Internet Engineering Task Force (IETF)                             D. Ma
Request for Comments: 8416                                          ZDNS
Category: Standards Track                                  D. Mandelberg
ISSN: 2070-1721                                             Unaffiliated
                                                         T. Bruijnzeels
                                                             NLnet Labs
                                                            August 2018


  Simplified Local Internet Number Resource Management with the RPKI
                               (SLURM)

Abstract

  The Resource Public Key Infrastructure (RPKI) is a global
  authorization infrastructure that allows the holder of Internet
  Number Resources (INRs) to make verifiable statements about those
  resources.  Network operators, e.g., Internet Service Providers
  (ISPs), can use the RPKI to validate BGP route origin assertions.
  ISPs can also use the RPKI to validate the path of a BGP route.
  However, ISPs may want to establish a local view of exceptions to the
  RPKI data in the form of local filters and additions.  The mechanisms
  described in this document provide a simple way to enable INR holders
  to establish a local, customized view of the RPKI, overriding global
  RPKI repository data as needed.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8416.












Ma, et al.                   Standards Track                    [Page 1]

RFC 8416                          SLURM                      August 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Terminology ................................................4
  2. RP with SLURM ...................................................4
  3. SLURM Files and Mechanisms ......................................5
     3.1. Use of JSON ................................................5
     3.2. SLURM File Overview ........................................5
     3.3. Validation Output Filters ..................................6
          3.3.1. Validated ROA Prefix Filters ........................6
          3.3.2. BGPsec Assertion Filters ............................7
     3.4. Locally Added Assertions ...................................9
          3.4.1. ROA Prefix Assertions ...............................9
          3.4.2. BGPsec Assertions ..................................10
     3.5. Example of a SLURM File with Filters and Assertions .......11
  4. SLURM File Configuration .......................................13
     4.1. SLURM File Atomicity ......................................13
     4.2. Multiple SLURM Files ......................................13
  5. IANA Considerations ............................................14
  6. Security Considerations ........................................14
  7. References .....................................................14
     7.1. Normative References ......................................14
     7.2. Informative References ....................................16
  Acknowledgments ...................................................17
  Authors' Addresses ................................................17











Ma, et al.                   Standards Track                    [Page 2]

RFC 8416                          SLURM                      August 2018


1.  Introduction

  The Resource Public Key Infrastructure (RPKI) is a global
  authorization infrastructure that allows the holder of Internet
  Number Resources (INRs) to make verifiable statements about those
  resources.  For example, the holder of a block of IP(v4 or v6)
  addresses can issue a Route Origin Authorization (ROA) [RFC6482] to
  authorize an Autonomous System (AS) to originate routes for that
  block.  Internet Service Providers (ISPs) can then use the RPKI to
  validate BGP routes.  (Validation of the origin of a route is
  described in [RFC6811], and validation of the path of a route is
  described in [RFC8205].)

  However, an RPKI Relying Party (RP) may want to override some of the
  information expressed via configured Trust Anchors (TAs) and the
  certificates downloaded from the RPKI repository system.  For
  instance, [RFC6491] recommends the creation of ROAs that would
  invalidate public routes for reserved and unallocated address space,
  yet some ISPs might like to use BGP and the RPKI with private address
  space (see [RFC1918], [RFC4193], and [RFC6598]) or private AS numbers
  (see [RFC1930] and [RFC6996]).  Local use of private address space
  and/or AS numbers is consistent with the RFCs cited above, but such
  use cannot be verified by the global RPKI.  This motivates creation
  of mechanisms that enable a network operator to publish, at its
  discretion, an exception to the RPKI in the form of filters and
  additions (for its own use and that of its customers).  Additionally,
  a network operator might wish to make use of a local override
  capability to protect routes from adverse actions [RFC8211], until
  the results of such actions have been addressed.  The mechanisms
  developed to provide this capability to network operators are hereby
  called "Simplified Local Internet Number Resource Management with the
  RPKI (SLURM)".

