  </sensml>






Jennings, et al.             Standards Track                   [Page 24]

RFC 8428                          SenML                      August 2018


  Which compresses with EXI to the following displayed in hexdump:

0000 a0 30 0d 84 80 f3 ab 93 71 d3 23 2b b1 d3 7b b9 |.0......q.#+..{.|
0010 d1 89 83 29 91 81 b9 9b 09 81 89 81 c1 81 81 b1 |...)............|
0020 99 d2 84 bb 37 b6 3a 30 b3 b2 90 1a b1 58 84 c0 |....7.:0.....X..|
0030 33 04 b1 ba b9 39 32 b7 3a 10 1a 09 06 40 38    |3....92.:....@8|
003f

  The above example used the bit-packed form of EXI, but it is also
  possible to use a byte-packed form of EXI, which can make it easier
  for a simple sensor to produce valid EXI without really implementing
  EXI.  Consider the example of a temperature sensor that produces a
  value in tenths of degrees Celsius over a range of 0.0 to 55.0.  It
  would produce an XML SenML file such as:

  <sensml xmlns="urn:ietf:params:xml:ns:senml">
    <senml n="urn:dev:ow:10e2073a01080063" u="Cel" v="23.1"></senml>
  </sensml>

  The compressed form, using the byte-alignment option of EXI, for the
  above XML is the following:

0000 a0 00 48 80 6c 20 01 06 1d 75 72 6e 3a 64 65 76 |..H.l ...urn:dev|
0010 3a 6f 77 3a 31 30 65 32 30 37 33 61 30 31 30 38 |:ow:10e2073a0108|
0020 30 30 36 33 02 05 43 65 6c 01 00 e7 01 01 00 03 |0063..Cel.......|
0030 01                                              |.|
0031

  A small temperature sensor device that only generates this one EXI
  file does not really need a full EXI implementation.  It can simply
  hard code the output, replacing the 1-wire device ID starting at byte
  0x14 and going to byte 0x23 with its device ID and replacing the
  value "0xe7 0x01" at location 0x2b and 0x2c with the current
  temperature.  The EXI specification [W3C.REC-exi-20140211] contains
  the full information on how floating-point numbers are represented,
  but for the purpose of this sensor, the temperature can be converted
  to an integer in tenths of degrees (231 in this example).  EXI stores
  7 bits of the integer in each byte with the top bit set to one if
  there are further bytes.  So, the first byte is set to the low 7 bits
  of the integer temperature in tenths of degrees plus 0x80.  In this
  example, 231 & 0x7F + 0x80 = 0xE7.  The second byte is set to the
  integer temperature in tenths of degrees right-shifted 7 bits.  In
  this example, 231 >> 7 = 0x01.








Jennings, et al.             Standards Track                   [Page 25]

RFC 8428                          SenML                      August 2018


9.  Fragment Identification Methods

  A SenML Pack typically consists of multiple SenML Records, and for
  some applications, it may be useful to be able to refer to a single
  Record, or a set of Records, in a Pack with a fragment identifier.
  The fragment identifier is only interpreted by a client and does not
  impact retrieval of a representation.  The SenML fragment
  identification is modeled after Comma-Separated Value (CSV) fragment
  identifiers [RFC7111].

  To select a single SenML Record, the "rec" scheme followed by a
  single number is used.  For the purpose of numbering Records, the
  first Record is at position 1.  A range of records can be selected by
  giving the first and the last record number separated by a "-"
  character.  Instead of the second number, the "*" character can be
  used to indicate the last SenML Record in the Pack.  A set of Records
  can also be selected using a comma-separated list of Record positions
  or ranges.

  (We use the term "selecting a Record" for identifying it as part of
  the fragment, not in the sense of isolating it from the Pack -- the
  Record still needs to be interpreted as part of the Pack, e.g., using
  the base values defined in earlier Records.)

9.1.  Fragment Identification Examples

  The 3rd SenML Record from the "coap://example.com/temp" resource can
  be selected with:

     coap://example.com/temp#rec=3

  Records from 3rd to 6th can be selected with:

     coap://example.com/temp#rec=3-6

  Records from 19th to the last can be selected with:

     coap://example.com/temp#rec=19-*

  The 3rd and 5th Records can be selected with:

     coap://example.com/temp#rec=3,5

  To select the Records from third to fifth, the 10th Record, and all
  Records from 19th to the last:

     coap://example.com/temp#rec=3-5,10,19-*




Jennings, et al.             Standards Track                   [Page 26]

RFC 8428                          SenML                      August 2018


9.2.  Fragment Identification for XML and EXI Formats

  In addition to the SenML fragment identifiers described above, with
  the XML and EXI SenML formats, the syntax defined in the XPointer
  element() Scheme [XPointerElement] of the XPointer Framework
  [XPointerFramework] can be used.  (This is required by [RFC7303] for
  media types using the syntax suffix structured with "+xml".  For
  consistency, SenML allows this for the EXI formats as well.)

  Note that fragment identifiers are available to the client side only;
  they are not provided in transfer protocols such as CoAP or HTTP.
  Thus, they cannot be used by the server in deciding which media type
  to send.  Where a server has multiple representations available for a
  resource identified by a URI, it might send a JSON or CBOR
  representation when the client was directed to use an XML/EXI
  fragment identifier with it.  Clients can prevent running into this
  problem by explicitly requesting an XML or EXI media type (e.g.,
  using the CoAP Accept option) when XML-/EXI-only fragment identifier
  syntax is in use in the URI.