  SLURM allows an operator to create a local view of the global RPKI by
  generating sets of assertions.  For origin validation [RFC6811], an
  assertion is a tuple of {IP prefix, prefix length, maximum length,
  Autonomous System Number (ASN)} as used by the RPKI-Router protocol,
  version 0 [RFC6810] and version 1 [RFC8210].  For BGPsec [RFC8205],
  an assertion is a tuple of {ASN, subject key identifier, router
  public key} as used by version 1 of the RPKI-Router protocol.  (For
  the remainder of this document, these assertions are called "ROA
  Prefix Assertions" and "BGPsec Assertions", respectively.)









Ma, et al.                   Standards Track                    [Page 3]

RFC 8416                          SLURM                      August 2018


1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  RP with SLURM

  SLURM provides a simple way to enable an RP to establish a local,
  customized view of the RPKI, overriding RPKI repository data if
  needed.  To that end, an RP with SLURM filters out (i.e., removes
  from consideration for routing decisions) any assertions in the RPKI
  that are overridden by local ROA Prefix Assertions and BGPsec
  Assertions.

  In general, the primary output of an RP is the data it sends to
  routers over the RPKI-Router protocol [RFC8210].  The RPKI-Router
  protocol enables routers to query an RP for all assertions it knows
  about (Reset Query) or for an update of only the changes in
  assertions (Serial Query).  The mechanisms specified in this document
  are to be applied to the result set for a Reset Query and to both the
  old and new sets that are compared for a Serial Query.  RP software
  may modify other forms of output in comparable ways, but that is
  outside the scope of this document.

  +--------------+   +---------------------------+   +------------+
  |              |   |                           |   |            |
  | Repositories +--->Local cache of RPKI objects+---> Validation |
  |              |   |                           |   |            |
  +--------------+   +---------------------------+   +-----+------+
                                                           |
         +-------------------------------------------------+
         |
  +------v-------+   +------------+   +-----------+   +-------------+
  |              |   |            |   |           |   |             |
  |    SLURM     +--->   SLURM    +--->RPKI-Router+---> BGP Speakers|
  |   Filters    |   | Assertions |   | Protocol  |   |             |
  +--------------+   +------------+   +-----------+   +-------------+

               Figure 1: SLURM's Position in the RP Stack









Ma, et al.                   Standards Track                    [Page 4]

RFC 8416                          SLURM                      August 2018


3.  SLURM Files and Mechanisms

3.1.  Use of JSON

  SLURM filters and assertions are specified in JSON format [RFC8259].
  JSON members that are not defined here MUST NOT be used in SLURM
  files.  An RP MUST consider any deviations from the specifications to
  be errors.  Future additions to the specifications in this document
  MUST use an incremented value for the "slurmVersion" member.

3.2.  SLURM File Overview

  A SLURM file consists of a single JSON object containing the
  following members:

  o  A "slurmVersion" member that MUST be set to 1, encoded as a number

  o  A "validationOutputFilters" member (Section 3.3), whose value is
     an object.  The object MUST contain exactly two members:

     *  A "prefixFilters" member, whose value is described in
        Section 3.3.1.

     *  A "bgpsecFilters" member, whose value is described in
        Section 3.3.2.

  o  A "locallyAddedAssertions" member (Section 3.4), whose value is an
     object.  The object MUST contain exactly two members:

     *  A "prefixAssertions" member, whose value is described in
        Section 3.4.1.

     *  A "bgpsecAssertions" member, whose value is described in
        Section 3.4.2.

  In the envisioned typical use case, an RP uses both Validation Output
  Filters and Locally Added Assertions.  In this case, the resulting
  assertions MUST be the same as if output filtering were performed
  before locally adding assertions; that is, Locally Added Assertions
  MUST NOT be removed by output filtering.

  The following JSON structure with JSON members represents a SLURM
  file that has no filters or assertions:








Ma, et al.                   Standards Track                    [Page 5]

RFC 8416                          SLURM                      August 2018


  {
    "slurmVersion": 1,
    "validationOutputFilters": {
      "prefixFilters": [],
      "bgpsecFilters": []
    },
    "locallyAddedAssertions": {
      "prefixAssertions": [],
      "bgpsecAssertions": []
    }
  }

                       Figure 2: Empty SLURM File

3.3.  Validation Output Filters

3.3.1.  Validated ROA Prefix Filters

  The RP can configure zero or more Validated ROA Prefix Filters
  ("Prefix Filters" for short).  Each Prefix Filter can contain either
  an IPv4 or IPv6 prefix and/or an ASN.  It is RECOMMENDED that an
  explanatory comment is included with each Prefix Filter so that it
  can be shown to users of the RP software.

  The above is expressed as a value of the "prefixFilters" member, as
  an array of zero or more objects.  Each object MUST contain either 1)
  one of the following members or 2) one of each of the following
  members.

  o  A "prefix" member, whose value is a string representing either an
     IPv4 prefix (see Section 3.1 of [RFC4632]) or an IPv6 prefix (see
     [RFC5952]).

  o  An "asn" member, whose value is a number.

  In addition, each object MAY contain one optional "comment" member,
  whose value is a string.

  The following example JSON structure represents a "prefixFilters"
  member with an array of example objects for each use case listed
  above:










Ma, et al.                   Standards Track                    [Page 6]

RFC 8416                          SLURM                      August 2018


          "prefixFilters": [
            {
              "prefix": "192.0.2.0/24",
              "comment": "All VRPs encompassed by prefix"
            },
            {
              "asn": 64496,
              "comment": "All VRPs matching ASN"
            },
            {
              "prefix": "198.51.100.0/24",
              "asn": 64497,
              "comment": "All VRPs encompassed by prefix, matching ASN"
            }
          ]

                   Figure 3: "prefixFilters" Examples

  Any Validated ROA Payload (VRP) [RFC6811] that matches any configured
  Prefix Filter MUST be removed from the RP's output.

  A VRP is considered to match with a Prefix Filter if one of the
  following cases applies:

  1.  If the Prefix Filter only contains an IPv4 or IPv6 prefix, the
      VRP is considered to match the filter if the VRP prefix is equal
      to or covered by the Prefix Filter prefix.

  2.  If the Prefix Filter only contains an ASN, the VRP is considered
      to match the filter if the VRP ASN matches the Prefix Filter ASN.

  3.  If the Prefix Filter contains both an IPv4 or IPv6 prefix and an
      ASN, the VRP is considered to match if the VRP prefix is equal to
      or covered by the Prefix Filter prefix and the VRP ASN matches
      the Prefix Filter ASN.

3.3.2.  BGPsec Assertion Filters

  The RP can configure zero or more BGPsec Assertion Filters ("BGPsec
  Filters" for short).  Each BGPsec Filter can contain an ASN and/or
  the Base64 [RFC4648] encoding of a Router Subject Key Identifier
  (SKI), as described in [RFC8209] and [RFC6487].  It is RECOMMENDED
  that an explanatory comment is also included with each BGPsec Filter,
  so that it can be shown to users of the RP software.

  The above is expressed as a value of the "bgpsecFilters" member, as
  an array of zero or more objects.  Each object MUST contain one of
  either, or one each of both following members:



Ma, et al.                   Standards Track                    [Page 7]

RFC 8416                          SLURM                      August 2018


  o  An "asn" member, whose value is a number

  o  An "SKI" member, whose value is the Base64 encoding without
     trailing '=' (Section 5 of [RFC4648]) of the certificate's Subject
     Key Identifier as described in Section 4.8.2 of [RFC6487].  (This
     is the value of the ASN.1 OCTET STRING without the ASN.1 tag or
     length fields.)

  In addition, each object MAY contain one optional "comment" member,
  whose value is a string.