10.  Usage Considerations

  The measurements support sending both the current value of a sensor
  as well as an integrated sum.  For many types of measurements, the
  sum is more useful than the current value.  For historical reasons,
  this field is called "Sum" instead of "integral", which would more
  accurately describe its function.  For example, an electrical meter
  that measures the energy a given computer uses will typically want to
  measure the cumulative amount of energy used.  This is less prone to
  error than reporting the power each second and trying to have
  something on the server side sum together all the power measurements.
  If the network between the sensor and the meter goes down over some
  period of time, when it comes back up, the cumulative sum helps
  reflect what happened while the network was down.  A meter like this
  would typically report a measurement with the unit set to watts, but
  it would put the sum of energy used in the "s" field of the
  measurement.  It might optionally include the current power in the
  "v" field.

  While the benefit of using the integrated sum is fairly clear for
  measurements like power and energy, it is less obvious for something
  like temperature.  Reporting the sum of the temperature makes it easy
  to compute averages even when the individual temperature values are
  not reported frequently enough to compute accurate averages.
  Implementers are encouraged to report the cumulative sum as well as
  the raw value of a given sensor.





Jennings, et al.             Standards Track                   [Page 27]

RFC 8428                          SenML                      August 2018


  Applications that use the cumulative Sum values need to understand
  they are very loosely defined by this specification, and depending on
  the particular sensor implementation, they may behave in unexpected
  ways.  Applications should be able to deal with the following issues:

  1.  Many sensors will allow the cumulative sums to "wrap" back to
      zero after the value gets sufficiently large.

  2.  Some sensors will reset the cumulative sum back to zero when the
      device is reset, loses power, or is replaced with a different
      sensor.

  3.  Applications cannot make assumptions about when the device
      started accumulating values into the sum.

  Typically, applications can make some assumptions about specific
  sensors that will allow them to deal with these problems.  A common
  assumption is that for sensors whose measurement values are non-
  negative, the sum should never get smaller; if the sum does get
  smaller, the application will know that one of the situations listed
  above has happened.

  Despite the name "Sum", the Sum field is not useful for applications
  that maintain a running count of the number of times an event
  happened or that keep track of a counter such as the total number of
  bytes sent on an interface.  Data like that can be sent directly in
  the Value field.
























Jennings, et al.             Standards Track                   [Page 28]

RFC 8428                          SenML                      August 2018


11.  CDDL

  As a convenient reference, the JSON and CBOR representations can be
  described with the common Concise Data Definition Language (CDDL)
  specification [CDDL-CBOR] in Figure 1 (informative).

  SenML-Pack = [1* record]

  record = {
    ? bn => tstr,        ; Base Name
    ? bt => numeric,     ; Base Time
    ? bu => tstr,        ; Base Units
    ? bv => numeric,     ; Base Value
    ? bs => numeric,     ; Base Sum
    ? bver => uint,      ; Base Version
    ? n => tstr,        ; Name
    ? u => tstr,        ; Units
    ? s => numeric,     ; Sum
    ? t => numeric,     ; Time
    ? ut => numeric,    ; Update Time
    ? ( v => numeric // ; Numeric Value
        vs => tstr //   ; String Value
        vb => bool //   ; Boolean Value
        vd => binary-value ) ; Data Value
    * key-value-pair
  }

  ; now define the generic versions
  key-value-pair = ( label => value )

  label = non-b-label / b-label
  non-b-label = tstr .regexp  "[A-Zac-z0-9][-_:.A-Za-z0-9]*" / uint
  b-label = tstr .regexp  "b[-_:.A-Za-z0-9]+" / nint

  value = tstr / binary-value / numeric / bool
  numeric = number / decfrac

       Figure 1: Common CDDL Specification for CBOR and JSON SenML













Jennings, et al.             Standards Track                   [Page 29]

RFC 8428                          SenML                      August 2018


  For JSON, we use text labels and base64url-encoded binary data
  (Figure 2).

  bver = "bver" n  = "n"   s  = "s"
  bn  = "bn"    u  = "u"   t  = "t"
  bt  = "bt"    v  = "v"   ut = "ut"
  bu  = "bu"    vs = "vs"  vd = "vd"
  bv  = "bv"    vb = "vb"
  bs  = "bs"

  binary-value = tstr             ; base64url encoded

          Figure 2: JSON-Specific CDDL Specification for SenML

  For CBOR, we use integer labels and native binary data (Figure 3).

  bver = -1  n  = 0   s  = 5
  bn  = -2   u  = 1   t  = 6
  bt  = -3   v  = 2   ut = 7
  bu  = -4   vs = 3   vd = 8
  bv  = -5   vb = 4
  bs  = -6

  binary-value = bstr

          Figure 3: CBOR-Specific CDDL Specification for SenML

12.  IANA Considerations

  IANA has created a new "Sensor Measurement Lists (SenML)" registry
  that contains the subregistries defined in Sections 12.1 and 12.2.

12.1.  SenML Units Registry

  IANA has created a registry of SenML unit symbols called the "SenML
  Units" registry.  The primary purpose of this registry is to make
  sure that symbols uniquely map to indicate a type of measurement.
  Definitions for many of these units can be found in other
  publications such as [NIST811] and [BIPM].  Units marked with an
  asterisk are NOT RECOMMENDED to be produced by new implementations
  but are in active use and SHOULD be implemented by consumers that can
  use the corresponding SenML units that are closer to the unscaled SI
  units.