  The following example JSON structure represents a "bgpsecFilters"
  member with an array of example objects for each use case listed
  above:

          "bgpsecFilters": [
            {
              "asn": 64496,
              "comment": "All keys for ASN"
            },
            {
              "SKI": "<Base 64 of some SKI>",
              "comment": "Key matching Router SKI"
            },
            {
              "asn": 64497,
              "SKI": "<Base 64 of some SKI>",
              "comment": "Key for ASN 64497 matching Router SKI"
            }
          ]

                   Figure 4: "bgpsecFilters" Examples

  Any BGPsec Assertion that matches any configured BGPsec Filter MUST
  be removed from the RP's output.  A BGPsec Assertion is considered to
  match with a BGPsec Filter if one of the following cases applies:

  1.  If the BGPsec Filter only contains an ASN, a BGPsec Assertion is
      considered to match if the Assertion ASN matches the Filter ASN.

  2.  If the BGPsec Filter only contains an SKI, a BGPsec Assertion is
      considered to match if the Assertion Router SKI matches the
      Filter SKI.

  3.  If the BGPsec Filter contains both an ASN and a Router SKI, then
      a BGPsec Assertion is considered to match if both the Assertion
      ASN matches the Filter ASN and the Assertion Router SKI matches
      the Filter SKI.



Ma, et al.                   Standards Track                    [Page 8]

RFC 8416                          SLURM                      August 2018


3.4.  Locally Added Assertions

3.4.1.  ROA Prefix Assertions

  Each RP is locally configured with a (possibly empty) array of ROA
  Prefix Assertions ("Prefix Assertions" for short).  Each ROA Prefix
  Assertion MUST contain an IPv4 or IPv6 prefix and an ASN.  It MAY
  include a value for the maximum length.  It is RECOMMENDED that an
  explanatory comment is also included with each so that it can be
  shown to users of the RP software.

  The above is expressed as a value of the "prefixAssertions" member,
  as an array of zero or more objects.  Each object MUST contain one of
  each of the following members:

  o  A "prefix" member, whose value is a string representing either an
     IPv4 prefix (see Section 3.1 of [RFC4632]) or an IPv6 prefix (see
     [RFC5952]).

  o  An "asn" member, whose value is a number.

  In addition, each object MAY contain one of each of the following
  members:

  o  A "maxPrefixLength" member, whose value is a number.

  o  A "comment" member, whose value is a string.

  The following example JSON structure represents a "prefixAssertions"
  member with an array of example objects for each use case listed
  above:

    "prefixAssertions": [
      {
        "asn": 64496,
        "prefix": "198.51.100.0/24",
        "comment": "My other important route"
      },
      {
        "asn": 64496,
        "prefix": "2001:DB8::/32",
        "maxPrefixLength": 48,
        "comment": "My other important de-aggregated routes"
      }
    ]

                  Figure 5: "prefixAssertions" Examples




Ma, et al.                   Standards Track                    [Page 9]

RFC 8416                          SLURM                      August 2018


  Note that the combination of the prefix, ASN, and optional maximum
  length describes a VRP as described in [RFC6811].  The RP MUST add
  all Prefix Assertions found this way to the VRP found through RPKI
  validation and ensure that it sends the complete set of Protocol Data
  Units (PDUs), excluding duplicates when using the RPKI-Router
  protocol (see Sections 5.6 and 5.7 of [RFC8210]).

3.4.2.  BGPsec Assertions

  Each RP is locally configured with a (possibly empty) array of BGPsec
  Assertions.  Each BGPsec Assertion MUST contain an AS number, a
  Router SKI, and the router public key.  It is RECOMMENDED that an
  explanatory comment is also included so that it can be shown to users
  of the RP software.

  The above is expressed as a value of the "bgpsecAssertions" member,
  as an array of zero or more objects.  Each object MUST contain one
  each of all of the following members:

  o  An "asn" member, whose value is a number.

  o  An "SKI" member, whose value is the Base64 encoding without
     trailing '=' (Section 5 of [RFC4648]) of the certificate's Subject
     Key Identifier as described in Section 4.8.2 of [RFC6487] (This is
     the value of the ASN.1 OCTET STRING without the ASN.1 tag or
     length fields.)

  o  A "routerPublicKey" member, whose value is the Base64 encoding
     without trailing '=' (Section 5 of [RFC4648]) of the equivalent to
     the subjectPublicKeyInfo value of the router certificate's public
     key, as described in [RFC8208].  This is the full ASN.1 DER
     encoding of the subjectPublicKeyInfo, including the ASN.1 tag and
     length values of the subjectPublicKeyInfo SEQUENCE.