Jennings, et al.             Standards Track                   [Page 30]

RFC 8428                          SenML                      August 2018


  +----------+------------------------------------+-------+-----------+
  |   Symbol | Description                        | Type  | Reference |
  +----------+------------------------------------+-------+-----------+
  |        m | meter                              | float | RFC 8428  |
  |       kg | kilogram                           | float | RFC 8428  |
  |        g | gram*                              | float | RFC 8428  |
  |        s | second                             | float | RFC 8428  |
  |        A | ampere                             | float | RFC 8428  |
  |        K | kelvin                             | float | RFC 8428  |
  |       cd | candela                            | float | RFC 8428  |
  |      mol | mole                               | float | RFC 8428  |
  |       Hz | hertz                              | float | RFC 8428  |
  |      rad | radian                             | float | RFC 8428  |
  |       sr | steradian                          | float | RFC 8428  |
  |        N | newton                             | float | RFC 8428  |
  |       Pa | pascal                             | float | RFC 8428  |
  |        J | joule                              | float | RFC 8428  |
  |        W | watt                               | float | RFC 8428  |
  |        C | coulomb                            | float | RFC 8428  |
  |        V | volt                               | float | RFC 8428  |
  |        F | farad                              | float | RFC 8428  |
  |      Ohm | ohm                                | float | RFC 8428  |
  |        S | siemens                            | float | RFC 8428  |
  |       Wb | weber                              | float | RFC 8428  |
  |        T | tesla                              | float | RFC 8428  |
  |        H | henry                              | float | RFC 8428  |
  |      Cel | degrees Celsius                    | float | RFC 8428  |
  |       lm | lumen                              | float | RFC 8428  |
  |       lx | lux                                | float | RFC 8428  |
  |       Bq | becquerel                          | float | RFC 8428  |
  |       Gy | gray                               | float | RFC 8428  |
  |       Sv | sievert                            | float | RFC 8428  |
  |      kat | katal                              | float | RFC 8428  |
  |       m2 | square meter (area)                | float | RFC 8428  |
  |       m3 | cubic meter (volume)               | float | RFC 8428  |
  |        l | liter (volume)*                    | float | RFC 8428  |
  |      m/s | meter per second (velocity)        | float | RFC 8428  |
  |     m/s2 | meter per square second            | float | RFC 8428  |
  |          | (acceleration)                     |       |           |
  |     m3/s | cubic meter per second (flow rate) | float | RFC 8428  |
  |      l/s | liter per second (flow rate)*      | float | RFC 8428  |
  |     W/m2 | watt per square meter (irradiance) | float | RFC 8428  |
  |    cd/m2 | candela per square meter           | float | RFC 8428  |
  |          | (luminance)                        |       |           |
  |      bit | bit (information content)          | float | RFC 8428  |
  |    bit/s | bit per second (data rate)         | float | RFC 8428  |
  |      lat | degrees latitude (Note 1)          | float | RFC 8428  |
  |      lon | degrees longitude (Note 1)         | float | RFC 8428  |



Jennings, et al.             Standards Track                   [Page 31]

RFC 8428                          SenML                      August 2018


  |       pH | pH value (acidity; logarithmic     | float | RFC 8428  |
  |          | quantity)                          |       |           |
  |       dB | decibel (logarithmic quantity)     | float | RFC 8428  |
  |      dBW | decibel relative to 1 W (power     | float | RFC 8428  |
  |          | level)                             |       |           |
  |     Bspl | bel (sound pressure level;         | float | RFC 8428  |
  |          | logarithmic quantity)*             |       |           |
  |    count | 1 (counter value)                  | float | RFC 8428  |
  |        / | 1 (ratio, e.g., value of a switch; | float | RFC 8428  |
  |          | Note 2)                            |       |           |
  |        % | 1 (ratio, e.g., value of a switch; | float | RFC 8428  |
  |          | Note 2)*                           |       |           |
  |      %RH | percentage (relative humidity)     | float | RFC 8428  |
  |      %EL | percentage (remaining battery      | float | RFC 8428  |
  |          | energy level)                      |       |           |
  |       EL | seconds (remaining battery energy  | float | RFC 8428  |
  |          | level)                             |       |           |
  |      1/s | 1 per second (event rate)          | float | RFC 8428  |
  |    1/min | 1 per minute (event rate, "rpm")*  | float | RFC 8428  |
  | beat/min | 1 per minute (heart rate in beats  | float | RFC 8428  |
  |          | per minute)*                       |       |           |
  |    beats | 1 (cumulative number of heart      | float | RFC 8428  |
  |          | beats)*                            |       |           |
  |      S/m | siemens per meter (conductivity)   | float | RFC 8428  |
  +----------+------------------------------------+-------+-----------+

                 Table 6: IANA Registry for SenML Units

  o  Note 1: Assumed to be in World Geodetic System 1984 (WGS84),
     unless another reference frame is known for the sensor.

  o  Note 2: A value of 0.0 indicates the switch is off, 1.0 indicates
     on, and 0.5 indicates half on.  The preferred name of this unit is
     "/".  For historical reasons, the name "%" is also provided for
     the same unit, but note that while that name strongly suggests a
     percentage (0..100), it is NOT a percentage but the absolute
     ratio!














Jennings, et al.             Standards Track                   [Page 32]

RFC 8428                          SenML                      August 2018


  New entries can be added to the registration by Expert Review as
  defined in [RFC8126].  Experts should exercise their own good
  judgment but need to consider the following guidelines:

  1.   There needs to be a real and compelling use for any new unit to
       be added.

  2.   Each unit should define the semantic information and be chosen
       carefully.  Implementers need to remember that the same word may
       be used in different real-life contexts.  For example, degrees
       when measuring latitude have no semantic relation to degrees
       when measuring temperature; thus, two different units are
       needed.

  3.   These measurements are produced by computers for consumption by
       computers.  The principle is that conversion has to be easily
       done when both reading and writing the media type.  The value of
       a single canonical representation outweighs the convenience of
       easy human representations or loss of precision in a conversion.

  4.   Use of System of Units (SI) prefixes such as "k" before the unit
       is not recommended.  Instead, one can represent the value using
       scientific notation such as 1.2e3.  The "kg" unit is an
       exception to this rule since it is an SI base unit; the "g" unit
       is provided for legacy compatibility.

  5.   For a given type of measurement, there will only be one unit
       type defined.  So for length, meter is defined, and other
       lengths such as mile, foot, and light year are not allowed.  For
       most cases, the SI unit is preferred.

       (Note that some amount of judgment will be required here, as
       even SI itself is not entirely consistent in this respect.  For
       instance, for temperature, [ISO-80000-5] defines a quantity,
       item 5-1 (thermodynamic temperature), and a corresponding unit
       of 5-1.a (Kelvin); [ISO-80000-5] goes on to define another
       quantity, item 5-2 ("Celsius temperature"), and the
       corresponding unit of 5-2.a (degree Celsius).  The latter
       quantity is defined such that it gives the thermodynamic
       temperature as a delta from T0 = 275.15 K.  ISO 80000-5 is
       defining both units side by side and not really expressing a
       preference.  This level of recognition of the alternative unit
       degree Celsius is the reason why Celsius temperatures seem
       exceptionally acceptable in the SenML units list alongside
       Kelvin.)






Jennings, et al.             Standards Track                   [Page 33]

RFC 8428                          SenML                      August 2018


  6.   Symbol names that could be easily confused with existing common
       units or units combined with prefixes should be avoided.  For
       example, selecting a unit name of "mph" to indicate something
       that had nothing to do with velocity would be a bad choice, as
       "mph" is commonly used to mean "miles per hour".

  7.   The following should not be used because they are common SI
       prefixes: Y, Z, E, P, T, G, M, k, h, da, d, c, u, n, p, f, a, z,
       y, Ki, Mi, Gi, Ti, Pi, Ei, Zi, and Yi.

  8.   The following units should not be used as they are commonly used
       to represent other measurements: Ky, Gal, dyn, etg, P, St, Mx,
       G, Oe, Gb, sb, Lmb, mph, Ci, R, RAD, REM, gal, bbl, qt, degF,
       Cal, BTU, HP, pH, B/s, psi, Torr, atm, at, bar, and kWh.

  9.   The unit names are case sensitive, and the correct case needs to
       be used; however, symbols that differ only in case should not be
       allocated.

  10.  A number after a unit typically indicates the previous unit
       raised to that power, and "/" indicates that the units that
       follow are the reciprocals.  A unit should have only one "/" in
       the name.

  11.  A good list of common units can be found in the Unified Code for
       Units of Measure [UCUM].

























Jennings, et al.             Standards Track                   [Page 34]

RFC 8428                          SenML                      August 2018


12.2.  SenML Labels Registry

  IANA has created a new registry for SenML Labels called the "SenML
  Labels" registry.  The initial contents of the registry are as
  follows:

  +--------------+-------+----+-----------+----------+----+-----------+
  |         Name | Label | CL | JSON Type | XML Type | EI | Reference |
  +--------------+-------+----+-----------+----------+----+-----------+
  |    Base Name | bn    | -2 | String    | string   | a  | RFC 8428  |
  |    Base Time | bt    | -3 | Number    | double   | a  | RFC 8428  |
  |    Base Unit | bu    | -4 | String    | string   | a  | RFC 8428  |
  |   Base Value | bv    | -5 | Number    | double   | a  | RFC 8428  |
  |     Base Sum | bs    | -6 | Number    | double   | a  | RFC 8428  |
  | Base Version | bver  | -1 | Number    | int      | a  | RFC 8428  |
  |         Name | n     | 0  | String    | string   | a  | RFC 8428  |
  |         Unit | u     | 1  | String    | string   | a  | RFC 8428  |
  |        Value | v     | 2  | Number    | double   | a  | RFC 8428  |
  | String Value | vs    | 3  | String    | string   | a  | RFC 8428  |
  |      Boolean | vb    | 4  | Boolean   | boolean  | a  | RFC 8428  |
  |        Value |       |    |           |          |    |           |
  |   Data Value | vd    | 8  | String    | string   | a  | RFC 8428  |
  |          Sum | s     | 5  | Number    | double   | a  | RFC 8428  |
  |         Time | t     | 6  | Number    | double   | a  | RFC 8428  |
  |  Update Time | ut    | 7  | Number    | double   | a  | RFC 8428  |
  +--------------+-------+----+-----------+----------+----+-----------+

               Note that CL = CBOR Label and EI = EXI ID.

                 Table 7: IANA Registry for SenML Labels

  This is the same table as Table 1, with notes removed and columns
  added for the information that is all the same for this initial set
  of registrations, but it will need to be supplied with different
  values for new registrations.

  All new entries must define the Name, Label, and XML Type, but the
  CBOR labels SHOULD be left empty as CBOR will use the string encoding
  for any new labels.  The EI column contains the EXI schemaId value of
  the first schema that includes this label, or it is empty if this
  label was not intended for use with EXI.  The Reference column SHOULD
  contain information about where to find out more information about
  this label.

  The JSON, CBOR, and EXI types are derived from the XML type.  All XML
  numeric types such as double, float, integer, and int become a JSON
  Number.  XML boolean and string become a JSON Boolean and String,




Jennings, et al.             Standards Track                   [Page 35]

RFC 8428                          SenML                      August 2018


  respectively.  CBOR represents numeric values with a CBOR type that
  does not lose any information from the JSON value.  EXI uses the XML
  types.