  The following example JSON structure represents a "bgpsecAssertions"
  member with one object as described above:

    "bgpsecAssertions": [
      {
        "asn": 64496,
        "SKI": "<some base64 SKI>",
        "routerPublicKey": "<some base64 public key>",
        "comment": "My known key for my important ASN"
      }
    ]

                  Figure 6: "bgpsecAssertions" Examples




Ma, et al.                   Standards Track                   [Page 10]

RFC 8416                          SLURM                      August 2018


  Note that a "bgpsecAssertions" member matches the syntax of the
  Router Key PDU described in Section 5.10 of [RFC8210].  Relying
  Parties MUST add any "bgpsecAssertions" member thus found to the set
  of Router Key PDUs, excluding duplicates, when using the RPKI-Router
  protocol [RFC8210].

3.5.  Example of a SLURM File with Filters and Assertions

  The following JSON structure represents an example of a SLURM file
  that uses all the elements described in the previous sections:

    {
      "slurmVersion": 1,
      "validationOutputFilters": {
        "prefixFilters": [
          {
            "prefix": "192.0.2.0/24",
            "comment": "All VRPs encompassed by prefix"
          },
          {
            "asn": 64496,
            "comment": "All VRPs matching ASN"
          },
          {
            "prefix": "198.51.100.0/24",
            "asn": 64497,
            "comment": "All VRPs encompassed by prefix, matching ASN"
          }
        ],
        "bgpsecFilters": [
          {
            "asn": 64496,
            "comment": "All keys for ASN"
          },
          {
            "SKI": "Zm9v",
            "comment": "Key matching Router SKI"
          },
          {
            "asn": 64497,
            "SKI": "YmFy",
            "comment": "Key for ASN 64497 matching Router SKI"
          }
        ]
      },
      "locallyAddedAssertions": {
        "prefixAssertions": [
          {



Ma, et al.                   Standards Track                   [Page 11]

RFC 8416                          SLURM                      August 2018


            "asn": 64496,
            "prefix": "198.51.100.0/24",
            "comment": "My other important route"
          },
          {
            "asn": 64496,
            "prefix": "2001:DB8::/32",
            "maxPrefixLength": 48,
            "comment": "My other important de-aggregated routes"
          }
        ],
        "bgpsecAssertions": [
          {
            "asn": 64496,
            "comment" : "My known key for my important ASN",
            "SKI": "<some base64 SKI>",
            "routerPublicKey": "<some base64 public key>"
          }
        ]
      }
    }

                  Figure 7: Example of Full SLURM File




























Ma, et al.                   Standards Track                   [Page 12]

RFC 8416                          SLURM                      August 2018


4.  SLURM File Configuration

4.1.  SLURM File Atomicity

  To ensure local consistency, the effect of SLURM MUST be atomic.
  That is, the output of the RP either MUST be the same as if a SLURM
  file were not used or MUST reflect the entire SLURM configuration.
  For an example of why this is required, consider the case of two
  local routes for the same prefix but different origin ASNs.  Both
  routes are configured with Locally Added Assertions.  If neither
  addition occurs, then both routes could be in the NotFound state
  [RFC6811].  If both additions occur, then both routes would be in the
  Valid state.  However, if one addition occurs and the other does not,
  then one could be Invalid while the other is Valid.

4.2.  Multiple SLURM Files

  An implementation MAY support the concurrent use of multiple SLURM
  files.  In this case, the resulting inputs to Validation Output
  Filters and Locally Added Assertions are the respective unions of the
  inputs from each file.  The envisioned typical use case for multiple
  files is when the files have distinct scopes.  For instance,
  operators of two distinct networks may resort to one RP system to
  frame routing decisions.  As such, they probably deliver SLURM files
  to this RP independently.  Before an RP configures SLURM files from
  different sources, it MUST make sure there is no internal conflict
  among the INR assertions in these SLURM files.  To do so, the RP
  SHOULD check the entries of each SLURM file with regard to overlaps
  of the INR assertions and report errors to the sources that created
  the SLURM files in question.  The RP gets multiple SLURM files as a
  set, and the whole set MUST be rejected in case of any overlaps among
  the SLURM files.