  New entries can be added to the registration by Expert Review as
  defined in [RFC8126].  Experts should exercise their own good
  judgment but need to consider that shorter labels should have more
  strict review.  New entries should not be made that counteract the
  advice at the end of Section 4.5.4.

  All new SenML Labels that have "base" semantics (see Section 4.1)
  MUST start with the character "b".  Regular labels MUST NOT start
  with that character.  All new SenML Labels with Value semantics (see
  Section 4.2) MUST have "Value" in their (long-form) name.

  Extensions that add a label intended for use with XML need to create
  a new RelaxNG Schema that includes all the labels in the "SenML
  Labels" registry.

  Extensions that add a label that is intended for use with EXI need to
  create a new XSD Schema that includes all the labels in the "SenML
  Labels" registry and then allocate a new EXI schemaId value.  Moving
  to the next letter in the alphabet is the suggested way to create the
  new value for the EXI schemaId.  Any labels with previously blank ID
  values SHOULD be updated in the "SenML Labels" registry to have their
  ID set to this new schemaId value.

  Extensions that are mandatory to understand to correctly process the
  Pack MUST have a label name that ends with the "_" character.

12.3.  Media Type Registrations

  The registrations in the subsections below follow the procedures
  specified in [RFC6838] and [RFC7303].  This document registers media
  types for each serialization format of SenML (JSON, CBOR, XML, and
  EXI) and also a corresponding set of media types for streaming use
  (SenSML; see Section 4.8).  Clipboard formats are defined for the
  JSON and XML forms of SenML but not for streams or non-textual
  formats.

  The reason there are both SenML and the streaming SenSML formats is
  that they are not the same data formats, and they require separate
  negotiation to understand if they are supported and which one is
  being used.  The non-streaming format is required to have some sort
  of end-of-pack syntax that indicates there will be no more records.
  Many implementations that receive SenML wait for this end-of-pack
  marker before processing any of the records.  On the other hand, with
  the streaming formats, it is explicitly not required to wait for this



Jennings, et al.             Standards Track                   [Page 36]

RFC 8428                          SenML                      August 2018


  end-of-pack marker.  Many implementations that produce streaming
  SenSML will never send this end-of-pack marker, so implementations
  that receive streaming SenSML cannot wait for the end-of-pack marker
  before they start processing the records.  Given that SenML and
  streaming SenML are different data formats, and considering the
  requirement for separate negotiation, a media type for each one is
  needed.

12.3.1.  senml+json Media Type Registration

  Type name: application

  Subtype name: senml+json

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using a subset of the
  encoding allowed in [RFC8259].  See RFC 8428 for details.  This
  simplifies implementation of a very simple system and does not impose
  any significant limitations as all this data is meant for machine-to-
  machine communications and is not meant to be human readable.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any JSON
  key-value pairs that they do not understand unless the key ends with
  the "_" character, in which case an error MUST be generated.  This
  allows backwards-compatible extensions to this specification.  The
  "bver" field can be used to ensure the receiver supports a minimal
  level of functionality needed by the creator of the JSON object.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/senml+json is supported by using fragment identifiers as
  specified by RFC 8428.








Jennings, et al.             Standards Track                   [Page 37]

RFC 8428                          SenML                      August 2018


  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): senml

     Windows Clipboard Name: "JSON Sensor Measurement List"

     Macintosh file type code(s): none

     Macintosh Universal Type Identifier code: org.ietf.senml-json
     conforms to public.text

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.2.  sensml+json Media Type Registration

  Type name: application

  Subtype name: sensml+json

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using a subset of the
  encoding allowed in [RFC8259].  See RFC 8428 for details.  This
  simplifies implementation of a very simple system and does not impose
  any significant limitations as all this data is meant for machine-to-
  machine communications and is not meant to be human readable.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any JSON
  key-value pairs that they do not understand unless the key ends with
  the "_" character, in which case an error MUST be generated.  This




Jennings, et al.             Standards Track                   [Page 38]

RFC 8428                          SenML                      August 2018


  allows backwards-compatible extensions to this specification.  The
  "bver" field can be used to ensure the receiver supports a minimal
  level of functionality needed by the creator of the JSON object.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/sensml+json is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): sensml

     Macintosh file type code(s): none

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.3.  senml+cbor Media Type Registration

  Type name: application

  Subtype name: senml+cbor

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using [RFC7049].  See RFC
  8428 for details.



Jennings, et al.             Standards Track                   [Page 39]

RFC 8428                          SenML                      August 2018


  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any key-
  value pairs that they do not understand unless the key ends with the
  "_" character, in which case an error MUST be generated.  This allows
  backwards-compatible extensions to this specification.  The "bver"
  field can be used to ensure the receiver supports a minimal level of
  functionality needed by the creator of the CBOR object.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/senml+cbor is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): senmlc

     Macintosh file type code(s): none

     Macintosh Universal Type Identifier code: org.ietf.senml-cbor
     conforms to public.data

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG








Jennings, et al.             Standards Track                   [Page 40]

RFC 8428                          SenML                      August 2018


12.3.4.  sensml+cbor Media Type Registration

  Type name: application

  Subtype name: sensml+cbor

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using [RFC7049].  See RFC
  8428 for details.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any key-
  value pairs that they do not understand unless the key ends with the
  "_" character, in which case an error MUST be generated.  This allows
  backwards-compatible extensions to this specification.  The "bver"
  field can be used to ensure the receiver supports a minimal level of
  functionality needed by the creator of the CBOR object.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/sensml+cbor is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): sensmlc

     Macintosh file type code(s): none

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON




Jennings, et al.             Standards Track                   [Page 41]

RFC 8428                          SenML                      August 2018


  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.5.  senml+xml Media Type Registration

  Type name: application

  Subtype name: senml+xml

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using
  [W3C.REC-xml-20081126].  See RFC 8428 for details.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any XML
  tags or attributes that they do not understand unless the attribute
  name ends with the "_" character, in which case an error MUST be
  generated.  This allows backwards-compatible extensions to this
  specification.  The "bver" attribute in the senml XML tag can be used
  to ensure the receiver supports a minimal level of functionality
  needed by the creator of the XML SenML Pack.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/senml+xml is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): senmlx




Jennings, et al.             Standards Track                   [Page 42]

RFC 8428                          SenML                      August 2018


     Windows Clipboard Name: "XML Sensor Measurement List"

     Macintosh file type code(s): none

     Macintosh Universal Type Identifier code: org.ietf.senml-xml
     conforms to public.xml

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.6.  sensml+xml Media Type Registration

  Type name: application

  Subtype name: sensml+xml

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using
  [W3C.REC-xml-20081126].  See RFC 8428 for details.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any XML
  tags or attributes that they do not understand unless the attribute
  name ends with the "_" character, in which case an error MUST be
  generated.  This allows backwards-compatible extensions to this
  specification.  The "bver" attribute in the senml XML tag can be used
  to ensure the receiver supports a minimal level of functionality
  needed by the creator of the XML SenML Pack.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.




Jennings, et al.             Standards Track                   [Page 43]

RFC 8428                          SenML                      August 2018


  Fragment identifier considerations: Fragment identification for
  application/sensml+xml is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): sensmlx

     Macintosh file type code(s): none

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.7.  senml-exi Media Type Registration

  Type name: application

  Subtype name: senml-exi

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using
  [W3C.REC-exi-20140211].  See RFC 8428 for details.

  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any XML
  tags or attributes that they do not understand unless the attribute
  name ends with the "_" character, in which case an error MUST be
  generated.  This allows backwards-compatible extensions to this
  specification.  The "bver" attribute in the senml XML tag can be used
  to ensure the receiver supports a minimal level of functionality
  needed by the creator of the XML SenML Pack.  Further information on
  using schemas to guide the EXI can be found in RFC 8428.



Jennings, et al.             Standards Track                   [Page 44]

RFC 8428                          SenML                      August 2018


  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/senml-exi is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): senmle

     Macintosh file type code(s): none

     Macintosh Universal Type Identifier code: org.ietf.senml-exi
     conforms to public.data

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG

12.3.8.  sensml-exi Media Type Registration

  Type name: application

  Subtype name: sensml-exi

  Required parameters: none

  Optional parameters: none

  Encoding considerations: Must be encoded as using
  [W3C.REC-exi-20140211].  See RFC 8428 for details.




Jennings, et al.             Standards Track                   [Page 45]

RFC 8428                          SenML                      August 2018


  Security considerations: See Section 13 of RFC 8428.

  Interoperability considerations: Applications MUST ignore any XML
  tags or attributes that they do not understand unless the attribute
  name ends with the "_" character, in which case an error MUST be
  generated.  This allows backwards-compatible extensions to this
  specification.  The "bver" attribute in the senml XML tag can be used
  to ensure the receiver supports a minimal level of functionality
  needed by the creator of the XML SenML Pack.  Further information on
  using schemas to guide the EXI can be found in RFC 8428.

  Published specification: RFC 8428

  Applications that use this media type: The type is used by systems
  that report, e.g., electrical power usage and environmental
  information such as temperature and humidity.  It can be used for a
  wide range of sensor reporting systems.

  Fragment identifier considerations: Fragment identification for
  application/sensml-exi is supported by using fragment identifiers as
  specified by RFC 8428.

  Additional information:

     Deprecated alias names for this type: N/A

     Magic number(s): N/A

     File extension(s): sensmle

     Macintosh file type code(s): none

  Person & email address to contact for further information:
     Cullen Jennings <[email protected]>

  Intended usage: COMMON

  Restrictions on usage: None

  Author: Cullen Jennings <[email protected]>

  Change controller: IESG









Jennings, et al.             Standards Track                   [Page 46]

RFC 8428                          SenML                      August 2018


12.4.  XML Namespace Registration

  This document registers the following XML namespace in the "IETF XML
  Registry" defined in [RFC3688].

  URI: urn:ietf:params:xml:ns:senml

  Registrant Contact: The IESG.

  XML: N/A, the requested URIs are XML namespaces

12.5.  CoAP Content-Format Registration

  IANA has assigned CoAP Content-Format IDs for the SenML media types
  in the "CoAP Content-Formats" subregistry within the "Constrained
  RESTful Environments (CoRE) Parameters" registry [RFC7252].  IDs for
  the JSON, CBOR, and EXI Content-Formats have been assigned in the
  0-255 range (Expert Review), and IDs for the XML Content-Formats have
  been assigned in the 256-9999 range (IETF Review or IESG Approval).
  The assigned IDs are shown in the table below:

        +-------------------------+----------+-----+-----------+
        | Media Type              | Encoding | ID  | Reference |
        +-------------------------+----------+-----+-----------+
        | application/senml+json  | -        | 110 | RFC 8428  |
        | application/sensml+json | -        | 111 | RFC 8428  |
        | application/senml+cbor  | -        | 112 | RFC 8428  |
        | application/sensml+cbor | -        | 113 | RFC 8428  |
        | application/senml-exi   | -        | 114 | RFC 8428  |
        | application/sensml-exi  | -        | 115 | RFC 8428  |
        | application/senml+xml   | -        | 310 | RFC 8428  |
        | application/sensml+xml  | -        | 311 | RFC 8428  |
        +-------------------------+----------+-----+-----------+

                    Table 8: CoAP Content-Format IDs

13.  Security Considerations

  Sensor data presented with SenML can contain a wide array of
  information that ranges from very public (such as the outside
  temperature in a given city) to very private (such as patient health
  information that requires integrity and confidentiality protection).
  When SenML is used for configuration or actuation, it can be used to
  change the state of systems and also impact the physical world, e.g.,
  by turning off a heater or opening a lock.  Malicious use of SenML to
  change system state could have severe consequences, potentially
  including violation of physical security, property damage, and even
  loss of life.