  If a problem is detected with the INR assertions in these SLURM
  files, the RP MUST NOT use them and SHOULD issue a warning as error
  report in the following cases:

  1.  There may be conflicting changes to ROA Prefix Assertions if an
      IP address X and distinct SLURM files Y and Z exist such that X
      is contained by any prefix in any "prefixAssertions" or
      "prefixFilters" in file Y and X is contained by any prefix in any
      "prefixAssertions" or "prefixFilters" in file Z.

  2.  There may be conflicting changes to BGPsec Assertions if an ASN X
      and distinct SLURM files Y and Z exist such that X is used in any
      "bgpsecAssertions" or "bgpsecFilters" in file Y and X is used in
      any "bgpsecAssertions" or "bgpsecFilters" in file Z.




Ma, et al.                   Standards Track                   [Page 13]

RFC 8416                          SLURM                      August 2018


5.  IANA Considerations

  This document has no IANA actions.

6.  Security Considerations

  The mechanisms described in this document provide a network operator
  with additional ways to control use of RPKI data while preserving
  autonomy in address space and ASN management.  These mechanisms are
  only applied locally; they do not influence how other network
  operators interpret RPKI data.  Nonetheless, care should be taken in
  how these mechanisms are employed.  Note that it also is possible to
  use SLURM to (locally) manipulate assertions about non-private INRs,
  e.g., allocated address space that is globally routed.  For example,
  a SLURM file may be used to override RPKI data that a network
  operator believes has been corrupted by an adverse action.  Network
  operators who elect to use SLURM in this fashion should use extreme
  caution.

  The goal of the mechanisms described in this document is to enable an
  RP to create its own view of the RPKI, which is intrinsically a
  security function.  An RP using a SLURM file is trusting the
  assertions made in that file.  Errors in the SLURM file used by an RP
  can undermine the security offered to that RP by the RPKI.  A SLURM
  file could declare as invalid ROAs that would otherwise be valid, and
  vice versa.  As a result, an RP MUST carefully consider the security
  implications of the SLURM file being used, especially if the file is
  provided by a third party.

  Additionally, each RP using SLURM MUST ensure the authenticity and
  integrity of any SLURM file that it uses.  Initially, the SLURM file
  may be preconfigured out of band, but if the RP updates its SLURM
  file over the network, it MUST verify the authenticity and integrity
  of the updated SLURM file.  The mechanism to update the SLURM file to
  guarantee authenticity and integrity is out of the scope of this
  document.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.






Ma, et al.                   Standards Track                   [Page 14]

RFC 8416                          SLURM                      August 2018


  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
             (CIDR): The Internet Address Assignment and Aggregation
             Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
             2006, <https://www.rfc-editor.org/info/rfc4632>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <https://www.rfc-editor.org/info/rfc4648>.

  [RFC5952]  Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
             Address Text Representation", RFC 5952,
             DOI 10.17487/RFC5952, August 2010,
             <https://www.rfc-editor.org/info/rfc5952>.

  [RFC6487]  Huston, G., Michaelson, G., and R. Loomans, "A Profile for
             X.509 PKIX Resource Certificates", RFC 6487,
             DOI 10.17487/RFC6487, February 2012,
             <https://www.rfc-editor.org/info/rfc6487>.

  [RFC6811]  Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.
             Austein, "BGP Prefix Origin Validation", RFC 6811,
             DOI 10.17487/RFC6811, January 2013,
             <https://www.rfc-editor.org/info/rfc6811>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8205]  Lepinski, M., Ed. and K. Sriram, Ed., "BGPsec Protocol
             Specification", RFC 8205, DOI 10.17487/RFC8205, September
             2017, <https://www.rfc-editor.org/info/rfc8205>.