Jennings, et al.             Standards Track                   [Page 47]

RFC 8428                          SenML                      August 2018


  SenML formats alone do not provide any security and instead rely on
  the protocol that carries them to provide security.  Applications
  using SenML need to look at the overall context of how these formats
  will be used to decide if the security is adequate.  In particular,
  for sensitive sensor data and actuation use, it is important to
  ensure that proper security mechanisms are used to provide, e.g.,
  confidentiality, data integrity, and authentication as appropriate
  for the usage.

  SenML formats defined by this specification do not contain any
  executable content.  However, future extensions could potentially
  embed application-specific executable content in the data.

  SenML Records are intended to be interpreted in the context of any
  applicable base values.  If Records become separated from the Record
  that establishes the base values, the data will be useless or, worse,
  wrong.  Care needs to be taken in keeping the integrity of a Pack
  that contains unresolved SenML Records (see Section 4.6).

  See also Section 14.

14.  Privacy Considerations

  Sensor data can range from information with almost no privacy
  considerations, such as the current temperature in a given city, to
  highly sensitive medical or location data.  This specification
  provides no security protection for the data but is meant to be used
  inside another container or transfer protocol such as S/MIME
  [RFC5751] or HTTP with TLS [RFC2818] that can provide integrity,
  confidentiality, and authentication information about the source of
  the data.

  The Name fields need to uniquely identify the sources or destinations
  of the values in a SenML Pack.  However, the use of long-term stable
  and unique identifiers can be problematic for privacy reasons
  [RFC6973], depending on the application and the potential of these
  identifiers to be used in correlation with other information.  They
  should be used with care or avoided, for example, as described for
  IPv6 addresses in [RFC7721].












Jennings, et al.             Standards Track                   [Page 48]

RFC 8428                          SenML                      August 2018


15.  References

15.1.  Normative References

  [BIPM]     Bureau International des Poids et Mesures, "The
             International System of Units (SI)", 8th Edition, 2006.

  [IEEE.754] IEEE, "Standard for Binary Floating-Point Arithmetic",
             IEEE Standard 754.

  [NIST811]  Thompson, A. and B. Taylor, "Guide for the Use of the
             International System of Units (SI)", NIST Special
             Publication 811, DOI 10.6028/NIST.SP.811e2008, March 2008.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
             2003, <https://www.rfc-editor.org/info/rfc3629>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <https://www.rfc-editor.org/info/rfc4648>.

  [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
             Specifications and Registration Procedures", BCP 13,
             RFC 6838, DOI 10.17487/RFC6838, January 2013,
             <https://www.rfc-editor.org/info/rfc6838>.

  [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
             Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
             October 2013, <https://www.rfc-editor.org/info/rfc7049>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7303]  Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
             DOI 10.17487/RFC7303, July 2014,
             <https://www.rfc-editor.org/info/rfc7303>.



Jennings, et al.             Standards Track                   [Page 49]

RFC 8428                          SenML                      August 2018


  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RNC]      ISO/IEC, "Information technology -- Document Schema
             Definition Language (DSDL) -- Part 2: Regular-grammar-
             based validation -- RELAX NG", ISO/IEC 19757-2, Annex
             C: RELAX NG Compact syntax, December 2008.

  [TIME_T]   The Open Group Base Specifications, "Open Group Standard -
             Vol. 1: Base Definitions, Issue 7", Section 4.16, "Seconds
             Since the Epoch", IEEE Standard 1003.1, 2018,
             <http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
             V1_chap04.html#tag_04_16>.

  [W3C.REC-exi-20140211]
             Schneider, J., Kamiya, T., Peintner, D., and R. Kyusakov,
             "Efficient XML Interchange (EXI) Format 1.0 (Second
             Edition)", W3C Recommendation REC-exi-20140211, February
             2014, <http://www.w3.org/TR/2014/REC-exi-20140211>.

  [W3C.REC-xml-20081126]
             Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
             F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
             Edition)", W3C Recommendation REC-xml-20081126, November
             2008, <http://www.w3.org/TR/2008/REC-xml-20081126>.

  [W3C.REC-xmlschema-1-20041028]
             Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
             "XML Schema Part 1: Structures Second Edition", W3C
             Recommendation REC-xmlschema-1-20041028, October 2004,
             <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

  [XPointerElement]
             Grosso, P., Maler, E., Marsh, J., and N. Walsh, "XPointer
             element() Scheme", W3C Recommendation REC-xptr-element,
             March 2003,
             <https://www.w3.org/TR/2003/REC-xptr-element-20030325/>.



Jennings, et al.             Standards Track                   [Page 50]

RFC 8428                          SenML                      August 2018


  [XPointerFramework]
             Grosso, P., Maler, E., Marsh, J., and N. Walsh, "XPointer
             Framework", W3C Recommendation REC-XPointer-Framework,
             March 2003,
             <http://www.w3.org/TR/2003/REC-xptr-framework-20030325/>.

15.2.  Informative References

  [AN1796]   Linke, B., "Overview of 1-Wire Technology and Its Use",
             Maxim Integrated, Tutorial 1796, June 2008,
             <http://pdfserv.maximintegrated.com/en/an/AN1796.pdf>.