  [RFC8208]  Turner, S. and O. Borchert, "BGPsec Algorithms, Key
             Formats, and Signature Formats", RFC 8208,
             DOI 10.17487/RFC8208, September 2017,
             <https://www.rfc-editor.org/info/rfc8208>.

  [RFC8209]  Reynolds, M., Turner, S., and S. Kent, "A Profile for
             BGPsec Router Certificates, Certificate Revocation Lists,
             and Certification Requests", RFC 8209,
             DOI 10.17487/RFC8209, September 2017,
             <https://www.rfc-editor.org/info/rfc8209>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.




Ma, et al.                   Standards Track                   [Page 15]

RFC 8416                          SLURM                      August 2018


7.2.  Informative References

  [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
             and E. Lear, "Address Allocation for Private Internets",
             BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
             <https://www.rfc-editor.org/info/rfc1918>.

  [RFC1930]  Hawkinson, J. and T. Bates, "Guidelines for creation,
             selection, and registration of an Autonomous System (AS)",
             BCP 6, RFC 1930, DOI 10.17487/RFC1930, March 1996,
             <https://www.rfc-editor.org/info/rfc1930>.

  [RFC4193]  Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
             Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
             <https://www.rfc-editor.org/info/rfc4193>.

  [RFC6482]  Lepinski, M., Kent, S., and D. Kong, "A Profile for Route
             Origin Authorizations (ROAs)", RFC 6482,
             DOI 10.17487/RFC6482, February 2012,
             <https://www.rfc-editor.org/info/rfc6482>.

  [RFC6491]  Manderson, T., Vegoda, L., and S. Kent, "Resource Public
             Key Infrastructure (RPKI) Objects Issued by IANA",
             RFC 6491, DOI 10.17487/RFC6491, February 2012,
             <https://www.rfc-editor.org/info/rfc6491>.

  [RFC6598]  Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and
             M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address
             Space", BCP 153, RFC 6598, DOI 10.17487/RFC6598, April
             2012, <https://www.rfc-editor.org/info/rfc6598>.

  [RFC6810]  Bush, R. and R. Austein, "The Resource Public Key
             Infrastructure (RPKI) to Router Protocol", RFC 6810,
             DOI 10.17487/RFC6810, January 2013,
             <https://www.rfc-editor.org/info/rfc6810>.

  [RFC6996]  Mitchell, J., "Autonomous System (AS) Reservation for
             Private Use", BCP 6, RFC 6996, DOI 10.17487/RFC6996, July
             2013, <https://www.rfc-editor.org/info/rfc6996>.

  [RFC8210]  Bush, R. and R. Austein, "The Resource Public Key
             Infrastructure (RPKI) to Router Protocol, Version 1",
             RFC 8210, DOI 10.17487/RFC8210, September 2017,
             <https://www.rfc-editor.org/info/rfc8210>.







Ma, et al.                   Standards Track                   [Page 16]

RFC 8416                          SLURM                      August 2018


  [RFC8211]  Kent, S. and D. Ma, "Adverse Actions by a Certification
             Authority (CA) or Repository Manager in the Resource
             Public Key Infrastructure (RPKI)", RFC 8211,
             DOI 10.17487/RFC8211, September 2017,
             <https://www.rfc-editor.org/info/rfc8211>.

Acknowledgments

  The authors would like to thank Stephen Kent for his guidance and
  detailed reviews of this document.  The authors would also like to
  thank Richard Hansen for his careful reviews and Hui Zou and Chunlin
  An for their editorial assistance.

Authors' Addresses

  Di Ma
  ZDNS
  4 South 4th St. Zhongguancun
  Haidian, Beijing  100190
  China

  Email: [email protected]


  David Mandelberg
  Unaffiliated

  Email: [email protected]
  URI:   https://david.mandelberg.org


  Tim Bruijnzeels
  NLnet Labs
  Science Park 400
  Amsterdam  1098 XH
  The Netherlands

  Email: [email protected]













Ma, et al.                   Standards Track                   [Page 17]