  [CDDL-CBOR]
             Birkholz, H., Vigano, C., and C. Bormann, "Concise data
             definition language (CDDL): a notational convention to
             express CBOR and JSON data structures", Work in Progress,
             draft-ietf-cbor-cddl-05, August 2018.

  [DEVICE-URN]
             Arkko, J., Jennings, C., and Z. Shelby, "Uniform Resource
             Names for Device Identifiers", Work in Progress,
             draft-ietf-core-dev-urn-02, July 2018.

  [IEEE802.1AS]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks - Timing and Synchronization for Time-Sensitive
             Applications in Bridged Local Area Networks", IEEE
             Standard 802.1AS.

  [IEEE802.1BA]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Audio Video Bridging (AVB) Systems", IEEE
             Standard 802.1BA.

  [ISO-80000-5]
             ISO, "Quantities and units - Part 5: Thermodynamics",
             ISO 80000-5, Edition 1.0, May 2007.

  [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818,
             DOI 10.17487/RFC2818, May 2000,
             <https://www.rfc-editor.org/info/rfc2818>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.





Jennings, et al.             Standards Track                   [Page 51]

RFC 8428                          SenML                      August 2018


  [RFC4122]  Leach, P., Mealling, M., and R. Salz, "A Universally
             Unique IDentifier (UUID) URN Namespace", RFC 4122,
             DOI 10.17487/RFC4122, July 2005,
             <https://www.rfc-editor.org/info/rfc4122>.

  [RFC4151]  Kindberg, T. and S. Hawke, "The 'tag' URI Scheme",
             RFC 4151, DOI 10.17487/RFC4151, October 2005,
             <https://www.rfc-editor.org/info/rfc4151>.

  [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
             "Transmission of IPv6 Packets over IEEE 802.15.4
             Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
             <https://www.rfc-editor.org/info/rfc4944>.

  [RFC5751]  Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
             Mail Extensions (S/MIME) Version 3.2 Message
             Specification", RFC 5751, DOI 10.17487/RFC5751, January
             2010, <https://www.rfc-editor.org/info/rfc5751>.

  [RFC5952]  Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
             Address Text Representation", RFC 5952,
             DOI 10.17487/RFC5952, August 2010,
             <https://www.rfc-editor.org/info/rfc5952>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <https://www.rfc-editor.org/info/rfc6690>.

  [RFC6920]  Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
             Keranen, A., and P. Hallam-Baker, "Naming Things with
             Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
             <https://www.rfc-editor.org/info/rfc6920>.

  [RFC6973]  Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
             Morris, J., Hansen, M., and R. Smith, "Privacy
             Considerations for Internet Protocols", RFC 6973,
             DOI 10.17487/RFC6973, July 2013,
             <https://www.rfc-editor.org/info/rfc6973>.

  [RFC7111]  Hausenblas, M., Wilde, E., and J. Tennison, "URI Fragment
             Identifiers for the text/csv Media Type", RFC 7111,
             DOI 10.17487/RFC7111, January 2014,
             <https://www.rfc-editor.org/info/rfc7111>.

  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.



Jennings, et al.             Standards Track                   [Page 52]

RFC 8428                          SenML                      August 2018


  [RFC7721]  Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
             Considerations for IPv6 Address Generation Mechanisms",
             RFC 7721, DOI 10.17487/RFC7721, March 2016,
             <https://www.rfc-editor.org/info/rfc7721>.

  [RFC8141]  Saint-Andre, P. and J. Klensin, "Uniform Resource Names
             (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
             <https://www.rfc-editor.org/info/rfc8141>.

  [RID-CoRE]
             Shelby, Z., Vial, M., Groves, C., Zhu, J., and B.
             Silverajan, Ed., "Reusable Interface Definitions for
             Constrained RESTful Environments", Work in Progress,
             draft-ietf-core-interfaces-12, June 2018.

  [UCUM]     Schadow, G. and C. McDonald, "The Unified Code for Units
             of Measure", Version 2.1, Regenstrief Institute and
             the UCUM Organization, November 2017,
             <http://unitsofmeasure.org/ucum.html>.

Acknowledgements

  We would like to thank Alexander Pelov, Alexey Melnikov, Andrew
  McClure, Andrew McGregor, Bjoern Hoehrmann, Christian Amsuess,
  Christian Groves, Daniel Peintner, Jan-Piet Mens, Jim Schaad, Joe
  Hildebrand, John Klensin, Karl Palsson, Lennart Duhrsen, Lisa
  Dusseault, Lyndsay Campbell, Martin Thomson, Michael Koster, Peter
  Saint-Andre, Roni Even, and Stephen Farrell, for their review
  comments.






















Jennings, et al.             Standards Track                   [Page 53]

RFC 8428                          SenML                      August 2018


Authors' Addresses

  Cullen Jennings
  Cisco
  400 3rd Avenue SW
  Calgary, AB  T2P 4H2
  Canada

  Email: [email protected]


  Zach Shelby
  ARM
  150 Rose Orchard
  San Jose  95134
  United States of America

  Phone: +1-408-203-9434
  Email: [email protected]


  Jari Arkko
  Ericsson
  Jorvas  02420
  Finland

  Email: [email protected]


  Ari Keranen
  Ericsson
  Jorvas  02420
  Finland

  Email: [email protected]


  Carsten Bormann
  Universitaet Bremen TZI
  Postfach 330440
  Bremen  D-28359
  Germany

  Phone: +49-421-218-63921
  Email: [email protected]






Jennings, et al.             Standards Track                   [Page 54]